
JOINT ERGODICITY OF SEQUENCES - AN EXPOSITION

NIKOS FRANTZIKINAKIS

Abstract. A collection of integer sequences is jointly ergodic if for every ergodic
measure preserving system the multiple ergodic averages, with iterates given by this
collection of sequences, converge in the mean to the product of the integrals of the
functions involved. Convenient necessary and su�cient conditions for joint ergodicity
were given in [11] and this exposition uses a simpli�ed version of the argument in [11] in
order to recover its main results under somewhat stronger assumptions. The argument
we give is rather short and avoids deep tools from ergodic theory. The main result can
be used to prove new ergodic theorems and give vast simpli�cations of older results
that depended on deep machinery from ergodic theory.

Dedicated to the memory of Dimitris Gatzouras

1. Introduction

The polynomial Szemerédi theorem of Bergelson and Leibman [1] states that if Λ is
a set of integers with positive upper density and p1, . . . , pℓ ∈ Z[t] are polynomials with
zero constant term, then there exist m,n ∈ N such that

m,m+ p1(n), . . . ,m+ pℓ(n) ∈ Λ.

This generalizes the theorem of Szemerédi [28] on arithmetic progressions that corre-
sponds to the case where p1(n) = n, p2(n) = 2n, . . . , pℓ(n) = ℓn. The proof of Bergelson
and Leibman uses ergodic theory and up to this day it is the only proof that covers the
full generality of this result. Using the correspondence principle of Furstenberg [14, 15]
it turns out that it su�ces to verify the following: For every measure preserving system
(X,X , µ, T ) and set A ∈ X with positive measure, there exists n ∈ N such that

µ(A ∩ T−p1(n)A ∩ · · · ∩ T−pℓ(n)A) > 0.

The proof of this multiple recurrence property proceeds by analyzing the limiting behavior
in L2(µ) of the following multiple ergodic averages (see our notation for averages in
Section 1.1)

(1) En∈[N ] T
p1(n)f1 · . . . · T pℓ(n)fℓ.

Finding an explicit formula for this limit for all polynomials is still an unresolved problem,
but in some cases the limit takes a particularly simple form, namely, it is the product
of the integrals of the functions f1, . . . , fℓ. Due to congruence obstructions this can
only be the case for totally ergodic systems, which is the reason why we are particularly
interested in this class of systems. The prototypical result was established by Furstenberg
and Weiss [16] and states that in a totally ergodic system for every f, g ∈ L∞(µ) we have

(2) lim
N→∞

En∈[N ] T
nf · Tn2

g =

∫
f dµ ·

∫
g dµ

in L2(µ). The proof of this result is rather involved and its most di�cult component is
the analysis of a special class of two step distal systems, called Conze-Lesigne systems
(introduced in [7]), that control the limiting behavior of these averages. Conze-Lesigne
systems are particular examples of systems with nilpotent structure, a concept that
has played an important role in subsequent developments in the �eld. By combining the
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Host-Kra theory of characteristic factors [17] and equidistribution results on nilmanifolds
from [22], the author and Kra extended in [13] the result of Furstenberg and Weiss by
showing that in a totally ergodic system if the polynomials p1, . . . , pℓ ∈ Z[t] are rationally
independent,1 then for all f1, . . . , fℓ ∈ L∞(µ) we have

(3) lim
N→∞

En∈[N ] T
p1(n)f1 · . . . · T pℓ(n)fℓ =

∫
f1 dµ · · ·

∫
fℓ dµ

in L2(µ). If the polynomials are rationally dependent, then easy examples of totally
ergodic circle rotations show that the previous limit formula fails. In fact, when p1(n) =
n, p2(n) = 2n, . . . , pℓ(n) = ℓn, the limit can be computed using the results in [17, 30, 31]
and it turns out that it genuinely depends on the (ℓ− 1)-step nilsystems that are factors
of the original system. So in order to obtain an explicit limit formula for the averages
(1) for dependent polynomials, the use of deep structural results from ergodic theory and
equidistribution results on nilmanifolds seems unavoidable. This is not the case though
for rationally independent polynomials, and it has been a tantalizing open problem for
quite a while to get an �elementary� proof for the limit formulas (2) and (3). The main
purpose of this note is to reproduce a simpli�ed version of an argument from [11] that
accomplishes this goal. Moreover, as in [11], our main result (Theorem 2.1) gives a
rather general statement that applies to a variety of sequences, not just polynomials,
and this allows to prove some new convergence results and establish some conjectures.
We record a few examples from recent literature in Section 2.3. As in [11], our argument
was motivated by techniques of Peluse [24] and Peluse and Prendiville [26] of �nitary
nature that were originally devised to give quantitative estimates for special cases of the
polynomial Szemerédi theorem.

1.1. De�nitions and notation. With N we denote the set of positive integers and with
Z+ the set of non-negative integers. For t ∈ R we let e(t) := e2πit. With T we denote
the one dimensional torus and we often identify it with R/Z or with [0, 1). With ℜ(z)
we denote the real part of the complex number z. For N ∈ N we let [N ] := {1, . . . , N}.
If a : Ns → C is a bounded sequence for some s ∈ N and A is a non-empty �nite subset
of Ns, we let En∈A a(n) := 1

|A|
∑

n∈A a(n).

2. Main results

2.1. De�nitions. In order to facilitate our exposition we reproduce some de�nitions
from [11].

De�nition. We say that the collection of sequences a1, . . . , aℓ : N → Z is jointly ergodic
for the ergodic system (X,X , µ, T ), if for all f1, . . . , fℓ ∈ L∞(µ) we have

(4) lim
N→∞

En∈[N ] T
a1(n)f1 · . . . · T aℓ(n)fℓ =

∫
f1 dµ · . . . ·

∫
fℓ dµ

in L2(µ).

If a collection of sequences is jointly ergodic for every ergodic system, then an er-
godic decomposition argument shows that the limit formula (4) holds for every system
(X,X , µ, T ) (not necessarily ergodic), if we use in place of the integrals

∫
fi dµ the con-

ditional expectations E(fi|I(T )) (I(T ) is the σ-algebra of T -invariant sets). This implies
that the following strong multiple recurrence property holds

lim
N→∞

En∈[N ] µ(A ∩ T−a1(n)A ∩ · · · ∩ T−aℓ(n)A) ≥ (µ(A))ℓ+1,

1A collection of integer polynomials is rationally independent, if every non-trivial linear combination
of the polynomials is non-constant.
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for every system (X,X , µ, T ) and every A ∈ X . It is then a consequence of the cor-
respondence principle of Furstenberg [15] that every set of integers with positive upper
density contains patterns of the form m,m+ a1(n), . . . ,m+ aℓ(n), for some m,n ∈ N.

De�nition. If (X,X , µ, T ) is a system we de�ned its spectrum as follows

Spec(T ) := {t ∈ [0, 1) : Tf = e(t) f for some non-zero f ∈ L2(µ)}.

For the de�nition of the seminorms ||| · |||s we refer the reader to Section 3.2.

De�nition. We say that the collection of sequences a1, . . . , aℓ : N → Z is:

(i) good for seminorm estimates for the system (X,X , µ, T ), if there exists s ∈ N
such that if f1, . . . , fℓ ∈ L∞(µ) and |||fi|||s = 0 for some i ∈ {1, . . . , ℓ}, then

lim
N→∞

En∈[N ] T
a1(n)f1 · . . . · T aℓ(n)fℓ = 0

in L2(µ);
(ii) good for equidistribution on S ⊂ [0, 1), if for all t1, . . . , tℓ ∈ S, not all of them 0,

we have

(5) lim
N→∞

En∈[N ] e(a1(n)t1 + · · ·+ aℓ(n)tℓ) = 0.

It is known [18, 23] that if p1, . . . , pℓ : N → Z are polynomials with pairwise non-
constant di�erences, then they are good for seminorm estimates for every ergodic system.
They are also good for equidistribution for all totally ergodic systems if and only if the
polynomials are rationally independent; this follows easily from a well known equidis-
tribution result of Weyl. If c1, . . . , cℓ are positive distinct non-integers, then it can be
shown [9] that the collection of sequences [nc1 ], . . . , [nck ] is good for seminorm estimates
and good for equidistribution for all ergodic systems.

2.2. Main result. We are now ready to state our main result (in applications we are
going to use it for S = [0, 1) and S = ([0, 1) \Q) ∪ {0}).

Theorem 2.1. Let S be a susbet of [0, 1) with countable complement in [0, 1). The
collection of sequences a1, . . . , aℓ : N → Z is jointly ergodic for all systems with spectrum
in S if and only if it is good for seminorm estimates and equidistribution for these systems.

Remarks. • The necessity of the conditions is easy to establish, the interesting part is
the su�ciency.

• Theorem 1.1 in [11] uses somewhat weaker assumptions. The stronger assumption
we use here allows to simplify the proof in [11].

• Theorem 1.4 in [11] shows that under weaker equidistribution hypothesis, which are
satis�ed by collections of rationally independent integer polynomials, the rational Kro-
necker factor controls the limiting behavior of the associated multiple ergodic averages.
One can deduce this result from Theorem 2.1 as in [11, Section 5].

In order to facilitate understanding, we are going to �rst prove Theorem 2.1 for ℓ = 2
in Section 4 and then explain the necessary changes needed for the proof of the general
case in Section 5.

Since for totally ergodic systems (X,X , µ, T ) we have Spec(T ) ⊂ ([0, 1) \Q)∪ {0}, an
immediate consequence of Theorem 2.1 (for S = ([0, 1)\Q)∪{0}) is the following result:

Corollary 2.2. The collection of sequences a1, . . . , aℓ : N → Z is jointly ergodic for all
totally ergodic systems if and only if it is good for seminorm estimates for all totally
ergodic systems and (5) holds for all t1, . . . , tℓ ∈ [0, 1) that are either irrational or zero
but not all of them zero.

This applies to collections of rationally independent polynomials p1, . . . , pℓ ∈ Z[t],
hence we recover the limit formulas (2) and (3).
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2.3. Applications. Theorem 2.1 can be used to give signi�cantly simpler proofs of re-
sults in [3, 9, 13, 16, 20] (the parts that correspond to joint ergodicity properties). But
it also gives access to convergence results not previously known. The main reason why
Theorem 2.1 is advantageous for these applications, is that it enables us to bypass some
di�cult and often inaccessible equidistribution results on nilmanifolds that need to be
established in order to use the Host-Kra theory of characteristic factors. We record a
few instances of these applications below. We remark that in all these cases the most
di�cult component is to verify the good seminorm property; verifying the needed good
equidistribution property is usually a simple matter.

Theorem 2.1 was used in [12] to prove the following joint ergodicity result for sequences
given by fractional powers of primes.

Theorem 2.3 ([12]). Let c1, . . . , cℓ be distinct positive non-integers. Then the collection
of sequences [pc1n ], . . . , [pcℓn ] is jointly ergodic for every ergodic system.

Previously this was only known for ℓ = 1 and for ℓ = 2 it was not even known for
nilsystems or weakly mixing systems.

Another very interesting application of Theorem 2.1 was recently obtained by Tsinas
[29] who veri�ed a conjecture of the author from [9] (see also [10, Problem 23]).

Theorem 2.4 ([29]). Let a1, . . . , aℓ : [1,∞) → R be functions from a Hardy �eld2 that
have polynomial growth. Then the collection of sequences [a1(n)], . . . , [aℓ(n)] is jointly
ergodic for all ergodic systems if whenever a(t) is a non-trivial linear combination of the
functions a1, . . . , aℓ we have

lim
t→∞

|a(t)− p(t)|
log t

= ∞

for all polynomials p ∈ Z[t].3

Previously this was known for ℓ = 1 (it follows easily from [6]) and for general ℓ partial
progress was made in [3, 9, 20, 27].

Theorem 2.1 was also used in [11] in order to address a problem of Bergelson, Moreira,
and Richter [4, Conjecture 6.1]. It establishes an extension of the limit formula (3) that
covers iterates given by polynomials with fractional powers.

Theorem 2.5. Let a1, . . . , aℓ : R+ → R be linearly independent functions of the form∑k
i=1 αit

ci where α1, . . . , αk ∈ Q and c1, . . . , ck ∈ (0,+∞). Then the collection of se-
quences [a1(n)], . . . , [aℓ(n)] is jointly ergodic for all totally ergodic systems.

Lastly, Theorem 2.1 was recently extended by Best and Moragues [5] to a large class of
countable Abelian group actions, and this extension was subsequently used by Donoso,
Koutsogiannis, and Sun [8] to prove joint ergodicity results for commuting transforma-
tions with polynomial iterates under some ergodicity assumptions.

3. Background

3.1. Measure preserving systems. A measure preserving system, or simply a system,
is a quadruple (X,X , µ, T ) where (X,X , µ) is a Lebesgue probability space and T : X →
X is an invertible, measurable, measure preserving transformation. Throughout, for
n ∈ N we denote by Tn the composition T ◦ · · · ◦T (n times) and let T−n := (Tn)−1 and
T 0 := idX . Also, for f ∈ L2(µ) and n ∈ Z we denote by Tnf the function f ◦ Tn.

2This class includes all linear combinations of the functions ta(log t)b(log log t)c, a, b, c ∈ R, and
more generally, all functions de�ned on some half-line [c,∞) using a �nite combination of the symbols
+,−,×, :, log, exp, operating on the real variable t and on real constants.

3This condition is close to being necessary, in the sense that if it fails for some non-linear p, then
the collection of sequences a1, . . . , aℓ is not going to be jointly ergodic for some ergodic rotation on the
ℓ-dimensional torus.
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We say that the system (X,X , µ, T ) is ergodic if the only functions f ∈ L2(µ) that
satisfy Tf = f are the constant ones. It is totally ergodic if (X,X , µ, T d) is ergodic for
every d ∈ N, or equivalently, if the system is ergodic and Spec(T ) ⊂ ([0, 1) \Q) ∪ {0}.

A function f ∈ L2(µ) is an eigenfunction of the system if Tf = e(α)f for some α ∈ R.
We denote with E(T ) the set of all eigenfunctions of the system with unit modulus.

3.2. Gowers-Host-Kra seminorms. Throughout, we use the following notation:

De�nition. Let (X,X , µ, T ) be a system and f ∈ L∞(µ). If n = (n1, . . . , ns) ∈ Zs,
n′ = (n′

1, . . . , n
′
s) ∈ Zs, ϵ = (ϵ1, . . . , ϵs) ∈ {0, 1}s, and z ∈ C, we let

(i) ϵ · n := ϵ1n1 + · · ·+ ϵsns;
(ii) |n| := |n1|+ · · ·+ |ns|;
(iii) Clz := z if l is even and Clz = z if l is odd;
(iv) ∆nf := Tnf · f , n ∈ Z;
(v) ∆nf := ∆n1 · · ·∆nsf =

∏
ϵ∈{0,1}s C|ϵ|T ϵ·nf .

For instance, we have

∆(n1,n2)f = f · Tn1f · Tn2f · Tn1+n2f, n1, n2 ∈ Z.

Given an ergodic system (X,X , µ, T ) we will make extensive use of the seminorms ||| · |||s,
s ∈ N, on L∞(µ), that were introduced in [17]. They are often refereed to asGowers-Host-
Kra seminorms, or uniformity seminorms, and are de�ned inductively for f ∈ L∞(µ) as
follows:

|||f |||1 :=
∣∣∣ ∫ f dµ

∣∣∣,
and for s ∈ Z+ we let

(6) |||f |||2s+1

s+1 := lim
N→∞

En∈[N ]|||∆nf |||2
s

s .

For instance, we have

|||f |||42 = lim
N→∞

En∈[N ]

∣∣∣ ∫ f · Tnf dµ
∣∣∣2.

An application of the mean ergodic theorem shows that

(7) |||f |||42 = lim
N1→∞

En1∈[N1] lim
N2→∞

En2∈[N2]

∫
f · Tn1f · Tn2f · Tn1+n2f dµ.

Likewise, by successive applications of the mean ergodic theorem, it can be shown that
the limit in (6) exists and for f ∈ L∞(µ) and s ∈ Z+ we have that (see [17] or [19,
Chapter 8])

(8) |||f |||2ss = lim
N1→∞

· · · lim
Ns→∞

En1∈[N1] · · ·Ens∈[Ns]

∫
∆(n1,...,ns)f dµ.

For s′ ∈ [s] it can be shown that we can take any s′ of the iterative limits to be simulta-

neous limits (i.e. average over [N ]s
′
and let N → ∞) without changing the value of the

limit. This was originally proved in [17] and for a much simpler proof see [2]. Taking
s′ = s gives

(9) |||f |||2ss = lim
N→∞

En∈[N ]s

∫
∆nf dµ.

For s ≥ 2 taking s′ = s− 1 and using the mean ergodic theorem gives

(10) |||f |||2ss = lim
N→∞

En∈[N ]s−1

∣∣∣ ∫ ∆nf dµ
∣∣∣2.

Lastly, for s ≥ 3 taking s′ = s− 2 gives

(11) |||f |||2ss = lim
N→∞

En∈[N ]s−2 |||∆nf |||42.
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3.3. Soft inverse theorems. Recall that if (X,X , µ, T ) is a system, with E(T ) we
denote the set of its eigenfunctions with unit modulus.

Proposition 3.1. Let (X,X , µ, T ) be an ergodic system and f ∈ L∞(µ) be 1-bounded.
Then

|||f |||42 ≤ sup
χ∈E(T )

ℜ
(∫

f · χdµ
)
.

Proof. Let K(T ) be the closed subspace of L2(µ) spanned by all eigenfunctions of the
system. It is not hard to prove (see for example [19, Chapter 8, Theorem 1]) that

|||f |||2 = |||f̃ |||2
where f̃ := E(f |K(T )). Since the system is ergodic and the underlying probability space
is Lebesgue, the subspace K(T ) has an orthonormal basis of eigenfunctions of modulus

one, say (χj)j∈N. Then f̃ =
∑∞

j=1 cj χj where

cj :=

∫
f̃ · χj dµ =

∫
f · χj dµ, j ∈ N.

We have

|||f̃ |||42 =
∞∑
j=1

|cj |4 ≤ sup
j∈N

(|cj |2)
∞∑
j=1

|cj |2 = sup
j∈N

(|cj |2) ∥f∥2L2(µ) ≤ sup
j∈N

∣∣∣ ∫ f · χj dµ
∣∣∣,

where the �rst identity follows by orthonormality and direct computation using (7), the
second identity follows by the Parseval identity, and the last estimate holds since all
functions involved are 1-bounded. The result now follows since the set E(T ) is invariant
under multiplication by unit modulus constants. □

Proposition 3.2. Let (X,X , µ, T ) be an ergodic system and f ∈ L∞(µ) be such that
|||f |||s+2 > 0 for some s ∈ Z+.

(i) If s = 0, then there exists χ ∈ E(T ) such that ℜ
( ∫

f · χdµ
)
> 0.

(ii) If s ≥ 1, then there exist χn ∈ E(T ), n ∈ Ns, such that

lim inf
N→∞

En∈[N ]sℜ
(∫

∆nf · χn dµ
)
> 0.

Proof. If s = 0, then the conclusion follows immediately from Proposition 3.1.
Suppose that s ≥ 1. By (11) we have that

lim
N→∞

En∈[N ]s |||∆nf |||42 > 0.

Using Proposition 3.1 we deduce that

lim inf
N→∞

En∈[N ]s sup
χ∈E(T )

ℜ
(∫

∆nf · χdµ
)
> 0.

This immediately implies the asserted estimate. □

3.4. Gowers-Cauchy-Schwarz estimates. We will use the following variant of the so
called Gowers-Cauchy-Schwarz inequality:

Lemma 3.3. Let (X,X , µ, T ) be a system, for s ∈ N let fϵ ∈ L∞(µ), ϵ ∈ {0, 1}s, be
1-bounded functions, and gn ∈ L∞(µ), n ∈ Ns. Let also 1 := (1, . . . , 1). Then for every
N ∈ N we have∣∣∣En∈[N ]s

∫ ∏
ϵ∈{0,1}s

T ϵ·nfϵ · gn dµ
∣∣∣2s ≤ En,n′∈[N ]s

∫
∆n−n′f1 · T−|n|gn,n′ dµ,

where for every n, n′ ∈ Ns the function gn,n′ is equal to a product of 2s functions that
belong to the set {gn, gn, n ∈ Ns}.
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Proof. For notational simplicity we give the details only for s = 2. The general case can
be proved in a similar manner by successively applying the Cauchy-Schwarz inequality
with respect to the variables ns, . . . , n1, exactly as we do below for s = 2. We have that∣∣∣En1,n2∈[N ]

∫
f0 · Tn1f1 · Tn2f2 · Tn1+n2f3 · gn1,n2 dµ

∣∣∣2
is bounded by (we use that f0, f1 are 1-bounded)

En1∈[N ]

∫ ∣∣∣En2∈[N ]T
n2f2 · Tn1+n2f3 · gn1,n2

∣∣∣2 dµ.
After expanding the square we �nd that this expression is equal to

En1∈[N ]

∫
En2,n′

2∈[N ] T
n2f2 · Tn′

2f2 · Tn1+n2f3 · Tn1+n′
2f3 · gn1,n2 · gn1,n′

2
dµ.

After composing with T−n2 , exchanging En1∈[N ] with En2,n′
2∈[N ], using the Cauchy-

Schwarz inequality, and that f2 is 1-bounded, we get that the square of the last expression
is bounded by

En2,n′
2∈[N ]

∫ ∣∣∣En1∈[N ] T
n1f3 · Tn1+n′

2−n2f3 · T−n2(gn1,n2 · gn1,n′
2
)
∣∣∣2 dµ.

As before, we expand the square, and compose with T−n1 . We arrive at the expression

En1,n2,n′
1,n

′
2∈[N ]∫

f3 ·Tn′
1−n1f3 ·Tn′

2−n2f3 ·Tn′
1+n′

2−n1−n2f3 ·T−n1−n2(gn1,n2 · gn1,n′
2
· gn′

1,n2
· gn′

1,n
′
2
) dµ,

which is equal to the right hand side of the asserted estimate when s = 2 (for n := (n1, n2),
n′ := (n′

1, n
′
2)). Combining the previous two estimates gives the asserted bound for

s = 2. □

4. Proof of the main result for ℓ = 2

The goal of this section is to give a proof for the su�ciency of the conditions in
Theorem 2.1 for ℓ = 2 (the necessity is simple). It su�ces to prove the following:

Theorem 4.1. Let S be a susbet of [0, 1) with countable complement in [0, 1). Suppose
that the sequences a, b : N → Z are good for equidistribution on S and seminorm estimates
for the system (X,X , µ, T ) with Spec(T ) ⊂ S. Then for all f, g ∈ L∞(µ) we have

(12) lim
N→∞

En∈[N ] T
a(n)f · T b(n)g =

∫
f dµ ·

∫
g dµ

in L2(µ).

The proof of Theorem 2.1 for general ℓ is similar to the case ℓ = 2 but involves an
additional induction and is notationally more complicated; we describe the modi�cations
needed to get the more general statement in Section 5.

4.1. Preparation. In order to ease the exposition of the proof of Theorem 4.1 we use
this subsection to gather some preparatory results. We are going to complete the proof
of Theorem 4.1 in Section 4.2.



JOINT ERGODICITY OF SEQUENCES - AN EXPOSITION 8

4.1.1. The case where g is an eigenfunction. We are going to make essential use of the
good equidistribution assumption for the sequences a, b : N → Z to prove the next result.

Proposition 4.2. Theorem 4.1 holds if g is an eigenfunction of the system.

Proof. If f is constant, then the conclusion easily follows from our equidistribution as-
sumption. Thus, it su�ces to show that if

∫
f dµ = 0 and χ ∈ E(T ), then

lim
N→∞

En∈[N ] T
a(n)f · T b(n)χ = 0

in L2(µ).

Suppose that the eigenvalue of χ is e(α) for some α ∈ Spec(T ). Then T b(n)χ =
e(b(n)α)χ, so it su�ces to show that

(13) lim
N→∞

En∈[N ] cn T
a(n)f = 0

in L2(µ) where cn := e(b(n)α), n ∈ N. To this end, we invoke the theorem of Herglotz
(see for example [21, Section 7.6]) for the positive de�nite sequence a(n) :=

∫
f ·Tnf dµ,

n ∈ Z. It gives that there exists a positive bounded measure σ on T (thought of as [0, 1))
such that

(14)

∫
f · Tnf dµ =

∫
e(nt) dσ(t), n ∈ Z.

Note that σ does not have a point mass on 0 because f has integral 0, or on any other
number on the complement of Spec(T ) (we leave these standard facts as an exercise for
the reader). A simple computation that uses (14) shows that∥∥∥En∈[N ] cn T

a(n)f
∥∥∥
L2(µ)

=
∥∥En∈[N ] cn e(a(n)t)

∥∥
L2(σ)

, N ∈ N.

Using this identity, the bounded convergence theorem, and the fact that the bounded
measure σ does not have point masses on 0 and on the countable set [0, 1) \ S (since it
is contained on the complement of Spec(T )), we get that (13) would follow if we show
that for every non-zero t ∈ S we have

lim
N→∞

En∈[N ] e(a(n)t+ b(n)α) = 0.

Since α ∈ Spec(T ) ⊂ S, this follows from our assumption that the pair of sequences
a, b : N → Z is good for equidistribution on S. □

4.1.2. Positivity for g implies positivity for an averaged function g̃. Our next goal is to
show that if the positivity property (15) below holds, then it also holds when we replace g
with an averaged function g̃. This is a simple but crucial observation because uniformity
properties of g̃ are easier to analyse than those of g.

Proposition 4.3. Let (X,X , µ, T ) be a system and f, g ∈ L∞(µ) be such that

(15) lim sup
N→∞

∥∥∥En∈[N ] T
a(n)f · T b(n)g

∥∥∥
L2(µ)

> 0.

Then there exist Nk → ∞ and 1-bounded gk ∈ L∞(µ), k ∈ N, such that for

(16) g̃ := lim
k→∞

En∈[Nk] T
−b(n)gk · T a(n)−b(n)f,

where the limit is a weak limit (note that then g̃ ∈ L∞(µ)), we have

(17) lim sup
N→∞

∥∥∥En∈[N ] T
a(n)f · T b(n)g̃

∥∥∥
L2(µ)

> 0.
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Proof. We can assume that both f and g are 1-bounded. For �xed f ∈ L∞(µ) we let
C = C(f) be the L2(µ) closure of all linear combinations of all subsequential weak-limits

of sequences of the form En∈[N ] T
−b(n)gN · T−b(n)+a(n)f, where gN ∈ L∞(µ), N ∈ N, are

1-bounded functions.
We �rst claim that if g is orthogonal to the subspace C, then

lim
N→∞

En∈[N ] T
a(n)f · T b(n)g = 0

in L2(µ). Indeed, if this is not the case, then there exist a > 0 and Nk → ∞ such that∥∥∥En∈[Nk] T
a(n)f · T b(n)g

∥∥∥
L2(µ)

≥ a, k ∈ N.

If we de�ne the 1-bounded functions gk := En∈[Nk] T
a(n)f ·T b(n)g, k ∈ N, we deduce that

(18) En∈[Nk]

∫
gk · T a(n)f · T b(n)g dµ ≥ a2, k ∈ N.

By passing to a subsequence, we can assume that the sequence of 1-bounded functions
En∈[Nk] T

−b(n)gk · T a(n)−b(n)f , k ∈ N, converges in the weak topology of L2(µ) to a

function h ∈ C. Then composing with T−b(n) in (18) we deduce that
∫
g · h dµ ̸= 0,

contradicting our assumption that g is orthogonal to the subspace C. This proves our
claim.

From the previous claim we conclude that

lim
N→∞

En∈[N ] T
a(n)f · T b(n)(g − E(g|C)) = 0

in L2(µ), where E(g|C) denotes the orthogonal projection of g onto the closed subspace
C. Hence, if (15) holds, then

lim sup
N→∞

∥∥∥En∈[N ] T
a(n)f · T b(n)E(g|C)

∥∥∥
L2(µ)

> 0.

Using the de�nition of C and an approximation argument, we get that there existNk → ∞
and 1-bounded functions gk ∈ L∞(µ), k ∈ N, such that for g̃ as in (16) we have that
(17) holds. Lastly, since f and gk, k ∈ N, are 1-bounded functions, the same holds for g̃.
This completes the proof. □

4.1.3. Seminorms of averaged functions. Our next goal is to use Lemma 3.3 in order to
show that if the uniformity seminorm of an average of functions is positive, then some
positiveness property holds for iterated di�erences of the individual functions. Note that
we do not impose any assumptions on the sequences a, b : N → Z here.

Proposition 4.4. Let (X,X , µ, T ) be an ergodic system, and g̃ ∈ L∞(µ) be as in (16)
and satisfy |||g̃|||s+2 > 0 for some s ∈ Z+.

(i) If s = 0, then there exists χ ∈ E(T ) such that

lim sup
k→∞

En∈[Nk]ℜ
(∫

gk · T a(n)f · T b(n)χdµ
)
> 0.

(ii) If s ≥ 1, then there exist χn,n′ ∈ E(T ), n, n′ ∈ Ns, such that

lim inf
N→∞

En,n′∈[N ]s lim sup
k→∞

En∈[Nk]ℜ
(∫

(∆n−n′gk) · T a(n)(∆n−n′f) · T b(n)χn,n′ dµ
)
> 0.

Remark. The key point is that positivity properties of expressions involving ∆ng̃, n ∈
Ns+2, imply positivity properties of expressions involving ∆nf , n ∈ Ns.

Proof. Suppose that s ≥ 1, the argument is similar if s = 0. Proposition 3.2 gives that
there exist χn ∈ E(T ), n ∈ Ns, such that

lim inf
N→∞

En∈[N ]s ℜ
(∫

∆ng̃ · χn dµ
)
> 0.
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Since ∆ng̃ =
∏

ϵ∈{0,1}s C|ϵ|T ϵ·ng̃, n ∈ Ns, and g̃ = limk→∞ En∈[Nk] fk,n (the limit is a

weak limit) where

(19) fk,n := T−b(n)gk · T a(n)−b(n)f, k, n ∈ N,
we deduce that

lim inf
N→∞

lim
k→∞

En∈[Nk]ℜ
(
En∈[N ]s

∫ ∏
ϵ∈{0,1}s\{1}

C|ϵ|T ϵ·ng̃ · Tn1+···+nsfk,n · χn dµ
)
> 0.

For �xed k, n ∈ N, we apply Lemma 3.3 with f1 := fk,n, fϵ := C|ϵ|f for ϵ ∈ {0, 1}s \ 1,
and gn := χn, n ∈ Ns, and deduce that

lim inf
N→∞

lim sup
k→∞

En∈[Nk] En,n′∈[N ]s

∫
∆n−n′fk,n · χn,n′ dµ > 0

for some χn,n′ ∈ E(T ), n, n′ ∈ Ns (we used that E(T ) is closed under products and

composition with iterates of T ). Note that ∆n(w · z) = ∆n(w) ·∆n(z) and ∆n(T
kw) =

T k∆n(w) for all w, z ∈ L∞(µ) and k ∈ N, n ∈ Zs. Using this, equation (19), and keeping
in mind that the limsup of a sum is at most the sum of the limsups, the asserted estimate
follows from the last one after composing each function inside the integral with T b(n). □

4.2. Proof of Theorem 4.1. We are now ready to prove Theorem 4.1.

4.2.1. Reduction to a degree lowering property. Since the sequences a, b : N → Z are good
for seminorms estimates for the system (X,X , µ, T ), there exists s ∈ Z+ such that the
seminorms ||| · |||s+2 control the averages (12), in the sense that if f, g ∈ L∞(µ) are such
that |||f |||s+2 = 0 or |||g|||s+2 = 0, then

(20) lim
N→∞

En∈[N ] T
a(n)f · T b(n)g = 0

in L2(µ). Our goal is to show that a similar property holds with s − 1 in place of
s. Namely, using terminology from [26], we are going to establish the following �degree
lowering property�:

Proposition 4.5. Let S be a susbet of [0, 1) with countable complement in [0, 1). Let
a, b : N → Z be good for equidistribution for S and (X,X , µ, T ) be an ergodic system with
spectrum in S. If for some s ∈ Z+ the seminorms ||| · |||s+2 control the averages (12), then
also the seminorms ||| · |||s+1 control the averages (12).

This �degree lowering property� is the heart of the proof of Theorem 4.1. Iterating
this property s+ 1 times we deduce that the seminorms ||| · |||1 control the averages (12).
Since |||f |||1 = |

∫
f dµ|, this proves Theorem 4.1.4 So we get the following:

Proposition 4.6. In order to verify Theorem 4.1 it su�ces to verify Proposition 4.5.

4.2.2. Proof of Proposition 4.5. We work under the assumption of Proposition 4.5 and
our aim is to show that if f ∈ L∞(µ) satis�es |||f |||s+1 = 0, then (20) holds (similarly we
show that if g ∈ L∞(µ) satis�es |||g|||s+1 = 0, then (20) holds). Equivalently, it su�ces to
show that if (15) holds, then |||f |||s+1 > 0.

Suppose that s ≥ 1, the argument is similar if s = 0 (in this case the conclusion is
that

∫
f dµ ̸= 0). Using (15) and Proposition 4.3, we deduce that

lim sup
N→∞

∥∥∥En∈[N ] T
a(n)f · T b(n)g̃

∥∥∥
L2(µ)

> 0,

where

(21) g̃ := lim
k→∞

En∈[Nk] T
−b(n)gk · T a(n)−b(n)f,

4We use here that Theorem 4.1 holds if f or g is constant, which follows from Proposition 4.2.
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for some sequence of integers Nk → ∞ and 1-bounded functions gk ∈ L∞(µ), k ∈ N,
where the limit is a weak limit. Since, by assumption, the seminorms ||| · |||s+2 control the
averages in (20) we get that

(22) |||g̃|||s+2 > 0.

Using Proposition 4.4 we deduce that

lim inf
N→∞

En,n′∈[N ]s lim sup
k→∞

En∈[Nk]ℜ
(∫

(∆n−n′gk) · T a(n)(∆n−n′f) · T b(n)χn,n′ dµ
)
> 0

for some χn,n′ ∈ E(T ), n, n′ ∈ Ns. Using the Cauchy-Schwarz inequality we get

lim inf
N→∞

En,n′∈[N ]s lim sup
k→∞

∥∥∥En∈[Nk] T
a(n)(∆n−n′f) · T b(n)χn,n′

∥∥∥
L2(µ)

> 0.

The advantage now is that since χn,n′ ∈ E(T ), n, n′ ∈ Nd, the average over n is much
simpler to analyse than the original one in Theorem 4.1. In fact, using Proposition 4.2 we
get that it converges in L2(µ) to the product of the integrals of the individual functions.
We deduce that

lim inf
N→∞

En,n′∈[N ]s

∣∣∣ ∫ ∆n−n′f dµ ·
∫

χn,n′ dµ
∣∣∣ > 0

and as a consequence

lim inf
N→∞

En,n′∈[N ]s

∣∣∣ ∫ ∆n−n′f dµ
∣∣∣2 > 0.

Since |
∫
∆nf dµ| remains the same if we change the sign of some of the coordinates of

n, we deduce using a simple computation that

lim inf
N→∞

En∈[N ]s

s∏
j=1

(
1− nj

N

)
·
∣∣∣ ∫ ∆nf dµ

∣∣∣2 > 0.

It follows that

lim
N→∞

En∈[N ]s

∣∣∣ ∫ ∆nf dµ
∣∣∣2 > 0

(the limit exists by (10)). Hence, by (10) we have that

|||f |||s+1 > 0

as required. This concludes the proof of Proposition 4.5 and by Proposition 4.6 the proof
of Theorem 4.1.

5. Proof of the main result for general ℓ

We now give a summary of the proof of Theorem 2.1 for general ℓ, the reader should
�nd it easy to �ll in the missing details.

Let S be a susbet of [0, 1) with countable complement in [0, 1). Suppose that collection
of sequences a1, . . . , aℓ : N → Z is good for seminorm estimates and equidistribution for
the ergodic system (X,X , µ, T ) with specrum in S. Our goal is to show that for all
f1, . . . , fℓ ∈ L∞(µ) we have

(23) lim
N→∞

En∈[N ] T
a1(n)f1 · . . . · T aℓ(n)fℓ =

∫
f1 dµ · . . . ·

∫
fℓ dµ in L2(µ).

Our proof will deviate slightly from the argument given in the case ℓ = 2, because a
statement analogous to Proposition 4.2 cannot be proved directly when only one of the
functions is in E(T ) (the theorem of Herglotz is no longer applicable). As a substitute
for this we are going to use an induction that we describe next.

We consider ℓ ≥ 2 �xed and we are going to show the following property by �nite
induction on m ∈ {1, . . . , ℓ}:
(Pm) If fj ∈ E(T ) for at least ℓ−m values of j ∈ [ℓ], then (23) holds.
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If we show this, then taking m = ℓ gives that (23) holds for all functions f1, . . . , fℓ ∈
L∞(µ) (and as a consequence Theorem 2.1 holds).

For m = 1 we can show that (P1) holds as in Proposition 4.2 using the good equidis-
tribution assumption of the sequences a1, . . . , aℓ and the theorem of Herglotz.

Suppose now that property (Pm−1) holds for some m ∈ {2, . . . ℓ}. We are going to
show that property (Pm) holds. To this end, we assume, without loss of generality,
that fj ∈ E(T ) for j = m + 1, . . . , ℓ, and we are going to show that (23) holds by
employing a degree lowering argument, similar to the one we used in the previous section.
More precisely, our plan is to show that if for some s ∈ Z+ the seminorms ||| · |||s+2

control the averages in (23), in the sense that if |||fi|||s+2 = 0 for some i ∈ {1, . . . , ℓ} and
fj ∈ E(T ) for j = m+1, . . . , ℓ, we have that the averages in (23) converge to 0, then the
seminorms ||| · |||s+1 also control these averages. Since, by our good seminorm assumption,
the seminorms ||| · |||s+2 control the averages (23) for some s ∈ N, iterating this degree
lowering property s + 1 times we deduce that the seminorms ||| · |||1 control the averages
in (23), and this easily implies that property (Pm) holds.

So suppose that

(24) lim sup
N→∞

∥∥∥En∈[N ] T
a1(n)f1 · . . . · T aℓ(n)fℓ

∥∥∥
L2(µ)

> 0

for some 1-bounded functions f1, . . . , fℓ ∈ L∞(µ) with fj ∈ E(T ) for j = m + 1, . . . , ℓ.
Then arguing as in the proof of Proposition 4.3 we get that (24) continues to hold if in

place of the function f1 we use the function f̃1 de�ned by

(25) f̃1 := lim
k→∞

En∈[Nk] T
−a1(n)gk ·

ℓ∏
j=2

T aj(n)−a1(n)f j ,

for some Nk → ∞ and 1-bounded functions gk ∈ L∞(µ), k ∈ N, where the limit is a weak

limit (note that then f̃1 ∈ L∞(µ)). Since, by our assumption, the seminorms ||| · |||s+2

control the averages (23) we deduce that |||f̃1|||s+2 > 0. As in the proof of Proposition 4.4
we get for s ≥ 1 that there exist χn,n′ ∈ E(T ), n, n′ ∈ Ns, such that

lim inf
N→∞

En,n′∈[N ]s lim sup
k→∞

En∈[Nk]ℜ
(∫

(∆n−n′gk)·T a1(n)χn,n′ ·
ℓ∏

j=2

T aj(n)(∆n−n′f j) dµ
)
> 0,

and a somewhat simpler statement for s = 0 that can be dealt in a similar fashion. The
advantage now is that since for all n, n′ ∈ Ns we have χn,n′ ∈ E(T ) and ∆n−n′f j ∈ E(T )
for j = m+1, . . . , ℓ, property (Pm−1) applies and gives that the average over the variable
n converges in L2(µ) to the product of the integrals of the corresponding functions. We
then deduce as in the proof of Proposition 4.6 that

|||fj |||s+1 > 0 for j = 2, . . . ℓ.

Furthermore, since l ≥ 2 we can apply the same argument for the second position instead
of the �rst and deduce in a similar fashion that |||f1|||s+1 > 0. We conclude that the
seminorms ||| · |||s+1 control the averages (23). This shows that property (Pm) holds and
concludes the proof of the induction and the proof of Theorem 2.1.
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