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A h i s t o r y  o f  R u n g e - K u t t a  m e t h o d s  

J.C. Butcher  ~ 
Department of Mathematics, The University of AucMand, Aucldand, New Zealand 

Abstract 

This paper constitutes a centenary survey of Runge--Kutta methods. It reviews some of the early contributio~ 
due to Runge, Heun, Kutta and Nystr6m and leads on to the theory of order of accuracy of Runge-Ku~ 
methods, and includes a discussion of implicit methods, stability analysis and methods of e r r~  estimation and 
dense output. 

1. In t roduc t ion  

One hundred years ago, C. Runge was completing his famous paper. This work, p u ~  in 1895, 
extended the approximation method of  Euler to a mere elaborate scheme which was capable of  greater 
accuracy. The idea of  Euler was to propagate the solution of  an initial value problem forward by a 
sequence of  small time-steps. In each step, the rate of change of  the solution is treated as constam amt 
is found from the formula for the derivative evaluated at the beginning of  the step. 

For the equation y ' (x)  = f ( x ,  y(x)) ,  with given ~ value y(xo) -- Yo, the first step is from 
the initial xo to a slightly larger value z l ,  say. The approxinmte solution at this point is taken to be 
Yl -- 7t0 + ( z l - - x o ) f  (zo, Yo). In general for a sequence of  time values :co, z I, z2 . . . .  , the cm'mslmmti~ 
solution approximations Yo, Yl, Y2 . . . .  , are given by 

Yn -- Yn- I  -I- (Xn - X n - t ) f ( X n - l ,  Yn - l ) .  

This approximation can be viewed as an extension to differential equations of  the quadram.~ formula 

Xft 

f ~(z) dz = (x. - x.-l)~(x.-l). 
Xvt--I 

The idea of Runge was to base the approximate solution, not on this unsynmaeuical mad relativel-y 
inaccurate Riemann rule, but on such improved formulas as the midpoint and trapezoidal rules. The 
requirement of  evaluating the derivative at the midpoint or endpoint of  a step not yet completed~ was 
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achieved by first performing an Euler type of  calculation to obtain a preliminary approximation to the 
solution at one o f  these points. 

This characteristic feature o f  Runge-Kut ta  methods, of  evaluating the function f a number  o f  times 
in working the way through each step, was thus established. We will survey in Section 2 the early 
work o f  Runge, and his immediate successors Heun and Kutta, in laying the foundations for these 
methods and developing practical methods of  increasing accuracy and efficiency. We will also discuss 
the important work of  Nystr0m in 1925. 

In Section 3 we will discuss the conditions for a Runge-Kut ta  method to have a given order 
o f  accuracy. Although we will concentrate on the conditions for a general autonomous system of  
equations, we will also compare this theory with that for a single first order equation. 

in Sec t ion  4 we will discuss the derivation of  methods of  increasingly high order, in the context 
of  known order barriers. The complication of  the relationship between attainable order and numbers  
o f  stages for classical (explicit) methods is in sharp contrast to the simplicity of  the corresponding 
questions for the more general implicit Runge-Kut ta  methods introduced in Section 5. Other motiva- 
tions for implicit methods are their uses in the solution of  stiff differential equation systems. We will 
discuss the use of  these methods for this purpose with special reference to their implementation costs. 

Section 6 is devoted to stability questions for Runge-Kutta  methods. Historically, these questions 
range from step-size limitations due to what is now called mild stiffness to the identification of  implicit 
Runge-Kut ta  methods which exhibit A-stability or the nonlinear generalization known as algebraic 
stability. 

Because of  the need to select an efficient stepsize sequence automatically, local ercor estimation 
is necessary. Methods for achieving this, especially through computations performed within the same 
steps, are discussed in Section 7. This reqt~ires additional stages as does the provision of  dense output 
for interpolation purposes, also considered in this final section. 

2. Runge-Kutta methods 1895--1925 

Throughout  this paper, we will write h for the stepsize xl  - -x0 .  We will mainly confine our  
discussions just  to the first step because it is typical. Runge's  paper o f  1895 [32] dealt with an initial 
value problem of  the form 

y ' ( x )  = f ( x ,  yCx)) ,  y(x0) = Yo- (2.1) 

He explored three main schemes. We express these in his terminology together with the m o d e m  tableau 
notation. 

ay = S(~o + ½~,yo + ½SC~oyo)~)~, 

f(x0Y0) -!- f (x0 -!- Aw, Y0 -I- f(x0Y0)Ax) Ay A~, 
2 

1 1 .  
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A'y- f(=oYo), 01½[ 
A"~/= f (x0 + Az, Y0 + ~ )  A'Y, 

11  
A ' y  = f (x0 + A% Y0 + Ax) A"y, 

1 0  
Ay = Aly + A"Iy 

2 ' 

1 

0 l 

The first of  these three methods is the midpoint role adapted to ordinary differential equations while 
the second and third methods are different versions of  the trapezoidal rule. The last of  these methods 
suggests iterative computation of the stage values. However, more natural today would be the method 

1 1  

l ½ 

1½ o ½ 
since this hints at the implicit Uapeziodal rule method. 

In 1900, K. Heun took the order conditions as far as 4 and introduced amongst other methods the 
following of ~ i rd  order 

:1 l 1 g g  

o -~ 
l¼ 0 1 

The paper by W. Kutta~ which appeared in 1901, took the analysis of  Runge--Kutta methods as far 
as order 5. He made a complete classification of order 4 methods and introduced the famous method 

:1 ! l 
2 g  

o ½ 

,[~ 0 , 
l 1 I 

In the work on 5th order methods, his work was incomplete in two different r e s p e ~ .  His analysis 
was for a first order differential equation, rather than a system of equations. This distinction becomes 
significant for the first time at this order. Specifically there are 17 order co:Klitions for a system bet 
only 16 for a single equation. Thus, in principle, it is possible to find methods which have order p 
(37 t> 5) for a single equation but only p -- 1 for a system. The other seine in which the work of  Kutta 
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is incomplete is that his order 5 methods have slight errors in them. As corrected (in the case of  the 
second, by Nystr6m), they are given by the following tableaux 

1 

2 O 

9 - - 5  15 w 
63 9 13 2 

- -  T - ~  ~ - -  2-6 2"~ 

6 4 2__ 8 
--2-T ~ J5 75 
I ~  0 25 ! 3-~ 

0 

25 25 
- - ~  4-g 

1 

4 6 

¼ -3  
2 10 

2 12 
2-5 

N o 

is  
4 
50 8 

--~T 8-T 
2 8 
i-5 
125 0 
192 

0 
27 125 
64 192 

The first phase in the history of  Runge-Kutta methods ended in the work of  EJ .  Nystr6m. He took 
the analysis of  fifth order methods to its completion but, mere importantly, he extended the use of  
Runge-Kutta  methods to second order differential equation systems. These systems arise in dynamical 
problems and can often be solved more efficiently when posed in their original form rather than as 
converted to an equivalent first order system. Consider the special second order system 

y"Cx)  - -  f ( ~ ( ~ . ) ) ,  y (~o)  = yo, u ' ( x o )  - -  ~ ,  (2.2)  

for which an equivalent first order system is 

y ' (~ )  ~ ~(x) ,  yCxo) = ~o, 

This can be solved by a standard Runge-Kutta method but the number of  evaluations of  the function f 
is lower if  it is solved by a method specifically designed for (2.2). 
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3. The  o r d e r  of R u n g e - K u t t a  methods  

In the famous papers of  Runge [32] and Kutta [26], the idea of  repeatedly substituting into the 
differential equation to obtain a sequence of  approximate solutions was developed. Runge conskiered 
the scalar differential equation 

y' = f ( = , y ) ,  

and generalized this to the system 

y' = y ( x ,  ~,  z) ,  z'  - g ( z ,  ~,  z ) .  

He showed how to generalize the midpoint and trapezoidal quadrature rules into metluxls for these 
problems. Kutta systematically found the order conditions as far as order 5 and found methods of  up 
to this order. Further work on Runge-Kutta methods was carried out by E J .  NystmOm [30] and by A. 
Hu[a [24] who took the analysis as far as order 6. For this order there are 31 order c ~  for a 
single first order equation but 37 for a general system. The theory for a system, which we ~ now 
discuss, comes out of  the work of S. Gill [19], of  R.H. Merson [28] and of  tim present author [6]. 

Let T denote the set of  all rooted trees, and let the "order" r ( t )  denot~ the ~ of ~ for 
t E T. For r ( t )  > 1, let t l ,  t2 . . . .  , tm be the (rooted) trees fonmed by deleting the root, supposed 
to have degree m,  from L We denote the relationship between t and t l ,  t2 . . . .  , t m  by the 
t = It1, t2 . . . .  , tin]. I f  1- is the unique tree with only a single vertex, then all trees ca8 . ~  e ~  
in terms of  ~" and the symbols [ and ]. For example, the eight trees of  ¢mlet~ up to 4 ~ m  be 
re,p~tively as ~, b'], [~, ~1, [H], [", ~, ~'l, [T, M], [[~, ~]1 and [[b']]]. V , ~  the " ~ y , , , ~ a f "  o f ,  by 
or(*) --~ m l  !m2! • • • mh !~r(tl)cr(t2) • • • a ( tm) ,  where ml  of  t l ,  t2 . . . .  ,tnn are identical of  one ~ m2 
are identical of  a second kind . . . . .  and mk are identical of  a final kind. The recursive d e ~  o f  a 
is started with the value ~r(1-) -- 1. The "density" of  t is defined by -y(t) -- r ( t ) ~ ( t l ) ~ ( t 2 ) . . - ~ / ( ~ ) ,  
with ~f(~-) -- 1. For t G T and v G R N define the "elementary differential" associated with the 
f :  R N --+ R N and the tree t by 

F(t)(~,) = f¢~)(~,) (F(tO(,O,F(t2)(~,),... , F ( ~ ) ( ~ ) ) ,  

with F ( ~ ) ( ~ )  = f (~, ) .  
With this terminology, the formal Taylor series for the solution to the dimensional diffememi~ 

equation 

y,¢~) = .fCy¢~)), 

with initial value 

~(x0)  - ~0, 

is given by 

1 
y(=o + h) = y(=o) + ~ h"cO ~(z)~(t) F(O(~).  ¢3.1) 

lET  
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For a given Runge--Kutta method, with ~-ray 

C2 ~ 2 1  ~ 2 2  " ' "  O~2s 

.~ • ; ." 

Cs a s l  an2 •"" as s  

bl b2 " -  bs 

introduce the "elemontary weights" associated with t. For stage number i this will be denoted by Oi(t) 
and, for the overall method, by O(t). These are defined by the recursions 

8 

j-----! 

8 

• (~') = ~-~ bj, 

$ m 

~ ( [ ~ , , ~ 2 , . . - , ~ m ] )  = ~ j  ] -I  ~J(~,~), 
j----I  k----I 

$ m 

j = ,  k f f i l  

The formal series for the computed solution at :v0 + h is given by 

~-~ hr(t ) ~( t )  Ft t~t ,  ~ (3.2) .y(~o) + ~ ~(t)  , , ,~u,.  
g E T  

Comparing the two series (3.1) and (3.2), we find the conditions for order p as 

1 
~(~) -- ,y(t) '  (3.3) 

which is to hold for all trees up to order p. 
To prove formally that these sufficient conditions are also necessary, requires an analysis of the 

elementary differentials. It would need to be shown that they are independent, in the sense that, given 
a finite set of  rooted trees, there exists a choice of  the function f ,  such that some component can take 
on arbitrary values for members of the given set of  trees. A proof of  this is given in [9]. 

As we have remarked, for a single first order differential equation, the order conditions are less 
restrictive so that evidently the independence does not hold in this case. It is interesting to note that 
the order conditions up to p = 4 are identical for the general system and for the single first order 
(nonautonomous) equation. For order 5, there is one less condition for the single equation case (16 
rather than 17 conditions) and for order 6, there are 6 less conditions for the single equation (31 rather 
than 37 conditions). 
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By taking a set o f  independent linear combinations o f  the order conditions, alternative f ~  
are possible. In recent work of  Albrecht [1 ] such a formulation is developed. For  exampte,  instead o f  

± , 
b~o~jcj -- ~,  (3.4) 

/ j = !  

the condition 

bi - = 0, (35) 
i-~! \ j----I 

must  be satisfied. The conditions (3.4) and (3.5) are equivalent ~ the quadrature condit ion 

s 1 
b,4 = 5' 

i----! 

must  also hold. The derivation of  conditions such as this is carried out  in a completely different manner  
f rom that given here and the reader is refen~d to the work o f  Albrecht [1] or  to the text-book by 
L ~ b e r t  [27] for the details. 

4. The search for high orders 

High order methods are capable o f  achieving highly accurate approximations o f  diffefcrd~! equations 
solutions at lower  computational  cost than low order methods.  For  linear multistep methods o f  A d a m s -  
Bashforth and Adams-Moul ton  types, the construction o f  methods o f  any order is a routine matter. 
The fact that there is no automatic construction method for (explicit) Runge -Kut t a  methods o f  a given 

Table 1 

p s Author Year Reference 

2 2 Runge 1895 [32] 

3 3 Heun 1900 [23] 

4 4 Kutta 1901 [26] 

5 6 Kutta 1901 [26] 

5 6 Nystr0m 1925 (con'ection to Kulta) [30] 

6 8 Hu~ta 1956 [24] 

6 7 Butcher 1964 [7] 

7 9 Butcher (known since approximately 1968) [9] 

8 1 ! Curtis 1970 [12] 

8 11 Cooper and Verner 1972 (announced 1969 in LH. ~v~'ner's thesis) [10] 

10 18 Curtis 1975 [13] 

10 17 Hairer 1978 [20] 
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order with a minimum number of  stages makes the search for methods of  higher and higher order an 
interesting challenge. For given order p it is not known in general how large the number of stages s 
must be to achieve this order. 

For orders 1, 2, 3 and 4, the lowest possible number of  stages is s = p. However, for p = 5 and 
p = 6, the lowest possibility is s = p -t- 1. For, p -- 7, 8 ---- 9 stages are necessary whereas for p = 8, 
the minimum number of  stages is s = 11. Above this, very little is known. 

Table 1 shows some details of  the chronology of  attempts to obtain increasingly high orders. 

$. Implic i t  Runge--Kutta  methods  

Implicit Runge-Kutta  methods were proposed by Kuntzmann [25] and by Butcher [8] with the 
central example being methods based on Gaussian quadrature formulae. The remarkable thing about 
these methods is that the order, p = 2s, for an s stage method is exactly the same as for a pure 
quadrature problem. Also remarkable is that they are all A-stable. To construct such a method all that 
is required is to select the abscissae cl, c2 . . . .  , c8, as the zeros of  the shifted Legendre polynomial 
on the interval [0,1] and to select each row of the A matrix and the vector b T so that each of  the 
quach~mre formulae 

ci  s / ~ b ( x ) d x ~ a i j ~ b C c j ) ,  i---- 1 , 2 , . . . , s ,  
0 j----I 

1 8 

J ~... 
0 $ = i  

is exact for ~b any polynomial of degree not exceeding s-- 1. The most famous example, which precedes 
the general introduction of  the Gauss-Legendre methods [22], is given by 

½+ ¼ 
! ! 

A variety of  alternatives to these methods, based on the quadrature rules of  Radau and of  Lobatto, 
have also been introduced. These share with the Gauss-Legendre methods the advantages of  high 
order and good stability. However, they also share the serious disadvantage of  being extremely costly 
to implement for stiff problems. 

Some alternatives to full implicitness have been suggested and strongly promoted. One of  these 
proposals is the use of Rosenbrock methods, in which the Jacobian function formed from the function 
f plays an integral part in the computation, but where the method is otherwise explicit. However, 
these ave not Runge-Kutta methods and, important as they are, they do not fit within the scope of  this 
history. 

What  have been variously named "semi-implicit Runge-Kutta methods", "semi-explicit Rung~- 
Kutta methods" [29], "diagonally-implicit Runge-Kutta methods" (DIRK) [2], and "singly-ch'agonally- 



J.c. B ~ c ~ . r / A ~ d  N ~  M a t ~ s  2o f19967 2~7-26o 

implicit Runge-Kutta methods" (SDIRK), also have a following. The ~ here is to restrict the 
to the form 

Cl ~X 0 0 . . .  0 

C2 a21 A 0 . . .  0 

c3a31 a32 A . . .  0 
: • . . 

cs asl as2 as3 . . .  A 

bl b2 ~ . . . b ,  

so that the stages can be evaluated in sequence. 
This idea leads to some highly efficient A-stable methods, but as the order increases, the methods 

become increasingly complicated. They also suffer from an "order-reduction" phenomeaon. 
Closely related methods are the singly-implicit methods, in which ~(A)  is constrained to be a 

set of  eigenvalues with only a single member. Using a transformation t e c h n ~ ,  these ~ are 
capable of achieving close to the efficient implementation properties of  SDIRK metimds without loss 
of stage-order. 

The order-reduction phenomenon that has been referred to above has been studied by a number o f  
authors starting from [31]. A recent survey of this work, including the theory of  "B-convergence" first 
announced in [17], is the subject of  [16]. 

6. Stability analysis 

Because of  the need to solve stiff problems using implicit Runge--Kutta methods, or for that mauer  
mildly-stiff problems using explicit Runge-Kutta methods, stability regions play an essential part in 
the assessment of individual methods. For a method given by the tableau 

the stability region for a linear problem ~ / =  qy is easily found. Write z = hq and the vector of  stage 
values satisfies 

Y = yoe + zAY', 

where e -- [1,1, 1 , . . . ,  I]T leading to the value of  Yl computed in a single step as 

~i = ~o + z b T Y  = yo + ~ozbT(x  -- z A ) - %  = R(z )~o .  

The "'stability function", R(z) ,  is given by the formula 

a ( z )  = l + zaT(1 - z A ) - l e .  

For explicit methods this can be written in the form 

R ( z )  = 1 + zbTe + z2bTc + z3bTAc + . . .  + zSbTAS-2c. 
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-3 
-3 -2 -1 0 1 

Fig. 1. Stability region boundaries for explicit Runge--Kutta methods. 

If  the order p equals the number of stages s, which we have seen is possible for p ~< 4, then R(z) is 
precisely the truncated exponential series 

Z 2 Z 3 Z -q 
R(~)=  1 + ~ + ~ + ~ + - - - + ~ ,  

and it is a simple matter to present the stability region as the set of  points in the complex plane 
satisfying IR(z)l ~< a. These are shown f o r p  = 1 ,2 ,3 ,4  in Fig, 1. 

Because nonconstant polynomials are unbounded over unbounded subsets in the complex plane, 
stability regions are always bounded sets. This means that A-stability is impossible for explicit methods. 
For implicit Runge-Kutm methods, on the other hand, A-stability is achievable for the Gauss methods 
and for some closely related methods. 

Suppose that the stability function R is a rational function with degrees r (numerator) and s (de- 
nominator) and suppose that the order is p = r + s. This implies that 

RCz) - exp(z) = o(~+s+'), 

so that R is a Pad6 approximation to the exponential function. Methods possessing stability functions 
of this form arc the Gauss methods (with r = s), the so-callod Radau IA and HA methods (in each case 
with r = s), and the Lobatto IIIC methods (with r -- s - 2). Because of this relation, it is appropriate 
to study Pad6 approximations to the exponential function in their own right. An approximation is said 
to be "A-acceptable" if h is the stability .function of an A-stable method. By the maximum modulus 
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4 .2 o 2 .~. -'~ o 1 ~, o 

Fig. 2. Three views of contour lines for R14(z) exp(--z). 

principle, a rational approximation R ( z )  --  N ( z ) / D ( z )  is A-acceptable if and only i f  all zeros o f  D 
are in the right half-plane and if  in addition ]D(iy)l 2 - [N(iy)[ 2 t> 0 for all real y. 

Tins property is now known to hold if and only if  the degree o f  the numerator  (say 7") and the 
degree o f  the denominator  (say s) satisfy th~ inequalities 0 <~ s - r <~ 2. This  was ~ v e d  for  the 
case r =- s by Birkhoff  and Varga [3]. For  a xeview of  the other cases where A-acceptability 
see the book  i~y Hairer and Wanner  [21]. For  the non-A-acceptable cases, those for which r > s axe 
a consequence  o t  the limit [R(z)] --~ oo as [z[ -.~ oo. The  cases satisfying s > r + 2 cart be proved  
using the technique of  "order stars" [36]. AlthougI', it is not  possible to discuss the details hem,  three 
figures are presented to motivate this approach (s,~e Fig. 2). In each case the boundary o f  the "'relative 
s tab~ty  region" for the (1 ,4)  Pad~ approximation relative to the exponential  function is shown.  That  
is, the set o f  points in the complex plane is shown for which 

[ 1 +  z / 5  exp(--z)[  = 1. 
1 -- 4 z / 5  + 3z2/10  -- z3/15 + z ' t / I20  

In the left-hand view, four  poles can be seen in the positive half-plane and one zero in the negative 
half-plane. It  can be shown that the bounded  "fingers" (the set o f  points for which [R(z)[ > [ exp(z)D 
each has a corresponding pole and the bounded "dual-fingers" (the set o f  points  for which [R(z)[ < 
l exp(z)l) each has a corresponding zero. The  fingers and dual-fingers originating f rom the ¢ ~ g m  
in a method  o f  order p subtend angles o f  ~r/(p + 1), as shown in the broken lines in the c e a s e  
view. Finally, the distant view on the fight indicates that for large values o f  z, the e x ~  factor 
dominates  the shape of  the boundary between relative stability and relative instabili~, so that for  these 
large arguments  the regions are divided approximately by the imaginary axis. The Pad~ a p f f r o ~  
exemplified here, like other below the second subdiagonal are shown not to be A-stable beca~.~se 
must  either be a pole in the left half-plane or else at least one o f  the bounded fingers ~ emerge f rom 
the origin at too great an angle f rom the positive real axis to lie completely in the right h a l f ~ .  
However,  such a finger must  contain a pole in the fight half-plane and hence nmst  cross ~he 
axis, which is inconsistent with A-stability. 

In the last 20 years, there has been some interest in requiring stricter stability ~ than 
yielded by the sL~ple linear stability analysis that has been described here. Two s e p a n ~  genea'alizatioas 
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turn out  to have similar consequences.  The first of  these is to allow for t ime-dependent  linearity, so 
that the linear test model  is 

y ' ( x )  = q ( x ) y ( x ) ,  

where  q is assumed to take only values in the left half-plane. The second generalization is to consider  
(possibly nonlinear)  dissipative differential equations in an inner-product space. That  is, assume the 
equation sys tem is 

y'(~) = f ( ~ , y ( ~ ) ) ,  

where,  for all x and all vectors u and v, 

( f ( x ,  u )  -- f ( x ,  v) ,  u - v )  <~ O. (6.1) 

A sufficient condition for stable behaviour  with either of  these test problems is that each o f  bl, b2, 
. . .  , bs is positive and that the s x s matrix M with ( i , j )  element  equal to biao d- b ja j i  -- bibj is 
positive semidefinite. Under  not  particularly stringent restrictions, these conditions are also necessary 
[5,111. 

The  condition that M be positive semidefinite is known as "algebraic stability" whereas  stable 
behaviour  for (6.1) is known as "BN-stability'" (or, if  the differential equation is autonomous,  as 
"B-stability"). 

Recent  research on systems of  differential equations arising f rom Hamiltonian dynamics ,  has given 
a new significance to M in that 3z! must  be the zero matrix if symplectic prol~rties of  the Hamiltonian 
system are to be inherited by a Runge-Kut ta  method used for its numerical  approximation. The review 
paper [33] and the book [34] are r ecommended  as references for this body of  work. 

7. Error estimates and continuous output 

The combining o f  two methods,  o f  different orders, into a single tableau was first proposed by 
Merson [28]. His idea was to construct a method with five stages for which a fourth order  method 
could be found f rom the first four  and a fifth order method f rom all the five stages. The  difference 
o f  the two results so obtained would  then be an asymptotically correct approximation to the local 
truncation error commit ted  by the fourth order  method.  Unfortunately, it is not possible to obtain the 
two methods  he sought within a total of  5 stages and he had to be content  with a scheme in which 
the est imate o f  the local truncation error he obtained was only appropriate for problems which are 
approximately linear. In spite of  this, the Merson method has h,.d a loyal following as the basis o f  
practical software for many  years. 

Within the last 30 years, many  contributions have been made to the development  of  embedded  pairs, 
as they are now named,  for which the error esthna~e is asymptotically correct, but at the expense  o f  
additional stages compared with the Merson method.  Notable is the early work o f  Fehlberg [ 15] who 
took the search for  Runge-Kut ta  pairs as high as order 7. Other major  contributors to this investigation 
include Vetoer  [35] and Dormand and Prince [14]. 
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The wish to obtain output at points internal to a step, without interrupting the natural f low o f  the 
computat ion,  has led to methods which are embedded  in a different way. In addition to the final result 
given by  the tableau 

ci a l l  ¢Z12 • . .  ~ls 

c2 ¢z21 ¢z22 . . .  a2s 
: : ." 

Cs ¢~sl ¢~s2 . - .  ¢~ss 

bl b2 . . -  b8 

a further vector  is added for  which the elements depend on a parameter ~. Denote  the elements by  

[~,(¢) ~ (¢)  . . .  ~,.(¢)], 
and suppose  that the method with the last row replaced by this vector  is required to give an approxima- 
tion to y (z0  + ~h). If  the order o f  this internal approximation is/3, then the corresponding elementary 

weights, with b replaced by  b(~) satisfy the equations 

,~(t:) = crct) 
~ ( t ) '  

for every  tree t such that r ( t )  ~</~. 
Although many people have worked on the derivation o f  methods with this property, the first seems 

to have been  Gear  [18]. 
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