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The Central Limit Theorem around 1935 

L. Le Cam 

Abstract. A long standing problem of probability theory has been to find 
necessary and sufficient conditions for the approximation of laws of sums 
of random variables by Gaussian distributions. A chapter in that search 
was closed by the 1935 work of Feller and Levy and by a beautiful result of 
Cramer published in early 1936. We review the respective contributions of 
Feller and Levy mentioning as necessary contributions of Laplace, Poisson, 
Lindeberg, Bernstein, Kolmogorov, and others, with an effort to place them 
in the context of the authors' times and in a modern content. 

Key words: Central Limit Theorem, Gaussian distributions, characteristic 
functions, martingales. 

1. INTRODUCTION 

In the beginning there was de Moivre, Laplace, and 
many Bernoullis, and they begat limit theorems, and 
the wise men saw that it was good and they called it 
by the name of Gauss. Then there were new genera- 
tions and they said that it had experimental vigor but 
lacked in rigor. Then came Chebyshev, Liapounov, 
and Markov and they begat a proof and Polya saw 
that it was momentous and he said that its name shall 
be called the Central Limit Theorem. 

Then came Lindeberg and he said that it was ele- 
mentary, for Taylor had expanded that which needed 
expansion and he said it twice, but Levy had seen that 
Fourier transforms are characteristic functions and he 
said "let them multiply and bring forth limit theorems 
and stable laws." And it was good, stable, and suffi- 
cient, but they asked "Is it necessary"? Levy answered, 
"I shall say verily unto you say that it is not necessary, 
but the time shall come when Gauss will have no parts 
except that they be in the image of Gauss himself, and 
then it will be necessary." It was a prophecy, and then 
Cramer announced that the time had come, and there 
was much rejoicing and Levy said that it must be 
recorded in the bibles and he did record it, and it came 
to pass that there were many limit theorems and many 
were central and they overflowed the chronicles and 
this was the history of the central limit theorem. 

This is indeed the story of the central limit theorem, 
albeit a short one. The name central limit theorem 
now covers a large variety of different results. Polya 
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(1920) had bestowed it upon results to the general 
effect that, under some restrictions, sums of independ- 
ent random variables, suitably standardized, have cu- 
mulative distribution functions close to that given by 
the famous de Moivre-Laplace formula 

@ ( x )  = -l J X  e-t2/2 dt. 
J271. 
 -m 

Here we shall be concerned mostly with the part of 
the history of the central limit theorem that took place 
between 1920 and 1937. The developments of that 
time involved some of the giants in our field: Bern- 
stein, Lindeberg, Levy, Feller, and Kolmogorov to 
mention only a few names. 

We have paid special attention to Levy's contribu- 
tions for a number of reasons. One of them is that one 
of Levy's (1935b) major papers on the subject has not 
been reproduced in his Collected Works (1976). Levy 
complained to the end of his life that he did not receive 
due credit for that work, all the credit for obtaining 
necessary conditions for the central limit theorem 
being claimed by, and usually granted to, Feller. 

As we shall see the matter of priorities is consider- 
ably more complex. It will be discussed in Section 5. 

To describe the situation we shall first have to 
review various statements of the central limit theorem 
and classify them according to their formal structure. 
This is done in Section 2. Then, in Section 3, we give 
a short review of the contributions of Laplace, Lia- 
pounov, Lindeberg, and Bernstein. This brings the 
story up to the late 1920s or early 30s a t  which time 
there were truly major contributions by Kolmogorov 
and Levy among others with a final settlement of the 
problem by Cramer in 1936. They are described in 
Section 4. Section 6 is about Feller's 1935 paper and 
Section 7 is about Levy's paper of the same year. 
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The large number of papers published after 1935 
makes a short review of the situation rather difficult. 
For the interested reader, we would recommend the 
recent books by Araujo and Gin6 (1980) and Pollard 
(1984), the papers by MaEys (1968), Zaitsev and Arak 
(1984), and Dudley and Philipp (1983) as well as the 
Maurey-Schwartz s'eminars of the Ecole Polytech- 
nique (1972-1981). 

About terminology, the distribution with density 
( ~ / & ) e - " ~ / ~was introduced by de Moivre (1738). It 
and its variations by changes of location and scale are 
often called "normal." This is an unfortunate appel- 
lation as anyone who had to deal with medical prob- 
lems can testify: the patients ("abnormal") may have 
"normal" distributions while the "normal controls" 
have non-normal ones. We have followed L6vy and 
called the distribution "Gaussian." This is not because 
Gauss had that much to do with it. He was not 
involved in the proofs or statements of central limit 
theorems. He did however publish a paper (Gauss, 
1809) that contains a description of Legendre method 
of least squares. Either that paper was not refereed or 
the referee did not do a competent job. Gauss7 argu- 
ment is perfectly circular: "Everyone knows that the 
average of the observations is the best estimate of the 
expectation. The de Moivre curve is the only one for 
which that is true for the location parameter. There- 
fore, the observations must follow that distribution 
and, therefore, the method of least squares is best." In 
addition, Gauss uses a version of Bayes' theorem, 
without giving any credit to Bayes or to Laplace who 
expounded about it much earlier (Laplace, 1778). The 
"proof" of Bayes formula by Gauss cannot even be 
considered adequate by the standards of his time or 
earlier ones. 

Gauss took pride publishing "few things, but pol- 
ished ones" (pauca, sed matura). That cannot be said 
for the paper in question, even though Gauss com- 
plained that it took 3 years to translate it into Latin. 
It is therefore quite fitting that, in accordance with 
the Stephen Stigler (1980) law of eponymy, the distri- 
bution introduced by de Moivre be called Gaussian. 

The name "central limit theorem" is at present used 
for a variety of results about the behavior of the 
distributions of sums of random variables, or random 
elements that take values in sundry spaces, such as 
Banach spaces (Araujo and Gin&, 1980) or groups 
(Parthasarathy, 1967). Here we shall concentrate 
largely on real valued independent random variables 
and on approximations of the distributions by "nor- 
mal" ones. The appellation "central" is due to P0ly6 
(1920) who used it because of the central role of the 

theorem in probability t.heory, not as the modern 
French do, because it describes the behavior of the 
center of the distribution as opposed 60 its tails. 

One of the most commonly used forms of the theo- 
rem is as follows. Let XI, . . . , X, be random variables 
with sum S = Cy=lXj. 

THEOREM1. Let the variables X, be independent 
with expectations zero and variances a;. Let s be the 
standard deviation of the sum S and let F be the 
cumulative distribution of S/s. Let 

@(x)= - - t 2 / 2  dt.Sx 
J G  -m 

Then whenever C j  E { ( X,/s 1 I[I Xj ( > cs]) < c one 
hUSsup,(F(~)- @(X)(5 5 ~ .  

This statement is close to the statement given by 
Lindeberg in 1922, except that we have given an 
explicit bound that is better than that available to 
Lindeberg. It can be obtained through the Berry- 
Esseen procedure (see for instance Lohe,  1977, p. 
294). For improvements see Zolotarev (1966). Note 
that it is not truly a "limit theorem: but an "approxi- 
mation theorem": the distance between the two cu- 
mulative distributions is bounded by a function cal- 
culable in terms of the individual variables. 

In this respect, to describe the contributions of 
various authors, it is convenient to classify theorems 
according to their logical form. There are three main 
categories. 

A. Approximation theorems in which a distance 
between the distribution of a sum and the approxi- 
mating distribution is bounded by suitable expres- 
sions, as in Theorem 1above, or in the Berry-Esseen 
theorem (Berry, 1941; Esseen, 1945). 

B. Limit theorems for triangular arrays in which 
one considers a double sequence {XnVj: j = 1, 2, . .. , 
k,; n = 1,2, . . . ) and the sum S, = C j X,,,. One takes 
the limit of the distributions of the S,. 

C. Normed sums in which one considers a single 
sequence {Xi: . -j = 1, . . . ,21 and tries to find constants . 
a, and c, such that, if S, = C?=, Xj, the distribution 
of (S, - c,)/a, tends to a limit. 

As we shall see, both Feller and L6vy7 in 1935, used 
the "normed sums" formulation, thus treating only a 
rather particular case. 

Another classification of theorems can be obtained 
according to the method of "norming." Theorem 1 
uses the so-called "classical norming" by expectations 
and standard deviations. The reliance on classical 
norming persisted for a long time. It is used in Kol- 
mogorov7s paper of 1933 (Kolmogorov, 1933a) and in 
Khinchin's booklet (Khinchin, 1933). It is noticeably 
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absent in Levy's paper of 1931. The possibility of 
working without any moments assumptions and using 
other norming constants is mentioned briefly by Bern- 
stein in 1926 (see Bernstein, 1926, Remarque, p. 23). 
Levy (1931) attributes to Khinchin the idea that al- 
lows him to dispense with moments. 

Theorem 1 uses as  distance the vertical distance 
between cumulative distribution functions. One can 
use the weaker Levy distance. Some authors, in par- 
ticular Khinchin (1938), use distances between den- 
sities. We shall not go into the details of all possibili- 
ties and stick with the vertical distance between cu- 
mulative~. 

Theorem 1should be compared to Theorem 2 below, 
the "final" version of the central limit theorem as it 
appears in Levy's monograph of 1937 (Levy, 1937a). 
It  is stated there in an intuitive form. It  is a wonderful 
exercise to translate it into an ( E ,  6 )  framework. It  can 
be done. A recent version is that of Zolotarev (1967) 
for the classical situation, Maeys (1968), for a situa- 
tion covering the general Gaussian case and Zolotarev 
(1970) for a more general problem. 

THEOREM a sum = C, X, of2. I n  order that S 
independent variables have a distribution close to Gaus- 
sian it is necessary and sufficient that, after reducing 
medians to zero, the following conditions be satisfied: 

1. Each summand that is not negligible compared to 
the dispersion of the entire sum has a distribution close 
to Gaussian. 

2. The  maximum of the absolute value of the negli- 
gible summands is itself negligible compared to the 
dispersion of the sum. 

Some of the terms used there need explanation. 
Note that there is no mention of moments, expecta- 
tions, or variances. Here the "dispersion" of a sum S 
can be measured by its interquartile range, for in- 
stance. For more general results, using infinitely di- 
visible distributions instead of just Gaussian approx- 
imations, one needs to use Paul Levy's concentration 
function C(7) = sup,P[x 5 S 5 x + T]  or its inverse, 
called dispersion function, D ( a ) ,equal to the infimum 
of the length of intervals that contain S with proba- 
bility cu or more. 

To measure how close a distribution is to another, 
Levy uses, for the Gaussian case, the Kolmogorov 
vertical distance p(Fl, F2)= sup,(Fl(x)  - F2(x)j 
between cumulatives. A term XI of the sum can be 
called "negligible" within c if Prob[I XI I > cL] < c for 
the interquartile range L of S. 

The main difference between Theorem 1and Theo- 
rem 2 is that Theorem 1just gives a sufficient condi- 
tion, whereas Theorem 2 asserts that the conditions 
are necessary and sufficient. There is a not so subtle 

difference in that, in Theorem 1, sup,Prob[ j X, j > E S ]  

must be small, whereas in Theorem 2 absolutely no 
conditions are imposed, except the independence. This 
is because Levy could then use a famous theorem of 
Cramer (Levy, 1925): 

THEOREM3. If the sum X + Y of two independent 
variables has a Gaussian distribution, then so do X 
and Y.  

The validity of this result had been conjectured by 
Levy in 1928 a t  the occasion of a hassle with Frechet 
(see Frechet (1928) and Levy (1929,1930)). The hassle 
revolved around two different matters. One was the 
validity of the theorems stated by Levy in his 1925 
book. Frechet gave a "counterexample" in the form of 
a convergent series C:=l cn/nwhere en are identically 
distributed, say uniformly on [-I, +I]. Frechet attri- 
butes the example to Hausdorff. However, Poisson in 
1824 had already considered a similar situation with 
cn distributed according to the symmetric exponential 
density Me-"'. Levy argues in his reply that in the 
case of a convergent series each term contributes a 
non-negligible portion of the dispersion of the sum 
and that under such circumstances one cannot expect 
the central limit theorem to hold. 

The other aspect of Frechet's criticism is that, in 
the theory of observational errors, one cannot assume 
that the different causes of error operate in an additive 
manner. He proposes a different "law of composition" 
in which the "total error" is the maximum of the 
individual independent contributions to it. 

It  is interesting to note that Frechet never gave up 
on these matters. I witnessed exchanges between 
Frechet and Levy in the late forties, with Levy an- 
swering in a gentle but somewhat annoyed tone: "But, 
Monsieur Frechet, we have gone over that ground 
many times since 1928." As we shall see, in the next 
section, Frechet was echoing opinions previously ex- 
pressed by Bertrand (1889), Poincare (1912), and 
Bore1 (1924). 

Levy had conjectured the validity of Theorem 3 
quoted above, but he had been unable to prove it. 
Cramer, in January 1936, obtained a proof of a 
stronger result: 

Let P(z)  = EeZX.If 'P is an entire nonvanishing 
function of the complex variable z such that, log+ 
denoting the positive part of the logarithm, 

1
lim sup -7log+I 'P(z) I < w, 

l z l + =  I z I 
then X has a Gaussian distribution. 

To prove the result in that form Cramer used a 
rather deep theorem of Hadamard. Levy quickly re- 
marked that, under the conditions of Theorem 3, one 
can use I log I instead of log+ and that a simple theo- 
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rem on harmonic functions yields the conclusion of 
the theorem. 

The fact that using Cram6r7s theorem, L6vy could 
produce necessary and sufficient conditions for Gaus- 
sian approximation prodded him to write his famous 
monograph "Thiorie de 1'Addition des Variables A16a- 
toires" (L6vy, 1937a). 

3. FROM LAPLACE TO BERNSTEIN 

De Moivre, a French mathematician, exiled to Eng- 
land because of religious persecutions, is usually 
credited with a proof that binomial distributions can 
be approximated by Gaussian ones. The result, ob- 
tained using a formula originally proved by de Moivre 
but now called Sterling's formula, occurs in his "Doc- 
trine of Chances" of 1733. This is a very special result. 
Laplace, quoting Lagrange occasionally, wrote many 
papers where he apparently tried to extend de 
Moivre7s work. Finally, in 1810, he published a paper 
stating and "proving7' a central limit theorem in a very 
general form. Laplace7s proof is certainly valid for a 
sum of bounded independent random variables whose 
values are integer multiples of some number E (lattice 
variables). The proof uses what is now called the 
characteristic function, or Fourier transform, Eeitx, 
for t real. Laplace passes from lattice variables to 
continuous ones by a swift wave of his hand. That is 
not too serious, as one can readily check. Laplace also 
sweeps away the passage to unbounded random vari- 
ables, saying in effect: "It is easy as I shall show you 
in the example of the density 1/ze-lxl.7' Unfortunately, 
that sweep is a bit too drastic. Poisson, in 1824, gave 
counterexamples that include the Cauchy distribution 
and convergent series.of the type used by Fr6chet in 
1928. In that same paper Poisson extends Laplace's 
results to sums ylXl + yzXz+ . . - + ynXn where the 
Xj are independent, bounded in absolute value by some 
constant, but not necessarily identically distributed. 

The factors yj are nonrandom. They are assumed to 
be bounded away from zero and such that the vari- 
ances y,2 var Xj remain bounded. Poisson makes fur- 
ther assumptions that are not stated very clearly. 
Except for this and for the fact that he takes uncon- 
stitutional liberties with limits under integral signs, 
his proof is quite correct. One does get the impression 
that he understood very well what was going on. 

The first rigorous proof is usually credited to Lia- 
pounov (1900), some 90 years after Laplace7s work. It  
is interesting to note that Liapounov follows Laplace 
step by step. He discretizes and uses only variables 
with a bounded range. However, for these, he gets, 
after some horrendous calculations, bounds for the 
distance supxJ F(x) - @(x) 1 that allow him to con- 
clude that the theorem is still true if EX, = 0 and if 
C j E 1 X, 1 3/[Cj EX/2I3" tends to zero. The result was 

quickly improved by Markov (1900) and by Liapounov 
(1901) himself. Markov appears to be the first to try 
to replace the independence condition on the variables 
Xj. He gives a theorem for what are now called "Mar- 
kov chains7' (1908). The work of Markov was to be 
extended to a much wider class of problems by Serge 
Bernstein. He published a short note in 1922 claiming 
that the work had been carried out in 1917-1918. A 
paper with complete proofs appeared in 1926 (Bern- 
stein, 1926). 

The proofs used by these authors are of two kinds. 
Some (e.g., Chebyshev and also Markov) made use of 
the method of moments. The other proofs rely on the 
Fourier transforms also called characteristic functions 
of the type P( t )  = Eeitx, i t real. They are = a, 
definitely in line with Laplace's work of 1810. Bern- 
stein deals with vector valued variables; Laplace had 
already pointed out the possibility of such extensions 
and in fact had obtained bivariate Gaussian limits 
(Laplace, 1810b). 

It is true that Laplace7s proofs are somewhat incom- 
plete. However, for the cases he considered (identically 
distributed or with distributions selected from a finite 
family) there is absolutely no difficulty in making the 
proof entirely rigorous. The same applies to Poisson's 
proof of 1824. It is therefore very curious that it  took 
so long before they got rewritten rigorously by Lia- 
pounov. There were a few attempts in the meantime, 
for instance that of Glaisher (1872). However any one 
of the powerful analysts of the 19th century (e.g., 
Cauchy (1853), who knew about characteristic func- 
tions and stable laws) should have been able to rewrite 
Laplace's proofs. It is even more remarkable that 
neither Joseph Bertrand nor Henri Poincar6, consid- 
ered as the leading French probabilists of their time, 
could do it. Bertrand and Poincar6 wrote treatises on 
the calculus of probability, a subject neither of the two 
appeared to know. Except for some faint praise for 
Gauss' circular argument, Bertrand's book consists 
mainly of repeated claims that his predecessors made 
grievous logical mistakes. Poincark gives a rather thor- 
ough discussion of Gauss' argument and of Bertrand's 
criticism of it. One such criticism was that the density 
of the observations might not be of the shift kind 
f (x  - 0) but more general, f(x, 0). He shows that if 
the average of the observations is the maximum like- 
lihood estimate, then, in general f (x, 0) need not be 
Gaussian but an exponential family. He goes on to 
criticize the "principle of the arithmetic mean" ex- 
plaining that outlying observations should be given 
less weight than the other ones. 

Poincar6 then says that the best justification for the 
Gaussian law is that, when one sums many small 
independent variables, the distribution of the sum is 
nearly Gaussian. He gives two "proofs," one by the 
method of moments, another by Laplace transforms. 
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However these "proofs" contain major gaps. For in- 
stance he does not prove and does not even mention 
that if Laplace transforms converge, so do the distri- 
butions. Poincar6 does not give many references. The 
names of Bertrand and Gauss are mentioned without 
any indication of where the material can be found. In 
fact, except for some references to his own works, the 
only reference given by Poincar6 is to some algebraic 
work of Frobenius. 

Borel, who succeeded Poincar6 as the leading 
French probabilist, says in the 1924 edition of his book 
that he 

will not insist on the theoretical discussions 
surrounding the Laplace-Gauss distribution 
nor on the mathematical developments to 
which they have led. Indeed, it does not ap- 
pear that the results so obtained have an 
importance in keeping with the analytical 
efforts they require . . . 

Bore1 goes on to add that "it might be possible to 
Prove certain theorems but they would not be of any 
interest, since, in practice, one could not verify 
whether the assumptions are satisfied." Such opinions 
are expressed again in Borel's 1950 rewrite of his 
-. .

Elements. 
Why the French chose to ignore their compatriot 

Laplace and give first billing to the German mathe- 
matician Gauss is hard to explain. Stigler (1980) gives 
sound reasons for the avoidance of terms such as 
Laplace's distribution. However this does not explain 
away total lack of references. Czuber in his excellent 
book of 1891 is much fairer, except that he seems to 
think that Laplace treated only the case of symmet- 
rically distributed variables. That is not the case, see 
for instances page 335 of his Thiorie Analytique des 
Probabilitis (3rd edition (1820) or Laplace (1810a, 
p. 322)). 

In 1919, when Levy was asked to give lectures on 
probability at the Ecole Polytechnique, he relied on 
Poincar6's book. He was blissfully unaware of the 
results of the Russian school. What is perhaps more 

' surprising is that he was unaware of the works of 
Lziplace or Cauchy, because, says he (Lbvy, 1970), 
"They are not mentioned in the books by Bertrand, 
Poincar6, or Borel." He reinvented the technique of 
characteristic functions, only to be told by P0ly6, then 
in Zurich, that Cauchy had used them before and had 
given the formulas for the characteristic functions of 
(symmetric) stable distributions. 

With all of this, it was a great surprise when Lin- 
deberg in 1920 and 1922 gave a perfectly elementary 
proof of the central limit theorem, essentially in the 
form of our Theorem 1, Section 2 (but not with the 

explicit bound given here). Lindeberg's proof is very 

simple. It applies just as easily to Euclidean valued or 

even Hilbert valued random vectors. ZQvy, who repro- 

duces a form of it in his 1925 Calcul des probabilities, 

was to use it very effectively to obtain his central limit 

theorem for martingales in 1934 (Lkvy, 193413 and 

1935a). In spite of this, the proof does not appear in 

standard textbooks (one exception is Thomasian 

(1969)) and some famous probabilists had difficulties 

with it. Feller (1971, p. 256 footnote) says: 


Lindeberg's method appeared intricate and 

was in practice replaced by the method of 

characteristic functions developed by L6vy. 

That streamlined modern techniques permit 

presenting Lindeberg's method in a simple 

and intuitive manner was shown by H. F. 

Trotter, Archiu. der Mathematik, Vol. 9 

(1959) pp. 226-234. Proofs of this section 

utilize Trotter's idea. 


That is surely a big of an exaggeration! Actually 
TrOtterys method differs from Lindeberg mostly by a 
change in terminology: he uses opera-
tors,, instead of ~ ~ c o n v o ~ u t ~ o nof cumulative distribu- 
tion functions,, as did ~  ~ ~Thed ~ to b ~ ~ ~ 
volution oDerators.n instead of the sums of random 
variables by Levy (1931) is unfortunate: It renders 
difficult the application of the method to the martin- 
gales (Lkvy, 193413). In addition, the use of "convolu- 
tion operators" is not that far from the use of char- 
acteristic functions since Fourier transforms are just 
what is needed to represent the convolution algebra 
of absolutely continuous measures by an algebra of 
functions under pointwise multiplication. 

Briefly, Lindeberg's method is as follows. Consider 
a sum Sn= X1 + X2 + . . . + Xn and another sum 
Tn= Yl + Y2 + . . + Yn. Let f be a bounded function. 
Then 

where Rk = ( x j < k  Xj) + ( x j > k  q).If f has two 
derivatives, the second one satisfying a Lipschitz con- 
dition I f " (u) - f "  ( u )  I s A I u - u 1, expand each of 
f (Rk + Xk) and f (Rk + Yk) around Rk getting for 
instance 

f (Rk + Xk) = f (Rk) + Xkf '(Rk) + x2,f "(Rk) 

where R$ is in between Rk and Rk + Xk. Now if the 
Xk and Yk are all independent with EXk = EYk = 0 
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and EXE = EYE = a;, the difference of expectations 
Ef (Rk + Xk) - Ef (Rk + Yk) will contain only the 
"third order" terms 

and a similar term with Xk replaced by Yk. This 
immediately gives a bound 

Lindeberg takes for the Yj independent Gaussian 
variables. Smoothing the indicator function of the 
interval (-w, x] and assuming z a? = 1 one gets a 
bound of the type 

'sup IF(x) - @(x)1 5 CiZ 
k 

[E(Xd3+ I Yk I ' I ~  . 

To get Lindeberg's theorem in its general form, it is 
sufficient to use a standard truncation argument al- 
ready used by Liapounov in 1900. Note that Linde- 
berg's argument can be used for random vectors, in- 
terpreting the absolute value sign in IXk 1 as a norm. 
In that form, it extends to Hilbert space or any Banach 
space the topology of which can be obtained from 
functions whose second derivative satisfies a Lipschitz 
condition. 

It thus seems that after Lindeberg's paper of 1922, 
or at least after the publication of Lbvy's book of 1925, 
the case could have been considered closed, except 
perhaps for refinements on the bound given above. It 
is clear from L6vyYs book (1925) that he considered 
Lindeberg's proof simpler than and superior to his 
own, using characteristic functions. However he con- 
tinued using these preferentially because they give 
easily a number of results on stable laws, until he was 
stung by criticism from Borel: "The results obtained 
by this procedure have not been commensurable with 
the analytic effort they require" (Borel, 1924, p. 125). 
It is most curious that characteristic functions that 
have front billing in L6vy's book of 1925 are conspic- 
uously absent in his work of 1930 to 1935, even though 
,to whom Borel's barbs were directed is not entirely 
clear. 

The case was not closed, however, since all the 
theorems available gave only sufficient conditions for 
approximation by Gaussian distributions. One knew, 
from the examples given by Poisson in 1824 that the 
Gaussian approximation did not always hold for sums 
of arbitrary independent variables. To describe the 
ascertainment of necessary and sufficient conditions 
will bring us to another chapter and to a discussion of 
matters of priority between Feller and L6vy. However, 
before getting into this it is necessary to report briefly 

on some developments that took place in France and 
Russia in the early thirties. 

4. MORE LIMIT THEOREMS 

In two papers published in 1931 and 1933, Kolmo- 
gorov contributed a major result that has not received 
the attention it deserves. He proves what one would 
now call an "invariance principle" from the name 
bestowed by Kac (1949) and Donsker (1951) on func- 
tional central limit theorems. Kolmogorov considers 
independent variables X, with EX, = 0, EX? = a? 
and E ( Xj 1 I cay. He forms the trajectory W = 

2
( z j = k  a,, z j = k  Xj; k = 1, 2, . . . 1 as a graph in the 
plane. Taking two smooth curves (a(t); t E 10, TI 1 and 
(b ( t ) ;t E [0, TI), Kolmogorov shows that, for c small, 
the probability that W lies between the two curves 
differs little from a number obtainable from the solu- 
tion of the heat equation that vanishes on the two 
curves. He also mentions that one can obtain similar 
results for variables that are not independent but form 
Markov chains. Kolmogorov's results are partially 
reproduced in Khinchin's booklet "Asymptotische 
Gesetze der Wahrscheinlichkeitsrechnung" of 1933. It 
is most remarkable that in spite of this they have 
largely been ignored. 

That period also saw the study of convergence of 
series of independent random variables and that of 
stochastic processes with independent increments. 
Some major contributions are those of Khinchin 
(Khinchin and Kolmogorov, 1925), Kolmogorov (1928 
and 1932), and Lbvy (1931 and 1934a). 

The matter of whether an infinite series C X, of 
independent variables can be made to converge almost 
surely by addition of nonrandom terms may seem to 
be remote from the central limit theorem itself. It was 
treated by Khinchin and Kolmogorov (1925), by Kol- 
mogorov (1928), and then by L6vy (1931). L6vy had a 
copy of Kolmogorov's paper. However, he says (Lhvy, 
1970, p. 87), that he had read only a few pages because 
he "did not yet know that Kolmogorov would become 
one of the greatest mathematicians of his generation." 
In any event Lbvy rediscovers by his own methods 
Kolmogorov's three-series theorem (see for instance 
Lo6ve (1977, p. 240), but he goes on studying in detail 
what happens if the series EL1X, diverges. This 
brings him back to the central limit theorem and to 
two statements. He considers an infinite sequence 
(Xj;j = 1, 2, . . . 1 of independent variables. Another 
sequence (Xj' :j = 1,2, . . . 1 is called equivalent to (Xj) 
if z j Pr[Xj # Xj'] < w. L6vy credits Khinchin with 
that concept and proceeds to state: 

Let S, = X1 + X2 + . . + X,. In order that S, be 
of the form A, +B, 4, where A, and B, are nonrandom 
and where 4, tends in distribution to the standard 
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Gaussian distribution l ( O ,  1) it is sufficient that there 
be a sequence equivalent to the original one to which 
one can apply Lindeberg's theorem. 

Lbvy then says that the condition used in this 
theorem cannot be necessary, because some of the Xj 
could be exactly Gaussian and as large as one pleases, 
while Lindeberg's condition implies that each Xj must 
be negligible compared to the dispersion of the entire 
sum. He states another result as follows: 

The above conclusion remains valid if Xj = aj + bjtj
+ + v,! where aj and bj are nonrandom, tj is 
N(0,  I), the ( ( have an upper bound that is 
infinitely small compared to the dispersion of S, and 
C Pr[vJ # 01 < w. (For what is meant by "negligible" 
and "dispersion" see Section 2 above.) Here, the tri- 
plets (ti, q,7;) are independent of each other, but 
the variables constituting a particular triplet need not 
be independent. 

Lbvy adds: "It is perhaps not impossible to obtain, 
in this realm of ideas, a necessary and sufficient 
condition, but its practical application would be diffi- 
cult." 

This paper of Lbvy's is noteworthy for several rea- 
sons. Except for Bernstein's (1926, p. 23) footnote, the 
statements seem to be the first where a central limit 
theorem is given without any moment conditions 
whatsoever. The results were obtained by direct meth- 
ods without any appeal to the characteristic functions 
he had promoted so vigorously before. They also give 
the first inkling that he had hopes to obtain necessary 
and sufficient conditions for the approximation of 
distributions of sums by Gaussian distributions with- 
out imposing any restrictions on how small the terms 
of the sum might be, while conjecturing that if they 
are individually small, their maximum must also be 
small. 

A casual reader of the papers of that period might 
be puzzled by some of the formulations used to say 
that in S = X1 + X2 + .. . + X, no single term has 
much influence on the behavior of the total sum. This 
may be interpreted in various ways. To avoid compli- 
cations with centerings and other problems, consider 
for instance the case where each of the X,: j = 1, 2, 
,. . . ,n has a symmetric distribution around zero. Let 
Sk,be the sum C j  [Xj: j # k]. Let F and Fkbe the 
respective distributions of S and Sk.The statement 
might be interpreted as a condition to the effect that 
the Kolmogorov distance supk (1 F -FkI( is small. This 
is what Lbvy seems to say in his 1929 reply to Frbchet 
(Lbvy, 1929, p. 2). That is also what Feller seems to 
say (Feller, 1935, p. 523, lines 3-6). Actually that kind 
of condition is only a necessary and sufficient condi- 
tion for the approximation of F by the accompanying 
infinitely divisible law whose characteristic function 
is exp(C, [Pj - 11with (Pi(t) = Eeitxj. 

The condition for approximation by a Gaussian 
distribution is that, if supk (1 F - F k  (1 is small, then 
supjI X, ( must also be small compared to the inter- 
quartile range of S (or, as shown in L6vy (1937b), 
small compared to ( S I ). 

Another major accomplishment of the early thirties 
is the characterization of "processes with independent 
increments." This was started by de Finetti (1929), 
followed by Kolmogorov (1932), and finished by L6vy 
(1934a). Here, again, L6vy's paper is noteworthy for 
its direct methods, avoiding the use of characteristic 
functions except for a description of the distribution 
of the process at a given time. 

L6vy describes the process as a sum of independent 
terms. Besides a nonrandom component, the process 
is a sum of discontinuities that occur at fixed time 
points, a Gaussian process with continuous trajecto- 
ries, and a series of terms obtained by selecting time 
points according to Poisson processes and placing 
them at these points jumps with independently chosen 
sizes. From this description Lbvy concludes that, when 
there are no fixed discontinuities, the characteristic 
function of the process X(t )  at time t has the form 

log P(s) = ias --
u 

s2+ S [e"" - 1- isxu(x)]M(dx).
2 

Here M is the "L6vy measure" that gives for each set 
A the expected number M(A) of jumps with sizes in 
A. The function u can be some continuous function, 
such that 0 Iu 5 1, equal to one near zero and to 
zero outside a bounded interval. Lbvy observes that 
the characteristic function P determines both u2 and 
M and notes the implication that if X and Y are 
independent, infinitely divisible with a Gaussian sum 
X + Y then each of X and Y must be Gaussian. He 
proceeds to state the conjecture that this result re- 
mains true without the infinitely divisible restriction 
on X and Y. He also says that if X + Y is infinitely 
divisible, then X and Y must be. That was soon shown 
to be incorrect, but we have not been able to track 
down the author of the first counter example. (It is 
trivial to show that if X is a variable taking value 1 
with probability p < 1/i and zero with probability 
1-p one can add a suitable independent Y to make 
X + Y infinitely divisible.) 

In two other papers of 1934, L6vy returns to the 
central limit theorem, but this time for sums S, = 
X1 + . . . + X, where the entries X, are not inde- 
pendent. They are martingale differences in the sense 
that given Xj: j 5 k - 1, the conditional expectation 
Ek-lXk is zero. They are assumed to have conditional 
variances Ek-lXE = u; and are subjected to other 
conditions bounding their size. This is very similar to 
the assumptions made by Bernstein (1926, p. 21) in 
his "fundamental lemma." One essential difference is 
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that Bernstein assumes that the a$ are close to non- 
random quantities. Lbvy does not make that assump- 
tion at all. What he does is to introduce a clock where 
"time" is measured by the successive sums C j c k  a7. 
He calls S ( t )  the sum C j  [X,: j 5 u ]  where v is the first 
integer for which C,,, a! L t and proceeds to show 
that, when such iniegers exist, ~ ( t ) / &  has a distri- 
bution tending to N(0,  1) at  t + m. He also gives 
indications on what happens if one stops a t  nonran- 
dom integers n, obtaining "mixed normal" limits. 

L6vy's proof is patterned on Lindeberg's, replacing 
Xu by a variable ax, so that C j < , a! + E,-l(aX,)2 is 
exactly t and then proceeding downward from u to 
replace the variables Xj by a,[, with tj independent 
M ( 0 , l )  variables. Here again the man who so strongly 
supported the use of characteristic functions between 
1922 and 1930 avoids their use entirely. 

At this point the stage was set for a search for 
conditions that would be not only sufficient but also 
necessary. Part, but only part, of the answer was given 
by Feller and by L6vy in papers published in 1935. We 
shall now take a look at these papers. 

5. A MATTER OF PRIORITY 

Feller says in his book (1971, Vol. 11, p. 256): 

Special cases and variants had been known 
before, but Lindeberg gave the first general 
form containing theorem 1.The necessity of 
Lindeberg's condition with the classical 
norming was proved by Feller . . . 

In his Souvenirs, L6vy (1970, p. 108) says: 

However, in the meantime, W. Feller had 
obtained and published the same result. The 
independence of our researches cannot be 
contested and he did not contest it. However, 
his work having been published before mine, 
it is to him alone that the merit of having 
established the theorem that is in a certain 
sense the final one on the Gaussian distri- 
bution is generally attributed. Nonetheless, I 
am convinced that I found eyerything with- 
out any other useful indications than some 
sentences of Poincarb. I shall never have had 
any luck with the Gaussian distribution. 

As we shall see both Feller and Lbvy treated only a 
special case in 1934-1935, namely the case of "normed 
sums" (see Section 2). Both authors assumed that, 
after norming, the individual summands are "uni-
formly asymptotically negligible," according to the 
terminology of Loeve (1977) or "infinitesimal" accord- 
ing to that of Gnedenko and Kolmogorov (1954). It is 
only after Cramer obtained Theorem 3 (Section 2) in 

January 1936 that the role of the asymptotic negligi- 
bility could be fully ascertained. Both L6vy and Feller 
were aware of the problem arising froin the possibility 
that a sum of a few independent terms could have a 
near Gaussian distribution without any of the terms 
being near Gaussian. However, Feller (1935, p. 531) 
dismisses the problem as "not belonging to the calcu- 
lus of probability." 

As to who did what first, some dates are as follows: 
L6vy's paper (1935b) was written in October 1934. It 
was presented at a meeting of the Soci6tb Math6ma- 
tique de France, November 28,1934. Typesetting took 
place February 9, 1935. Order to print the issue was 
given in September 1935 and that issue of the journal 
was on sale in December 1935. L6vy had also explained 
the results in a "Notice sur mes travaux scientifiques" 
distributed privately to colleagues in June 1935. 
Feller's paper was received by the Mathematische Zeit- 
schrift on the 5th of May 1935. That issue of the 
Zeitschrift was "abgeschlossen" on the 8th of Novem- 
ber 1935. As far as could be ascertained the word 
"abgeschlossen" is used and was used to mean that 
the issue was complete and ready for the printer. 
Records on when the issue was actually distributed 
are missing. However distribution may have been 
swift. For instance Bernstein's paper of 1926 is in- 
cluded in a volume of Mathematische Annalen dated 
1927, but the particular "Heft" is dated 1926. It was 
"abgeschlossen" December 15, 1926 and received a t  
Berkeley January 19, 1927. (Remember, in those day 
they used boats!). 

In his second paper on the central limit theorem, 
Feller (1937) partly acknowledges LQvy's claim to 
priority. The German is hard to translate accurately, 
but here is an approximation: 

I am happy to note, according to a kind 
communication from Mr. P. L6vy, that his 
paper, although published later, was submit- 
ted and presented to the Soci6t6 Mathbma- 
tique de France substantially before mine 
(October 1934 versus May 1935). 

Even though the methods used by Feller and L6vy 
differ considerably, one could inquire about the pos- 
sibility of influence through communications between 
Paris and Stockholm. There was indeed a substantial 
amount of correspondence between France, Sweden, 
and Russia on matters of probability. However, Feller 
had just moved from Kiel to Stockholm. He was new 
to probability, having previously worked on measure 
theory, differential geometry, partial differential equa- 
tions, and some other mathematical subjects. He 
seems to have known of Lbvy's work only through 
L6vy's 1925 book, ignoring in particula~ Lbvy's work 



86 L. LE CAM 

of 1931 and 1934. He also did not appear to know of 
Bernstein's paper of 1926. 

6. FELLER'S PAPER OF 1935 

Feller (1935) considers an infinite sequence (X,: j = 
1, 2, . . . ) of independent random variables and ad- 
dresses himself to the question: 

Given such a sequence, when do there exist 
sequences of numbers a, and c, such that if 

then 

tends in distribution to M(0,  1).If so, how 
can the constants a, and c, be computed. 

Feller does not answer that question in its general 
form. He treats only the case where the a,, if they 
exist, must be such that for each k the variables 
Xkla, tend in probability to zero. The justification for 

W.Feller (picture courtesy of the Department of Statistics, Stanford) 
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this restriction is given as follows: Feller proceeds to state that, under this condition, 

The only case that belongs to the domain of 
problems on limit theorems is the one in 
which, as n increases, the influence of the 
individual components on the distribution of 
the sum goes to zero, in other words, that the 
convergence does not arise from the over-
whelming influence of individual components 
that themselves tend to N(0,  1). 

(Feller, 1935, p. 523, lines 3-8.) 

Feller refers later (p. 524, lines 2-5) to the problems 
created by the fact that the a, might conceivably stay 
bounded. The problem is mentioned again on page 
531, lines 10-20. Feller observes that, in that case, one 
would obtain a series of independent, perhaps non- 
Gaussian random variables, say (Y,: n = 1, 2, . . . ) 
with a sum S = Y, that has a Gaussian distri- 
bution. He dismisses the investigation of that possi- 
bility as "not belonging to the calculus of probability." 

In the above pseudo-quotations, we have reformu- 
lated Feller's questions and comments in terms of 
random variables. Actually Feller does not use that 
language. He writes about "convolutions of distribu- 
tion functions." There is some mention of random 
variables, but only in footnotes, giving the impression 
that Feller did not think that such concepts belonged 
in a mathematical framework. This was a common 
attitude in the mathematical community. It is true 
that Kolmogorov in 1933 had given to such language 
a perfectly rigorous mathematical foundation, but it 
seems to have taken time for this to penetrate. One 
can even claim that LQvy in his 1925 book (Note, p. 
325) had given a mathematical description that is 
sufficient for the study of sequences of random vari- 
ables. This, as well as the relevant work of FrQchet 
(1915) and Daniel1 (1918), had remained largely un- 
noticed. 

Under his negligibility condition, Feller proceeds to 
give necessary and sufficient conditions for the exist- 
ence of the numbers a, and c,. The answer is as 
follows: 

' 
THEOREM.Assume that the X, have medians equal 

to zero. For 6 >0,letp,(6) be the smallest number such 
that 

Then there are numbers a, and c, such that the distri- 
bution of (lla,) (S, - c,), S, = Cj"=lX, tends to N(0,  
1) if and only if for each 6 > 0 one has 

1

lim -2 EX:I[I Xj I < pn(6)]= m. 

~ 2 , ( 6 )j=1 

there exist sequences (&,I, 6,+ 0 such that if Y,,j = 
XjIII Xj I <p,(6,)] then a; can be taken equal to the 
sum a2, =Cj"=lvar Y,,, of the variances of the truncated 
variables Y,,,. He also gives further possible choices, 
all depending on the preliminary choice of certain 
sequences of truncation constants. 

Under the negligibility assumption, this does answer 
the question he posed, at least formally. However, it 
does not provide a very usable recipe for selecting the 
constants a, for any given value of n. A possible 
recipe could be as follows: Let ( X / :j = 1, 2, . . . ) 
be an independent copy of the sequence (Xi: j = 
1, 2, . . . ). Let 2, = Xj - X,'. For a E (0, m), let 
s2,(a) = Cj"=l E min[l, .Z?/a2]. Take a, such that 
sE(a,) = 2. Once the a, have been chosen it is a simple 
matter to recenter S,. One takes for c, the sum 

EXjI[l Xj 1 Ia,]. 
Now let us consider what could be called "new" in 

Feller's, paper if one does not take into account LQvy's 
paper (1935b). The sufficiency of the conditions can 
be readily derived from Lindeberg's work (1922) if one 
takes into account Lkvy's statement of 1931 quoted in 
Section 4. However, Feller's result is stated in a more 
analytic and precise language that that of LQvy. The 
main claim made by Feller in 1971 is that he proved 
the necessity of the conditions. He did, for the case he 
considered, and also provided information on the se- 
lection of the constants a, and c,. 

Feller's proof is oppressively analytical. His appar- 
ent refusal to use the language of random variables 
and expectations makes the formulas and derivations 
awkward and heavy. However the principle of the 
operation is rather simple. He uses characteristic func- 
tions and LQvy's convergence theorem for them. We 
have already noted that his references to the literature 
are meager. He does mention LQvy's book of 1925 
several times. However, even there, the references are 
not always correct. For instance he claims that LQvy 
proved a "special case (of the convergence theorem for 
characteristic functions) under the assumption of ex- 
istence of second moments." Such moments are not 
even mentioned in LQvy's (1925, p. 197) statement. 
Feller later apologized for the error in 1937. As I said 
before, Feller was new to the calculus of probability. 
This was his first paper on the subject. He does not 
seem to have had time to survey the previous litera- 
ture. 

Finally, let us note that Feller treats only the case 
called "normed sums" (see Section 2). It is true that 
his analytic method can be readily expanded to cover 
the case of "triangular arrays." However Feller's paper 
is replete with statements about the possible behavior 
of the coefficients a, and other matters that would not 
have any validity (or any relevance) in the case of 
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"triangular arrays." Thus, in this respect at least, one 
cannot say that he gave the "final" solution to the 
central limit problem. As we shall now see, neither did 
L6vy in his paper (1935b). 

7. LEVY'S PAPER OF 1935 

This is a sizeable paper. It is much harder to read 
than Feller's paper, even for a French native whose 
German is most deficient. Feller's paper is replete 
with formulas and precise, heavy analytical deriva- 
tions. L6vy's contains few formulas. The author just 
discourses along, scattering a wealth of ideas on his 
way. However, in many respects, L6vy's paper is more 
interesting than Feller's. 

After a brief introduction, L6vy proceeds to obtain 
stable distributions by an "elementary" procedure. 
"Elementary" means that he does not use character- 
istic functions at all. In fact the only characteristic 
functions that are mentioned are on page 357 for 
stable laws and on page 380 as an aside after a state- 
ment to the effect that if the limiting distributions of 
normed sums of identically distributed variables are 
not stable, they must still be infinitely divisible, with 
characteristic functions given by the formula L6vy 
(1934a) had previously derived in 1934. 

P. GUY 

After this aside on stable laws, LQvy proceeds to 
give necessary and sufficient conditions for the con- 
vergence to a Gaussian distribution :of normed sums 
of independent and identically distributed variables. 
Then he tackles the general case of independent sum- 
mands. However, not satisfied with that, he gives a 
detailed study of convergence to the Gaussian law for 
what we now call "martingales." (The name "martin- 
gale" was introduced in probability theory by Ville 
(1939) who took it from the jargon used in Monaco to 
describe gambling systems. It was adopted by J. L. 
Doob (1953) who used it for sequences of random 
variables whose expectation given the past is the pre- 
vious variable, as should occur for the fortune of a 
gambler in a fair game.) 

As we shall see, L6vy's statements and proofs are 
correct for independent summands. His direct martin- 
gale central limit theorem is also quite correct. How- 
ever, his converse theorem, for the martingale case, 
suffers from some difficulties. Here one should keep 
in mind L6vy's own statement in his Souvenirs, page 
107: " . . . being in too much of a hurry, I did not wait 
for my ideas to reach full maturity and my paper was 
badly written." From the story told in the Souvenirs, 
one gathers that L6vy dealt with the independent 
identically distributed case in September 1934, but 
wrote about the general case, including martingales, 
in early October 1934. He had obtainedand 
earlier (Lbvy, 1935a) central limit theorems for mar- 
tingales. The sufficiency proof is reproduced (Lkvy, 
1935b), but the necessity statements are added. They 
are not entirely correct. 

One of the techniques introduced by L6vy in his 
study of sums of independent variables is a split-
ting of the summands according to the size of their 
absolute values. One could summarize the result 
as follows. Let X,,j have median zero. Let X,!,,j = 
XjIII X,,, I 5 T,] and let X;,j = X,,,I[l X,,, I > T,]. 
If supj,,Pr[I X,,j I > T,] tends to zero then the two 
sums xi Xk,j and x jX;,, behave asymptotically as if 
they were independent. 

In all the arguments, L6vy assumes that Lindeberg's 
theorem is known. He concentrates on the role of 
"large values" of the Xj and shows that Cj,, Xj can 
be normalized to have distribution close to M(0, 1) 
only if max,,, I X, I becomes small compared to the 
dispersion of the sum S, = Cj,, Xj. This is done 
through a computation on the tail probabilities of S,: 
If S, is approximately M(0, a:), then the tail proba- 
bilities P [  I S, I > x] are approximately 

Now take T, = to, in the definition of the variables 
X:,, described above. Choose [ so that C,,, P [  I X, I > 
T,] is, say, approximately l/lo. L6vy argues that the 
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dispersion of Cj,, X:,,, and therefore that of S, is too 
large to be compatible with the Gaussian exponential 
bounds. He uses that argument for the case of identi- 
cally distributed variables and repeats it with a mod- 
ification for the general case of independent sum-
mands. However, in.the latter case, he needs to apply 
it to sums of type C j  (Xi: m <j I n )  = S, -S, where 
both S, and S, are approximately Gaussian. This does 
not allow him to deal with what he calls "intermittent 
convergence," that is convergence for selected subse- 
quences (nu: v = 1, 2 . . . ). Also, in the general case, 
Levy deals only with "individually negligible terms," 
thus using the same restriction as Feller. 

It is most peculiar that LQvy would resort to a 
delicate (but "elementary"!) evaluation of the tail 
probabilities for the sums S,. LQvy must have known 
that sums of individually negligible terms have distri- 
butions tending to infinitely divisible limits. The re- 
sult is an easy consequence of his splitting of Xj as 
XA,, + X:,,. That is an argument he had used forcefully 
in his 1934 study of processes with independent incre- 
ments (LQvy, 1934a). In that same paper, he had given 
the general formula for the characteristic function of 
infinitely divisible distributions. He had proved the 
appropriate uniqueness theorem for the entries in that 
formula. For the measure M, now called the LQvy 
measure of the process with independent increments, 
LQvy had given the interpretation recalled in Section 
4. The same kind of interpretation is readily available 
for sums of independent variables. LQvy's discussion 
of the effects of large values indicates that he probably 
knew of such an interpretation. He certainly could 
have established it without any trouble. From all this 
information, the necessity for the Gaussian limits of 
the negligibility of suiji,, ( X, I compared to the dis- 
persion of S, is an utter triviality, if the summands 
are already assumed to be individually negligible. 

The documents available to us are insufficient to 
establish why LQvy did not proceed along the lines we 
just indicated. However they suggest possibilities. Be- 
sides being stung by Borel's criticism, LQvy was fas- 
cinated by the general case, without any negligibility 
restrictions. This is suggested by his paper of 1931 
and by his "hypothetical Lemma 111" (LQvy, 1935b, p. 
381) that says that if X and Y are independent and 
X + Y Gaussian then so are X and Y (Crambr's 
Theorem, see Section 2). LQvy elaborated a t  length on 
this point, explaining that if the hypothetical Lemma 
I11 is correct, the nonindividually negligible terms 
must be approximately Gaussian. Removing them, the 
rest must obey the "law of large numbers." This last 
appellation occurs throughout the paper. It has noth- 
ing to do with what one usually calls laws of large 
numbers, but is used to mean that supjSnl Xi I is 
negligible compared to the dispersion of S,. LQvy 
(1935b, p. 388, footnote) also says, "extension to the 
case of intermittent convergence . . . is immediate if 

Lemma I11 is true, but seems rather difficult to estab- 
lish without using that Lemma." As already mentioned 
"intermittent" means convergence alofig subsequences 
{nu:v = 1, 2, . . . ) and LQvy was perhaps thinking of 
the irrelevant difficulty created by the fact that a sum 
C j  {Xj: nu-l <j Inu) need not be negligible compared 
to the dispersion of S,". 

Another explanation for LQvy's refusal to use char- 
acteristic functions is that he was thinking of a proof 
applicable to the martingale case and that he consid- 
ered that "characteristic functions are mostly use-
ful for sums of independent variables" (see Lbvy, 
1970, p. 76). This may be so, because the remainder 
of LQvy's paper deals with dependent variables 
(X,: j = 1, 2, . . . , n )  where X, satisfies either a 
boundedness restriction and the condition that 
E[XnI XI, . . . , Xn-l] = 0, or a symmetry condition, 
given the past variables XI, Xz, . . . ,X,-I. 

In previous papers, LQvy (1935a) had given the 
martingale limit theorems described in Section 4. The 
theorems are repeated in the 1935 paper, using a 
truncation procedure to eliminate the boundedness 
restriction. This gives a "martingale central limit 
theorem" that has become a prototype for most others. 
Note that the martingale case had already been treated 
by Bernstein in 1926. However Bernstein assumed 
that the conditional variances a? are very close to 
nonrandom quantities. L6vy makes no such assump- 
tion. 

There is no difficulty with the direct part of the 
martingale central limit theorem. However L6vy goes 
further and tries to extend to that case the proof of 
necessity he had obtained for the independent case. 
In brief, he assumes that, given the values of the XI, 
. . . ,Xj-l, the next variable Xj has a symmetric distri- 
bution around zero. He considers constants a ( t )  
and lets X& = XjIII X, I r a(t)]. Define = 

E([X(,121 XI, . . . , Xj-l) and let k(t) be the first 
integer n such that C j  [uij: j In] B t. Let 9 ( t )  = 
C j  (Xj:j r k(t)). 

LQvy asserts that if the k(t) exist and if 9 ( t ) / &  
tend to N(0,  1)as t -+ w, then I/& supj( I X, I : j r 
k(t))  must tend to zero in probability. His proof of 
this assertion is very mysterious. He asserts, without 
any explanations, that under the circumstances, 

must also be approximately Gaussian, for any integer 
m and any i = 0, 1, 2, . . . , m - 1. He also uses a 
symmetry argument, as if, given the past, Y(7,  t )  = 
C (Xi: 7 < j I k(t)) were symmetrically distributed 
around zero for all stopping times 7 < k(t). This is 
not necessarily true as shown by examples given by 
LQvy himself in the next page of his paper (p. 397). It 
is however possible to carry out a proof if one adds to 
LQvy's condition the assumption that the sums 
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(I/&) P(T,t )  have uniformly bounded conditional 
medians. 

Next, LQvy elaborates on a number of examples 
where the sums under consideration are not taken "at 
sections with constant t." He shows that they need 
not be normally distributed in the limit. For instance 
they may be "mixed normal," that is, conditionally 
Gaussian given the value of a random variance term. 
He gives a very interesting example where the X,. have 
symmetric distributions given the past, but where he 
drives the distributions toward Gaussian ones and 
then makes them drift away, repeating such cycles 
infinitely often. This gives a counterexample to the 
theorem he had just stated, but he does not notice it. 

LQvy also states other conjectures to the effect that, 
under the conditional symmetry assumption or similar 
ones, the distribution of the sums can tend to Gaussian 
only if two particular conditions are either simulta- 
neously fulfilled or simultaneously violated. The con- 
ditions are: 1) that the sums be taken "at sections 
with constant t" and 2) that supj ( I Xj I :j Ik,(t) J be 
negligible compared to the dispersion of 9 ( t ) .  As 
already mentioned, one needs supplementary condi- 
tions to insure the validity of LQvy's converse theorem. 
The range of validity of LQvy's other conjectures does 
not seem to have been studied. 

Almost as soon as the papers by Feller and LQvy 
appeared, CramQr (1936) proved the validity of LQvy's 
hypothetical Lemma 111. This prompted LQvy to write 
his 1937 monograph. There, sums of independent ran- 
dom variables are treated in detail and so are stochas- 
tic processes with independent increments. A martin- 
gale central limit theorem is proved, but the converse 
is not mentioned. In the meantime Feller also returned 
to the evaluation of his norming constants (Feller, 
1937). CramQr published a Cambridge Tract that is 
small, but packed with information. Much earlier in 
1924, Bore1 had started editing a monumental Traitk 
de Calcul des Probabilitks, with many contributing 
authors. The publication continued, but that treatise 
had essentially no influence on the development of 
the field, while Cram6r's booklet and L6vy's mono- 
graph were bibles to generations of probabilists. 
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