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Abstract

For (t, x) ∈ (0,∞) × TD, the generalized Kasner solutions (which we refer to as Kasner solutions
for short) are a family of explicit solutions to various Einstein-matter systems that, exceptional cases
aside, start out smooth but then develop a Big Bang singularity as t ↓ 0, i.e., a singularity along an
entire spacelike hypersurface, where various curvature scalars blow up monotonically. The family is
parameterized by the Kasner exponents q̃1, · · · , q̃D ∈ R, which satisfy two algebraic constraints. There
are heuristics in the mathematical physics literature, going back more than 50 years, suggesting that
the Big Bang formation should be dynamically stable, that is, stable under perturbations of the Kasner
initial data, given say at {t = 1}, as long as the exponents are “sub-critical” in the following sense:

max
I,J,B=1,··· ,D

I<J

{q̃I + q̃J − q̃B} < 1. Previous works have rigorously shown the dynamic stability of the Kasner

Big Bang singularity under stronger assumptions: 1) the Einstein-scalar field system with D = 3 and
q̃1 ≈ q̃2 ≈ q̃3 ≈ 1/3, which corresponds to the stability of the FLRW solution’s Big Bang or 2) the
Einstein-vacuum equations for D ≥ 38 with max

I=1,··· ,D
|q̃I | < 1/6. In this paper, we prove that the Kasner

singularity is dynamically stable for all sub-critical Kasner exponents, thereby justifying the heuristics
in the literature in the full regime where stable monotonic-type curvature blowup is expected. We treat
in detail the 1 + D-dimensional Einstein-scalar field system for all D ≥ 3 and the 1 + D-dimensional
Einstein-vacuum equations for D ≥ 10; both of these systems feature non-empty sets of sub-critical
Kasner solutions. Moreover, for the Einstein-vacuum equations in 1 + 3 dimensions, where instabilities
are in general expected, we prove that all singular Kasner solutions have dynamically stable Big Bangs
under polarized U(1)-symmetric perturbations of their initial data. Our results hold for open sets of initial
data in Sobolev spaces without symmetry, apart from our work on polarized U(1)-symmetric solutions.

Our proof relies on a new formulation of Einstein’s equations that privileges the role of scalar functions
over tensorial objects: we use a constant-mean-curvature foliation, and the unknowns are the scalar field,
the lapse, the components of the spatial connection and second fundamental form relative to a Fermi–
Walker transported spatial orthonormal frame, and the components of the orthonormal frame vectors
with respect to a transported spatial coordinate system. In this formulation, the PDE evolution system
for the structure coefficients of the orthonormal frame approximately diagonalizes in a way that sharply
reveals the significance of the Kasner exponent sub-criticality condition for the dynamic stability of the
flow: the condition leads to the time-integrability of many terms in the equations, at least at the low
derivative levels. At the high derivative levels, the solutions that we study can be much more singular
with respect to t, and to handle this difficulty, we use t-weighted high order energies, and we control
nonlinear error terms by exploiting monotonicity induced by the t-weights and interpolating between
the singularity-strength of the solution’s low order and high order derivatives. Finally, we note that our
formulation of Einstein’s equations highlights the quantities that might generate instabilities outside of
the sub-critical regime.
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1 Introduction

Our main results in this paper are proofs of stable Big Bang formation (i.e., curvature blowup along an
entire spacelike hypersurface) for cosmological1 solutions to the Cauchy problem for the Einstein-vacuum
and Einstein-scalar field systems. All of our results hold for open sets of solutions without symmetry, except
for our results on polarized U(1)-symmetric solutions to the Einstein-vacuum equations in 1 + 3 dimensions.
We assume that initial data are given on the manifold Σ1 = TD := [−π, π]D (with the endpoints identified),

1By “cosmological solutions,” we mean ones with compact spatial topology.
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where D ≥ 3 is the number of spatial dimensions. Later on, we provide a precise description of which kinds
of data our results apply to and how the value of D is tied to the data. As we will explain, our results are
sharp in the sense that they rigorously confirm the dynamic stability of the singularity formation in the entire
regime where heuristics in the literature have suggested it might occur. In particular, our results significantly
extend the prior results [58, 59, 60], which yield stable Big Bang formation for open sets of solutions without
symmetry. We refer readers to Theorem 1.5 for a rough version of our main results and to Theorems 6.1 and
6.5 for precise statements.
The sharpness of our results is possible because we have developed a new analytic framework for constant

mean curvature (CMC) foliations in which we study the components of various spatial tensors relative to
an orthonormal “spatial frame,” obtained by Fermi–Walker transport, as well as the connection coefficients
and structure coefficients of the frame. We refer readers to Sect. 2 for the precise details behind the gauge
and the corresponding formulation of Einstein’s equations that we use to derive estimates. We also refer to
Sect. 1.8 for an overview of the proof. Our framework allows us to precisely and efficiently detect the terms
in the equations that are integrable-in-time up to the singularity, which is key to understanding the stability
of the blowup. Our framework also pinpoints the terms in the equations that might generate instabilities in
other regimes; see Remark 1.2.

1.1 The Cauchy problem for the Einstein-scalar field equations

1.1.1 The Einstein-scalar field equations

Relative to arbitrary coordinates, the Einstein-scalar field equations can be expressed as

Ricµν = ∂µψ∂νψ, (1.1a)

□gψ = 0. (1.1b)

In (1.1a)–(1.1b) and throughout, Ric is the Ricci curvature of the spacetime metric g (which has signature
(−,+,+, · · · ,+)), □g := (g−1)αβDαDβ is the covariant wave operator of g, D is the Levi-Civita connection
of g, and ψ is the scalar field. Note that in the special case ψ ≡ 0, the system is equivalent to the Einstein-
vacuum equations.

1.1.2 The initial value problem formulation and the initial data

It is well-known that the system (1.1a)–(1.1b) has an initial value problem formulation in which suffi-
ciently regular initial data give rise to unique solutions. An initial data set for the system is defined to be
(Σ1, g̊, k̊, ψ̊, ϕ̊), where g̊ is a Riemannian metric on the manifold Σ1 (in this paper, we assume that Σ1 := TD),

k̊ is a symmetric two-tensor, and ψ̊, ϕ̊ are a pair of scalar functions. It is well-known that admissible data
must verify the Hamiltonian and momentum constraint equations, which are respectively:

R̊− |̊k|2 + (tr̊k)2 = ϕ̊2 + |∇̊ψ̊|2, (1.2a)

d̊iv̊k − ∇̊tr̊k = −ϕ̊∇̊ψ̊, (1.2b)

where ∇̊ is the Levi-Civita connection of g̊ (with respect to which all covariant spatial operators along Σ1

are defined) and R̊ is the scalar curvature of g̊.

1.1.3 Globally hyperbolic developments

A globally hyperbolic development of the data, which can be thought of as a solution to the initial value
problem, is a triplet (M,g, ψ) and an embedding i : Σ1 → M such that

� M is a 1 +D-dimensional spacetime manifold

� g is a Lorentzian metric on M and ψ is a scalar function on M that together solve the equations
(1.1a)–(1.1b)

� i(Σ1) is a Cauchy hypersurface2 in (M,g)

2In this paper, i(Σ1) will be a hypersurface of constant time with respect to a CMC time function t. To simplify the
exposition, we will often slightly abuse notation by suppressing the embedding and identifying Σ1 with i(Σ1) = {t = 1} ⊂ M.
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� The pullbacks of the first and second fundamental forms of the image surface i(Σ1) (see Sect. 2 for our

sign conventions for the second fundamental form) are equal to g̊, k̊ respectively, and the pullbacks of
the initial values of the scalar field ψ and its derivative with respect to the future unit normal to i(Σ1)

are equal to ψ̊, ϕ̊ respectively.

The fundamental work [16] of Choquet-Bruhat and Geroch shows that for sufficiently regular initial data
verifying the constraints, there is a unique (up to diffeomorphism) maximal classical globally hyperbolic
development (MMax,gMax, ψMax) (and a corresponding embedding iMax that we will suppress), which we
refer to as the “maximal development” for short. Roughly, the solution furnished by [16] is the largest possible
classical solution to (1.1a)–(1.1b) that is uniquely determined by the initial data; we refer the reader to [55]
for detailed discussion of the maximal development. Although it is of philosophical importance to know that
the maximal development exists and is unique, the results of [16] do not reveal much about its structure.
Our goal in this article is to fully understand its structure for open sets of solutions that exhibit curvature
blowup.

1.2 Connections with the Hawking–Penrose singularity theorems

The celebrated “singularity theorems” [33, 34, 46] of Hawking and Penrose show that there exist large sets
of regular initial data for the Einstein equations such that the corresponding solutions eventually break
down in the sense that the spacetime is causally geodesically incomplete. The results apply to any matter
model verifying the strong energy condition, including the scalar field model and the vacuum. Although
these works are of immense philosophical importance in general relativity and have had a great impact on
the direction of the field, they are limited in that their proofs are by contradiction and do not provide any
information about the nature of the breakdown, aside from geodesic incompleteness. Through various telling
examples, it is known that different kinds of breakdown are possible. A particularly sinister scenario is
found in the Taub–NUT and Kerr spacetimes, where the breakdown is not caused by any singularity in the
metric (including its higher derivatives), but rather is caused by the development of a Cauchy horizon, across
which the solution can be smoothly extended in more than one way, signifying the failure of determinism
past the maximal globally hyperbolic development of the data. In the opposite direction, the Strong Cosmic
Censorship3 conjecture suggests that, “generically,” the maximal globally hyperbolic development of the data
is inextendible, roughly due to the formation of some kind of singularity.4 Confirming some version of the
Strong Cosmic Censorship hypothesis, at least in a perturbative regime around explicit solutions, turns out to
be extremely difficult, due to the strength of the nonlinearities in the system and the possibility of complicated
dynamics near singularities. Moreover, it is important to appreciate that regularity considerations are of
crucial importance when defining what is meant by the “Strong Cosmic Censorship hypothesis;” thanks
to the remarkable work [27] on the C0-stability of the Kerr Cauchy horizon,5 we now know that the C0

formulation of the Strong Cosmic Censorship hypothesis is not generically true. More precisely, in [27], it
was shown that for an open set of near-Kerr solutions, the metric can be continuously extended beyond
the Cauchy horizon. However, it is conceivable that these metrics generically do not enjoy any additional
regularity and in particular that they cannot even be extended past the Cauchy horizon as weak solutions
to Einstein’s equations. It therefore remains possible that a revised version of the Strong Cosmic Censorship
hypothesis is true, in which “generically, there is breakdown at the boundary of the maximal development,”
where “breakdown” is defined to be any loss of regularity that is sufficiently strong to prevent one from
extending the solution as a weak solution to Einstein’s equations. There are works in spherical symmetry
that support this possibility, notably [25, 26, 44], where [44] has the compelling feature that it is a large data
result. More precisely, [44] proves that for an open and dense set of two-ended asymptotically flat initial
data for the Einstein–Maxwell–(real)–scalar–field system in spherical symmetry, the maximal development is
C2-inextendible.

3See [47] for the original formulation and [18, 22] for more modern versions.
4One even hopes to rule out the possibility of continuing the solution weakly past the boundary of the maximal development

since, at least from the PDE point of view, in principle, it might be possible to make sense of weak solutions in a neighborhood
of a classical singularity; see the discussion on pg. 13 of [21].

5Although the results of [27] are conditional on a quantitative version of the dynamic stability of the exterior region of Kerr,
there have been a series of works that seem to be building towards a definitive proof of the stability of the exterior region.
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1.3 Beyond the Hawking–Penrose singularity theorems

In the wake of the Hawking–Penrose singularity theorems, there have been many works devoted towards
understanding the precise cause of the geodesic incompleteness. An interesting type of breakdown that
has received extensive attention – rigorous and otherwise – over the past half-century is the “Kasner-like
scenario,” which concerns solutions whose metrics g are asymptotic to

gLimiting(t, x) = −dt⊗ dt+

D∑
I=1

t2qI(x)θI(x)⊗ θI(x), θI(x) = θIa(x)dx
a, (1.3)

as t ↓ 0 (i.e., towards the singularity), inspired by the Kasner solutions themselves, which we discuss in
Sect. 1.4.. It is important to note that the metrics gLimiting are not generally solutions to Einstein’s equa-
tions. However, in the special case that θI = dxI and the {qI}I=1,··· ,D are constants satisfying two alge-
braic constraints (see (1.7)), gLimiting is a solution, known as a Kasner solution in the vacuum case and
a “generalized Kasner solution” in the presence of matter (for short, we sometimes refer to all such solu-
tions simply as “Kasner solutions”). The Kasner solutions are spatially homogeneous and, exceptional cases
aside, exhibit monotonic Big Bang formation (i.e., monotonic blowup of the spacetime Kretschmann scalar
RiemαµβνRiemαµβν along a spacelike hypersurface) as t ↓ 0, as do the metrics gLimiting. We stress that Big
Bang formation is consistent with the assertions of a C2-inextendibility formulation of the Strong Cosmic
Censorship hypothesis. We also note that in the remainder of the paper, we often denote the (constant)
Kasner exponents by {q̃I}I=1,··· ,D, where the tilde emphasizes that they are associated to a “background
Kasner solution.”
A standout question, then, is: besides the explicit Kasner solutions (which we describe in Sect. 1.4),

are there any other solutions to Einstein’s equations – in particular ones with spatial dependence – that
are asymptotic to a metric of the form gLimiting and thus exhibit monotonic-type Big Bang formation?
In an influential paper [40], the authors gave heuristic arguments suggesting that in the vacuum case in
1 + 3 dimensions, solutions that are asymptotic to a metric of the form gLimiting should be non-generic
(in particular, unstable). In the subsequent work [12], still in the vacuum case in 1 + 3 dimensions, it was
suggested that “generically” (the meaning of “generic” was not rigorously defined), solutions that exhibit Big
Bang formation “should” – unlike the Kasner solutions – be highly oscillatory in time as the singularity is
approached. The alleged oscillatory behavior is sometimes referred to as the “Mixmaster scenario,” where the
terminology goes back to Misner’s important paper [45] on oscillatory solutions with Bianchi IX symmetry.
The oscillations are one of several features that have been conjectured to hold for “most” 1 + 3-dimensional
Einstein-vacuum solutions that have regions with incomplete timelike geodesics. This picture has come to be
known, somewhat imprecisely, as the “BKL” conjecture. As of present, the only rigorous6 evidence to support
this scenario concerns only spatially homogeneous solutions. The first important result in this direction was
provided by Ringström, who proved [50] that for various matter models, solutions with Bianchi IX symmetry
generically exhibit oscillatory behavior towards their singularity. His paper was followed by various works,
including [10, 14, 30, 35, 42, 48]. We also again highlight that, whatever one’s interpretation of the BKL
conjecture, the work [27] shows that some of its basic qualitative assertions are false for Einstein-vacuum
solutions corresponding to near-Kerr black hole initial data. For example, the Cauchy horizons in [27] are
null, which is at odds with the BKL prediction that incompleteness should be tied to some kind of blowup
along a spacelike hypersurface.
Later on, there were further heuristic works suggesting that if the Einstein equations are coupled to a scalar

field [11] or a stiff fluid7 [8], or if one considers the Einstein-vacuum equations in 1 + D dimensions with
D ≥ 10 [29], then the oscillations can be silenced, leading back to the Kasner-like scenario. More precisely,
there “should” exist open sets of initial data whose solutions exhibit monotonic Big Bang formation. The
essence of these works is that the following “sub-criticality condition” (which we sometimes refer to as a
“stability condition”) for the Kasner exponents {qI(x)}I=1,··· ,D might be sufficient to ensure the existence
of sets of solutions – containing all the gravitational degrees of freedom – that have Kasner-like Big Bang

6For a discussion of numerical work on singularity formation in Einstein’s equations, see [13] and the references therein.
7A stiff fluid is such that the speed of sound is equal to the speed of light. It can be viewed as an analog of the scalar field

model that allows for non-zero vorticity.
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singularities:

max
I,J,B=1,··· ,D

I<J

{qI(x) + qJ(x)− qB(x)} < 1. (1.4)

The condition (1.4) is central8 to our main results, and we will discuss its implications in detail below.
We highlight that, due to the constraints (1.7), for the Einstein-vacuum equations in 1 + D dimensions,

the condition (1.4) can be satisfied only if D ≥ 10; this algebraic fact was first observed in [29]. The papers
described in the previous paragraph, which were in favor of the dynamic stability of the Big Bang, were
based on heuristic justifications of the claim that the condition (1.4) “should” lead to asymptotically velocity
term dominated (AVTD) behavior in perturbed solutions. Roughly, AVTD behavior for a solution is such
that in Einstein’s equations, the spatial derivative terms become negligible compared to the time derivative
terms as the singularity is approached. Put differently, AVTD behavior is such that the solution becomes
asymptotic to a truncated version of Einstein’s equations in which all spatial derivative terms are thrown
away. Since the truncated equations are ODEs at each fixed spatial point x, one could say that AVTD
solutions are asymptotically x-parameterized ODE solutions. As we will later explain, the condition (1.4)
(see also (1.8)) suggests that for perturbations of the Kasner solution, the Ricci tensor of the perturbed
spatial metric, which we denote by Ric, should satisfy, for some σ > 0, |Ric| ≲ t−2+σ as t ↓ 0. It turns out
that, when available, this bound leads to the time-integrability of various terms in Einstein’s equations. In
turn, the time-integrability is key to proving the AVTD nature of perturbations of Kasner solutions and for
controlling the dynamics up to the singularity. In Sect. 1.6, we provide a more detailed explanation of the
significance of the bound |Ric| ≲ t−2+σ for the proofs of our main results.

Clearly, any rigorous justification of the above circle of ideas requires, at a minimum, the construction
of a gauge relative to which the AVTD behavior can be exhibited. In the present paper, we introduce a
general gauge + framework for proving stable singularity formation for “Kasner-like” solutions with spatial
dependence and for proving the AVTD behavior. As in previous works on stable Big Bang formation [58, 59,
60, 61], we rely on constant mean curvature foliations in which the level sets of the time function t have mean
curvature9 equal to − 1

Dt , and we control the lapse n := [−(g−1)αβ∂αt∂βt]
−1/2 via elliptic estimates. The main

new idea in our paper lies in our approach to controlling the dynamic “spatial10 tensorfields”: we construct a
gauge for Einstein’s equations in which the main dynamical unknowns are the components of various spatial
tensorfields relative to an orthonormal “spatial frame” {eI}I=1,··· ,D, obtained by Fermi–Walker transport
(see equation (2.8) and Remark 2.1), as well as the connection coefficients γIJB := g(DeIeJ , eB). One of our
key observations is: as a consequence of the special structure of Einstein’s equations and the Fermi–Walker
transport equation (2.8), the frame is one degree more differentiable than naive estimates suggest.
More precisely, the transport equation (2.23a), which is an equivalent formulation of (2.8), suggests that
the frame vectorfield components {eiI}I,i=1,··· ,D are only as regular as the second fundamental form k of Σt.
However, our gauge allows us to prove that in fact, the connection coefficients {γIJB}I,J,B=1,··· ,D of the frame
enjoy the same Sobolev regularity as the components {kIJ}I,J=1,··· ,D where kIJ := k(eI , eJ) = kcde

c
Ie
d
J ; this

signifies a gain of one derivative for the frame. Roughly, the gain in regularity stems from the fact that
{γIJB}I,J,B=1,··· ,D and {kIJ}I,J=1,··· ,D satisfy a system of wave-like equations (coupled to n and the scalar
field) that allow us to propagate the Sobolev regularity of their initial data. We refer readers to Lemma 5.19
for a differential version of the basic energy identity that we use to obtain the desired regularity for γ and k.
A second key observation is that the structure coefficients of the frame, namely11 g([eI , eJ ], eB) = γIJB +

γJBI , satisfy an evolution equation system (see Proposition 5.7) that is diagonal up to quadratic error
terms, and such that the strength of the main linear terms in the equations is controlled by the Kasner

stability condition (1.8). More precisely, we have ∂t(γIJB+γJBI) = − (q̃I+q̃J−q̃B)

t (γIJB+γJBI)+ · · · , where
here and throughout the paper, we do not sum over repeated underlined indices. From this equation and the

8More precisely, our main results rely on the assumption that the background solution satisfies (1.8), which is (1.4) in the
special case of a generalized Kasner solution.

9The mean curvature of a constant-time slice Σt is defined to be the trace of its second fundamental form divided by the
number of spatial dimensions D.

10By spatial tensorfields, we simply mean ones that are tangent to the level sets of the CMC time function t.
11The identity g([eI , eJ ], eB) = γIJB + γJBI is a simple consequence of the torsion-free property of the connection D.
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condition (1.8), we are able to prove that there exists a constant q < 1 such that

max
I,J,B=1,··· ,D

I<J

tq|γIJB + γJBI | ≲ data, (t, x) ∈ (0, 1]× TD, (1.5)

where “data” denotes a small term that is controlled by the size of the perturbation of the initial data from
the Kasner data (in particular, “data” vanishes for Kasner solutions). The estimate (1.5) leads to the time-
integrability of many terms in the evolution equations, allows us to rigorously justify the aforementioned
spatial Ricci curvature bound12 |Ric| ≲ t−2+σ, and allows us to prove the AVTD behavior of perturbations
of any Kasner solution with exponents verifying (1.8).

Remark 1.1 (A basis of structure coefficient functions). The antisymmetry property13 γIJB + γJBI =
−(γJIB + γIBJ), which follows from (2.20), implies that {γIJB + γJBI | 1 ≤ I, J,B ≤ D, I < J} forms a
basis for the structure coefficient functions. This explains the condition I < J on LHS (1.5). We use this
simple fact throughout the article without always explicitly mentioning it.

Remark 1.2 (Sharply identifying possible obstructions to stability: Three distinct indices). Recall that we
only have to consider structure coefficients with I < J (see Remark 1.1) and that (aside from the trivial case
of a single non-zero Kasner exponent equal to unity) we have max

I=1,··· ,D
|q̃I | < 1 (see Remark 1.3). It follows

that when I < J , unless all three indices are distinct, two of the terms in the sum qI + qJ − qB must cancel
each other, leaving us with a single term qsurvivor satisfying |qsurvivor| < 1. Recalling also the evolution

equation ∂t(γIJB + γJBI) = − (q̃I+q̃J−q̃B)

t (γIJB + γJBI) + · · · mentioned above, we see that when I < J ,
unless all three indices are distinct, the structure coefficient γIJB + γJBI is expected to behave (modulo the
error terms “· · · ”) like t−qsurvivor . In particular, modulo the effect of the error terms “· · · ,” such structure
coefficients are integrable with respect to t near t = 0 and are compatible with our proof of the stability of
the Big Bang. Thus, for perturbations of Kasner solutions, the only structure coefficients γIJB +γJBI (with
I < J) that in principle could serve as an obstruction to stable Big Bang formation are those such that the
sum q̃I + q̃J − q̃B is greater than 1, and this is possible only when all three indices are distinct; the stability
condition (1.8) is the assumption that this obstruction is absent.

Finally, we highlight that our framework also extends to some symmetric sub-regimes of regimes where
Mixmaster-related instabilities might generally occur, such as in the vacuum case in 1 + 3 dimensions. More
precisely, one does not truly need the condition (1.8) to prove monotonic-type Big Bang formation; our
approach works as long as one can prove the estimate (1.5) (for some constant q < 1). The point is that
by imposing symmetries on solutions, one can eliminate some of the gravitational degrees of freedom in the
problem, and it can become possible to prove the estimate (1.5) even if the condition (1.8) fails. Roughly, this
is sometimes possible because symmetries can force some of the structure coefficients to vanish. For example,
in this paper, we treat in detail the case of polarized U(1)-symmetric solutions to the 1 + 3-dimensional
Einstein-vacuum equations, and under symmetric perturbations, we prove the stability of the Big Bang for all
Kasner solutions – not just ones that satisfy (1.8). In the next section, we precisely describe the models that
we treat in detail. Moreover, in Sect. 1.9, we describe other contexts in which our methods are potentially
applicable.

1.4 The models

Our main results yield stable curvature blowup for a subset of the family of generalized Kasner solutions on
(0,∞)× TD, which can be expressed as follows:

g̃ = −dt⊗ dt+ g̃, g̃ :=
∑

I=1,··· ,D

t2q̃IdxI ⊗ dxI , ψ̃ = B̃ log t. (1.6)

The Kasner exponents {q̃I}I=1,··· ,D and B̃ are constants constrained by the following two algebraic equations:

D∑
I=1

q̃I = 1,

D∑
I=1

q̃2I = 1− B̃2. (1.7)

12We also need to adequately control the first derivatives of the structure coefficients to obtain the desired bound for the Ricci
curvature.

13This is equivalent to the antisymmetry of the commutator [eI , eJ ] with respect to interchanges of I and J .



1 INTRODUCTION 9

The equations in (1.7) are consequences of two other equations: i) the mean curvature condition trk̃ = − 1
t

(which we discuss in more detail later), where k̃ is the second fundamental form of Σt with respect to g̃,
and ii) the Hamiltonian constraint (1.2a). One can check that under the above assumptions, the tensorfields

(g̃, ψ̃) are solutions to the 1 +D-dimensional Einstein-scalar field equations (1.1a)–(1.1b).
Our main results come in two flavors. In the first case, we make no symmetry assumptions on the initial

data, and our results yield the dynamic stability of the Kasner Big Bang singularity whenever the exponents
of the background Kasner solution themselves verify the sub-criticality condition (1.4) (which we also refer
to as the “stability condition”), in which case it reads:

max
I,J,B=1,··· ,D

I<J

{q̃I + q̃J − q̃B} < 1. (1.8)

Since our results imply that the final Kasner exponents of the perturbed singular solution are close to those
of the background (see (6.6)), and since (1.8) is an open condition, our perturbed Kasner-like solutions will
satisfy the original condition (1.4) as well.

Remark 1.3. The Kasner constraints (1.7) imply that, aside from the trivial case in which one of the
q̃I is equal to 1 and the others vanish (in which case the Kasner spacetime metric is flat), we must have
max

I=1,··· ,D
|q̃I | < 1. Thus, assuming the Kasner exponent constraints, we could replace (1.8) with the condition

max
I,J,B=1,··· ,D
I ̸=J ̸=B ̸=I

{q̃I + q̃J − q̃B} < 1. (1.9)

In stating our main results, we prefer to refer to the condition (1.8) because the case I = B explicitly indicates
that q̃J < 1 for J = 2, · · · ,D, while the case I = 1 with J = B explicitly indicates that q̃1 < 1 too.

In the second case, we consider polarized U(1)-symmetric solutions to the Einstein-vacuum equations in
1 + 3 dimensions and prove stable Big Bang formation for symmetric perturbations of any Kasner solution

(with exponents verifying the constraints (1.7), B̃ = 0). We emphasize that for polarized U(1)-symmetric
solutions, the spatial connection coefficients featuring three distinct indices automatically vanish (see Lemma
5.11 for a proof and Remark 1.2 for a discussion of the relevance of this fact), which leads to a simple proof
of (1.5) (see the end of the proof of Proposition 5.26).
We will now describe these two setups in more detail.

1.4.1 Regimes with no symmetry assumptions on the perturbed initial data

Under the following assumptions, our results yield the stability of the Kasner Big Bang singularity for non-
empty sets of background Kasner solutions:

1. The Einstein-vacuum equations (i.e., ψ = 0) for D ≥ 10.

2. The Einstein-scalar field equations for D ≥ 3.

As we have stressed, without symmetry, we require that the background Kasner exponents satisfy the stability
condition (1.8), which, for example, for any D ≥ 3, is satisfied when all Kasner exponents are positive (which

can be achieved in the presence of a non-zero scalar field, i.e., B̃ ̸= 0). Also, as it was observed in [29],

in vacuum (B̃ = 0), the condition (1.8) is non-empty for D ≥ 10, while for D ≤ 9, (1.8) is algebraically
impossible, given the constraints (1.7).

1.4.2 The definition of the polarized U(1)-symmetry class

Our discussion in this section refers to polarized U(1)-symmetric solutions to the Einstein-vacuum equations
(i.e., ψ ≡ 0) on I × T3, where I is an interval of time. This symmetry class is defined as follows:
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1. Polarized U(1)-symmetric initial data. There exists a non-degenerate,14 hypersurface-orthogonal,

spacelike Killing vectorfield X on Σ1 ≃ T3 with T1 orbits such that LX g̊ = LX k̊ = 0, where L is

the Lie derivative operator. Moreover, the second fundamental form of Σ1 satisfies k̊(X,Y ) = 0 for
every Σ1-tangent vectorfield Y such that g̊(X,Y ) = 0. We can construct coordinates15 {xi}i=1,2,3 on

Σ1 such that all coordinate components of g̊ and k̊ are independent of x3 and such that X = ∂3, i.e.
g̊13 = g̊23 = k̊13 = k̊23 ≡ 0; see the discussion in [37, Section 2].

2. Polarized U(1)-symmetric solutions. Einstein-vacuum spacetimes that arise from such data contain
a non-degenerate, hypersurface-orthogonal, spacelike Killing vectorfield X, such that X

∣∣
Σ1

= X. In
fact, relative to appropriately constructed CMC-transported spatial coordinates, we have X = ∂3; see
Lemma 2.3.

One can easily check that in 1+3 spacetime dimensions in the vacuum case, the condition (1.8) is violated by

all Kasner solutions, i.e., by all Kasner exponents satisfying (1.7) with B̃ = 0. Indeed, the algebraic relations
(1.7) imply that at least one Kasner exponent must be negative and that

max
I,J,B=1,2,3

I<J

{q̃I + q̃J − q̃B} ≥ 1− 2 min
B=1,2,3

{q̃B} > 1. (1.10)

Hence, in 1+3 spacetime dimensions in the vacuum case, without symmetries or other additional assumptions,
the Kasner singularity might not be stable under perturbations of the Kasner initial data on Σ1. However,
we show that within the class of polarized U(1)-symmetric solutions, the Kasner singularity is in fact stable.
There are both heuristic and analytic reasons for this phenomenon, which we discuss in Sections 1.6 and 1.8.

1.5 Rough version of the main theorem

Given a “background” generalized Kasner solution (1.6), within the regimes described in Sect. 1.4, we perturb
its initial data on Σ1 = {t = 1} and study the corresponding maximal development in the past of Σ1. As
in the previous works of the last two authors [58, 59, 60, 61], in order to synchronize the singularity along
{t = 0}, we use a constant mean curvature (CMC) foliation that is realized by the level sets Σt of a time
function t ∈ (0, 1]; as we describe below, this gauge features an elliptic PDE, which involves an infinite
speed of propagation, allowing for a synchronization of the singularity. Relative to “transported” spatial
coordinates {xi}i=1,··· ,D, which by definition are constant along the integral curves of the future-directed
unit normal to Σt, the perturbed spacetime metric takes the form (see also (2.37) in the U(1)-symmetric
polarized case):

g = −n2dt⊗ dt+ gcddx
c ⊗ dxd, n = [−(g−1)αβ∂αt∂βt]

− 1
2 , (1.11)

where g is the first fundamental form of Σt (i.e., the Riemannian metric on Σt induced by g) and n > 0 is
the lapse of the Σt foliation. The CMC condition reads

trk = −1

t
, (1.12)

where k is the second fundamental form of Σt. We emphasize that (1.12) is the gauge condition tied to the
infinite speed of propagation, since it implies an elliptic equation for n (see (2.25)).

Remark 1.4 (Initial CMC slice). The condition (1.12) presupposes that the data on the initial Cauchy
hypersurface Σ1 have constant mean curvature trk|Σ1 = −1. Such an assumption can be made without
loss of generality for solutions that start out close to background Kasner solutions. The reason is that for
near-Kasner data (not necessarily CMC data), one can first use the standard wave coordinate gauge to
solve Einstein’s equations in a neighborhood of Σ1, and then prove the existence of a CMC slice in that
neighborhood with the desired properties; see [59, Proposition 14.4] and [9, Theorem 4.2].

14That is, X has no vanishing points.
15Although the coordinate functions {xi}i=1,2,3 are only locally defined, the corresponding partial derivative vectorfield frame

{∂i}i=1,2,3 can be extended to a smooth global frame on T3.
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Polarized U(1)-symmetric case. In the polarized U(1)-symmetric vacuum case with D = 3, our setup
will be such that x3 corresponds to the symmetry. In particular, relative to the transported spatial coordinates
{xi}i=1,2,3, n, {gij}i,j=1,2,3, and {kij}i,j=1,2,3 will not depend on x3. Moreover, ∂3 will be a hypersurface-
orthogonal Killing vectorfield, everywhere defined in the past of Σ1 and with positive norm away from the
singularity; see Lemma 2.3.

We now state a first, rough version of our main stability results. See Theorems 6.1 and 6.5 for precise
statements.

Theorem 1.5 (Stable Big Bang formation (Rough version)). In 1 +D spacetime dimensions, consider an
explicit generalized “background” Kasner solution (1.6) whose Kasner exponents satisfy the condition (1.8),

which is possible for D ≥ 3 in the presence of a scalar field and for D ≥ 10 in vacuum (i.e., with B̃ = 0
in (1.6)). These background solutions are dynamically stable under perturbations – without symmetry –
of their initial data near their Big Bang singularities, as solutions to the Einstein-scalar field equations in
the case D ≥ 3, and, when B̃ = 0, as solutions to the Einstein-vacuum equations in the case D ≥ 10.
Moreover, in 1+3 spacetime dimensions, all Kasner solutions (with B̃ = 0) are dynamically stable solutions
to the Einstein-vacuum equations under perturbations – with polarized U(1)-symmetry – near their Big Bang
singularities, even though they all violate the condition (1.8).
More precisely, under the above assumptions, sufficiently regular perturbations (i.e., perturbations belonging

to suitably high order Sobolev spaces) of the Kasner initial data on Σ1 give rise to maximal developments that
terminate in a Big Bang singularity to the past. In particular, the spacetime solutions in the past of Σ1 are
foliated by spacelike hypersurfaces Σt that are equal to the level sets of a time function t verifying the CMC
condition trk = −t−1, and the perturbed Kretschmann scalars RiemαµβνRiemαµβν blow up like t−4 as t ↓ 0.
Finally, the perturbed solutions exhibit AVTD behavior (see just below equation (1.4) for further discussion
of the notion of “AVTD”) as the singularity is approached, and various t-rescaled solution variables have
regular limits as t ↓ 0.

1.6 Background on “Kasner-like behavior:” Heuristics

We now aim to provide further background on our main results. In Sect. 1.7, we will discuss prior works in
the literature. Many of those works concern solutions that exhibit “Kasner-like behavior,” a concept that we
now discuss. We do not attempt to ascribe rigorous meaning to this terminology; rather, we will highlight
some properties that are meant to capture the idea that a metric with spatial dependence is “blowing up in a
manner similar to the Kasner solutions.” We find the discussion in [29, 40] instructive, where the spacetime
metric, to leading order near t = 0, is assumed to take the form

g = −dt⊗ dt+ g, g∼=
D∑
I=1

t2qI(x)θI(x)⊗ θI(x), θI = θIa(x)dx
a, (1.13)

where “∼=” means “asymptotic to as t ↓ 0,” and the scalar functions {qI(x)}I=1,··· ,D satisfy the following
(vacuum) analogs of (1.7):

D∑
I=1

qI(x) =

D∑
I=1

q2I (x) = 1. (1.14)

Note that in (1.13), the one-forms16 {tqI(x)θI(x)}I=1,··· ,D “exactly represent the Kasner-like directions”.
Moreover, although the metric components may vary in x, they are all monotonic in t at fixed x. We stress
that our discussion here is heuristic in the sense that metrics of the form (1.13) are not generally solutions
to Einstein’s equations, though they might approximate actual solutions.
Let {kIJ}I,J=1,··· ,D denote17 the components of the type

(
1
1

)
second fundamental form of Σt with respect

to the co-frame {θI(x)}I=1,··· ,D and its basis-dual18 frame. Standard computations yield that for metrics of

16Recall that we do not sum over repeated underlined indices.
17This notation should not be confused with the notation “kIJ” that we use in the bulk of the article, where kIJ := kcde

c
Ie

d
J

denotes the components of k relative to a Fermi–Walker propagated orthonormal spatial frame.
18If {vI}I=1,··· ,D denotes the basis-dual frame (i.e., θI(vJ ) = δIJ , where δIJ is the Kronecker delta), then relative to arbitrary

coordinates {yi}i=1,··· ,D on TD, we have θI = θIcdy
c, vJ = vcJ

∂
∂yc , and k

I
J := kcdθ

I
cv

d
J , where kab = (g−1)ackcb.
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the form (1.13), we have kIJ ∼ t−1. On the other hand, in coordinates such that the lapse |g(∂t, ∂t)|1/2 is
equal to 1 (as on RHS (1.13)), the components kIJ satisfy the evolution equations

∂tk
I
J − trkkIJ = RicIJ −RicIJ , (1.15)

whereRicIJ denotes a component of the type
(
1
1

)
Ricci curvature of g with respect to the co-frame {θI(x)}I=1,··· ,D

and its basis-dual frame, and similarly for RicIJ .

Heuristic criterion for Kasner-like behavior

� If Ric = 0 (e.g., if the metric g from (1.13) was already known to be a solution to the Einstein-vacuum
equations), then the leading order behavior kIJ ∼ t−1 can easily be derived directly from (1.15) if i)
one knew that trk = −t−1 +O(t−1+σ) for some σ > 0, and ii) one could prove the following pointwise
estimate for t larger than but close to 0:

max
I,J=1,··· ,D

|RicIJ | ≲ t−2+σ. (1.16)

In our main results, we impose the condition trk = −t−1 by using constant mean curvature folia-
tions. This gauge is not compatible with the ansatz (1.13) because it generally requires the lapse

[−(g−1)αβ∂αt∂βt]
− 1

2 to be different from unity. For convenience, we will downplay this issue in the
present discussion.19 In the presence of matter, the same conclusions kIJ ∼ t−1 hold if one can also

show that20 max
I,J=1,··· ,D

|RicIJ | ≲ t−2+σ.

Remark 1.6 (Remarks on our use of time-dependent orthonormal frames). We make the following remarks:

� The above discussion of heuristics referred to the components of tensorfields with respect to the time-
independent co-frame {θI(x)}I=1,··· ,D and its basis-dual frame. In particular, {θI(x)}I=1,··· ,D is not
g-orthonormal. However, for perturbations of Kasner solutions, there is no reason to believe that there
generally exists a time-independent co-frame in which the perturbed metric takes the form (1.13).
Hence, we again stress that our approach is based on deriving estimates for the components of tensor-
fields relative to an orthonormal spatial frame {eI(t, x)}I=1,··· ,D obtained by Fermi–Walker transport,
and that our use of an orthonormal frame is crucial so that we can exploit the approximately diagonal
nature of the structure coefficient evolution equations (see Sect. 1.8.3).

� In particular, in our main results, we will prove an analog of (1.16) for the components of Ric relative
to an orthonormal frame; see Remark 1.10. Equivalently, instead of (1.16), our main results will rely
on a proof of the bound

|Ric| ≲ t−2+σ, (1.17)

where LHS (1.17) denotes the usual invariant pointwise norm of the spatial Ricci tensor.

� We also highlight that we are able to close our estimates without showing that the metric is asymptotic
to a metric of the form (1.13). In fact, we close the proof with only very weak information about
the orthonormal frame {eI(t, x)}I=1,··· ,D and co-frame {ωI(t, x)}I=1,··· ,D: we prove only that their
coordinate components {eiI}I,i=1,··· ,D and {ωI

i (t, x)}I,i=1,··· ,D are bounded in magnitude by ≲ t−q for
some q ∈ (0, 1) depending on the background Kasner exponents; see also Remark 6.2.

� Despite the previous comment, for the solutions under study, we are able to prove the existence of “final

Kasner exponents” {q(∞)
I (x)}I=1,··· ,D as the singularity is approached; see Proposition 6.6.

Conditions for the validity of the heuristic criterion (1.16) for metrics of the form (1.13)

19Since we derive estimates showing that |n− 1| ≲ tσ, the non-constant lapse does not affect the heuristic analysis.
20In our main results, in the case of the scalar field matter model, we will prove (with the help of (1.1a)) pointwise estimates

showing that max
I,J=1,··· ,D

|Ric(eI , eJ )| ≲ t−2+σ, where {eI(t, x)}I=1,··· ,D is an orthonormal spatial frame; this frame component

bound is sufficient for the proof of our main results. These technical estimates are in fact derived in the proof of Lemma 5.17,
though it might not be immediately apparent from the statement of the lemma.
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� A computation using (1.13) shows that in the absence of special algebraic structure, we typically have21

max
I,J=1,··· ,D

|RicIJ | ≈ max
I,J,B=1,··· ,D

I<J

{t2(qB−qI−qJ )}. (1.18)

� In view of (1.18), we see that the estimate (1.16) holds if

max
I,J,B=1,··· ,D

I<J

{qI + qJ − qB} < 1. (1.19)

� In 1 + 3 spacetime dimensions in the vacuum case, where the condition (1.19) is always violated (see
(1.10)), one can show that for metrics of the form (1.13), the estimate (1.16) is valid if the following
relation holds, where d denotes the exterior derivative operator:

θ− ∧ dθ− = 0, (1.20)

where q−(x) < 0 is the22 negative Kasner-like exponent in (1.13) and θ−(x) is the corresponding one-
form, i.e., these quantities are such that the tensor product θ−(x) ⊗ θ−(x) is multiplied by the factor
t2q−(x). The condition (1.20) eliminates the terms responsible for the worst behavior on RHS (1.18),
which, if present, would have been more singular than RHS (1.16).

A geometric interpretation of the condition (1.20) for metrics of the form (1.13)

� The Frobenius Theorem states that (1.20) is equivalent to the integrability of the 2-dimensional sub-
spaces V −

p annihilated by θ−, where for p ∈ T3,

V −
p = {Y ∈ TpT3 : θ−p (Y ) = 0}. (1.21)

We note that (1.20) is equivalent to the existence of functions u, v : T3 → R such that θ− = udv.

As we already mentioned in Sect. 1.4, for the models that we consider in our results without symmetry
assumptions, it was already observed in [11, 29] that the condition (1.19) is not vacuous, at least in the sense
that there exist generalized Kasner (in particular, spatially homogeneous) solutions whose exponents satisfy it.
We also stress that for solutions with x-dependence, in the context of the heuristic works [11, 29], the condition
(1.19) can be interpreted as an inequality that should be satisfied by the “final Kasner exponents,” i.e., the
exponents {qI(x)}I=1,··· ,D of the alleged asymptotic form (1.13) of an alleged Kasner-like solution. Our main
results in fact justify the existence of (x-dependent) Kasner-like solutions with “final Kasner exponents”
{qI(x)}I=1,··· ,D verifying the stability condition (1.19), at least when the data are close to generalized Kasner
solutions whose exponents verify the same condition; see Proposition 6.6. Our proof of these facts relies, of
course, on the open nature of the condition (1.19).
The above discussion suggests that in 1+3 spacetime dimensions in the vacuum case, x-dependent Kasner-

like solutions can exist if the “polarization-type” condition (1.20) holds. However, the condition (1.20) refers
to the structure of the metric “at the singularity” (i.e., since (1.13) is only supposed to capture the asymptotic
structure of the metric, (1.20) is a statement about the structure of the asymptotic behavior of the metric
near the singularity), and we are not aware of any “general method” for solutions without symmetry that
allows one to ensure the validity of (1.20) via assumptions on the initial data on Σ1. However, for polarized
U(1)-symmetric solutions, discussed further below, the condition (1.20) automatically holds.

Polarized U(1)-symmetric metrics of the form (1.13) satisfy (1.20)

� Recall that we defined the polarized U(1)-symmetry class in Sect. 1.4.2. Assume that ∂3 is the
hypersurface-orthogonal Killing vectorfield with T1-orbits. This will be the case in our study of so-
lutions with symmetry; see Lemma 2.3. In addition, we assume that the leading order expression (1.13)
of the Kasner-like metrics in question respects the symmetry, ie. ∂3qI(x) = 0, L∂3θI(x) = 0. The
argument for the validity of (1.20) is divided in the following two cases depending on the sign of the
Kasner exponent associated to the norm of the Killing field ∂3:

21Note that the spatial coordinate components {Ricij}i,j=1,··· ,D of the type
(1
1

)
tensor Ric are bounded in magnitude by ≲

LHS (1.18) and hence the inequality (1.18) would imply the same bound for max
i,j=1,··· ,D

|Ricij |.
22Using the equations (1.14), one can show that in the vacuum case with D = 3, aside from the trivial case in which one of

the qI is equal to 1 and the others vanish, precisely one of the q’s must be negative.
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� If q3, the Kasner-like exponent corresponding to the direction of symmetry, satisfies q3 < 0, then for
a metric of the form (1.13), (1.20) (with θ3 in the role of θ−) is immediate, since θ3 must be a scalar
function multiple of dx3.

� Again assume that ∂3 is the hypersurface-orthogonal Killing vectorfield with T1-orbits, but now assume
that q3 > 0 and q1 < 0, where q3 is still the Kasner-like exponent corresponding to the direction
of symmetry. Then the subspaces annihilated by the one-form θ1= θ−, corresponding to q1, are 2-
dimensional and contain ∂3. Let Y be a unit-length vectorfield in the kernel of θ1 that is orthogonal to
∂3. Fix a point p ∈ T3 and consider the integral curve s → ap(s) of Y passing through it, normalized
by ap(0) = p. Then the image of ap times the orbits of ∂3, i.e., Img(ap)× [−π, π]x3

, is a surface whose
tangent planes are exactly the kernel of θ1, since ∂3 (being Killing and annihilating θ1) commutes
with Y . Hence, the planes V −

p are integrable, and by the Frobenius Theorem, this is equivalent to the
condition (1.20).

1.7 Related works

Before outlining the main ideas behind our proof of Theorem 1.5, we first describe some prior results on
Kasner-like singularities. There are many such results, and we roughly divide them into three categories.

1.7.1 Big Bang formation under symmetry assumptions

There are many works that provide a detailed description of stable Big Bang formation, or more generally,
spacelike singularity formation with AVTD behavior (e.g., in black hole interiors), for large sets of initial
data on a smooth Cauchy hypersurface in a model with sufficient symmetry such that the problem reduces
to a system of ODEs or 1 + 1-dimensional PDEs. We further divide these results into sub-categories.
The interior of black holes. In Christodoulou’s influential works [19, 20] on the spherically symmet-

ric Einstein-scalar field system with large data, it was shown that black holes form and contain spacelike
singularities in their interior, where their Kretschmann scalars blow up.
Polarized Gowdy-symmetry. In [23], the authors studied polarized Gowdy-solutions23 to the Einstein-

vacuum equations and proved Strong Cosmic Censorship, that is, that for an open and dense set of polarized
Gowdy-symmetric initial data on T3 or S2×S1, the maximal globally hyperbolic development is inextendible,
and causal geodesics are generically inextendible in one direction due to curvature blowup.
Gowdy-symmetry. In [54], Ringström proved a similar result for Gowdy-solutions with spatial topology

T3, without the polarization assumption. See also the related works [24, 51, 52] and the survey article
[53]. The general Gowdy-case turned out to be significantly more difficult to handle in view of a possible
phenomenon that was shown to be absent in the polarized case: “spikes.” Roughly, spikes are regions where
spatial derivatives can become large, i.e., regions where solutions do not exhibit AVTD behavior. For an
open and dense set of data in the topology of C∞, Ringström proved that a curvature singularity forms and
that the solution exhibits Kasner-like behavior, except for possibly at a finite number of spikes.
Polarized T2-symmetry. In [4], the authors proved the dynamic stability of Kasner Big Bang singularities

under T2-symmetric polarized perturbations, for a certain range of Kasner exponents. In [5], the same authors
proved a similar result in the presence of an arbitrary cosmological constant Λ ∈ R. There is a relationship
between these solutions and the polarized U(1)-symmetric solutions that we treat in Theorem 6.5; see Section
1.9.1 for further discussion.
Polarized axi-symmetric initial data. The Schwarzschild black hole singularity is highly unstable, as

is shown by the fact that instead of singularities, near-Schwarzschild Kerr solutions have Cauchy horizons
inside their black holes, and the metric can be smoothly extended across them. However, the Schwarzschild
singularity was recently shown to be stable [1] as a solution to the Einstein-vacuum equations under symmetric
perturbations, specifically those perturbations whose solutions exhibit a hypersurface-orthogonal, spacelike,
Killing vectorfield X with T1 orbits.24 This symmetry class is closely related to the polarized U(1)-symmetry
class that we study in Theorem 6.5, as we now describe. Compared to the U(1)-symmetric polarized solutions

23Roughly, Gowdy-solutions are such that there exists a pair of spacelike Killing vectorfields X and Y such that the twist
constants ϵαβγδX

αY βDγXδ and ϵαβγδX
αY βDγY δ vanish, where ϵ is the spacetime volume form. Polarized Gowdy-solutions

satisfy one additional condition: X and Y are orthogonal.
24Note that Kerr solutions, although axi-symmetric, do not contain a hypersurface-orthogonal Killing field.
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with T3 spatial topology that we study in the present paper, the main difference in [1] is that X degenerates
at a 2-dimensional submanifold; since the vectorfield X in [1] is tangent to 2-spheres, such degeneracies are
topologically unavoidable. This can be concretely seen already in the case of the background Schwarzschild
metric in classical (t, r, θ, ϕ) coordinates, where X := ∂ϕ is the Killing field, and away from the singularity
{r = 0}, its (square) norm gSchwarzschild(∂ϕ, ∂ϕ) = r2 sin2 θ vanishes at exactly θ = 0, π. Apart from
this extra feature of the degenerate Killing vectorfield and the difference in topology (R × S2 instead of
the T3 topology considered here), the stability result of [1] can be seen to correspond25 to a special case
of our symmetric blowup-results, specifically Theorem 6.5, with background Kasner exponents q̃1 = − 1

3 ,
q̃2 = q̃3 = 2

3 . The method of proof introduced in [1] is very much tied to the specific symmetry class,
relying on a wave-maps reduction of the Einstein-vacuum equations, and it is therefore not applicable to the
non-symmetric solutions that we study in Theorem 6.1. However, it seems that the use of the particular
symmetry reduction in [1] allowed for the derivation of more refined asymptotic behaviors for the spatial
components of the metric compared to the results we derive in Theorem 6.5.

1.7.2 The construction of solutions with Big Bang singularities – without a proof of stability

Numerous papers have provided a construction of solutions that exhibit a Kasner-like singularity. Most
of these works concern cosmological spacetimes and employed Fuchsian techniques in regimes where the
discussion in Sect. 1.6 suggests that one might expect the singularity formation to be dynamically stable.
Gowdy-symmetry. The first result of this type [41] yielded the construction of analytic solutions with

Gowdy-symmetry. The analyticity assumption was removed in [49]. See also [62] for more general topologies
and [3] for a treatment in generalized wave gauges.
Polarized and half-polarized T2-symmetry. Analytic singularities in polarized T2-symmetry class

were first constructed in [36]. The analyticity assumption was later removed in [2], where the authors also
constructed half-polarized solutions.
Polarized or half-polarized U(1)-symmetry. Polarized and half-polarized U(1)-symmetric analytic

solutions with T3 spatial topology were constructed in [37]. More general topologies were later treated in
[17]. We note that in these works, the authors defined their notion of polarized and half-polarized solutions
at the singularity, i.e., at t = 0, by eliminating free functions relative to a given ansatz, in the spirit of (1.13)
and (1.20).
Einstein-scalar field or stiff fluid. The first construction of singular solutions without symmetries was

carried out in [7]. The authors studied the Einstein-scalar field and Einstein-stiff fluid systems and used
Fuchsian techniques to construct analytic solutions whose “final Kasner exponents” (see the last point of
Remark 1.6 and Proposition 6.6) are all positive.
Sub-critical Einstein-matter systems. In [28], the authors extended the results of [7] by constructing

singular, analytic, Kasner-like solutions without symmetries to various Einstein-matter systems and to the
Einstein-vacuum equations in 1 +D dimensions with D ≥ 10. As in the present paper, the solution regimes
treated in [28] were sub-critical in the sense that the solutions exhibited the crucial bound (1.17) for the
spatial Ricci curvature. Roughly, our present work shows that an open set of solutions constructed in [28]
are dynamically stable under Sobolev-class perturbations of their initial data near their Big Bangs, at least
for the vacuum and scalar field matter model.
1 + 3 vacuum without symmetries. As we alluded to in Sect. 1.3, Kasner solutions might be unsta-

ble under general perturbations without symmetries, unless some kind of condition, such as a polarization
condition of the type (1.20), is imposed. Nevertheless, in [39], the author constructed analytic Kasner-like
singular solutions without symmetries, demonstrating that such solutions exist, even though they might be
unstable. Moreover, in [32], for distinct Kasner exponents, the authors constructed Sobolev-class solutions
that exhibit Kasner-like singularities. The solutions do not a priori enjoy any symmetry, but they satisfy the
polarization condition (1.20).
Asymptotically Schwarzschild on a 2-sphere. Finally, we mention the first author’s work [31], which,

in a Lorentz gauge, yielded the construction of a class of spacetimes that converge to a portion of the
Schwarzschild black hole singularity. The construction requires no symmetry or analyticity assumptions.

25To see the correspondence, one must re-parametrize the coordinate r to proper time (recall that r is a time function in the
Schwarzschild black hole interior, whereas t is a spatial coordinate, in the classical coordinate representation of the Schwarzschild
metric).
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While the construction does not yield a full spacelike singular hypersurface, it does provide a spacelike
singular 2-sphere.

1.7.3 Stable Big Bang formation without symmetry assumptions

The stability of some Kasner solutions towards their Big Bang singularities, without symmetries and for
open sets of initial data, was only fairly recently shown by the last two authors. For the scalar field and
stiff fluid matter models, the stability of the (isotropic) FLRW solutions with T3 spatial topology (i.e.,

q̃1 = q̃2 = q̃3 = 1
3 and B̃ =

√
2/3) was shown in [58, 59], while the case of the scalar field matter model with

S3 topology was handled in [61]. The Einstein-vacuum equations were handled in [60] under a “moderate
anisotropy” assumption on the Kasner exponents, specifically max

I=1,··· ,D
|q̃I | < 1

6 , which is possible in 1 + D

spacetime dimensions when D ≥ 38. Some aspects of our analysis here are in the spirit of the analysis in [60].

1.7.4 Conditional Kasner-like behavior

There are recent results that derive Kasner-like behavior for solutions under assumed bounds on certain
key quantities. For example, assuming mainly scale invariant bounds on the Riemann curvature of Hubble-
normalized time slices, Lott [43] showed that the corresponding singular solutions converge to Kasner flows in
appropriate topologies. Ringström [56, 57] derived sharp results on the geometry of Kasner-like solutions by
assuming mainly bounds on the renormalized Weingarten map.26 Ringström’s sharp estimates crucially rely
on a frame that asymptotically diagonalizes the normalized Weingarten map. This frame is very different
from ours, which is Fermi-propagated from Σ1. It would be interesting to explore whether a change of frames
could yield more refined estimates for the spatial frame and connection coefficients compared to the estimates
we obtain in Theorem 6.1; see also Remark 1.9.

1.8 Overview of our proof

Our proofs of Theorems 6.1 and 6.5 are based on deriving estimates for a set of reduced variables that solve
an elliptic-hyperbolic PDE system. Here we will summarize the main features of the system and how its
structures allow us to prove our main results. We will confine our discussion to sketching proofs of various
low order and high order a priori estimates for near-Kasner initial data given on Σ1 = {t = 1}. In practice,
the low order and high order estimates are coupled, and we derive them via a bootstrap argument. The a
priori estimates are sufficient to ensure (see Proposition 5.28) that the solution exists on (0, 1] × TD, which
is the main step in the paper. The proof of curvature blowup and other aspects of the solution are relatively
straightforward consequences of the a priori estimates. We will not discuss those results in this section;
instead, we refer readers to Sect. 6 for those details.

1.8.1 The gauge

We use a constant mean curvature foliation in which, for t ∈ (0, 1], the level sets Σt of the time function t
satisfy trk = − 1

t , where k is the second fundamental form of Σt. We also use spatial coordinates {xi}i=1,··· ,D
that are transported along the unit normals to Σt. In this gauge, the spacetime metric satisfies g = −n2dt⊗
dt+ gabdx

a⊗dxb, where n is the lapse and g is the first fundamental form of Σt. This setup is the same as in
[58, 59, 60]. However, to derive the sharp results of the present paper, we use a crucial additional ingredient:
we use Fermi–Walker transport to construct a Σt-tangent orthonormal “spatial frame” {eI}I=1,··· ,D, which
is globally defined in space. When supplemented with e0 := n−1∂t, we obtain an orthonormal spacetime
frame. We then formulate Einstein’s equations in such a way that the unknowns are n, the components
{eiI}I,i=1,··· ,D of the orthonormal frame with respect to the transported spatial coordinates, the components
{ωI

i }I,i=1,··· ,D of the corresponding dual co-frame with respect to the transported spatial coordinates, the
frame components kIJ := kcde

c
Ie
d
J of the second fundamental form with respect to the frame, the connection

coefficients γIJB := g(∇eIeJ , eB) of the spatial frame (where ∇ is the Levi-Civita connection of g), the

26The Weingarten map is the second fundamental form in type
(1
1

)
form, i.e., in the notation of the present paper, the

tensorfield with components kij := (g−1)iakaj .
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timelike unit normal derivative e0ψ of the scalar field, and the spatial frame derivatives {eIψ}I=1,··· ,D of the
scalar field.27 We refer readers to Sect. 2 for the details.

1.8.2 The lapse, the dynamic variables, and the “less singular” nature of spatial derivative
terms

The lapse n satisfies an elliptic PDE (see (2.25)) with source terms depending on some of the other solution
variables, specifically the “dynamic variables” eiI , γIJB , and eIψ. Thus, to control n, we use elliptic estimates
to control it in terms of these dynamic variables. These estimates are rather standard and we will not discuss
them in detail here. We simply highlight that it is crucial for our results that the right-hand side of the elliptic
lapse PDE depends only the spatial derivatives of various tensorfields, i.e., there are no time derivative terms,
the point being that in the problem under study, spatial derivative terms are less singular with respect to t
compared to time derivative terms; this is a manifestation of AVTD behavior, which we first mentioned in
Sect. 1.3. We refer readers to Sect. 5.4 for a detailed proof of the lapse estimates. To control the dynamic
variables, including eiI , ω

I
i , kIJ , γIJB , e0ψ, and eIψ, we derive “low order” L∞ estimates and “high order”

energy estimates based on first-order formulations of the flow; we refer to Proposition 2.2 and Lemma 5.22 for
the first-order formulations of the equations. As we explained in the discussion above (1.5), we also crucially
rely on the special “diagonal structure” exhibited by the PDE system satisfied by the structure coefficients
of the spatial frame. We provide this PDE system in Proposition 5.7, and we will discuss it in more detail in
Sect. 1.8.3.

1.8.3 Approximately diagonal form of the structure coefficient evolution equations

Away from symmetry, to control the γIJB ’s, we rely on the crucial observation that the terms

{SIJB := γIJB + γJBI | 1 ≤ I, J,B ≤ D, I < J} (1.22)

solve an evolution equation system whose “main linear part” is diagonal with coefficient magnitudes that are
smaller than t−1, provided the condition (1.8) is satisfied by the background Kasner exponents; see equation
(5.19) for the precise equation, and equation (1.25b) for an abbreviated version. To caricature, the system is
of the form Ṡ = M

t · S + · · · , where M is a diagonal matrix whose components verify |MIJ | < 1 when (1.8)
holds. This allows us to prove that under (1.8), we have |S| ≲ t−q for some q < 1. This bound is crucial
for the entire proof, as we use it to show that the solutions exhibit AVTD behavior. The variables SIJB
in (1.22) are precisely the structure coefficients of the spatial orthonormal frame {eI}I=1,··· ,D. Here we note
that by the simple identity (5.22), to control all of the γIJB ’s, it suffices to control the structure coefficients.

Moreover, as we highlighted in Remark 1.2, even in cases such that the stability condition (1.8) is violated,
only some of the structure coefficients SIJB could possibly serve as an obstruction to proving the desired
estimates: those with three distinct indices. That is, our work essentially shows that in regimes where (1.8)
is violated (such as the Einstein-vacuum equations in 1+3 dimensions without symmetries), any instabilities
would arise from the combinations SIJB with distinct indices. This observation is precisely what allows us to
extend our stable blowup-results to the class of polarized U(1)-symmetric Einstein-vacuum solutions in 1+3

dimensions: by considering a spatial orthonormal frame {eI}I=1,2,3 such that e3 = (g33)
− 1

2 ∂3 corresponds to
the normalized Killing direction (see Lemma 2.4), we can conclude that the spatial connection coefficients
with distinct indices are automatically zero (see Lemma 5.11). Hence, the observations described above allow
us to sufficiently control the non-zero structure coefficients and prove stable blowup.
We also note that the less singular behavior (than t−1) of the γIJB ’s is consistent with the renormalized

second fundamental form frame components tkIJ(t, x) having a continuous limit, κ
(∞)
IJ (x), as t ↓ 0, which is

the main feature of a Kasner-like singularity (as we described in Sect. 1.6). This is once again a manifestation

of AVTD behavior. The eigenvalues of −κ
(∞)
IJ (x) can be viewed as the “final, x-dependent” Kasner exponents

of the perturbed spacetime; see Proposition 6.6.

1.8.4 The bootstrap argument and initial discussion of the behavior of the high order energies

In practice, to prove our main results, we rely on a bootstrap argument in which we assume that various low
order and high order norms are small (indicating that the solution is near-Kasner) on a time interval (TBoot, 1];

27We never need to estimate ψ itself since only its derivatives appear in the system (1.1a)–(1.1b).
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see (3.9) for the precise bootstrap assumptions. Then the main task becomes deriving strict improvements of
the bootstrap assumptions for near-Kasner initial data, where we remind the reader that the data are given
along Σ1 = {t = 1}. In the rest of Sect. 1.8, to illustrate the main ideas, we will not explain the full bootstrap
argument in detail, but will instead show how the different parts of the analysis consistently fit together. As
a starting point, we note that our analysis will eventually show that we have a top-order energy bound of
the form

tA∗+q∥eiI∥ḢN (Σt)
, tA∗+1∥kIJ∥ḢN (Σt), t

A∗+1∥γIJB∥ḢN (Σt)
, tA∗+1∥e0ψ∥ḢN (Σt)

, tA∗+1∥eIψ∥ḢN (Σt)
≲ data,

(1.23)

where q is as in Sect. 1.8.3 (see just above (1.24a) for further discussion) and ∥·∥ḢN is a standard homogeneous
Sobolev norm; see Sect. 3 for the details.
We now highlight some crucial aspects of our analysis of the high order energies:

To close the proof and justify the estimate (1.23), we must first choose the parameter A∗ to be
sufficiently large, then choose the “regularity parameter” N to be sufficiently large relative
to A∗, and finally choose data to be sufficiently small, where for the rest of Sect. 1.8, “data”
denotes a small number whose size is controlled by the closeness of the initial data to the Kasner
data in a high order Sobolev norm.

1.8.5 The behavior of the low order L∞ norms

In this section, we will explain how a high order energy bound of the form (1.23) allows us to derive sharp L∞

estimates for the solution variables at the low derivative levels. We already stress that our proof fundamentally
requires that we prove much less singular (with respect to t) estimates at the low derivative levels compared
to (1.23); here, we are thinking of (1.23) as a “very singular estimate” in the sense that A∗ is large. In
particular, at the low derivative levels, we must prove estimates for the perturbed kIJ and e0ψ variables
showing that they are not more singular than their Kasner analogs, which blow up like t−1. To keep the
presentation short, in most of the rest of Sect. 1.8, we will focus only on the estimates for eiI , kIJ , and γIJB ;
the estimates for the scalar field can be obtained in a similar fashion. Moreover, we again highlight that we
derive control of the connection coefficients at the low derivative levels by relying on the structure coefficients
SIJB := γIJB + γJBI (whereas for the energy estimates at the high derivative levels, we can work directly
with the connection coefficients γIJB). Finally, we note that our discussion here will mainly concern the
analysis away from symmetry under the sub-criticality condition (1.8).

Remark 1.7 (No need for a precisely adapted frame). It seems remarkable to us that away from symmetry,
for all sub-critical Kasner exponents, we have a lot of freedom in constructing the orthonormal frame. More
precisely, in Sect. 5.11, we use the Gram–Schmidt algorithm to construct an initial orthonormal frame that
is a perturbation of the spatial coordinate frame {∂i}i=1,··· ,D, and then we propagate this frame using the
Fermi–Walker transport equations (2.8). There is nothing special about our choice of initial data for the
frame; any nearby initial data for the orthonormal frame would have worked just as well. In particular, we
can close the estimates without using a spatial frame that is adapted to the perturbed Kasner directions,
that is, without the frame being aligned with the eigenvectors of the perturbed second fundamental form; see
also Remark 6.2. Many previous studies of Kasner-like singularities in fact relied on a frame that is adapted
to the eigenvectors of k (see Sect. 1.7 for a list of related works).

Remark 1.8 (The role of N0). In our main theorem, there appears a parameter N0 ≥ 1 that represents,
roughly, the number of derivatives that we sharply control in ∥ · ∥L∞ . We are free to choose it at the start
of the bootstrap argument. For example, N0 = 1 is permissible. However, the choice of N0 will affect
the minimal allowable size of N (see Theorem 6.1). N0 also captures the amount of regularity that the
“limiting renormalized solution variables” enjoy along the Big Bang hypersurface Σ0 (see Sect. 6.2). We
introduced N0 mainly to clarify that for “very smooth” initial data that fall under the scope of our main
results, the corresponding limiting solution variables will inherit a quantifiable amount of the smoothness.
For convenience, in our heuristic discussion here, we will only discuss the case N0 = 1, i.e., the L∞ estimates
at the level of the undifferentiated equations.
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To proceed, we let ẽiI(t) and k̃IJ(t) := k̃cd(t)ẽ
c
I(t)ẽ

d
J(t) respectively denote the background Kasner frame

components and second fundamental form components; see Sect. 2.3 for the precise definitions. We aim to
sketch a proof of the following pointwise estimates for (t, x) ∈ (0, 1]×TD, where in what follows, q and σ are
fixed constants that satisfy 0 < 2σ < 2σ+ max

I,J,B=1,··· ,D
I<J

{|q̃B |, q̃I + q̃J − q̃B} < q < 1− 2σ (such constants exist

whenever the sub-criticality condition (1.8) holds):

|tkIJ − tk̃IJ |(t, x) ≲ data, (1.24a)

tq|SIJB |(t, x) ≲ data, (1.24b)

tq|eiI − ẽiI |(t, x) ≲ data. (1.24c)

The estimate (1.24a) is sharp and is of particular importance because it is needed to control various “border-
line terms” in the energy estimates, as we explain in Sect. 1.8.6. Similar remarks apply for the L∞ estimates
for te0ψ (which we do not discuss here). The estimates (1.24b)–(1.24c) are not quite sharp with respect to
powers of t, and we have chosen the power tq on LHSs (1.24b)–(1.24c) so as to allow for the simplest possible
analysis. Estimates at the low derivative levels, in the spirit of (1.24a)–(1.24c), are sufficient to allow us to
identify the limiting Kasner-like behavior of the perturbed solutions; see Propsition 6.6 for the details. We
stress that, although Propsition 6.6 shows that the t-weighted scalar functions tkIJ and te0ψ have non-trivial,
regular limits as t ↓ 0, we do not obtain (or need!) analogous sharp limits for the frame components or spatial
derivative-involving terms; see Remark 6.2.

Remark 1.9 (Refined estimates with a different frame?). It is conceivable that a different choice of orthonor-
mal frame might yield sharper asymptotic estimates for the spatial frame and connection coefficients, as in
[57]. However, for solutions without symmetry, to close a bootstrap argument with a refined frame, such as
a frame that is adapted to the eigenvectors of k, one would have to overcome serious technical difficulties,
such as a potential loss of derivatives for the frame. It is an interesting open problem to understand whether
such an approach is viable, i.e., whether the entire proof can be carried out using a refined frame. On the
other hand, in symmetric regimes, such as polarized U(1)-symmetry [1]28 and polarized T2-symmetry [4, 5],
the authors derived sharp asymptotics for various solution variables by using frames that are well-adapted
to the different Kasner directions. In those works, the sharp estimates were derived by taking advantage of
the special structures found in various symmetry-reduced versions of Einstein’s equations.

Remark 1.10 (The crucial bound for the spatial Ricci curvature). Using the estimates (1.24b)–(1.24c)
and similar estimates for the spatial derivatives of SIJB , the algebraic identity (5.22), and the spatial Ricci
curvature frame component expression (2.31), one can conclude that |RicIJ | := |Ric(eI , eJ)| ≲ data× t−2+σ.
This is a frame component analog of the classic sub-criticality condition (1.16), and in practice, one needs
such an estimate to prove (1.24a).

To sketch the main ideas behind the proofs of (1.24a)–(1.24c), we note that the evolution equations for

kIJ − k̃IJ , SIJB , and e
i
I − ẽiI can be caricatured as follows (see Propositions 2.2 and 5.7 and Lemma 5.13 for

the precise equations):

∂t(kIJ − k̃IJ) +
1

t
(kIJ − k̃IJ) = eiI · ∂γ+ γ · γ+ · · · , (1.25a)

∂tSIJB +
(q̃I + q̃J − q̃B)

t
SIJB = · · · , (1.25b)

∂t(e
i
I − ẽiI) +

q̃I
t
(eiI − ẽiI) = · · · , (1.25c)

where · · · denotes similar or simpler error terms that we ignore to simplify the discussion, and we recall that
we do not sum over repeated underlined indices.

Remark 1.11 (On the approximately diagonal structure of the evolution equations for the structure coef-
ficients). Note that (1.25b) shows that the SIJB solve an evolution equation system that is approximately
diagonal, as we highlighted in Sect. 1.8.3.

28The work [1] is concerned with the near-Schwarzschild black hole interior problem, where the symmetry class is called
“polarized axi-symmetry.” This regime has some analytical commonalities with the polarized U(1)-symmetric solutions that we
treat in Theorem 6.5; see the end of Sect. 1.7.1.
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Next, we note that the estimates (1.24b) and (1.24c) are easy to derive (modulo the omitted terms “· · · ”)
via integrating factors as a consequence of equations (1.25b)–(1.25c) and the definition of q. In reality, the
proofs of (1.25a)–(1.25c) must be handled simultaneously, via a bootstrap argument, due to coupling terms,
but we will ignore this issue here; see the proof of Proposition 5.26 for the details.
Next, to illustrate the interplay between low order L∞ estimates and high order energy estimates, we will

now explain how to derive the bound (1.24a) for kIJ , assuming the high order energy bound (1.23) and the
estimates (1.24b) and (1.24c). To this end, we must explain how to control the term eiI · ∂γ on RHS (1.25a).
This term loses one derivative and must ultimately be handled with the help of energy estimates (which we
discuss in Sect. 1.8.6), but as we explain, its L∞ norm is sub-critical with respect to powers of t. By this,
we mean that the behavior of eiI · ∂γ with respect to t is strictly less singular with respect to t, as t ↓ 0,
compared to the terms on LHS (1.25a) (i.e., less singular than t−2) and thus, near the singularity, it is a
negligible error term. To see this, one can use standard Sobolev embedding and interpolation estimates (see
Lemmas 4.1 and 4.2) to infer that there is a constant δN > 0 (depending on N) such that δN → 0 as N → ∞
and such that the following crucial estimate holds:

∥∂γ∥L∞(Σt) ≲ ∥γ∥L∞(Σt) + ∥γ∥1−δN

L∞(Σt)
∥γ∥δN

ḢN (Σt)
. (1.26)

Combining (1.26) with (1.23) and (1.24b), and using the fact that the connection coefficients γ are linear
combinations of the structure coefficients S (see (5.22)), we find that ∥∂γ∥L∞(Σt) ≲ data × t−q + data. ×
t−(1−δN )qt−δN (A∗+1). Thus, by choosing N sufficiently large, exploiting that A∗ does not depend on N , and
that δN → 0 as N → ∞, we find that

∥∂γ∥L∞(Σt) ≲ data× t−1+σ. (1.27)

The importance of (1.26) and (1.27) is that they show that when N is large, the singularity
strength of ∥∂γ∥L∞(Σt) is not much worse than the singularity strength of ∥γ∥L∞(Σt), even if

∥γ∥ḢN (Σt)
obeys a much worse estimate of the form ∥γ∥ḢN (Σt)

≲ data × t−(A∗+1) (which is the

bound afforded by the energy estimate (1.23)).

Hence, also using (1.24c), we conclude that ∥eiI · ∂γ∥L∞(Σt) ≲ data × t−2+σ, i.e., that this term is less
singular than t−2, as desired. Let us now sketch the proof that these bounds imply the desired estimate
(1.24a). Using these bounds, multiplying the evolution equation (1.25a) by t and noting that the resulting

LHS is equal to ∂t[t(kIJ− k̃IJ)], and then using the fundamental theorem of calculus, we deduce the pointwise
bound

|tkIJ − tk̃IJ |(t, x) ≲ |tkIJ − tk̃IJ |(1, x)

+

∫ 1

t

s|eiI |(s, x) · |∂γ|(s, x) ds+
∫ 1

t

s|γ|(s, x) · |γ|(s, x) ds+ · · ·

≲ data+ data

∫ 1

t

s−1+σ ds+ · · · ≲ data+ · · · ,

(1.28)

which yields the desired bound (1.24a), up to the error terms “· · · .” We close this section by highlighting
that in a fully detailed proof of (1.28), the estimate (1.17) is crucial for obtaining the power s−1+σ in the
next-to-last inequality in (1.28).

Remark 1.12 (How large does N need to be?). The following natural question emerges from the above
discussion: how large does N need to be for the above scheme to work? The interpolation inequality (1.26)
already suggests that the rough estimate N ∼ σ−1 is sufficient to guarantee that ∥∂γIJB∥L∞(Σt) is less
singular than t−1, given the high order energy bounds (1.23) for tA∗+1∥γIJB∥ḢN (Σt)

and the fact that γ

satisfies |γIJB | ≲ data × t−1+σ and that δN ∼ N−1 (see the proof of Lemma 4.2 for some details on the
N -dependence of the δN that appear in our interpolation estimates). The precise largeness of N needed for
this argument to go through depends on D and the size of A∗, which we discuss in Remark 1.13. We also
note that, even in the best case scenario, we would expect the behavior of at least one of the connection

coefficient norms ∥γIJB∥L∞(Σt) to be at least as singular as t
− max

I=1,··· ,D
q̃I
. Hence, in view of our choice (3.6) of
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the parameters q,σ, we see that σ has order of magnitude at least as small as 1− max
I=1,··· ,D

q̃I . In particular, this

implies that as the background Kasner exponents tend towards an extreme case, e.g., as max
I=1,··· ,D

q̃I → 1 (and

hence σ → 0), the number of derivatives N we would need to close our bootstrap argument would tend to
∞. Similarly, as LHS (1.8) tends towards 1, our arguments would require N to tend to ∞ as well. Moreover,
going back to Remark 1.8, we note that one could use similar interpolation arguments (see Lemmas 4.1 and
4.2) to infer that choosing N ∼ N0σ

−1 would be sufficient to guarantee that ∥∂N0γIJB∥L∞(Σt) is less singular
than t−1.

1.8.6 The high order energy estimates

We now explain how we derive our top-order energy estimates for the dynamic variables eiI , kIJ , γIJB , e0ψ,
and eIψ, that is, how we prove (1.23). We will highlight the role played by the L∞ estimates of Sect. 1.8.5.
We first commute the evolution equations (recall that in our formulation, all of the evolution equations are
first-order) with ∂ι, where ∂ι is an Nth-order differential operator corresponding to repeated differentiation
with respect to the transported spatial coordinate vectorfields. We then derive energy identities for solutions
to the commuted equations, where we incorporate tA∗+1-weights into the identities. Below we will explain
the analytic role of the weights. The energy identity for the scalar field is standard, and we will not discuss
it in detail here; we refer readers to Lemma 5.24 for a differential version of that energy identity. Similar
remarks apply for the energy identity for the frame component functions eiI .

However, the derivation of the energy identity for the second fundamental form frame components kIJ and
the connection coefficients γIJB is more subtle, since the identity corresponds to a surprising gain of one
derivative for the frame, as we highlighted in Sect. 1.3. The identity can be derived using a modification of
the approach used in [58, 59, 60]. The main difficulty is that the evolution equations (2.22a)–(2.22b) for γ
and k do not form a symmetric hyperbolic system, which, at first glance, seems to obstruct the availability
of a basic energy identity. However, one can use differentiation by parts and the momentum constraint
equation, as well as the special structure of the equations relative to CMC foliations (see (2.26b)), to replace
the problematic terms with source terms that exhibit an allowable amount of regularity. We refer readers to
Lemma 5.34 for this top-order energy identity, expressed in differential form.
We will now describe our top-order energy estimates. We will give a simplified, schematic presentation in

order to focus on the main ideas. We introduce the top-order energy29

EN (t) := tA∗+1∥k∥ḢN + tA∗+1∥γ∥ḢN + tA∗+q
∑

I,i=1,··· ,D

∥eiI∥ḢN + tA∗+1∥e0ψ∥ḢN + tA∗+1
∑

I=1,··· ,D

∥eIψ∥ḢN .

(1.29)

We will sketch our proof that if A∗ is chosen to be sufficiently large and thenN is chosen to be sufficiently large
such that the L∞ estimates of Sect. 1.8.5 hold, then we have the following bound:30 EN (t) ≤ CN × data,
i.e., the estimate (1.23) holds. To obtain this bound, we combine the energy identities mentioned in the
previous paragraphs with elliptic estimates for the lapse, and we use the L∞ estimates from Sect. 1.8.5 and
interpolation to control the nonlinear error terms. This allows us to derive the following energy integral
inequality for t ∈ (0, 1] (see Proposition 5.27 for the precise inequalities), where C∗ is a constant that captures
the strength of the borderline terms in the equations and that can be chosen to be independent of N and
A∗ (as long as “data” is small), while CN > 0 is a large, N -dependent constant:

E2
N (t) ≤ data2 + (C∗ −A∗)

∫ 1

t

E2
N (s)

s
ds+ CN

∫ 1

t

s−1+σE2
N (s) ds. (1.30)

The crucial point is that if we choose A∗ to be larger than C∗, then the time integral on RHS (1.30)
becomes non-positive, and we can discard it. Finally, from (1.30) and Grönwall’s lemma, we obtain that
EN (t) ≤ CN × data as desired. This concludes our schematic discussion of the a priori estimates.
Some closing remarks are in order.

29Note that as we have defined it, the energy EN scales linearly with respect to the quantities that it controls. This is a
different convention than is usually used in the literature, in which energies are typically defined so as to scale quadratically in
the quantities that they control. Similar remarks apply to the energies we use in the proof of Lemma 2.3.

30In practice, we also derive top-order energy estimates for the co-frame components {ωI
i }I,i=1,··· ,D.
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� The negative definite integral −A∗
∫ 1

t
E2
N (s)
s ds on RHS (1.30) arises from our energy identities, specifi-

cally from the tA∗+1 weights that we have incorporated into them. This negative definite integral allows

us to absorb the dangerous borderline error integral C∗
∫ 1

t
E2
N (s)
s ds, but at the expense of forcing us to

work with energies that are very degenerate near t = 0.

� Above we mentioned the notion of a “borderline term.” To handle such terms, we must rely on the
sharp L∞ estimates from Sect. 1.8.5; for borderline terms, there is “no room” in the L∞ estimates. In

the context of energy estimates, borderline terms contribute to the dangerous integral C∗
∫ 1

t
E2
N (s)
s ds

on RHS (1.30). One example of a borderline error integral is
∫ 1

t

∫
Σs
s2(A∗+1) · k · ∂ιγ · ∂ιγ dx ds, where

∂ι is an Nth-order spatial differential operator of the type mentioned earlier. To bound this integral

by C∗
∫ 1

t
E2
N (s)
s ds, we need to use the sharp estimate ∥kIJ∥L∞(Σs) ≤

C∗
s implied by (1.24a). If, instead

of this sharp bound, we only knew that ∥kIJ∥L∞ ≤ C∗t
−(1+ϵ) for some ϵ > 0, then on RHS (1.30),

we would have an additional error integral of the form C∗
∫ 1

t
E2
N (s)
s1+ϵ ds. By virtue of Grönwall’s lemma,

this integral would lead to dramatically worse a priori estimates, which would in turn prevent us from
closing our bootstrap argument.

Remark 1.13 (The size of A∗). It is possible, in principle, to compute how large A∗ has to be for the above
proof to work; one simply needs to derive an explicit upper bound for the constant C∗ on RHS (1.30). We will
provide an outline of how to estimate C∗ (and thus A∗), although we do not provide an explicit estimate. To
shorten the discussion, we will restrict our attention to the Einstein-vacuum equations, i.e., we will assume
that ψ = 0. In short, the constant C∗ can be controlled by the number of borderline terms in the top-order
energy estimates and elliptic estimates and the size of the coefficients in front of these terms. More precisely,
the borderline terms in the energy estimates for the connection coefficients and second fundamental form are
generated by the terms on RHSs (5.32a), (5.32c), and (5.32e). The main terms driving the size of C∗ are

the top-order ones with coefficients of size ≈ t−1, e.g., the term ∂ι(n− 1) · k̃ on RHS (5.32a) and the terms

n · k̃ ·∂ιγ and k̃ ·∂ιe⃗n on RHS (5.32c). These terms lead to borderline error integrals in the energy estimates,

such as the integral
∫ 1

t

∫
Σs
s2(A∗+1) ·k ·∂ιγ·∂ιγ dx ds mentioned above. In each borderline term, the coefficient

of the top-order term, specifically k in the previous integral, can be bounded by (|q̃I | + Cϵ)t−1 for some I,
where q̃I can be any of the background exponents and Cϵ can be as small as desired, by taking the initial
data on Σ1 to be sufficiently close to the Kasner data. More precisely, decomposing k = k̃ + (k − k̃), we see

that the factor |q̃I |t−1 is generated by k̃ (see (2.58)), while the factor Cϵt−1 from is generated by the bound
(1.24a). Since |q̃I | < 1, by counting all borderline terms, we could crudely bound the contribution of these
terms to the constant C∗ by ≤ (number of borderline terms) + Cε. The sum of all the corresponding top-

order error integrals would then be bounded by C∗
∫ 1

t
E2
N (s)
s ds. We also stress that one encounters borderline

terms in the elliptic estimates for the top-order derivatives of n (see, for example, the C∗-involving term on
RHS (5.5a)), and that these borderline terms propagate into the top-order energy estimates via terms such

as the one ∂ι(n− 1) · k̃ mentioned above. In particular, these terms affect the size of C∗. We also note that
the arguments given here allow for the possibility that C∗ might increase with respect to D. Finally, we note
that the estimate for C∗ sketched here is not necessarily optimal. In fact, in the near-FLRW regime (where
all Kasner exponents are nearly equal), the last two authors [58, 59] showed that striking cancellations take
place, and A∗ can in fact be taken very small, i.e., C∗ = Cε. It is not known to us whether such cancellations
exist for perturbations of highly anisotropic background Kasner solutions.

1.9 Applicability of the method

1.9.1 Polarized T2-symmetry

We already mentioned that Kasner-like singularities have been constructed [2, 36] for the Einstein-vacuum
equations in 1+3 dimensions within the polarized T2-symmetry class. This symmetry class contains vacuum
spacetimes with two orthogonal, spacelike, Killing vectorfields X,Y that commute, and it is more general
than the polarized Gowdy-class in the sense that the twist constants, which measure the obstruction to the
integrability of the 2-dimensional orthogonal planes to X,Y , do not have to vanish. It turns out that po-
larized T2-symmetric solutions can be can be viewed as special cases of polarized U(1)-symmetric solutions
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in which one extra symmetry is present. This fact is not immediately apparent in the sense that our def-
inition of polarized U(1)-symmetry (recall the discussion in Sect. 1.4.2) requires a spacelike Killing field to
be hypersurface-orthogonal, whereas the definition of polarized T2-symmetry does not refer to hypersurface
orthogonality. Nevertheless, for polarized T2-symmetric solutions, it is always possible31 to construct coordi-
nates such that one of the twist constants vanishes and such that one of the spatial coordinate partial deriva-
tive vectorfields associated to the T2-symmetry is Killing and hypersurface-orthogonal; see [4, Section 2.2],
where this coordinate Killing vectorfield is denoted by “∂x.” Given such coordinates, the corresponding
solutions can indeed be viewed as special cases of polarized U(1)-symmetric solutions in which one extra
symmetry is present. Hence, our results on polarized U(1)-symmetric solutions imply, as a special case, that
all Kasner solutions are also stable (as solutions to the Einstein-vacuum equations in 1 + 3 dimensions) near
their Big Bangs under polarized T2-symmetric perturbations. Here, by “stable,” we mean that the results of
Theorem 6.5 hold for the near-Kasner polarized T2-symmetric solutions, where the hypersurface-orthogonal
Killing vectorfield “∂3” from Theorem 6.5 corresponds to the vectorfield “∂x” from [4].
We also highlight that recently, an alternate approach has been developed [4] for studying the stability

of Kasner Big Bangs under polarized T2-symmetric perturbations, including in the presence of an arbitrary
cosmological constant [5]. More precisely, in [4], the authors used an areal time foliation to prove the
stability of a subset of the Kasner solutions near their Big Bang singularities under polarized T2-symmetric
perturbations, where the notion of “stability” in [4] is more precise compared to our notion of stability in
Theorem 6.5. In particular, the approach in [4] yields a sharp description of the behavior of the metric
components relative to areal coordinates. It would be interesting to see if the results of [4] – especially the
ones concerning the sharp asymptotics – can be extended to the full set of Kasner solutions; this could sharpen
our understanding (see Remark 6.2) of the behavior of near-Kasner, polarized, T2-symmetric solutions near
their Big Bangs.

1.9.2 Potential further applications

Our method could likely be adapted to prove stable Big Bang formation in other models that are not, strictly
speaking, covered in the present paper. We mention here some interesting cases.
The stiff-fluid model, for D ≥ 3. This matter model reduces to the scalar field matter model in the

case of vanishing vorticity. In [59], stable Big Bang formation was proved in the special case D = 3 for the
background FLRW solution, in which q̃1 = q̃2 = q̃3 = 1/3, and the presence of matter is needed to ensure the
validity of the Kasner exponent constraints (1.7).
Perturbing around fixed, non-explicit, backgrounds/ solutions with large spatial dependence.

The stability problems that we study in detail in this paper concern perturbations of explicit, spatially ho-
mogeneous, singularity-forming solutions. However, one could try to use our methods to study perturbations
of any of the singular solutions constructed in the works that we mentioned in Sect. 1.7, including solutions
with spatial dependence. From an analytical point of view, when dealing with background solutions that
exhibit spatial dependence, there is an additional technical difficulty in the derivation of various estimates,
since the terms where derivatives hit the background solution will no longer be zero or necessarily small.
Nevertheless, our method is still potentially applicable. To simplify the approach, one could consider data
with large spatial derivatives given on a hypersurface close to the expected singularity, that is, on ΣtData

,
with tData larger than but close to 0 (where tData has to be chosen to be small in a manner that depends
on the largeness of the data); the point is that the smallness of the amount of time for which one needs to
control the solution can compensate for the largeness of the data. Moreover, by applying this philosophy
to the setup of the present paper, one could produce open sets of singularity-forming solutions that have
“substantial x-dependence.”
Black hole interior. There are numerous examples of black hole spacetimes containing a spacelike singu-

larity, such as the classical Oppenheimer–Snyder model of gravitational collapse or the solutions detected by
Christodoulou in his aforementioned studies [19, 20] of the spherically symmetric Einstein-scalar field model.
For the latter solutions, it would be interesting to see whether Kasner-like blowup holds for perturbations
of solutions (in some class other than spherical symmetry, which was handled in [19, 20]). Compared to our
work here, the difference in topology might pose additional analytical difficulties. Moreover, one would have
to grapple with the question of whether the initial data given only in the interior of a black hole could arise

31We are grateful to the authors of [4] for pointing this out to us.
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as induced data of solutions to the global Cauchy problem.

1.10 Paper outline

In Sect. 2, we introduce our analytic framework, including the reduced solution variables and a formulation
of the Einstein-scalar field equations relative to CMC-transported spatial coordinates with a Fermi–Walker
transported orthonormal frame. In Sect. 3, we define various norms and introduce our bootstrap assumptions
for perturbations of Kasner solutions. Our bootstrap assumptions involve t-weighted L∞ norms at the low
derivative levels and t-weighted Sobolev norms at the high derivative levels, where the t-weights are much
smaller at the high derivative levels (which corresponds to our allowing for very singular high order derivatives
as t ↓ 0). In Sect. 4, we provide standard Sobolev and interpolation estimates that we will use to control
various error terms when we derive our main estimates. In Sect. 5, we derive the core estimates at both the
low and high derivative levels. These estimates in particular yield a strict improvement of the bootstrap
assumptions. Finally, in Sect. 6, we use the estimates of Sect. 5 to prove our main theorems exhibiting the
stability of the Kasner Big Bang singularity.

1.11 Notation and conventions

In the rest of the paper, we use the following notation and conventions.

� {xi}i=1,··· ,D denote standard local spatial coordinates on TD that are transported in the sense described
in Sect. 2.1.1, and ∂i :=

∂
∂xi denote the corresponding spatial partial derivative vectorfields. The frame

{∂i}i=1,··· ,D extends to a smooth global holonomic frame on TD, and by abuse of notation, we denote
the globally defined vectorfields by the symbols ∂i, even though the coordinate functions are not globally
defined.

� Lowercase Latin “spatial” indices such as a, b, i, j range over {1, · · · ,D} and correspond to the trans-
ported spatial coordinates x1, · · · , xD (see Sect. 2). For example, gij := g(∂i, ∂j). Lowercase Greek
“spacetime” indices such as α, β, µ, ν range over {0, 1, · · · ,D} and usually correspond to the spacetime
coordinates t, x1, · · · , xD, where the “0” index corresponds to t. For example, g0i = gti := g(∂t, ∂i).
In a few instances, {eα}α=0,··· ,D denotes an orthonormal spacetime frame, i.e., g(eα, eβ) = mαβ ,
where mαβ := diag(−1, 1, · · · , 1). Uppercase Latin “spatial frame” indices such as I, J range over
{1, · · · ,D} and, with one exception, correspond to the orthonormal spatial frame {eI}I=1,··· ,D or
co-frame {ωI}I=1,··· ,D (see Sect. 2). For example, kIJ := k(eI , eJ) = kcde

c
Ie
d
J . The exception is that

for background Kasner tensors, uppercase Latin indices denote their components with respect to the
background Kasner orthonormal frame {ẽI}I=1,··· ,D; see Remark 2.6 for further discussion.

� We use Einstein summation for repeated indices, including frame indices. We stress that no metric
is directly involved in contractions involving the frame indices. For example, kICγCJB stands for∑D
C=1 kICγCJB , where D is the number of spatial dimensions.

� If X is a vectorfield and f is a scalar function, then Xf := Xα∂αf denotes the derivative of f in the
direction X.

� {dxi}i=1,··· ,D denotes the globally defined basis-dual co-frame of {∂i}i=1,··· ,D, i.e., dxi(∂j) := δij , with

δij the Kronecker delta.

� No summation of underlined terms. In a handful of key terms that explicitly involve the Kasner
exponents, we will not use Einstein summation convention for some of the indices. More precisely, in a
given product, whenever there is no summation over a particular index, we indicate this by underlining
all instances of that index in the product. For example, there is no summation over the index I in the

following expression:
q̃I
t γIJB .

� If X and Y are vectorfields, then XYf := Xα∂α(Y
β∂βf). Similarly, if T is a tensorfield and D denotes

the Levi-Civita connection of g, then DXT := XαDαT and DXDYT := XαDα(Y
βDβT). In addition,

D2
XYT := XαYβDαDβT. Note that in the latter expression, contractions are taken after covariant

differentiation and thus generally, D2
XYT ̸= DXDYT.
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� If X and Y are vectorfields, then g(X,Y) := gαβX
αYβ . We use similar notation for contractions of

higher-order tensorfields against vectorfields. For example,

Riem(W,X,Y,Z) := RiemαβγδW
αXβYγZδ.

� ι denotes a spatial multi-index. That is, for some positive integer m, ι = (a1, · · · , am), where ai ∈
{1, · · · ,D} for 1 ≤ i ≤ m and |ι| := m denotes the length of the index. ∂ι := ∂a1 · · · ∂am denotes
the corresponding order m differential operator involving repeated differentiation with respect to the
transported spatial coordinate partial derivative vectorfields. ι1 ∪ ι2 = ι means that for some r with
1 ≤ r ≤ m, we have ι1 = (ai1 , · · · , air ) and ι2 = (air+1

, · · · , aim), where (i1, · · · , im) is a permutation of
(1, · · · ,m) such that i1 < i2 < · · · < ir and ir+1 < ir+2 < · · · < im. ι1 ∪ ι2 ∪ ι3 = ι, ι1 ∪ ι2 ∪ ι3 ∪ ι4 = ι,
etc. have analogous meanings.

Note that our multi-index convention in D spatial dimensions differs from the more standard one,
in which multi-indices α satisfy α ∈ ND. For instance, in the more standard notation, in 3 spatial
dimensions, α := (1, 1, 0) corresponds to ∂α = ∂1∂2, whereas with our multi-index notation in 3 spatial
dimensions, ι = (1, 1) corresponds to ∂ι = ∂1∂1.

Parameters

� A∗ ≥ 1 denotes a “time-weight exponent parameter” that is featured in the high order solution norms
from Definition 3.1. To close our estimates, we will choose A∗ to be large enough to overwhelm various
universal constants C∗ (see below). This corresponds to our use of high order energies featuring large
powers of t, which leads to weak high order energies near t = 0.

� 0 < q < 1 is a constant, fixed throughout the proof, that bounds the crucial quantity

max
I,J,B=1,··· ,D

I<J

{|q̃B |, q̃I + q̃J − q̃B}.

� σ > 0 is a small constant, fixed throughout the proof, that we use to simplify the proofs of various
estimates that “have room in them.”

� q and σ are constrained by (3.6).

� N0 ≥ 1 roughly corresponds to the number of derivatives of the solution that we control in L∞ (the
precise derivative count depends on the solution variable – see Definition 3.1).

� N denotes the maximum number of times that we commute the equations with spatial derivatives (e.g.,
k ∈ HN (Σt) and n ∈ HN+1(Σt)– see Definition 3.1). To close our estimates, we will choose N to be
sufficiently large in a (non-explicit) manner that depends on N0, A∗,D, q, and σ.

� δ > 0 is a small (N,D)-dependent parameter that is allowed to vary from line to line and that is
generated by the estimates of Lemma 4.1. We use the convention that a sum of two δ’s is another δ.
The only important feature of δ that we exploit throughout the paper is the following: at fixed D, we
have limN→∞ δ = 0. In particular, if A∗ is also fixed, then limN→∞A∗δ = 0.

� ε is a small “bootstrap parameter” that, in our bootstrap argument, bounds the size of the solution
norms; see (3.9). The smallness of ε needed to close the estimates is allowed to depend on the parameters
N,N0, A∗,D, q, and σ.

Constants

� C denotes a positive constant that is free to vary from line to line. C can depend on N,N0, A∗,D, q,
and σ, but it can be chosen to be independent of all ε > 0 that are sufficiently small in the manner
described just above.
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� C∗ denotes a positive constant that is free to vary from line to line and that can depend on D. Like C,
C∗ can be chosen to be independent of all ε > 0 that are sufficiently small in the manner described just
above. However, unlike C, C∗ can be chosen to be independent of N,N0, and A∗. C∗ can be chosen
to be independent of q, and σ, but that is less important in the sense that we view q and σ to be fixed
throughout the article. For example, 1 + CN !ε ≤ C∗ while N ! = C and N !/σ = C, where C and C∗
are as above.

� We write v ≲ w to indicate that v ≤ Cw, with C as above.

� We write v = O(w) to indicate that |v| ≤ C|w|, with C as above.
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2 Analytic setup and the formulation of the Einstein-scalar field
equations

In this section, we introduce the framework that we will use to study perturbations of Kasner solutions.
In particular, we provide the formulation of the Einstein-scalar field equations that we will use to derive
estimates.

2.1 The reduced equations relative to a CMC-transported orthonormal frame

Our main goal in this section is to prove Proposition 2.2, which provides the formulation of the Einstein-scalar
equations that forms the starting point for our analysis. We start by providing some basic constructions.

2.1.1 The form of the spacetime metric, the lapse, and the transported spatial coordinates

Relative to CMC-transported spatial coordinates on a slab (t, x) ∈ (T, 1]×TD, the spacetime metric g takes
the form

g = −n2dt⊗ dt+ gabdx
a ⊗ dxb, (2.1)

where n is the lapse and g is the first fundamental form of the constant-time slice Σt := {(s, x) ∈ (T, 1] ×
TD | s = t}, i.e., g is the Riemannian metric induced by g on Σt. Here and throughout, t is the time function.
In Sect. 2.1.3, we state our CMC normalization condition for t. The spatial coordinates {xi}i=1,··· ,D are said
to be “transported” because n−1∂tx

i = 0, where n−1∂t is the future-directed unit normal to Σt.

2.1.2 The orthonormal frame

Our proofs fundamentally rely on expressing Einstein’s equations relative to an orthonormal frame:

e0 = n−1∂t, eI = ecI∂c, I = 1, · · · ,D, (2.2)

where e0 is the future-directed unit normal to Σt (in particular, g(e0, e0) = −1 and g(e0, X) = 0 for all
Σt-tangent vectorfields X), the “spatial” frame {eI}I=1,··· ,D is Σt-tangent and normalized by

g(eI , eJ) = δIJ , δIJ = the Kronecker delta, (2.3)

and the spatially-globally defined (see Sect. 1.11) scalar functions {eiI}i=1,··· ,D in (2.2) are the components
of eI relative to the transported spatial coordinates. Just below, we will describe how we construct the
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spatial frame. We let {ωI}I=1,··· ,D denote the corresponding Σt-tangent one-forms that are a co-frame for
the spatial frame {eI}I=1,··· ,D, defined by

ωI(eJ) = δIJ , (2.4)

where δIJ is the Kronecker delta. Note that ωI = ωI
adx

a, where the spatially-globally defined scalar functions
{ωI

i }i=1,··· ,D are the components of ωI relative to the transported spatial coordinates. Thus, we have

ωI
ae
a
J = δIJ , ωA

j e
i
A = δij , I, J, i, j = 1, · · · ,D. (2.5)

Moreover, since {eI}I=1,··· ,D is orthonormal, ωI is in fact the g-dual of eI , that is,

ωI
i = giae

a
I , I, i = 1, · · · ,D. (2.6)

We also note that from (2.5) and the relation eI = ecI∂c, it follows that

∂i = ωC
i eC , i = 1, · · · ,D. (2.7)

We now describe our construction of a spatial frame. There is freedom in the construction; see Remark 1.7.
In Sect. 5.11, we use the Gram–Schmidt process to construct an initial orthonormal spatial frame on Σ1 that is
suitable for proving our main results. Given this frame on Σ1, we propagate it to slabs of the form (T, 1]×TD

by solving the propagation equations

De0eI = n−1(eIn)e0, (2.8)

where D is the Levi-Civita connection of g.
From equation (2.8), it follows that the scalar functions {eiI}I,i=1,··· ,D satisfy a system of transport equa-

tions; see (2.23a). It is straightforward to check (for example, with the help of equation (2.14)) that if g is
C1 on (T, 1] × TD and the initial spatial frame on Σ1 is orthonormal and C1, then the frame {eI}I=1,··· ,D
obtained by propagating the initial frame via the transport equations (2.8) is orthonormal and tangent to Σt
for t ∈ (T, 1]. In particular, we have

g(eα, eβ) = mαβ , α, β = 0, 1, · · · ,D, (2.9)

where mαβ := diag(−1, 1, · · · , 1), and

eIt = 0, I = 1, · · · ,D. (2.10)

Moreover, relative to the orthonormal frame {eα}α=0,1,··· ,D, with mµν := diag(−1, 1, · · · , 1) and δIJ the
Kronecker delta, we have

g−1 = mγδeγ ⊗ eδ, g−1 = δCDeC ⊗ eD. (2.11)

In addition, differentiating (2.9), we find that

g(Deαeβ , eγ) = −g(eβ ,Deαeγ), (2.12)

which in particular implies that

g(Deαeβ , eγ) = 0, if β = γ. (2.13)

We also note the following identity, which is straightforward to verify using the form (2.1) of the metric:

De0e0 = n−1(eCn)eC . (2.14)

Remark 2.1 (Fermi–Walker transport). When the frame initial data are Σ1-tangent, equation (2.8) is
equivalent to the well-known Fermi–Walker transport equation for eI along the integral curves of e0 (which,
up to re-parametrization, are the same as the integral curves of ∂t). We remark that the “standard” Fermi–
Walker transport equation is De0eI = n−1(eIn)e0−g(eI , e0)n

−1(eCn)eC , and that we have omitted the term
−g(eI , e0)n

−1(eCn)eC from RHS (2.8). This term vanishes in the present context because our frame initial
data will verify g(eI , e0)|Σ1

= 0 and g(eI , eJ)|Σ1
= δIJ , and these orthogonality conditions are propagated

by solutions to equation (2.8).
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2.1.3 The second fundamental form, the CMC condition, and the connection coefficients

Relative to the transported spatial coordinates {xi}i=1,··· ,D on Σt, the second fundamental form k of Σt
is the Σt-tangent tensorfield with components kij := −g(D∂ie0, ∂j). Hence, the components of the second
fundamental form with respect to the frame {eI}I=1,··· ,D are

kIJ = −g(DeIe0, eJ) = kJI , (2.15)

where the symmetry property kIJ = kJI is a well-known consequence of the torsion-free property of D and
the fact that the commutators [eI , eJ ] are Σt-tangent (and thus orthogonal to e0). Note that (2.9), (2.13),
and (2.15) imply that

DeIe0 = −kICeC . (2.16)

We now normalize the time function t according to the CMC condition

trk := kaa := (g−1)abkab = kAA = −1

t
. (2.17)

It is well-known that (2.17) leads to an elliptic equation for the lapse n (see (2.25)), which means in particular
that our gauge involves an infinite speed of propagation.
In our analysis, we also study the spatial connection coefficients of the frame {eI}I=1,··· ,D, which are

defined by:

γIJB := g(DeIeJ , eB) = g(∇eIeJ , eB). (2.18)

In (2.18) and throughout, ∇ denotes the Levi-Civita connection of g. Note that (2.9), (2.12), (2.15), and
(2.18) imply that

DeIeJ = −kIJe0 + γIJCeC , ∇eIeJ = γIJCeC . (2.19)

Finally, by differentiating the relation g(eJ , eB) = δJB with DeI , we deduce the antisymmetry property

γIJB = −γIBJ . (2.20)

2.1.4 Curvature tensors

Our sign conventions for the Riemann curvature Riem of g, the Ricci curvature Ric of g, and the scalar
curvature R of g, are as follows relative to the orthonormal frame {eα}α=0,1,··· ,D constructed in Sect. 2.1.2,
where mαβ is as in (2.11):

g
(
D2
eαeβ

eν −D2
eβeα

eν , eµ

)
:= Riem(eα, eβ , eµ, eν), (2.21a)

Ric(eα, eβ) := mµνRiem(eα, eµ, eβ , eν), (2.21b)

R := mµνRic(eµ, eν). (2.21c)

Our sign conventions for the curvature of tensors of g, namely its Riemann curvature Riem, Ricci curvature
Ric, and scalar curvature R, are analogous to the ones in (2.21a)–(2.21c).

2.1.5 The reduced equations

In the next proposition, we provide the PDEs that we use to study perturbations of generalized Kasner
solutions.

Proposition 2.2 (The reduced Einstein-scalar field equations relative to CMC-transported spatial coor-
dinates and a Fermi-Walker transported orthonormal frame). Let T ∈ (0, 1), and let (g, ψ) respectively
be a Lorentzian metric and a scalar function on the manifold (T, 1] × TD. Assume that (T, 1] × TD is
equipped with a CMC time function t and transported spatial coordinates {xi}i=1,··· ,D such that the level sets
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Σt = {t} × TD are CMC hypersurfaces normalized by (2.17), as is described in Sects. 2.1.1–2.1.3 (in partic-
ular, the {xi}i=1,··· ,D are coordinates on each Σt). Let n be the lapse, let e0 = n−1∂t be the future-directed
normal to Σt, let {eI}I=1,··· ,D be the Σt-tangent orthonormal spatial frame described in Sects. 2.1.1–2.1.3,
and let {ωI}I=1,··· ,D be the corresponding Σt-tangent orthonormal spatial co-frame. Let {eiI}i=1,··· ,D de-
note the components of eI with respect to the transported spatial coordinates, and similarly for {ωI

i }i=1,··· ,D.
Let {kIJ}I,J=1,··· ,D denote the components of the second fundamental form of Σt with respect to the spatial
frame, and let {γIJB}I,J=1,··· ,B denote the connection coefficients of {eI}I=1,··· ,D, as described in Sect. 2.1.3.
Then the scalar functions kIJ ,γIJB , e

i
I ,ω

I
i , n, ψ, I, J,B, i = 1, · · · ,D, satisfy all32 of the following33 “re-

duced” equations on (T, 1] × TD if and only if (g, ψ) are solutions to the Einstein-scalar field equations
(1.1a)–(1.1b), where the spacetime metric can be expressed in terms of the reduced variables via the formulas
g = −n2dt⊗ dt+ gabdx

a ⊗ dxb and gij = g(∂i, ∂j) = ωA
i ω

A
j :

Evolution equations for the second fundamental form and connection coefficient components

e0kIJ = −n−1eIeJn+ eCγIJC − eIγCJC − 1

t
kIJ

+ n−1γIJCeCn− γDICγCJD − γDDCγIJC − (eIψ)eJψ,
(2.22a)

e0γIJB = eBkIJ − eJkBI

− kICγBJC − kCJγBIC + kICγJBC + kBCγJIC + kICγCJB

+ n−1(eBn)kIJ − n−1(eJn)kBI .

(2.22b)

Evolution equations for the frame components and co-frame components

e0e
i
I = kICe

i
C , (2.23a)

e0ω
I
i = −kICωC

i . (2.23b)

Wave equation for the scalar field

e0e0ψ = eCeCψ − 1

t
e0ψ + n−1(eCn)eCψ − γCCDeDψ. (2.24)

Elliptic lapse equation

eCeC(n− 1)− t−2(n− 1) = γCCDeD(n− 1) + 2neCγDDC

− n {γCDEγEDC + γCCDγEED + (eCψ)eCψ} .
(2.25)

Hamiltonian and momentum constraint equations

2eCγDDC − γCDEγEDC − γCCDγEED − kCDkCD + t−2 = (e0ψ)
2 + (eCψ)eCψ, (2.26a)

eCkCI = γCCDkID + γCIDkCD − (e0ψ)eIψ. (2.26b)

Finally, we also have the following formula:

γIJB =
1

2

{
ωB
c (eIe

c
J − eJe

c
I)−ωI

c(eJe
c
B − eBe

c
J) +ωJ

c (eBe
c
I − eIe

c
B)

}
. (2.27)

Proof. We will prove in detail that solutions to the Einstein-scalar field equations (1.1a)–(1.1b) yield solutions
to the reduced equations stated in Proposition 2.2. The converse can be proved by similar arguments, and
we will omit those details.

Proof of (2.22a): We first use (2.8), (2.9), (2.14), and (2.19) to compute the following identity:

Riem(e0, eI , e0, eJ) = g((D2
e0eI −D2

eIe0)eJ , e0) = e0kIJ − kICkCJ + n−1∇2
eIeJn. (2.28)

32We clarify that some of these equations, such as (2.23a)–(2.23b) and (2.27), are independent of the Einstein–scalar field
equations and follow from the constructions given in Sects. 2.1.1–2.1.3.

33Recall that e0kIJ := n−1∂t(kIJ ) = n−1∂t(kcde
c
Ie

d
J ), eCγIJC := ecC∂c(γIJC), etc.
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We then use Gauss’ equation, namely

Riem(eC , eI , eD, eJ) = Riem(eC , eI , eD, eJ) + kCDkIJ − kCJkID, (2.29)

Einstein’s field equations (1.1a), and (2.21b) to rewrite LHS (2.28) as follows:

Riem(e0, eI , e0, eJ) = −Ric(eI , eJ) +Riem(eC , eI , eC , eJ)

= −(eIψ)eJψ +Ric(eI , eJ) + trkkIJ − kICkJC .
(2.30)

Next, we compute that the frame components of the Ricci tensor of g can be expressed as follows:

Ric(eI , eJ) = Riem(eC , eI , eC , eJ) = g((∇2
eCeI −∇2

eIeC )eJ , eC)

= eCγIJC − eIγCJC − γCIDγDJC − γCCDγIJD + γICDγDJC + γICDγDCJ︸ ︷︷ ︸
0

, (2.31)

where we notice that the last two products γICDγDJC+γICDγDCJ cancel, due to the antisymmetry property
(2.20). Next, we use (2.18) to deduce the following identity for the factor ∇2

eIeJn on RHS (2.28):

∇2
eIeJn = eIeJn− γIJCeCn. (2.32)

The evolution equation (2.22a) for kIJ now follows from combining (2.28)–(2.32) and using the CMC condition
(2.17).

Proof of (2.22b): First, we take the e0 derivative of (2.18) and use (2.8), (2.9), (2.14), (2.16), (2.19), the
symmetries of the curvature tensor, and the Codazzi equations, namely

(∇k)IJB − (∇k)JIB = Riem(eI , eJ , e0, eB) (2.33)

(where throughout this proof, ∇k denotes the type
(
0
3

)
Σt-tangent tensorfield with coordinate components

(∇k)abc = ∇akbc), to compute

e0γIJB = g(D2
e0eIeJ , eB) + g((De0e

α
I )DαeJ , eB) + g(DeIeJ ,De0eB)

= Riem(e0, eI , eB , eJ) + g(D2
eIe0eJ , eB) + g((De0e

α
I )DαeJ , eB) + g(DeIeJ ,De0eB)

= Riem(e0, eI , eB , eJ) + g(DeI (De0eJ), eB)

+ g((De0e
α
I )DαeJ , eB)− g((DeIe

α
0 )DαeJ , eB) + g(DeIeJ ,De0eB)

= Riem(eB , eJ , e0, eI) + kICγCJB − n−1(eJn)kIB + n−1(eBn)kIJ

= (∇k)BJI − (∇k)JBI + kICγCJB − n−1(eJn)kIB + n−1(eBn)kIJ

= eBkIJ − eJkIB − kCJγBIC − kICγBJC + kCBγJIC + kICγJBC

+ kICγCJB − n−1(eJn)kIB + n−1(eBn)kIJ ,

(2.34)

which yields the desired evolution equation.

Proofs of (2.23a)–(2.23b): First, we use (2.2), (2.8), (2.16), and the torsion-free property of the connection
D to compute the following identity:

(∂te
c
I)∂c = [∂t, e

c
I∂c] = [∂t, eI ] = D∂teI −DeI (ne0) = nkICeC = nkICe

c
C∂c. (2.35)

Considering the i component of (2.35) relative to the transported spatial coordinates and again using (2.2),
we arrive at the desired transport equation (2.23a). Using the relations (2.5), we also deduce (2.23b) as a
consequence of (2.23a).

Proof of (2.25): We simply take the IJ-trace of equation (2.22a) and use the CMC condition (2.17) and
the antisymmetry property (2.20).

Proof of (2.26a): We first note that for solutions to the Einstein-scalar field equations (1.1a)–(1.1b), the
Hamiltonian constraint (1.2a) holds along all constant-time hypersurfaces, that is: R − |k|2 + (trk)2 =
(e0ψ)

2 + |∇ψ|2. We refer to the discussion surrounding [64, Equation (10.2.30)] for a proof of this standard



2 ANALYTIC SETUP AND THE FORMULATIONOF THE EINSTEIN-SCALAR FIELD EQUATIONS31

fact in the context of the Einstein-vacuum equations, and we note that the arguments given there can be
modified in a straightforward fashion to apply to the Einstein-scalar field equations. We also note that the
sign convention for k used in [64] is the opposite of the one we use here. From this equation, (2.11), (2.31),
the identity R = Ric(eC , eC), the antisymmetry property (2.20), and the CMC condition (2.17), we arrive
at (2.26a).

Proof of (2.26b): We first note that for solutions to the Einstein-scalar field equations (1.1a)–(1.1b), the
momentum constraint (1.2b) holds along all constant-time hypersurfaces, that is: (∇k)CIC − (∇k)ICC =
−(e0ψ)eIψ. We refer to the discussion surrounding [64, Equation (10.2.28)] for a proof of this standard
fact in the context of the Einstein-vacuum equations, and we note that the arguments given there can be
modified in a straightforward fashion to apply to the Einstein-scalar field equations. We again note that
the sign convention for k used in [64] is the opposite of the one we use here. From this identity and the
CMC condition (2.17), we find that (∇k)CIC = −(e0ψ)eIψ. Next, using (2.11), (2.18), and the Leibniz rule
for covariant differentiation, we find that (∇k)CIC = eCkIC − γCIDkDC − γCCDkID. Combining the above
equations, we arrive at (2.26b).

Proof of (2.27): This identity follows from the Koszul formula

γIJB =
1

2
{g([eI , eJ ], eB)− g([eJ , eB ], eI) + g([eB , eI ], eJ)} (2.36)

and the identity [eI , eJ ] = ωC
l (eIe

l
J − eJe

l
I)eC .

Proof of (2.24): We first note that (1.1b) and (2.11) imply that −e0e0ψ + eCeCψ = −(De0e0)
αDαψ +

(DeCeC)
αDαψ. From this equation, (2.14), and (2.19), we deduce that e0e0ψ = eCeCψ + kCCe0ψ +

n−1(eCn)eCψ − γCCDeDψ. From this equation and the CMC condition kCC = kaa = − 1
t , we arrive at

(2.24).

2.2 Polarized U(1)-symmetry

As we discussed in Sect. 1.4.2, polarized U(1)-symmetric initial data on T3 for the Einstein-vacuum equations

are such that all coordinate components of g̊ and k̊ are independent of x3 and such that g̊13 = g̊23 = k̊13 =
k̊23 ≡ 0; see also the discussion in [37, Section 2].

2.2.1 Propagation of symmetry

In this section, we show that for polarized U(1)-symmetric initial data for the Einstein-vacuum equations, the
corresponding solution to the equations of Proposition 2.2 is such that all solution variables are independent
of x3 and such that g13 = g23 = k13 = k23 ≡ 0. Note that this implies that (g−1)13 = (g−1)23 = k13 = k31 =
k23 = k32 = k13 = k23 ≡ 0. In particular, relative to CMC-transported spatial coordinates, the corresponding
spacetime metric takes the form

g = −n2dt⊗ dt+
∑

c,d=1,2

gcddx
c ⊗ dxd + g33dx

3 ⊗ dx3 n = [−(g−1)αβ∂αt∂βt]
− 1

2 . (2.37)

We provide the main propagation-of-symmetry result in the next lemma, namely Lemma 2.3. The result
is standard, so we only provide the main steps in the proof. We refer readers to [15, Chapter XVI.3]
for an alternate approach to propagating the polarized U(1)-symmetry via a wave map-type reduction of
Einstein’s equations. Although the approach of [15, Chapter XVI.3] is superior from a geometric point
of view, Lemma 2.3 is better adapted to the setup of the present paper because it directly refers to the
CMC-transported spatial coordinates, thus allowing us to avoid working with multiple gauges.

Lemma 2.3 (Propagation of polarized U(1)-symmetry). Let T ∈ (0, 1), and let g be a solution to the
Einstein-vacuum equations (i.e., (1.1a) with ψ ≡ 0) on the manifold (T, 1] × T3. Assume that (T, 1] × T3

is equipped with a CMC time function t and transported spatial coordinates {xi}i=1,2,3 such that the level
sets Σt = {t} × T3 are CMC hypersurfaces normalized by (2.17), as is described in Sects. 2.1.1–2.1.3 (in
particular, the {xi}i=1,2,3 are coordinates on each Σt). Assume that relative to the coordinates (t, x1, x2, x3),

the components of g belong to C2
(
(T, 1]× T3

)
. Let (̊g, k̊) be the corresponding data on Σ1, i.e., the first and
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second fundamental form of Σ1. Assume that the data are polarized and U(1)-symmetric. More precisely,

assume that all coordinate components of g̊ and k̊ are independent of x3 and that g̊13 = g̊23 = k̊13 = k̊23 ≡ 0.
Then relative to the CMC-transported spatial coordinates, g has the polarized form (2.37), and the lapse n, the
coordinate components {gij}i,j=1,2,3, and the coordinate components {kij}i,j=1,2,3 of the second fundamental
form of Σt are all independent of x3.

Proof. We divide the proof into the following two steps:
Step 1. Propagation of U(1)-symmetry. In Sect. 5, we derive a priori estimates for the system of equations

in Proposition 2.2 by commuting the equations with sufficiently many spatial derivatives. Here, to propagate
the U(1)-symmetry, we consider the case in which the equations are commuted with only a single spatial
derivative ∂3. More precisely, we consider the equations (5.7), (5.27a), (5.27b), (5.31a), (5.31b), and (5.31c)
with ∂ι := ∂3 and P := 0. It is straightforward to see that these commuted equations form a linear PDE
system in the “unknowns” U3 := {∂3n}∪V3, V3 := {∂3eiI , ∂3ωI

i , ∂3kIJ , ∂3γIJB}I,J,B,i=1,2,3 such that, because
we are assuming the existence of a classical C2 solution, all coefficients in front of the principal PDE terms
are C1, all inhomogeneous terms are continuous, and all inhomogeneous terms are precisely linear in U3.
Hence, for t ∈ (T, 1], we can use arguments similar to the ones we use in Sect. 5 to derive the elliptic estimate
∥∂3n∥L2(Σt) ≲ ∥V3∥L2(Σt) and the following energy estimate:

∥V3∥L2(Σt) ≲ ∥V3∥L2(Σ1) +

∫ 1

s=t

∥V3∥L2(Σs) ds. (2.38)

We clarify that on RHS (2.38), the implicit constants depend on the C2 norm of the classical solution and
thus are allowed to grow as t ↓ T . However, that is not relevant for the proof of the lemma. Next, we
note that by assumption, the initial data (on Σ1) of V3 are trivial, i.e., ∥V3∥L2(Σ1) = 0. Hence, applying
Grönwall’s lemma to (2.38), we conclude that ∥V3∥L2(Σt) = 0 ( and thus ∥∂3n∥L2(Σt) = 0 = ∥U3∥L2(Σt) too)
for t ∈ (T, 1]. In total, we have shown that the U(1)-symmetry of the data is propagated to the entire region
(t, x) ∈ (T, 1]× T3 of classical existence, and in particular, ∂3 is a g-Killing vectorfield.

Step 2. Using the U(1)-symmetry to propagate the polarization. We now explain how to propagate the
vanishing of g13 = g(∂1, ∂3), g23 = g(∂2, ∂3), k13 = −g(∂3,D∂1e0), and k23 = −g(∂3,D∂2e0) from the initial
hypersurface Σ1 to the entire region of classical existence. To this end, we first derive PDEs satisfied by
these variables relative to the transported spatial coordinates. We will exploit the fact, shown in Step 1, that
∂3 is g-Killing. Specifically, the relevant PDEs for this step are the following standard “ADM equations”
and momentum constraint equation (see, for example, [59, Proposition 3.1]), where in the remainder of the
proof, i, j = 1, 2, and Γ a

b c :=
1
2 (g

−1)ad(∂bgdc + ∂cgbd − ∂dgbc) are the Christoffel symbols of g relative to the
transported spatial coordinates:

∂tgi3 = −2nki3, (2.39)

∂t∂jgi3 = −2n∂jki3 − 2(∂jn)ki3, (2.40)

∂tki3 = −∇2
∂i∂3n+ nRic(∂i, ∂3) + ntrkki3 − 2n(g−1)abkiak3b, (2.41)

(g−1)ab∇akb3 = (g−1)ab∂akb3 − (g−1)abΓ c
a bkc3 − (g−1)abΓ c

a 3kbc = 0. (2.42)

We clarify that (2.40) follows from differentiating (2.39) with ∂j . Next, using straightforward computations
and exploiting that ∂3 is g-Killing, we expand the Hessian of n and the spatial Ricci components as follows:

−∇2
∂i∂3n = Γ 1

i 3∂1n+ Γ 2
i 3∂2n =

1

2
(g−1)1a(∂iga3 − ∂agi3)∂1n+

1

2
(g−1)2a(∂iga3 − ∂agi3)∂2n,

=
1

2
(g−1)11(∂ig13 − ∂1gi3)∂1n+

1

2
(g−1)12(∂ig23 − ∂2gi3)∂1n+

1

2
(g−1)13(∂ig33)∂1n

+
1

2
(g−1)21(∂ig13 − ∂1gi3)∂2n+

1

2
(g−1)22(∂ig23 − ∂2gi3)∂2n+

1

2
(g−1)23(∂ig33)∂2n,

(2.43)

Ric(∂i, ∂3) = Ric(∂3, ∂i) = ∂aΓ
a
3 i − ∂3Γ

a
a i + Γ b

i 3Γ
a
b a − Γ b

i aΓ
a
3 b

=
1

2
∂a[(g

−1)ab(∂ig3b − ∂bgi3)] +
1

4
(g−1)bd(g−1)ac(∂ig3c − ∂cgi3)∂bgad

− 1

4
(g−1)bc(g−1)ad(∂igac + ∂agic − ∂cgia)(∂bg3d − ∂dg3b).

(2.44)
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We now note that (2.39)–(2.42) can be viewed as a linear PDE system in the “unknowns”

V := (g13, g23, ∂1g13, ∂1g23, ∂2g13, ∂2g23, k13, k23)

such that, because we are assuming the existence of a classical C2 solution, all coefficients in front of the
principal PDE terms are C1, all inhomogeneous terms are continuous, and all inhomogeneous terms are linear
in V. To see this, we note that the components (g−1)13 and (g−1)23 of g−1 can expressed in terms of g13 and
g23 via the following linear algebraic identity, which follows easily from the identity gac(g

−1)cb = δba:(
(g−1)13

(g−1)23

)
= −(g−1)33

(
g11 g21
g12 g22

)−1 (
g13
g23

)
. (2.45)

Note that the positive definiteness of the 3× 3 matrix (gab)a,b=1,2,3 implies the positive definiteness of 2× 2
sub-block (gab)a,b=1,2, which in turn implies the invertibility of the matrix on RHS (2.45). To finish the proof
of the lemma, we will derive energy estimates showing, in particular, that ∥V∥L2(Σt) = 0 for t ∈ (T, 1]. To
this end, we first use (2.43)–(2.44) and the above observations to express (2.39)–(2.42) in the following form,
where L (V) schematically denotes terms that are linear34 in V with continuous coefficients:

∂tgi3 = L (V), (2.46)

∂t∂jgi3 = −2n∂jki3 + L (V), (2.47)

∂tki3 = −1

2

∑
a,b=1,2

n(g−1)ab∂a∂bgi3 +
1

2

∑
a,b=1,2

n(g−1)ab∂a∂igb3 + L (V), (2.48)

∑
a,b=1,2

(g−1)ab∂akb3 = L (V). (2.49)

We clarify that, for example, we have used (2.45) to soak the term 1
2n(g

−1)13∂1∂ig33 on RHS (2.41) (see the
first term on RHS (2.44)) into the term L (V) on RHS (2.48) and to soak the term (g−1)13∂1k33 from (2.42)
into the term L (V) on RHS (2.49).
To derive energy estimates for solutions to (2.46)–(2.49), we will rely on the energy E(t) ≥ 0 defined by

E2(t) :=

∫
Σt

 ∑
a,b,a,b′=1,2

1

4
(g−1)bb

′
(g−1)aa

′
(∂bga3)∂b′ga′3 +

∑
a,b=1,2

(g−1)abka3kb3

 dx

+

∫
Σt

∑
a,b=1,2

(g−1)abga3gb3 dx.

(2.50)

Note that the positive definiteness of the 3 × 3 matrix ((g−1)ab)a,b=1,2,3 implies the positive definiteness of
2× 2 sub-block ((g−1)ab)a,b=1,2. Hence, from definition (2.50) and the definition of V, we find that

E(t) ≈
∑
a=1,2

∥ga3∥H1(Σt) +
∑
a=1,2

∥ka3∥L2(Σt) ≈ ∥V∥L2(Σt). (2.51)

Therefore, to show that V vanishes on the region of classical existence, it suffices to show that E(t) = 0 for
t ∈ (T, 1]. To this end, we will show that the following estimate holds for t ∈ (T, 1]:∣∣∣∣ ddtE2(t)

∣∣∣∣ ≲ E2(t), (2.52)

where on RHS (2.52) the implicit constants depend on the C2 norm of the classical solution and thus are
allowed to grow as t ↓ T . As in Step 1, this is not important for the proof. Since our assumption of polarized
initial data implies that E(1) = 0, it follows from (2.52) and Grönwall’s lemma that E(t) = 0 for t ∈ (T, 1],
as desired. In total, we have shown that the polarization condition V = 0 is propagated from the data to the
entire region (t, x) ∈ (T, 1]× T3 of classical existence.

34Here, we consider, e.g., terms of type V · V to be linear in V with continuous coefficients because the first factor of V is
assumed to be continuous.
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To complete the proof of the lemma, it remains for us to show (2.52). To proceed, we differentiate (2.50)
under the integral and use equations (2.46)–(2.48) to substitute time derivatives with spatial derivatives,
thereby arriving at the following identity, where in the rest of the proof, we freely integrate by parts from
line to line, and “· · · ” denotes error integrals that can easily be bounded in magnitude by ≲ E2(t) by virtue
of the Cauchy–Schwarz inequality:

d

dt
E2(t) =

∫
Σt

∑
a,b,a′,b′=1,2

(g−1)bb
′
(g−1)aa

′
(−n∂bka3)(∂b′ga′3) dx

+

∫
Σt

∑
a,b,c,d=1,2

(g−1)abkb3
(
−n(g−1)cd∂c∂dga3 + n(g−1)cd∂c∂agd3

)
dx+ · · ·

(2.53)

= (upon integrating by parts on the last line of RHS (2.53))∫
Σt

∑
a,b,c,d=1,2

[∂c(n(g
−1)ab(g−1)cd)]kb3∂dga3 dx−

∫
Σt

∑
a,b,c,d=1,2

[∂a(n(g
−1)ab(g−1)cd)]kb3∂cgd3 dx

−
∫
Σt

∑
a,b,c,d=1,2

((g−1)ab∂akb3)n(g
−1)cd∂cgd3 dx+ · · ·

(2.54)

= (upon using (2.49) for substitution in the last integral on RHS (2.54))∫
Σt

∑
a,b,c,d=1,2

[∂c(n(g
−1)ab(g−1)cd)]kb3∂dga3 dx−

∫
Σt

∑
a,b,c,d=1,2

[∂a(n(g
−1)ab(g−1)cd)]kb3∂cgd3 + · · · .

(2.55)

Since all terms on RHS (2.55) are bounded in magnitude by ≤ CE2(t), we have therefore shown (2.52) and
finished the proof of the lemma.

2.2.2 The normalized Killing direction in polarized U(1)-symmetry in 1 + 3 dimensions

In the next lemma, for polarized U(1)-symmetric Einstein-vacuum solutions with D = 3 such that the
transported coordinate vectorfield ∂3 is Killing, we construct an orthonormal spatial frame e1, e2, e3 such
that e3 is everywhere parallel to ∂3 and such that L∂3eI = 0 for I = 1, 2, 3. We use the lemma in the proof
of Theorem 6.5, i.e., in the proof of our symmetric stable blowup-results.

Lemma 2.4 (Normalized Killing direction). Suppose that on (T, 1]×T3, g is a polarized and U(1)-symmetric
C2 metric of the form (2.37), where ∂3 is the hypersurface-orthogonal Killing vectorfield and the components of

g are independent of x3. Define E3 := (g33)
− 1

2 ∂3, and note that g(E3, E3) = 1. Let e̊1, e̊2 be an orthonormal
pair on Σ1 that is orthogonal to ∂3 along Σ1 and that respects the symmetry, that is, L∂3 e̊1 = L∂3 e̊2 = 0,
where L denotes Lie differentiation. In particular, {̊e1, e̊2, E3|Σ1} is an orthonormal frame on Σ1; we refer
to Sect. 5.11 for our construction of such a frame. For (t, x) ∈ (T, 1]×T3, let {eI}I=1,2,3 be the orthonormal
frame on Σt obtained by solving the Fermi–Walker transport equations (2.8) with initial data e1|Σ1

:= e̊1,
e2|Σ1

:= e̊2, e3|Σ1
:= E3|Σ1

. Then on (T, 1] × T3, we have E3 = e3, and for I = 1, 2, 3, we have L∂3eI = 0.

In particular, {e1, e2, e3 = (g33)
− 1

2 ∂3} is an orthonormal frame on (T, 1]× T3.

Proof. We first show that De0E3 = 0 on (T, 1] × T3. Since ∂3 is Killing (in particular, E3n = 0), this
guarantees that E3 satisfies the propagation equation (2.8). Moreover, since De0e3 = 0 and e3|Σ1

= E3|Σ1
,

ODE uniqueness then implies that E3 = e3 on (T, 1]× T3, as is desired. To show that De0E3 = 0, we start
by noting that since ∂3 is the vectorfield of symmetry and since g(e0, E3) = 0, the e0 component of De0E3

equals:

g(De0E3, e0) = −g(E3,De0e0)
(2.14)
= −n−1(g33)

− 1
2 ∂3n = 0. (2.56)

Similarly, using that g(E3, E3) = 1, we compute that g(De0E3, E3) =
1
2e0 {g(E3, E3)} = 0 and hence the ∂3

component of De0E3 vanishes. Thus, the desired relation De0E3 = 0 follows from the vanishing of these two
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components as well as the following identities:

g(De0E3, ∂i) = n−1(g33)
− 1

2
1

2
(∂tg3i + ∂3gti − ∂igt3) = 0, i = 1, 2. (2.57)

In obtaining these identities, we have used the identity g(D∂t∂3, ∂i) =
1
2 (∂tg3i + ∂3gti − ∂igt3), the fact that

∂3 is orthogonal to the elements of {∂t, ∂1, ∂2}, the fact that ∂t is orthogonal to Σt, and the fact that the
components of g are independent of x3.
To show that L∂3eI = 0 on (T, 1] × T3, we commute equation (2.23a) (which is equivalent to equation

(2.8)) with L∂3 . We find that for metrics g satisfying the assumptions of the lemma, the scalar function

array ϕ⃗ := {∂3eiI}I,i=1,2,3 satisfies a system of transport equations of the schematic form ∂tϕ⃗ = F · ϕ⃗, where
F is smooth on (T, 1]× T3. Moreover, the assumptions of the lemma guarantee that ϕ⃗|Σ1

= 0. Hence, from

ODE uniqueness, we find that ϕ⃗ ≡ 0 on (T, 1]× T3. We have therefore proved the lemma.

Remark 2.5. Throughout the paper, in our analysis of polarized U(1)-symmetric solutions with D = 3, we
will always assume that e3 is the ∂3-parallel frame vectorfield constructed in Lemma 2.4.

2.3 The background Kasner variables

Our main results concern perturbations of the explicit generalized Kasner solutions presented in Sect. 1.4.
Straightforward computations imply that the reduced variables (see Sects. 2.1.1–2.1.3) of the generalized
Kasner solutions can be expressed as follows:

ñ := 1, ẽiI := t−q̃IδiI , ω̃I
i := tq̃Iδ

I
i , ẽI := t−q̃IδiI∂i, k̃IJ := −

q̃I
t
δIJ , γ̃IJB = 0, ψ̃ = B̃ log t, (2.58)

where δiI , δ
I
i , and δIJ are Kronecker deltas and we recall that repeated underlined indices are not summed.

Remark 2.6 (The components of “tilde-decorated” tensors). Note that as defined in (2.58), k̃IJ = k̃(ẽI , ẽJ) ̸=
k̃(eI , eJ). Put differently, k̃IJ denotes a component of k̃ relative to the background Kasner-orthonormal frame
{ẽI}I=1,··· ,D, rather than the perturbed g-orthonormal frame {eI}I=1,··· ,D. Similar remarks apply to other
“tilde-decorated” tensors. That is, for tilde-decorated tensors, capital Latin indices denote components
relative to the background Kasner frame or co-frame, whereas for non-tilde-decorated tensors, capital Latin
indices denote components relative to the g-orthonormal frame or co-frame.

3 Norms, bootstrap assumptions, and key parameters

The proofs of our main theorems rely on a continuity argument for solutions to the reduced equations of
Proposition 2.2. We make bootstrap assumptions for the size of various norms of the perturbed solution on a
time interval (TBoot, 1] for some TBoot ∈ (0, 1). Then, in Proposition 5.1, we derive a priori estimates for the
perturbed solution that imply a strict improvement of the bootstrap assumptions on (TBoot, 1]; this is the
difficult part of the proof. Once we have established a priori estimates, standard arguments yield that the
perturbed solution exists on (0, 1]× TD and satisfies the a priori estimates on (0, 1]; see Proposition 5.28 for
the details. Based on the existence result and the a priori estimates, the proof of curvature blowup as t ↓ 0
and the derivation of other interesting properties of the solution are relatively straightforward; see Sect. 6.
Our bootstrap assumptions are formulated in terms of various norms of the reduced variables along the Σt
slices, with well-chosen t-weights. Before stating the bootstrap assumptions, we will first define the norms
and the key parameters q,σ, A∗, N,N0 that lie at the core of our framework.

3.1 Running assumption

In the rest of the paper, it is understood that we are studying general perturbations of a background gener-
alized Kasner solution whose Kasner exponents verify the stability condition (1.8), or that we are studying
polarized U(1)-symmetric perturbations of an arbitrary vacuum Kasner solution in 1 + 3-dimensions; see
Sect. 1.4. We will often refrain from explicitly stating this assumption.
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3.2 Some additional differentiation notation

If f is a scalar function, then e⃗f := {eCf}C=1,··· ,D, where {eC}C=1,··· ,D denotes the orthonormal spatial
frame. Similarly, e⃗k := {eCkIJ}C,I,J=1,··· ,D, e⃗γ := {eCγIJB}B,C,I,J=1,··· ,D, e⃗e := {eCeiI}C,I,i=1,··· ,D, and
e⃗ω := {eCωI

i }C,I,i=1,··· ,D. Note that in the above expressions, all quantities that are differentiated are
scalar functions.

3.3 Sobolev norms of the reduced variables

For scalar functions v, we define its norm ∥v∥L2(Σt) ≥ 0 by

∥v∥2L2(Σt)
:=

∫
Σt

v2(t, x) dx, (3.1)

where dx := dx1 · · · dxD denotes the Euclidean volume form on Σt.
We also define standard HM (Σt), Ḣ

M (Σt), W
M,∞(Σt), and Ẇ

M,∞(Σt) norms of scalar functions v:

∥v∥2HM (Σt)
:=

∑
|ι|≤M

∥∂ιv∥2L2(Σt)
, ∥v∥2

ḢM (Σt)
:=

∑
|ι|=M

∥∂ιv∥2L2(Σt)
, (3.2)

∥v∥WM,∞(Σt) :=
∑

|ι|≤M

∥∂ιv∥L∞(Σt), ∥v∥ẆM,∞(Σt)
:=

∑
|ι|=M

∥∂ιv∥L∞(Σt), (3.3)

where ι is a spatial multi-index, ∂ι is the corresponding operator involving repeated differentiation with
respect to the transported spatial coordinate vectorfields {∂i}i=1,··· ,D (see Sect. 1.11), and ∥v∥L∞(Σt) :=
ess supx∈TD |v(t, x)|. As is standard, we write “L∞” instead of “W 0,∞.”

If v is a Σt-tangent tensorfield, then we define its L2(Σt), H
M (Σt), Ḣ

M (Σt), W
M,∞(Σt), and Ẇ

M,∞(Σt)
norms in an analogous fashion, but also summing over all “frame indices.” More precisely, with the back-
ground Kasner variables k̃IJ , etc., as defined in Sect. 2.3 (see in particular Remark 2.6), we define

∥k − k̃∥2HM (Σt)
:=

D∑
I,J=1

∥kIJ − k̃IJ∥2HM (Σt)
, ∥γ− γ̃∥2HM (Σt)

:=

D∑
I,J,B=1

∥γIJB − γ̃IJB∥2HM (Σt)
,

∥e− ẽ∥2HM (Σt)
:=

D∑
I,i=1

∥eiI − ẽiI∥2HM (Σt)
, ∥ω− ω̃∥2HM (Σt)

:=

D∑
I,i=1

∥ωI
i − ω̃I

i ∥2HM (Σt)
,

∥e⃗n∥2HM (Σt)
:=

D∑
I=1

∥eIn∥2HM (Σt)
, ∥e⃗ψ∥2HM (Σt)

:=

D∑
I=1

∥eIψ∥2HM (Σt)
,

(3.4)

and

∥k − k̃∥WM,∞(Σt) :=

D∑
I,J=1

∥kIJ − k̃IJ∥WM,∞(Σt), ∥γ− γ̃∥WM,∞(Σt) :=

D∑
I,J,B=1

∥γIJB − γ̃IJB∥WM,∞(Σt),

∥e− ẽ∥WM,∞(Σt) :=

D∑
I,i=1

∥eiI − ẽiI∥WM,∞(Σt), ∥ω− ω̃∥WM,∞(Σt) :=

D∑
I,i=1

∥ωI
i − ω̃I

i ∥WM,∞(Σt),

∥e⃗n∥WM,∞(Σt) :=

D∑
I=1

∥eIn∥WM,∞(Σt), ∥e⃗ψ∥WM,∞(Σt) :=

D∑
I=1

∥eIψ∥WM,∞(Σt),

(3.5)

and similarly for the homogeneous norms (such as ∥k − k̃∥2
ḢM (Σt)

:=
∑D
I,J=1 ∥kIJ − k̃IJ∥2ḢM (Σt)

).
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3.4 Key parameters

We will formulate the bootstrap assumptions using two key parameters, namely σ, q, which are any two fixed
real numbers verifying the following inequalities:

0 < 2σ < 2σ+ max
1≤I,J,B≤D

I<J

{|q̃B |, q̃I + q̃J − q̃B} < q < 1− 2σ, non-symmetric cases,

0 < 2σ < 2σ+max{|q̃1|, |q̃2|, |q̃3|} < q < 1− 2σ, Polarized U(1)-symmetric 1+3 vacuum.

(3.6)

The set of Kasner exponents for which such parameters σ, q exist is non-empty and open in all the models
that we consider; see Sect. 1.4.
Next, we introduce the positive-integer-valued parameters N0, N , which, roughly speaking, represent the

number of derivatives we will use to to control the solution in L∞ at the low orders (i.e., derivative levels
approximately equal to N0) and in L2 at the top-orders (i.e., derivative levels approximately equal to N); we
refer to Remark 3.2 for an important remark about the precise number of low order derivatives that we use in
our proof. Our choice of N0 and N will be related to another parameter, A∗, which controls the strength of
the t-weights (which will be of order tA∗) that we use in our high order energies. For our bootstrap argument
to close, the parameters will have to satisfy the following inequalities:

N ≫ N0 ≥ 1, A∗ ≫ 1, (3.7)

where throughout the paper, we adjust the size of the parameters as necessary. Roughly, we will first choose
A∗ ≥ 1 to be large enough to dominate various order-unity structural constants (denoted by the symbol “C∗”
throughout the paper) in the PDEs. We then fix any N0 ≥ 1. We will then choose N to be sufficiently large
in a manner that depends on N0, A∗, q, and σ (as well as D, the number of spatial dimensions). See also
Remarks 1.12 and 1.13 for discussion on how to obtain crude estimates for N and A∗.

Finally, we will use a small parameter 0 < ε ≪ 1 to capture the smallness of the overall norms that
measure the closeness of the perturbed solution to the background generalized Kasner metric. Roughly, for
our bootstrap argument to close, we will first have to choose the other parameters as described above and
then choose ε to be sufficiently small in a manner that depends on N,N0, A∗,D, q, and σ.

3.5 Definitions of the solution norms

In our bootstrap argument, we will rely on the t-weighted norms in the following definition. Roughly, our
main theorem shows that all of the norms in the definition remain small throughout the entire interval
t ∈ (0, 1] if they are small at t = 1.

Definition 3.1 (Solution norms). Recall that the parameter N0 verifies N0 ≥ 1, that q,σ ∈ (0, 1) are the
constants fixed in Sect. 3.4, and that we introduced the notation “e⃗f” in Sect. 3.2. We define the low order
norms

L(e,ω)(t) := max
{
tq∥e− ẽ∥WN0,∞(Σt), t

q∥ω− ω̃∥WN0,∞(Σt)

}
,

L(n)(t) := max
{
t−σ∥n− 1∥WN0+1,∞(Σt), t

q−σ∥e⃗n∥WN0,∞(Σt)

}
,

L(γ,k)(t) := max
{
tq∥γ∥WN0,∞(Σt), t∥k − k̃∥WN0+1,∞(Σt)

}
,

L(ψ)(t) := max
{
tq∥e⃗ψ∥WN0,∞(Σt), t∥e0ψ − ∂tψ̃∥WN0+1,∞(Σt)

}
,

L(e,ω,γ,k,ψ)(t) := L(e,ω)(t) + L(γ,k)(t) + L(ψ)(t),

(3.8a)
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and the high order norms

H(e,ω)(t) := max
{
tA∗+q∥e∥ḢN (Σt)

, tA∗+q∥ω∥ḢN (Σt)

}
,

H(n)(t) := max
{
tA∗∥n∥ḢN (Σt)

, tA∗+1∥e⃗n∥ḢN (Σt)

}
,

H(γ,k)(t) := max{tA∗+1∥γ∥ḢN (Σt)
, tA∗+1∥k∥ḢN (Σt)

},

H(ψ)(t) := max
{
tA∗+1∥e⃗ψ∥ḢN (Σt)

, tA∗+1∥e0ψ∥ḢN (Σt)

}
,

H(e,ω,γ,k,ψ)(t) := H(e,ω)(t) +H(γ,k)(t) +H(ψ)(t).

(3.8b)

We also find it convenient to define the following “total norm” for the “dynamic” variables (i.e., the non-
lapse35 variables):

D(t) := L(e,ω,γ,k,ψ)(t) +H(e,ω,γ,k,ψ)(t). (3.8c)

Remark 3.2 (Derivative counts involving N0). Note that the low order norms in (3.8a) yield control over

the “kinetic” (i.e., time-derivative-involving) terms {kIJ − k̃IJ}I,J=1,··· ,D and e0ψ − ∂tψ̃ at one derivative
level higher than the remaining terms. This important for our bootstrap argument, more precisely for our
derivation of the lower order estimates; see, for example, Lemma 5.10 and the proof of (5.23a).

3.6 Bootstrap assumptions

Our bootstrap assumptions are that there is a “bootstrap time” TBoot ∈ (0, 1) such that

D(t) + L(n)(t) +H(n)(t) ≤ ε, ∀t ∈ (TBoot, 1]. (3.9)

In the proof of our main theorem, such a TBoot ∈ (0, 1) will exist due to our near-Kasner assumptions on the
data and Cauchy stability.

4 Basic estimates and identities

In this section, we provide some basic inequalities and commutation formulas that we will frequently use in
our main estimates, i.e., in Sect. 5.

4.1 Interpolation and product inequalities

In our ensuing analysis, we will control various error terms with the help of the classical interpolation and
Sobolev inequalities provided in the next lemma.

Lemma 4.1 (Sobolev interpolation and product inequalities). Let v be a Σt-tangent tensorfield, let M1,M2

be two non-negative integers, and let ι1, · · · , ιR be spatial multi-indices such that
∑R
r=1 |ιr| = M1. Then the

following estimates hold, where norms of tensorfields are defined as in Sect. 3.3:

∥v∥ḢM1 (Σt)
≲ ∥v∥

1−M1
M2

L∞(Σt)
∥v∥

M1
M2

ḢM2 (Σt)
≲ ∥v∥L∞(Σt) + ∥v∥ḢM2 (Σt)

, for M2 ≥M1, (4.1)

∥v∥WM1,∞(Σt) ≲ ∥v∥
H

M1+1+⌊D
2 ⌋(Σt)

≲ ∥v∥L∞(Σt) + ∥v∥ḢM2 (Σt)
, for M2 ≥M1 + 1 +

⌊
D

2

⌋
, (4.2)

∥∂ι1v1 · · · ∂ιRvR∥L2(Σt) ≲
R∑
r=1

∥vr∥ḢM1 (Σt)

∏
s̸=r

∥vs∥L∞(Σt), (4.3)

35In Sect. 5.4, we will use elliptic estimates to show that the lapse can be controlled in terms of the dynamic variables; see
(5.6).
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where
⌊
D
2

⌋
is the integer part of D

2 . Moreover, if 1 ≤ R0 ≤ R and ι1, · · · , ιR are spatial multi-indices such

that
∑R
r=1 |ιr| =M1 and |ιR−R0+1|, · · · , |ιR| ≤M1 − 1, then the following product inequality holds:

∥∂ι1v1 · · · ∂ιRvR∥L2(Σt) ≲
R−R0∑
r=1

(
∥vr∥W 1,∞(Σt) + ∥vr∥ḢM1 (Σt)

)∏
s̸=r

∥vs∥W 1,∞(Σt)

+

R∑
r=R−R0+1

(
∥vr∥W 1,∞(Σt) + ∥vr∥ḢM1−1(Σt)

)∏
s ̸=r

∥vs∥W 1,∞(Σt).

(4.4)

Proof. The first inequality in (4.1) is immediate from Plancherel’s identity, Hölder’s inequality, and the bound
∥v∥L2(Σt) ≲ ∥v∥L∞(Σt) for scalar functions v (which holds because TD is compact). The second inequality in

(4.1) follows from the first and Young’s inequality. In the case Σt = RD, the inequality (4.3) was proved as
[55, Lemma 6.16], and the same proof works in the case Σt = TD. The first inequality in (4.2) is standard
Sobolev embedding, while the second inequality in (4.2) follows from applying (4.1) to the homogeneous
norms ḢM ′

1(Σt) of v, for every M
′
1 ≤M1 + 1 + ⌊D

2 ⌋. To derive (4.4), we first note that either all derivatives
act on one of the terms v1, · · · , vR−R0 , say v1, or there exist at least two factors having at least one derivative,
say v1, va, where a > 1. Then setting u1 := ∂v1 in the first case or u1 := ∂v1, ua := ∂va in the second case,
we apply (4.3) and (4.1) to the product, where we view u1 and ua to be terms in the product that are hit
with one fewer derivative than v1 and va. This yields the desired estimate.

As an immediate application of Lemma 4.1, we provide the next lemma, which yields control of the reduced
solution variables at orders slightly higher than N0. The price we pay is that the estimates are slightly (when
N is large) more singular with respect to powers of t compared to the very-low-order estimates. Nevertheless,
a small increase in the singularity strength is allowable for treating error terms that are sub-critical with
respect to powers of t.

Lemma 4.2 (L∞ control at slightly higher orders than N0 – with only a mild increase in singularity strength
for large N). Assume that the bootstrap assumptions (3.9) hold. There exists a constant δ = δ(N,D) (which
is free to vary from line to line) such that δ → 0 as N → ∞ and such that if N ≥ N0 + 4 +

⌊
D
2

⌋
, then the

following estimates hold for t ∈ (TBoot, 1]:

∥e− ẽ∥WN0+2,∞(Σt) + ∥ω− ω̃∥WN0+2,∞(Σt) ≲ t−q−δA∗
{
L(e,ω)(t) +H(e,ω)(t)

}
, (4.5)

∥γ− γ̃∥WN0+2,∞(Σt) ≲ t−q−δA∗
{
L(γ,k)(t) +H(γ,k)(t)

}
, (4.6)

∥k − k̃∥WN0+2,∞(Σt) ≲ t−1−δA∗
{
L(γ,k)(t) +H(γ,k)(t)

}
, (4.7)

∥n− 1∥WN0+3,∞(Σt) + tq∥e⃗n∥WN0+2,∞(Σt) ≲ tσ−δA∗
{
L(n)(t) +H(n)(t)

}
, (4.8)

tq∥e⃗ψ∥WN0+2,∞(Σt) + t∥∂tψ∥WN0+2,∞(Σt) ≲ t−δA∗
{
L(ψ)(t) +H(ψ)(t)

}
. (4.9)

Proof. The argument for all inequalities is essentially the same, so we only prove (4.8). Using first (4.2) and
then (4.1), we find that for N ≥ N0 + 4 +

⌊
D
2

⌋
, we have

∥n− 1∥WN0+3,∞(Σt) ≲ ∥n− 1∥L∞(Σt) + ∥n− 1∥
Ḣ

N0+4+⌊D
2 ⌋(Σt)

≲ ∥n− 1∥L∞(Σt) + ∥n− 1∥1−δ̃
L∞(Σt)

∥n− 1∥δ̃
ḢN (Σt)

≤ tσL(n)(t) +
(
tσL(n)(t)

)1−δ̃(
t−A∗H(n)(t)

)δ̃
= tσL(n)(t) + tσ−(A∗+σ)δ̃L1−δ̃

(n) (t)H
δ̃
(n)(t)

≲ tσ−δA∗
{
L(n)(t) +H(n)(t)

}
,

where δ̃ :=
N0+4+⌊D

2 ⌋
N ≤ 1, and for the last inequality, we used Young’s inequality and set δ := A∗+σ

A∗
δ̃. It is

clear that δ → 0, as N → ∞, at a rate that is independent of how large A∗ ≥ 1 is. This yields (4.8) for the
term ∥n− 1∥WN0+3,∞(Σt). The estimate for the term tq∥e⃗n∥WN0+2,∞(Σt) would then follow from the Leibniz
rule, the estimate for the term ∥n − 1∥WN0+3,∞(Σt), and the estimate (4.5) for the term ∥e − ẽ∥WN0+2,∞(Σt)
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(which for purposes of exposition we assume to have already been proved). We clarify that by this argument,
the value of δ corresponding to the estimate for tq∥e⃗n∥WN0+2,∞(Σt) might be larger than the value of δ for
∥n− 1∥WN0+3,∞(Σt), but nevertheless, all “δ’s” tend to 0 as N → ∞.

Remark 4.3 (δ can vary from line to line). In the rest of the paper, δ = δ(N,D) denotes a small positive
constant that is free to vary from line to line, but that always has the property that δ → 0 as N → ∞ (as in
Lemma 4.2). In particular, we sometimes express the sum of two δ’s as another δ.

Remark 4.4 (Smallness of δA∗). Later in the paper, when we use Lemma 4.2 to derive estimates for the
solution, we will always assume (sometimes without explicitly mentioning it) that δA∗ is as small as we
need it to be. In particular, we assume that it is small enough such that δA∗ < σ so that, for example,
t2σ−δA∗ ≤ tσ for t ∈ (0, 1]. At fixed A∗, the desired smallness can be ensured by choosing N to be sufficiently
large.

Remark 4.5 (Large interpolation constants are not an obstacle to stability). The implicit constants in the
interpolation inequalities of Lemmas 4.1 and 4.2 depend onM1,M2, N0, N , and the number of spatial dimen-
sions D. One might worry, especially when taking N sufficiently large to make δ small, that the constants
in the elliptic and energy estimates, corresponding to the terms that we treat using these inequalities, can
be quite large. While the constants “C” can in fact be large, largeness does not obstruct the proofs of our
results. The reason is that we only apply these inequalities to handle two kinds of error terms: i) error
terms that are sub-critical with respect to powers of t, for which the largeness of C is admissible within
the context of our Grönwall estimates; and ii) critical “borderline” products with one factor that yields a
smallness factor of ε, so that the effective coefficient Cε can be made as small as one wants by choosing the
bootstrap parameter ε to be small (which is possible for initial data on Σ1 that are sufficiently close to the
Kasner data). In particular, in our estimates, the implicit constants in Lemmas 4.1 and 4.2 do not affect the
size of the important constants “C∗” (see Sect. 1.11 for our conventions for constants “C∗”) or the value of
the parameter A∗. See also Sect. 5.3 for further discussion of borderline and below-borderline terms.

4.2 Two simple commutation formulas

To derive estimates for the solution’s derivatives, we will repeatedly commute the reduced equations with
the transported spatial coordinate partial derivative vectorfields {∂i}i=1,··· ,D, and we will use the following
commutation relation to uncover the structure of various error terms (see Section 1.11 for our conventions
on multi-indices):

[∂ι, eI ]v =
∑

ι1∪ι2=ι, |ι2|<|ι|

(∂ι1ecI)∂
ι2∂cv. (4.10)

The identity (4.10) follows easily from expanding eI = ecI∂c.
We will also use the following commutation identity:

[∂t, eI ] = nkICe
c
C∂c, (4.11)

which we derived in (2.35).

5 Main estimates

Our main goal in this section is to establish Proposition 5.1, which forms the analytical cornerstone of the
paper. The proposition provides a priori estimates for perturbations of the Kasner background solution and
in particular yields improvements of the bootstrap assumptions when the data are sufficiently near-Kasner.
We also highlight that for near-Kasner data, the a priori estimates and standard arguments collectively imply
that the solution exists on the entire half-slab (0, 1]× TD and enjoys the quantitative properties afforded by
the a priori estimates; see Proposition 5.28 for those details.
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5.1 Statement of the main a priori estimates

In the next proposition, we state our main a priori estimates. The proof is located in Sect. 5.9. In the
sections that precede it, we will establish a series of preliminary identities and estimates for n,γ, k, the frame
{eI}I=1,··· ,D, and the co-frame {ωI}I=1,··· ,D. The proof of the proposition essentially amounts to combining
the preliminary results.

Proposition 5.1 (The main a priori estimates). Let (n, kIJ ,γIJB , e
i
I ,ω

I
i , ψ)I,J,B,i=1,··· ,D be a solution to

the reduced equations of Proposition 2.2 on (TBoot, 1]×TD. Recall that D(t) is the total norm of the dynamic
variables and that L(n)(t) and H(n)(t) are norms of the lapse (see Definition 3.1). Let ϵ̊ denote the initial
value of the total norm of the dynamic variables:

ϵ̊ := D(1) = L(e,ω)(1) + L(γ,k)(1) + L(ψ)(1) +H(e,ω)(1) +H(γ,k)(1) +H(ψ)(1). (5.1)

Assume that the bootstrap assumptions (3.9) hold for t ∈ (TBoot, 1]. If A∗ is sufficiently large and N0 ≥ 1,
then there exists a constant CN,N0,A∗,D,q,σ > 0 such that if N is sufficiently large in a manner that depends
on N0, A∗,D, q, and σ, and if ε is sufficiently small (in a manner that depends on N,N0, A∗,D, q, and σ),
then the following estimate holds for t ∈ (TBoot, 1]:

D(t) + L(n)(t) +H(n)(t) ≤ CN,N0,A∗,D,q,σϵ̊. (5.2)

In particular, if CN,N0,A∗,D,q,σϵ̊ < ε, then (5.2) yields a strict improvement of the bootstrap assumptions
(3.9).

5.2 Schematic notation

We will use schematic notation to simplify the presentation of various formulas when the precise structure of
the terms is not important. ∂ denotes an arbitrary partial derivative with respect to one of the transported
spatial coordinate vectorfields. k denotes an arbitrary element of the array (kIJ)I,J=1,··· ,D of components of
the second fundamental form with respect to the orthonormal frame. ∂ιk denotes an arbitrary element of the
array (∂ιkIJ)I,J=1,··· ,D. Similarly, γ denotes an arbitrary element of the array (γIJB)I,J,B=1,··· ,D and ∂ιγ
denotes an arbitrary element of the array (∂ιγIJB)I,J,B=1,··· ,D. e denotes an arbitrary element of the array
(eiI)I,i=1,··· ,D, while ω denotes an arbitrary element of the array (ωI

i )I,i=1,··· ,D. If f is a scalar function, e⃗f
denotes the array (eIf)I=1,··· ,D.
As an example, with the help of the notation from Sect. 1.11, we can express the commutator ∂ι(neCγIJC)−

neC∂
ιγIJC in the following schematic form:

∑
ι1∪ι2∪ι3=ι,|ι3|<|ι| ∂

ι1n · ∂ι2e · ∂∂ι3γ. We remark that we use
schematic notation only when the overall signs and precise numerical coefficients in front of the terms is not
important. Thus, when using schematic notation for terms, we do not account for their overall
signs or precise numerical coefficients.

5.3 Borderline terms vs. Junk terms

In our top-order energy estimates, we encounter some delicate error terms that cannot be treated by
Grönwall’s lemma uniformly in TBoot∈ (0, 1). That is, if treated crudely, these terms would prevent us
from deriving an energy estimate that would lead to an improvement of our bootstrap assumptions. We
described one example of such a term at the end of Sect. 1.8.6. Let us revisit this issue in more detail. In our
top-order energy estimates, we encounter “borderline” error integrands with the following strength:

1

t
t2A∗+2∂ιγ · ∂ιγ, 1

t
t2A∗+2∂ιk · ∂ιk, 1

t
· t2A∗+2∂ιγ · ∂ι(eIn). (5.3)

The difficulty is that the integrands in (5.3) are more singular than the energy density itself due to the factors
of 1

t . To handle these error terms, we exploit the following crucial fact, which we must justify in our analysis:

In the energy identities, the coefficients of all of the borderline terms can be bounded by a uniform
constant C∗, independent of A∗ and N , as long as the bootstrap parameter ε is sufficiently small
(in a manner that is allowed to depend on N and A∗). Such terms contribute to the C∗-multiplied
integrals on the right-hand side of the energy inequalities of Proposition 5.27.



5 MAIN ESTIMATES 42

We refer readers to Remark 5.18 for further comments on our use of the terminology “borderline.”
At this point, the role of the t2A∗+2 weights in our energy identities emerges: the weights also generate

borderline terms (roughly, when the ∂t derivative falls on the weights in the energy identities) of the same
strength as those in (5.3), but unlike the terms in (5.3), the error terms generated by the weights have a
favorable sign towards the singularity with an overall coefficient that is proportional to A∗. These terms
contribute to the favorable −A∗-multiplied integrals on the right-hand side of the energy inequalities of
Proposition 5.27. Thus, if A∗ is chosen sufficiently large, the overall coefficient C∗ − A∗ of the borderline
terms becomes negative, and in our energy estimates, the corresponding integral has a “good sign” and can
be discarded. We again stress that for this argument to work, it is crucial that C∗ can be chosen to be
independent of A∗, N , at least when ε is small.

On the other hand, there are many terms in the energy estimates that are “junk” in the sense that they can
be bounded by our norms times a factor of strength Ct−1+σ. Although “C” is allowed to depend on A∗, N ,
and other parameters (cf. Remark 4.5 regarding the size of the constants C in the interpolation constants),
such terms do not pose any difficulty in the a priori energy estimates. The reason is that Ct−1+σ is integrable
in time near t = 0 and thus, in the context of Grönwall’s lemma, the factor Ct−1+σ causes only finite growth
of our energies, which is perfectly compatible with our bootstrap argument and our proof of stability.

Remark 5.2 (“Border” and “Junk” notation). To help the reader navigate the energy estimates, in our
ensuing analysis, we label error terms that generate borderline (in the sense above) error terms with the
superscript “Border,” and we label error terms that generate junk (in the sense above) error terms with the

superscript “Junk.” See, for example the terms tP−1K
(Border;ι)
IJ and tPK

(Junk;ι)
IJ on RHS (5.31a).

We sometimes use similar notation to distinguish between “borderline terms” and “junk terms” in our
pointwise estimates; see, however, Remark 5.18.

5.4 Control of the lapse n in terms of the dynamic solution variables

Our main goal in this subsection is to prove the following proposition, which yields control of the lapse
in terms of the remaining “dynamic” solution variables. This is a preliminary step in our derivation of a
priori estimates for all solution variables. The proof of the proposition relies on elliptic estimates and the
bootstrap assumptions (3.9) and is located in Sect. 5.4.4. Before proving the proposition, we first establish
some preliminary identities and estimates.

Proposition 5.3 (Estimates for the lapse in terms of the dynamic solution variables). Recall that L(n)(t),
H(n)(t), H(γ,k)(t), and D(t) are norms from Definition 3.1. Under the assumptions of Proposition 5.1,
there exists a constant C∗ > 0 independent of N,N0, and A∗ and a constant C = CN,N0,A∗,D,q,σ > 0 such
that if N0 ≥ 1 and N is sufficiently large in a manner that depends on N0, A∗,D, q, and σ, and if ε is
sufficiently small (in a manner that depends on N,N0, A∗,D, q, and σ), then the following estimates hold for
t ∈ (TBoot, 1]:

∥n− 1∥WN0+1,∞(Σt) + tq∥e⃗n∥WN0,∞(Σt) ≤ CtσD(t). (5.4)

Moreover, if ι is any spatial multi-index with |ι| = N , then we have

tA∗+1∥∂ιe⃗n∥L2(Σt) + tA∗∥∂ιn∥L2(Σt) ≤ C∗t
A∗+1∥∂ιγ∥L2(Σt) + CtσD(t), (5.5a)

tA∗+1∥e⃗n∥ḢN (Σt)
+ tA∗∥n∥ḢN (Σt)

≤ C∗H(γ,k)(t) + CtσD(t). (5.5b)

Finally, the lapse norms are bounded by the dynamic variable norm:

L(n)(t) +H(n)(t) ≤ CD(t). (5.6)

5.4.1 Equations for controlling the lapse

We start by deriving the elliptic equations satisfied by the derivatives of the lapse.

Lemma 5.4 (The commuted lapse equation). For solutions n to the lapse equation (2.25) and spatial coor-
dinate multi-indices ι with |ι| ≤ N , the following equation holds:

eC∂
ιeC(n− 1)− t−2∂ι(n− 1) = 2neD∂

ιγCCD +N(ι), (5.7)
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where

N(ι) :=
∑

ι1∪ι2=ι,|ι2|<|ι|

∂ι1e · ∂∂ι2 e⃗n

+
∑

ι1∪ι2∪ι3=ι,|ι3|<|ι|

∂ι1n · ∂ι2e · ∂∂ι3γ+
∑

ι1∪ι2=ι
∂ι1γ · ∂ι2 e⃗n

+
∑

ι1∪ι2∪ι3=ι
∂ι1n · ∂ι2γ · ∂ι3γ+

∑
ι1∪ι2∪ι3=ι

∂ι1n · ∂ι2 e⃗ψ · ∂ι3 e⃗ψ.

(5.8)

Proof. (5.7) follows from differentiating (2.25) with ∂ι and using the commutation formula (4.10) and the
Leibniz rule.

5.4.2 A standard elliptic identity

In the next lemma, we provide a standard elliptic identity for the lapse. We will use the identity to establish
L2 control of the lapse at the top order.

Lemma 5.5 (Elliptic identity for n). Let ι be a spatial coordinate multi-index with 1 ≤ |ι| ≤ N . For solutions
to equation (5.7), the following identity holds:

t2A∗+2(∂ιeCn)∂
ιeCn+ t2A∗(∂ιn)2

= 2n(tA∗+1∂ιeDn)(t
A∗+1∂ιγCCD)− (tA∗∂ιn)(tA+2N(ι)) + t2A∗+2R(ι)

+ ∂c
{
t2A∗+2ecC(∂

ιeCn)∂
ιn
}
− ∂c

{
2t2A∗+2necD(∂

ιn)∂ιγCCD
}
,

(5.9)

R(ι) := (∂ιeCn)([∂
ι, eC ])n− 2n([∂ι, eD]n)∂

ιγCCD

− (∂ce
c
C)(∂

ιeCn)∂
ιn+ {∂c(2necD)} (∂ιn)∂ιγCCD.

(5.10)

Proof. We first multiply (5.7) with −∂ιn and differentiate by parts in the top-order terms after expanding
eC = ecC∂c and eD = ecD∂c to obtain the following identity:

− ∂c
{
ecC(∂

ιeCn)∂
ιn
}
+ (∂ce

c
C)(∂

ιeCn)∂
ιn+ (∂ιeCn)[eC , ∂

ι]n+ (∂ιeCn)∂
ιeCn+ t−2(∂ιn)2

= −2∂c
{
n(∂ιn)ecD∂

ιγCCD
}
+ {∂c(2necD)} (∂ιn)∂ιγCCD + 2n([eD, ∂

ι]n)∂ιγCCD

+ 2n(∂ιeDn)∂
ιγCCD − (∂ιn)N(ι)

(5.11)

Multiplying (5.11) by t2A∗+2 and rearranging the terms, we arrive at the desired identity (5.9).

5.4.3 Control of the error terms in the top-order commuted lapse equation

In the next lemma, we derive L2-control of the error terms in the top-order commuted lapse equation.

Lemma 5.6 (L2-control of the error terms in the top-order commuted lapse equation). Let N(ι) and R(ι)

denote the lapse equation error terms defined respectively in (5.8) and (5.10) (these terms appear on the right-
hand side of (5.9)). Under the assumptions of Proposition 5.3, there exists a constant C = CN,N0,A∗,D,q,σ > 0
such that the following estimates hold for t ∈ (TBoot, 1]:

tA∗+2
∑
|ι|=N

∥N(ι)∥L2(Σt) ≤ Cεt2σD(t), (5.12)

t2A∗+2

∫
Σt

|R(ι)| dx ≤ Cεt2σD(t)
{
tA∗∥∂ιn∥L2(Σt) + tA∗+1∥∂ιe⃗n∥L2(Σt) + D(t)

}
, |ι| = N. (5.13)

Proof. Using the inequalities provided by Lemma 4.1, it is straightforward to estimate every product term
in the expressions (5.8) and (5.10) by accounting for the control afforded by our bootstrap assumptions (3.9)
and taking into account the powers of t featured in the solution norms of Definition 3.1. We provide the
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details for two representative terms. First, using Lemma 4.1 and Definition 3.1, we see that the following
term in N(ι) (i.e., the third sum on RHS (5.8)) satisfies:∥∥∥∥∥ ∑

ι1∪ι2=ι
∂ι1γ · ∂ι2 e⃗n

∥∥∥∥∥
L2(Σt)

≲ ∥γ∥L∞(Σt)∥e⃗n∥ḢN (Σt)
+ ∥e⃗n∥L∞(Σt)∥γ∥ḢN (Σt)

≲ εt−A−1−qD(t). (5.14)

The factor of ε on RHS (5.14) comes from the bootstrap assumptions (3.9) and the fact that the LHS is
quadratic with respect to quantities that vanish for the background Kasner solution. Hence, multiplying
(5.14) with tA+2 and recalling our assumptions (3.6) on the parameters q,σ, we conclude that the resulting
term is ≤ RHS (5.12) as desired.
We now give a second example, this time for the L1(Σt)-type inequality (5.13). Specifically, we bound a

term in R(ι) (the second term on RHS (5.10)) as follows by using (4.10), Lemma 4.1, Definition 3.1, and the
bootstrap assumptions (3.9) (which in particular imply that ∥n∥L∞(Σt) ≤ 2):∫

Σt

|2n([∂ι, eD]n)(∂ιγCCD)| dx

≲ ∥n∥L∞(Σt)

∑
ι1∪ι2=ι, |ι2|<|ι|

∥(∂ι1ecI)(∂ι2∂cn)∥L2(Σt)
∥∂ιγCCD∥L2(Σt)

≲
{
∥e− ẽ∥W 1,∞(Σt)∥n− 1∥W 1,∞(Σt) + ∥e− ẽ∥W 1,∞(Σt)∥n∥ḢN (Σt)

+ ∥n− 1∥W 1,∞(Σt)∥e− ẽ∥ḢN (Σt)

}
∥γ∥ḢN (Σt)

≤ Cε(t−A∗−1−q+σ + t−2A∗−1−q + t−2A∗−q+σ)D2(t).

(5.15)

Multiplying (5.15) by t2A∗+2 and using the inequality (3.6), we deduce that the resulting term is ≤ RHS (5.13)
as desired.
The remaining terms that need to be bounded can be handled with similar arguments, and we omit the

details.

5.4.4 Proof of Proposition 5.3

Throughout this proof, we will silently assume that N is large enough such that we can use the smallness of
δA∗ described in Remark 4.4.

Proof of (5.4). First, for |ι| ≤ N0 + 1, we use (5.7) to solve for eCeC∂
ι(n − 1) − t−2∂ι(n − 1) and then

bound the resulting terms in L∞ using the bootstrap assumptions and Lemma 4.2, in particular bounding
all terms involving n − 1 and its derivatives by ≲ tσ−δA∗ , which yields the following pointwise estimate for
|ι| ≤ N0 + 1 (see Remark 4.3):∣∣eCeC∂ι(n− 1)− t−2∂ι(n− 1)

∣∣ ≲ ∣∣∣2necD∂c∂ιγCCD +N(ι) + ecC∂c
{
[edC , ∂

ι]∂d(n− 1)
}∣∣∣

≲ t−2q−δA∗D(t).
(5.16)

From (5.16) and the maximum principle, noting that eCeC∂
ι(n − 1) ≤ 0 (≥ 0) at the maxima (minima) of

∂ι(n−1) in Σt, and using the inequalities in (3.6), we find that ∥t−2(n−1)∥WN0+1,∞(Σt) ≲ t−2+σD(t). Multi-

plying the latter inequality by t2, we arrive at the desired estimate (5.4) for the first term ∥n−1∥WN0+1,∞(Σt)

on the LHS. To complete the proof of (5.4), we must show that tq∥e⃗n∥WN0,∞(Σt) ≲ tσD(t). Since eIn = ecI∂cn,
the desired estimate is a simple consequence of the already obtained bound ∥n − 1∥WN0+1,∞(Σt) ≲ tσD(t)
and the estimate tq∥e⃗∥WN0,∞(Σt) ≲ 1, which follows from the bootstrap assumptions, the definition of the

background Kasner scalar functions ẽiI given in (2.58), and the inequalities in (3.6).

Proof of (5.5a)–(5.5b). We will show that there are constants C∗ > 0 and C > 0, as in the statement of
the proposition, such that for each spatial multi-index ι with |ι| = N , we have

t2A∗+2∥∂ιe⃗n∥2L2(Σt)
+ t2A∗∥∂ιn∥2L2(Σt)

≤ 1

2
t2A∗+2∥∂ιe⃗n∥2L2(Σt)

+
1

2
t2A∗∥∂ιn∥2L2(Σt)

+ C∗t
2A∗+2∥∂ιγ∥2L2(Σt)

+ Cεt2σD2(t).
(5.17)
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Once we have proved (5.17), we absorb the first two terms on RHS (5.17) back into the left, at the expense
of doubling the constants in front of the remaining terms. Afterwards, taking the square root, we conclude
(5.5a). We then sum the square of (5.5a) over all ι with |ι| = N and take the square root, thereby concluding,
in view of Definition 3.1, the desired estimate (5.5b).
It remains for us to prove (5.17). We integrate equation (5.9) over TD with respect to dx, note that the

integrals of the last two terms on RHS (5.9) vanish, use the Cauchy–Schwarz inequality for integrals, and use
the estimate ∥n∥L∞(Σt) ≤ 2 (which follows from the bootstrap assumptions) to obtain

t2A∗+2∥∂ιe⃗n∥2L2(Σt)
+ t2A∗∥∂ιn∥2L2(Σt)

≤ C∗∥tA∗+1∂ιe⃗n∥L2(Σt)∥t
A∗+1∂ιγ∥L2(Σt)

+ ∥tA∗∂ιn∥L2(Σt)∥t
A+2N(ι)∥L2(Σt) +

∫
Σt

t2A∗+2|R(ι)| dx.
(5.18)

From (5.18), the error estimates in Lemma 5.6, our bootstrap assumptions (3.9), Young’s inequality, and
Definition 3.1, we conclude when ε is sufficiently small, the desired bound (5.17) holds (for a different C∗,
which is nevertheless independent of A∗, N0, and N).

Proof of (5.6). The estimate (5.6) follows easily from Definition 3.1 and the estimates (5.4)–(5.5b).

5.5 Preliminary identities and inequalities for k, γ, e, and ω

In this section, we derive preliminary low order and high order identities and inequalities for γ, k, e, and ω
by using the evolution equations (2.22a)–(2.22b) and (2.23a)–(2.23b), as well as the key evolution equations
for the structure coefficients provided by Proposition 5.7. Roughly, we control the inhomogeneous terms in
their evolution equations in terms of our solution norms, and we derive differential versions of our energy
identities. In Sects. 5.7–5.9, we will combine these preliminary results with related ones for the lapse and
scalar field to derive our main a priori estimates, i.e., to prove Proposition 5.1.

5.5.1 The key evolution equation verified by the structure coefficients

To control the connection coefficients γIJB at the low derivative levels, we will use the following proposition,
which provides evolution equations for the structure coefficients γIJB+γJBI of the orthonormal spatial frame
{eI}I=1,··· ,D. Although its proof is simple, the proposition is of profound significance for our main results.
As we mentioned in Sect. 1.8, the main virtues of the proposition are: it shows that up to error terms, the
evolution equation system for the structure coefficients is diagonal, and it shows that the strength of the
main linear terms driving the dynamics is controlled by the Kasner stability condition (1.8). The connection
coefficients themselves can be controlled in terms of the structure coefficients via the identity (5.22).

Proposition 5.7 (The key evolution equations for the structure coefficients of the orthonormal frame). For
solutions to the equations of Proposition 2.2, the structure coefficients of the orthonormal frame {eI}I=1,··· ,D,
namely γIJB + γJBI with I < J (see Remark 1.1), verify the following evolution equations, whose left-hand

sides exhibit a diagonal structure, where the Kasner background scalars {ẽiI}I,i=1,··· ,D and {k̃IJ}I,J=1,··· ,D
are defined in (2.58) (see also Remark 2.6) and we recall that we do not sum underlined repeated indices:

∂t(γIJB + γJBI) +
(q̃I + q̃J − q̃B)

t
(γIJB + γJBI)

= (n− 1) {kICγCJB − kCIγBJC − kJCγBIC + kCIγJBC + kBCγJIC}
+ (n− 1) {kJCγCBI − kCJγIBC − kBCγIJC + kCJγBIC + kICγBJC}

+ (kIC − k̃IC)γCJB − (kCI − k̃CI)γBJC − (kJC − k̃JC)γBIC + (kCI − k̃CI)γJBC + (kBC − k̃BC)γJIC

+ (kJC − k̃JC)γCBI − (kCJ − k̃CJ)γIBC − (kBC − k̃BC)γIJC + (kCJ − k̃CJ)γBIC + (kIC − k̃IC)γBJC

+ n(ecI − ẽcI)∂ckBJ − n(ecJ − ẽcJ)∂ckBI + nẽcI∂ckBJ − nẽcJ∂ckBI + (eIn)kBJ − (eJn)kBI .

(5.19)

Moreover, for spatial coordinate multi-indices ι with |ι| ≤ N0, the following evolution equation holds:

∂t[t
q∂ι(γIJB + γJBI)] =

{
q − (q̃I + q̃J − q̃B)

}
tq−1∂ι(γIJB + γJBI) + tqS

(Border;ι)
IJB + tqS

(Junk;ι)
IJB , (5.20)
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where

S
(Border;ι)
IJB :=

∑
ι1∪ι2=ι

∂ι1(k − k̃) · ∂ι2γ+
∑

ι1∪ι2=ι
n · ∂ι1(e− ẽ) · ∂∂ι2k, (5.21a)

S
(Junk;ι)
IJB :=

∑
ι1∪ι2∪ι3=ι

∂ι1(n− 1) · ∂ι2k · ∂ι3γ+
∑

ι1∪ι2=ι
∂ι1n · ẽ · ∂∂ι2k

+
∑

ι1∪ι2∪ι3=ι, 1≤|ι1|

∂ι1n · ∂ι2(e− ẽ) · ∂∂ι3k +
∑

ι1∪ι2=ι
∂ι1 e⃗n · ∂ι2k.

(5.21b)

Finally, the scalar function γIJB can be expressed as a linear combination of three structure coefficients:

γIJB =
1

2
{γIJB + γJBI}+

1

2
{γBJI + γJIB}+

1

2
{γBIJ + γIJB} . (5.22)

Remark 5.8 (Connection between equation (5.19) and the stability condition (1.8)). If we were to ignore
the terms on RHS (5.19), then equation (5.19) would allow us to conclude that |γIJB+γJBI | ≲ t−(q̃I+q̃J−q̃B).
This makes the significance of the stability condition (1.8) for equation (5.19) clear: under this condition, the
quantity max

I,J,B=1,··· ,D
I<J

|γIJB + γJBI | is integrable in t near 0, and by (5.22) (cf. Remark 1.1), max
I,J,B=1,··· ,D

|γIJB |

is also integrable in t. In our ensuing analysis, we will in fact control the terms on RHS (5.19) and show that
max

I=1,··· ,D
|γIJB | is integrable, which is a crucial step in our proof of stable blowup.

Remark 5.9. Interestingly, if we were to try to control the γIJB ’s at the low derivative levels by using
the formula (2.27) and separately controlling each of the factors eiI ,ω

I
i , then we would not be able to close

our estimates for the full range of Kasner exponents verifying the stability condition (1.8). In fact, since
RHS (2.27) is cubic in eiI ,ω

I
i and their derivatives, the crudest version of that approach would yield only

|γIJB | ≲ t−3q, which, when q is near 1, is far too singular for proving stability. Moreover, the evolution
equation (2.22b) for the γIJB ’s is not diagonal at the linear level and thus, a crude treatment based only on
this equation would lead to far too singular estimates36 for the connection coefficients at the lower derivative
levels. Thus, the diagonal structure revealed by Proposition 5.7 is essential to our overall argument.

Proof of Proposition 5.7. Equations (5.19) follow from the evolution equation (2.22b), the definition of the
background Kasner scalar functions in (2.58), the antisymmetry property (2.20), and straightforward al-
gebraic computations. (5.20) then follows from differentiating (5.19) with ∂ι, applying the product rule,
multiplying both sides of the resulting identity by tq, and then commuting the factor of tq under the operator
∂t on the LHS and accounting for the commutator [tq, ∂t].
(5.22) is an immediate consequence of the Koszul formula for an orthonormal frame and the antisymmetry

property (2.20).

5.5.2 Pointwise estimates for the error terms in the structure coefficient evolution equations

In the next lemma, we derive pointwise estimates at the low derivative levels for the error terms from
Proposition 5.7.

Lemma 5.10 (Pointwise estimates for the error terms in the structure coefficient evolution equations at orders
≤ N0). Assume that the bootstrap assumptions (3.9) hold. There exists a constant C = CN,N0,A∗,D,q,σ > 0
such that if N0 ≥ 1 and N is sufficiently large in a manner that depends on N0, A∗,D, q, and σ, and if
ε is sufficiently small (in a manner that depends on N,N0, A∗,D, q, and σ), then the following pointwise

estimates hold on (TBoot, 1]× TD for the error terms S
(Border;ι)
IJB and S

(Junk;ι)
IJB defined in (5.21a)–(5.21b):

tq
∑

|ι|≤N0

∑
I,J,B=1,··· ,D

|S(Border;ι)
IJB |(t, x) ≤ Cεtq−1

∑
|ι|≤N0

∑
I,J,B=1,··· ,D

|∂ιγIJB |(t, x)

+ Cεtq−1
∑

|ι|≤N0

∑
I,i=1,··· ,D

|∂ι(eiI − ẽiI)|(t, x),
(5.23a)

36However, the structure of equation (2.22b) is sufficient for our top-order energy estimates, which are allowed to be much
more singular within the scope of our approach; this explains why in Lemma 5.16, we derive commuted versions of equation
(2.22b) to set up our energy estimates for γ and k.
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tq
∑

|ι|≤N0

∑
I,J,B=1,··· ,D

|S(Junk;ι)
IJB |(t, x) ≤ Ct−1+σD(t). (5.23b)

Proof. Based on equations (5.21a)–(5.21b), the estimates (5.23a)–(5.23b) follow as straightforward conse-
quences of (2.58), the inequalities in (3.6), Definition 3.1, the bootstrap assumptions (3.9), and the already
derived low order estimates (5.4) for n. Note in particular that we have used the fact that the low order

norm (3.8a) controls k − k̃ at derivative levels ≤ N0 + 1 (see Remark 3.2); for example, for |ι| ≤ N0, this
allows us to pointwise bound the magnitude of the sum

∑
ι1∪ι2=ι n · ∂ι1(e − ẽ) · ∂∂ι2k on RHS (5.21a) by

≲ εt−1
∑

|ι|≤N0
|∂ι(e− ẽ)|(t, x).

5.5.3 Absence of certain structure coefficients in polarized U(1)-symmetry

In the next lemma, we show that for polarized U(1)-symmetric metrics withD = 3, relative to an orthonormal
spatial frame of the type provided by Lemma 2.4, all structure coefficients with three distinct indices vanish.
As we explained in Remark 1.2, this vanishing is crucial for the proof of our main results in the case of the
Einstein-vacuum equations in 1 + 3 dimensions under polarized U(1)-symmetry.

Lemma 5.11 (The vanishing of key variables in polarized U(1)-symmetry). Suppose that D = 3 and that
g is a polarized U(1)-symmetric metric satisfying the hypotheses and conclusions of Lemma 2.4. Moreover,
let {e1, e2, e3} be an orthonormal spatial frame satisfying the hypotheses and conclusions of Lemma 2.4. In

particular, e3 = (g33)
− 1

2 ∂3 and L∂3eI = 0 for I = 1, 2, 3, where ∂3 is the hypersurface-orthogonal Killing
vectorfield. Then the following spatial connection coefficients vanish:

γ123 = γ231 = γ312 = 0. (5.24)

Moreover, under the same assumptions,

γIJB + γJBI =

{
0, if I = J,

0, if I, J,B are distinct.
(5.25)

Proof. Under the assumptions and conclusions of Lemma 2.4, ∂3 is parallel to e3 and orthogonal to ∂1 and
∂2, and we have e31 = e32 = e13 = e23 = ω1

3 = ω2
3 = ω3

1 = ω3
2 = e3e

i
I = 0. Hence, using (2.27) we compute

γ123 =
1

2

{
ω3
l (e1e

l
2 − e2e

l
1)−ω1

l (e2e
l
3 − e3e

l
2) +ω2

l (e3e
l
1 − e1e

l
3)
}
= 0,

γ231 =
1

2

{
ω1
l (e2e

l
3 − e3e

l
2)−ω2

l (e3e
l
1 − e1e

l
3) +ω3

l (e1e
l
2 − e2e

l
1)
}
= 0,

γ312 =
1

2

{
ω2
l (e3e

l
1 − e1e

l
3)−ω3

l (e1e
l
2 − e2e

l
1) +ω1

l (e2e
l
3 − e3e

l
2)
}
= 0,

which yields (5.24). A more conceptual justification of the above computations is that in the present setting,
g([eI , eJ ], eB) = 0 whenever I, J,B are distinct indices; using this fact and the Koszul formula, we conclude
that γIJB = 0 whenever I, J,B are distinct indices, as desired.
(5.25) follows from (5.24) and the antisymmetry property (2.20).

Remark 5.12 (The role of polarized U(1)-symmetry). In proving our stable Big Bang formation results
for the Einstein-vacuum equations in 1 + 3 dimensions, there is precisely one way in which our polarized
U(1)-symmetry assumption is important for our analysis: it allows us to use the results of Lemma 5.11; see
also Remark 1.2 and the end of the proof of Proposition 5.26. Put differently, if we were to assume the
conclusions (5.24)–(5.25) of the lemma, then the rest of our proof of stable Big Bang formation would go
through.

5.5.4 Commuted evolution equations for e and ω

In this section, we provide the evolution equations that we will use to control the scalar functions {eiI}I,i=1,··· ,D
and {ωI

i }I,i=1,··· ,D as well as their derivatives.
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Lemma 5.13 (Evolution equations for {eiI}I,i=1,··· ,D, {ωI
i }I,i=1,··· ,D, and their derivatives). The evolution

equations (2.23a)–(2.23b) can be rewritten as follows, where the Kasner background scalars {ẽiI}I,i=1,··· ,D,

{ω̃I
i }I,i=1,··· ,D, and {k̃IJ}I,J=1,··· ,D are defined in (2.58) (see also Remark 2.6), and we recall that we do not

sum over repeated underlined indices:

∂t(e
i
I − ẽiI) +

q̃I
t
(eiI − ẽiI) = (n− 1)kIC(e

i
C − ẽiC) + (kIC − k̃IC)(e

i
C − ẽiC)

+ (n− 1)k̃IC ẽ
i
C + n(kIC − k̃IC)ẽ

i
C ,

(5.26a)

∂t(ω
I
i − ω̃I

i )−
q̃I
t
(ω

I
i − ω̃

I
i ) = −(n− 1)kIC(ω

C
i − ω̃C

i )− (kIC − k̃IC)(ω
C
i − ω̃C

i )

− (n− 1)k̃ICω̃
C
i − n(kIC − k̃IC)ω̃

C
i .

(5.26b)

Moreover, let ι be a spatial multi-index with |ι| ≤ N and let P ≥ 0 be a real number. Then the following
equations hold:

∂t[t
P∂ι(eiI − ẽiI)] = (P − q̃I)t

P−1∂ι(eiI − ẽiI) + tPE
i;(Border;ι)
I + tPE

i;(Junk;ι)
I , (5.27a)

∂t[t
P∂ι(ωIi − ω̃Ii )] = (P + q̃I)t

P−1∂ι(ωIi − ω̃Ii ) + tPO
i;(Border;ι)
I + tPO

i;(Junk;ι)
I , (5.27b)

where

E
i;(Border;ι)
I :=

∑
ι1∪ι2∪ι3=ι

∂ι1(n− 1) · ∂ι2k · ∂ι3(e− ẽ) +
∑

ι1∪ι2=ι
∂ι1(k − k̃) · ∂ι2(e− ẽ), (5.28a)

E
i;(Junk;ι)
I := ∂ι(n− 1) · k̃ · ẽ+

∑
ι1∪ι2=ι

∂ι1n · ∂ι2(k − k̃) · ẽ, (5.28b)

O
i;(Border;ι)
I :=

∑
ι1∪ι2∪ι3=ι

∂ι1(n− 1) · ∂ι2k · ∂ι3(ω − ω̃) +
∑

ι1∪ι2=ι
∂ι1(k − k̃) · ∂ι2(ω − ω̃), (5.28c)

O
i;(Junk;ι)
I := ∂ι(n− 1) · k̃ · ω̃ +

∑
ι1∪ι2=ι

∂ι1n · ∂ι2(k − k̃) · ω̃. (5.28d)

Proof. (5.26a)–(5.26b) follow from equations (2.23a)–(2.23b) and straightforward algebraic computations.
(5.27a)–(5.27b) then follow from differentiating (5.26a)–(5.26b) with ∂ι, using the Leibniz rule, multiplying
both sides of the resulting equations by tP , and commuting the factors of tP under the operator ∂t on the
LHSs and accounting for the commutator [tP , ∂t].

5.5.5 Pointwise estimates for the error terms in the frame component evolution equations

In this section, at the low derivative levels, we derive pointwise estimates for the error terms in the evolution
equations of Lemma 5.13.

Lemma 5.14 (Pointwise estimates for the error terms in the evolution equations for ∂≤N0(e − ẽ) and
∂≤N0(ω−ω̃)). Assume that the bootstrap assumptions (3.9) hold. There exists a constant C = CN,N0,A∗,D,q,σ >
0 such that if N0 ≥ 1 and N is sufficiently large in a manner that depends on N0, A∗,D, q, and σ, and if ε

is sufficiently small (in a manner that depends on N,N0, A∗,D, q, and σ), then the error terms E
i;(Border;ι)
I ,

E
i;(Junk;ι)
I , O

i;(Border;ι)
I , and O

i;(Junk;ι)
I defined in (5.28a)–(5.28d) verify the following pointwise estimates for

(t, x) ∈ (TBoot, 1] × TD, where the Kasner background scalars {ẽiI}I,i=1,··· ,D and {ω̃I
i }I,i=1,··· ,D are defined

in (2.58): ∑
|ι|≤N0

∑
I,i=1,··· ,D

tq|Ei;(Border;ι)I |(t, x) ≤ Cεtq−1
∑

|ι|≤N0

∑
I,i=1,··· ,D

|∂ι(eiI − ẽiI)|(t, x), (5.29a)

∑
|ι|≤N0

∑
I,i=1,··· ,D

tq|Ei;(Junk;ι)I |(t, x) ≤ Ct−1+σD(t), (5.29b)

∑
|ι|≤N0

∑
I,i=1,··· ,D

tq|Oi;(Border;ι)
I |(t, x) ≤ Cεtq−1

∑
|ι|≤N0

∑
I,i=1,··· ,D

|∂ι(ωIi − ω̃Ii )|(t, x), (5.29c)
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∑
|ι|≤N0

∑
I,i=1,··· ,D

tq|Oi;(Junk;ι)
I |(t, x) ≤ Ct−1+σD(t). (5.29d)

Proof. The lemma follows from the expressions (5.28a)–(5.28d), the bootstrap assumptions, the definition of
the lower order norms (3.8a), the explicit formulas (2.58), the inequalities in (3.6), and the already derived
low order estimates (5.4) for n.37

5.5.6 L2-control of the error terms in the top-order commuted frame component evolution
equations

In this section, at the top-order derivative level, we derive L2 estimates for the error terms in the evolution
equations of Lemma 5.13.

Lemma 5.15 (L2-control of the error terms in the top-order commuted frame component evolution equa-
tions). Recall that H(γ,k)(t),H(e,ω)(t), and D(t) are norms from Definition 3.1, and assume that the bootstrap
assumptions (3.9) hold. There exists a constant C = CN,N0,A∗,D,q,σ > 0 such that if N0 ≥ 1 and N is suffi-
ciently large in a manner that depends on N0, A∗,D, q, and σ, and if ε is sufficiently small (in a manner that

depends on N,N0, A∗,D, q, and σ), then the error terms E
i;(Border;ι)
I , E

i;(Junk;ι)
I , O

i;(Border;ι)
I , and O

i;(Junk;ι)
I

defined in (5.28a)–(5.28d) verify the following L2 estimates for t ∈ (TBoot, 1]:

tA∗+q

√ ∑
|ι|=N

∑
I,i=1,··· ,D

∥Ei;(Border;ι)I ∥2L2(Σt)
≤ Cεt−1H(γ,k)(t) + Cεt−1H(e,ω)(t) + Ct−1+σD(t), (5.30a)

tA∗+q

√ ∑
|ι|=N

∑
I,i=1,··· ,D

∥Ei;(Junk;ι)I ∥2L2(Σt)
≤ Ct−1+σD(t), (5.30b)

tA∗+q

√ ∑
|ι|=N

∑
I,i=1,··· ,D

∥Oi;(Border;ι)
I ∥2L2(Σt)

≤ Cεt−1H(γ,k)(t) + Cεt−1H(e,ω)(t) + Ct−1+σD(t), (5.30c)

tA∗+q

√ ∑
|ι|=N

∑
I,i=1,··· ,D

∥Oi;(Junk;ι)
I ∥2L2(Σt)

≤ Ct−1+σD(t). (5.30d)

Proof. The lemma follows from the expressions (5.28a)–(5.28d), the explicit formulas (2.58), the inequalities
in (3.6), Definition 3.1, the bootstrap assumptions, the product inequality (4.3), and the already derived
estimates (5.4)–(5.6) for n.

5.5.7 Commuted equations for k and γ

In this section, we provide the evolution equations that we will use to control the scalar functions {kIJ}I,J=1,··· ,D
and {γIJB}I,J,B=1,··· ,D as well as their derivatives.

Lemma 5.16 (∂ι-commuted equations for γ and k). Let ι be a spatial multi-index with |ι| ≤ N and let P ≥ 0
be a real number. For solutions to the equations of Proposition 2.2, the following evolution equations hold,
where the Kasner background scalars {k̃IJ}I,J=1,··· ,D and ψ̃ are defined in (2.58) (see also Remark 2.6):

∂t[t
P∂ι(kIJ − k̃IJ)] = (P − 1)tP−1∂ι(kIJ − k̃IJ) + tPneC∂

ιγIJC − tPneI∂
ιγCJC − tP eI∂

ιeJn

+ tP−1K
(Border;ι)
IJ + tPK

(Junk;ι)
IJ ,

(5.31a)

∂t(t
P∂ιγIJB) = PtP−1∂ιγIJB + tPneB∂

ιkJI − tPneJ∂
ιkBI

+ tPG
(Border;ι)
IJB + tPG

(Junk;ι)
IJB ,

(5.31b)

tP eC∂
ιkCI = tPM

(Border;ι)
I + tPM

(Junk;ι)
I , (5.31c)

where

K
(Border;ι)
IJ := ∂ι(n− 1) · k̃ +

∑
ι1∪ι2=ι

∂ι1(n− 1) · ∂ι2(k − k̃), (5.32a)

37Note in particular that we do not use the interpolation inequalities of Lemma 4.2 in this proof.
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K
(Junk;ι)
IJ :=

∑
ι1∪ι2=ι, |ι2|<|ι|

∂ι1e · ∂∂ι2 e⃗n+
∑

ι1∪ι2=ι, |ι2|<|ι|

∂ι1γ · ∂ι2 e⃗n

+
∑

ι1∪ι2∪ι3=ι, |ι3|<|ι|

∂ι1n · ∂ι2e · ∂ι3∂γ+
∑

v∈{γ,e⃗ψ}

∑
ι1∪ι2∪ι3=ι

∂ι1n · ∂ι2v · ∂ι3v,
(5.32b)

G
(Border;ι)
IJB := n · k̃ · ∂ιγ+

∑
ι1∪ι2=ι

n∂ι1(k − k̃) · ∂ι2γ+ k̃ · ∂ιe⃗n+
∑

ι1∪ι2=ι
∂ι1(k − k̃) · ∂ι2 e⃗n, (5.32c)

G
(Junk;ι)
IJB :=

∑
ι1∪ι2∪ι3=ι, |ι1|≥1

∂ι1n · ∂ι2k · ∂ι3γ+
∑

ι1∪ι2∪ι3=ι, |ι3|<|ι|

∂ι1n · ∂ι2e · ∂ι3∂k, (5.32d)

M
(Border;ι)
I := k̃ · ∂ιγ+

∑
ι1∪ι2=ι

∂ι1(k − k̃) · ∂ι2γ+ ∂tψ̃ · ∂ιe⃗ψ +
∑

ι1∪ι2=ι
∂ι1(e0ψ − ∂tψ̃) · ∂ι2 e⃗ψ, (5.32e)

M
(Junk;ι)
I :=

∑
ι1∪ι2=ι, |ι2|<|ι|

∂ι1e · ∂∂ι2k. (5.32f)

Proof. Equations (5.31a)–(5.31b) follow from straightforward computations based on first multiplying equa-
tions (2.22a)–(2.22b) by n, using that ∂t = ne0, differentiating the resulting equations with ∂ι, applying the
Leibniz rule, multiplying both sides of the resulting identities by tP , and then commuting the factor of tP

under the operator ∂t on the LHSs and accounting for the commutator [tP , ∂t]. Similarly, equation (5.31c)
follows from differentiating equation (2.26b) with ∂ι, applying the Leibniz rule, and then multiplying both
sides of the resulting identity by tP

5.5.8 Pointwise estimates for the error terms in the spatial metric evolution equations

In this section, we derive pointwise estimates for the error terms in the equations of Lemma 5.16 that we will
later use to control k − k̃ at derivative levels ≤ N0 + 1.

Lemma 5.17 (Pointwise estimates for the error terms in the evolution equations for ∂≤N0+1(k− k̃)). Recall
that D(t) is a norm from Definition 3.1. Assume that the bootstrap assumptions (3.9) hold. There exists a
constant C = CN,N0,A∗,D,q,σ > 0 such that if N0 ≥ 1 and N is sufficiently large in a manner that depends on
N0, A∗,D, q, and σ, and if ε is sufficiently small (in a manner that depends on N,N0, A∗,D, q, and σ), then

the following pointwise estimates hold for (t, x) ∈ (TBoot, 1]×TD, where K
(Border;ι)
IJ and K

(Junk;ι)
IJ are defined

in (5.32a)–(5.32b):∑
|ι|≤N0+1

∑
I,J=1,··· ,D

t |neC∂ιγIJC − neI∂
ιγCJC − eI∂

ιeJn| (t, x) ≤ Ct−1+σD(t), (5.33a)

∑
|ι|≤N0+1

∑
I,J=1,··· ,D

|K(Border;ι)
IJ |(t, x) +

∑
|ι|≤N0+1

∑
I,J=1,··· ,D

t|K(Junk;ι)
IJ |(t, x) ≤ Ct−1+σD(t). (5.33b)

Proof. The lemma follows from the explicit formulas (2.58), the inequalities in (3.6), the bootstrap assump-
tions, the interpolation estimates of Lemma 4.2 (see Remark 4.4), and the already derived lower order estimate
(5.4) for n− 1.

Remark 5.18 (“Borderline” sometimes refers only to the top order). Although the term K
(Border;ι)
IJ is

explicitly labeled as borderline, the estimate (5.33b) reveals that at the lower orders, it is actually below
borderline. Thus, our notion of “borderline” corresponds to the behavior of terms with respect to the top-

order energy estimates, a context in which K
(Border;ι)
IJ is indeed borderline; see the C∗-involving term on

RHS (5.35a) in Lemma 5.21 below. Despite the differing “strength” of K
(Border;ι)
IJ at the high and low orders,

we choose to keep the same notation throughout the paper to make it easier for the reader to follow the
overall argument. Similar remarks apply to other terms that are labeled as “borderline”.

5.5.9 Differential energy identity for the second fundamental form and connection coefficients

We will derive our top-order energy estimates for the second fundamental form and connection coefficients
by integrating the differential identity provided by the following lemma.
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Lemma 5.19 (Top-order differential energy identity for {kIJ}I,J=1,··· ,D and {γIJB}I,J,B=1,··· ,D). Let ι be
a top-order spatial multi-index, i.e., |ι| = N . For solutions to the ∂ι-commuted equations (5.31a)–(5.31c)

with P := A∗+1, the following differential energy identity holds, where the error terms K
(Border;ι)
IJ , K

(Junk;ι)
IJ ,

G
(Border;ι)
IJB , G

(Junk;ι)
IJB , M

(Border;ι)
I , and M

(Junk;ι)
I are defined in (5.32a)–(5.32f):

∂t
{
(tA∗+1∂ιkIJ)(t

A∗+1∂ιkIJ)
}
+

1

2
∂t

{
(tA∗+1∂ιγIJB)(t

A∗+1∂ιγIJB)
}

=
2A∗

t
(tA∗+1∂ιkIJ)(t

A∗+1∂ιkIJ) +
(A∗ + 1)

t
(tA∗+1∂ιγIJB)(t

A∗+1∂ιγIJB)

+ 2(tA∗+1∂ιkIJ)
(
tA∗K

(Border;ι)
IJ + tA∗+1K

(Junk;ι)
IJ

)
+ (tA∗+1∂ιγIJB)

(
tA∗+1G

(Border;ι)
IJB + tA∗+1G

(Junk;ι)
IJB

)
+ 2(tA∗+1∂ιeJn)

(
tA∗+1M

(Border;ι)
J + tA∗+1M

(Junk;ι)
J

)
+ 2n(tA∗+1∂ιγCJC)

(
tA∗+1M

(Border;ι)
J + tA∗+1M

(Junk;ι)
J

)
+ 2(∂ce

c
I)(t

A∗+1∂ιeJn)(t
A∗+1∂ιkIJ)

+ 2 {∂c(necI)} (tA∗+1∂ιkIJ)(t
A∗+1∂ιγCJC)− 2 {∂c(necC)} (tA∗+1∂ιkIJ)(t

A∗+1∂ιγIJC)

− 2∂c
{
t2A∗+2ecI(∂

ιeJn)∂
ιkIJ

}
− 2∂c

{
t2A∗+2ecIn(∂

ιkIJ)∂
ιγCJC

}
+ 2∂c

{
t2A∗+2necC(∂

ιkIJ)∂
ιγIJC

}
.

(5.34)

Proof. The proof is a calculation that, although lengthy, is straightforward; hence, we only explain the main
steps. We first note that ∂ιk̃IJ = 0 and thus we can ignore the formal presence of this term on LHS (5.31a).
Next, we expand LHS (5.34) using the Leibniz rule. When ∂t falls on tA∗+1∂ιkIJ , we plug in (5.31a) with
P := A∗ + 1. When ∂t falls on t

A∗+1∂ιγIJB , we plug in (5.31b) with P := A∗ + 1. We then differentiate the
resulting terms by parts. Next, we use the (differentiated) momentum constraint (5.31c) with P := A∗ + 1
to substitute for the terms tA∗+1eI∂

ιkIJ in the product 2(tA∗+1∂ιeJn) · tA∗+1eI∂
ιkIJ (which is “present”

in the sense that it is needed to cancel a corresponding product obtained from expanding the third-to-
last term −2∂c

{
t2A∗+2ecI(∂

ιeJn)∂
ιkIJ

}
on RHS (5.34)). Similarly, we use (5.31c) with P := A∗ + 1 to

substitute for the terms tA∗+1eI∂
ιkIJ in the product 2ntA∗+1eI∂

ιkIJ · tA∗+1∂ιγCJC (which is “present” in
the sense that it is needed to cancel a corresponding product obtained from expanding the next-to-last term
−2∂c

{
t2A∗+2ecIn(∂

ιkIJ)∂
ιγCJC

}
on RHS (5.34)).

Remark 5.20 (Comments tied to the momentum constraint and well-posedness in CMC-transported spa-
tial coordinates). The (differentiated) momentum constraint (5.31c) plays a crucial role in our proof of
Lemma 5.19; without this constraint equation, the corresponding differential energy identity would have
featured terms involving one too many derivatives of kIJ , which in turn would have led to a fatal loss of
one derivative in the top-order estimates. An alternate way to overcome the derivative loss is to use spa-
tial harmonic coordinates on each time slice Σt, as in [6]. However, such coordinates lead to the presence
of a non-zero shift vector in the coordinate expression for the spacetime metric, and it is not currently
known whether the corresponding error terms are compatible with a proof of stable Big Bang formation.
For a proof of local well-posedness for Einstein’s equations in CMC-transported spatial coordinates, we refer
to [59, Theorem 14.1]. We emphasize that while energy identities such as (5.34) can be used to derive a
priori energy estimates for solutions to the nonlinear reduced equations (where by “reduced,” we roughly
mean gauge-dependent equations in the spirit of the ones stated in Proposition 2.2), the proof of local well-
posedness given by [59, Theorem 14.1] relies on a modified system, which can be shown to be equivalent to
the nonlinear reduced equations (and hence, by the “if and only if” aspect of Propsition 2.2, equivalent to
Einstein’s equations too) for initial data that satisfy the constraints and the CMC condition (1.12) at t = 1.
The key advantage of the modified system is that it does not involve constraint equations; this allows one to
show that linearized versions of the modified system also enjoy good energy estimates, which is important
for the standard iteration/contraction mapping schemes that are used in proofs of local well-posedness for
quasilinear equations.
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5.5.10 Control of the error terms in the top-order commuted spatial metric equations

In this section, at the top-order derivative level, we derive L2 estimates for the error terms in the equations
of Lemma 5.16.

Lemma 5.21 (L2-control of the error terms in the top-order commuted evolution equations for k and γ).
Recall that H(γ,k), H(ψ), and D(t) are norms from Definition 3.1, and assume that the bootstrap assumptions

(3.9) hold. Recall that the error terms K
(Border;ι)
IJ ,K

(Junk;ι)
IJ ,G

(Border;ι)
IJB ,G

(Junk;ι)
IJB ,M

(Border;ι)
I , and M

(Junk;ι)
I

are defined in (5.32a)–(5.32f). There exists a constant C∗ > 0 independent of N,N0, and A∗ and a constant
C = CN,N0,A∗,D,q,σ > 0 such that if N is sufficiently large in a manner that depends on N0, A∗,D, q, and
σ, and if ε is sufficiently small (in a manner that depends on N,N0, A∗,D, q, and σ), then the following
estimates hold for t ∈ (TBoot, 1]:

tA∗

√ ∑
|ι|=N

∑
I,J=1,··· ,D

∥K(Border;ι)
IJ ∥2L2(Σt)

≤ C∗t
−1H(γ,k)(t) + Ct−1+σD(t), (5.35a)

tA∗+1

√ ∑
|ι|=N

∑
I,J,B=1,··· ,D

∥G(Border;ι)
IJB ∥2L2(Σt)

≤ C∗t
−1H(γ,k)(t) + Ct−1+σD(t), (5.35b)

tA∗+1

√ ∑
|ι|=N

∑
I=1,··· ,D

∥M(Border;ι)
I ∥2L2(Σt)

≤ C∗t
−1H(γ,k)(t) + C∗t

−1H(ψ)(t) + Ct−1+σD(t), (5.35c)

tA∗+1

√ ∑
|ι|=N

∑
I,J=1,··· ,D

∥K(Junk;ι)
IJ ∥2L2(Σt)

≤ Ct−1+σD(t), (5.36a)

tA∗+1

√ ∑
|ι|=N

∑
I,J,B=1,··· ,D

∥G(Junk;ι)
IJB ∥2L2(Σt)

≤ Ct−1+σD(t), (5.36b)

tA∗+1

√ ∑
|ι|=N

∑
I=1,··· ,D

∥M(Junk;ι)
I ∥2L2(Σt)

≤ Ct−1+σD(t). (5.36c)

Proof. We will give the proofs of (5.35a) and (5.36a). The remaining estimates can be proved using similar
arguments, and we omit the details. To prove (5.35a), we let ι be any spatial multi-index with |ι| = N .
We multiply both sides of (5.32a) by tA∗ and take the ∥ · ∥L2(Σt) norm. Using the bootstrap assumptions,
the explicit formulas (2.58), the inequalities in (3.6), Definition 3.1, and the product estimate (4.3), we find

that tA∗∥K(Border;ι)
IJ ∥L2(Σt) ≤ C∗t

A∗−1∥∂ιn∥L2(Σt) +CεtA∗−1∥n∥ḢN (Σt)
+Cεt−1+σD(t). We then square this

estimate, sum over all ι with |ι| = N , sum over all 1 ≤ I, J ≤ D, and then take the square root. We find
that LHS (5.35a) ≤ (C∗ + Cε)tA∗−1∥n∥ḢN (Σt)

+ Cεt−1+σD(t) ≤ C∗t
A∗−1∥n∥ḢN (Σt)

+ Cεt−1+σD(t). From

this bound and the already derived high order estimate (5.5b) for n, we arrive at the desired bound (5.35a).
The estimate (5.36a) can be proved by multiplying equation (5.32b) by tA∗+1 and combing arguments

similar to the ones we used above with the estimates of Lemma 4.1.

5.6 Preliminary identities and inequalities for the scalar field ψ

This section is an analog of Sect. 5.5 for the scalar field ψ. That is, we derive preliminary low order and high
order identities and inequalities for ψ by using the wave equation (2.24). In order to avoid the time derivative
of n appearing as an error term in the equations (which would unnecessarily complicate our derivation of
the main estimates), we treat e0ψ, {eIψ}I=1,··· ,D as separate variables satisfying a first-order system derived
from the wave equation, cf. [61]. Roughly, we bound the inhomogeneous terms in the evolution equations in
terms of our solution norms, and we derive an energy identity in differential form. In Sects. 5.7–5.9, we will
combine these preliminary results with related ones for n, {kIJ}I,J=1,··· ,D, {γIJB}I,J,B=1,··· ,D, {eiI}I,i=1,··· ,D,
and {ωI

i }I,i=1,··· ,D to derive our main a priori estimates, i.e., to prove Proposition 5.1.
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5.6.1 Commuted evolution equations for e0ψ and eIψ

In this section, we provide the first-order evolution equations that we will use to control the scalar functions
e0ψ and {eIψ}I=1,··· ,D as well as their derivatives.

Lemma 5.22 (The first-order evolution system for e0ψ, {eIψ}I=1,··· ,D, and their derivatives). For solutions
to the equations of Proposition 2.2, the g-orthonormal frame derivatives of ψ, namely e0ψ and {eIψ}I=1,··· ,D,

satisfy the following first-order symmetric hyperbolic system, where the Kasner background scalars ψ̃ = B̃ log t
and {k̃IJ}I,J=1,··· ,D are defined in (2.58) (see also Remark 2.6), and we recall that we do not sum over repeated
underlined indices:

∂t[t(e0ψ − ∂tψ̃)] = tneCeCψ − tnγCCDeDψ + t(eCn)eCψ − (n− 1)∂tψ̃ − (n− 1)(e0ψ − ∂tψ̃), (5.37a)

∂teIψ = −
q̃I
t
eIψ + neIe0ψ + (n− 1)kICeCψ + (kIC − k̃IC)eCψ + (eIn)∂tψ̃

+ (eIn)(e0ψ − ∂tψ̃).

(5.37b)

Moreover, if ι is a spatial coordinate multi-index and P ≥ 0 is any real number, then the following equations
hold:

∂t[t
P∂ι(e0ψ − ∂tψ̃)] = (P − 1)[tP−1∂ι(e0ψ − ∂tψ̃)] + tPneC∂

ιeCψ

+ tP−1P(Border;ι) + tPP(Junk;ι),
(5.38a)

∂t(t
P∂ιeIψ) = (P − q̃I)t

P−1∂ιeIψ + tPneI∂
ιe0ψ + tPQ

(Border;ι)
I + tPQ

(Junk;ι)
I , (5.38b)

where

P(Border;ι) := ∂ι(n− 1) · ∂tψ̃ +
∑

ι1∪ι2=ι
∂ι1(n− 1) · ∂ι2(e0ψ − ∂tψ̃), (5.39a)

P(Junk;ι) :=
∑

ι1∪ι2∪ι3=ι, |ι3|<|ι|

∂ι1n · ∂ι2e · ∂∂ι3 e⃗ψ

+
∑

ι1∪ι2∪ι3=ι
∂ι1n · ∂ι2γ · ∂ι3 e⃗ψ +

∑
ι1∪ι2=ι

∂ι1 e⃗n · ∂ι2 e⃗ψ,
(5.39b)

Q
(Border;ι)
I :=

∑
ι1∪ι2=ι

∂ι1(k − k̃) · ∂ι2 e⃗ψ + ∂ιe⃗n · ∂tψ̃ +
∑

ι1∪ι2=ι
∂ι1 e⃗n · ∂ι2(e0ψ − ∂tψ̃) (5.39c)

+
∑

ι1∪ι2=ι, |ι2|<|ι|

∂ι1e · ∂∂ι2e0ψ,

Q
(Junk;ι)
I

38 :=
∑

ι1∪ι2∪ι3=ι, |ι3|<|ι|

∂ι1(n− 1) · ∂ι2e · ∂∂ι3e0ψ +
∑

ι1∪ι2∪ι3=ι
∂ι1(n− 1) · ∂ι2k · ∂ι3 e⃗ψ. (5.39d)

Proof. Equation (5.37a) follows from multiplying both sides of (2.24), by nt, using that ∂t(t∂tψ̃) = 0,
and carrying out straightforward algebraic computations. (5.37b) follows from the identity ∂t = ne0, the
commutation identity (4.11), and straightforward algebraic computations. (5.38a)–(5.38b) then follow from
differentiating (5.37a)–(5.37b) with ∂ι, using the Leibniz rule, multiplying both sides of the resulting equations
by tP−1 and tP respectively, commuting the factors of tP−1 and tP under the operator ∂t on the LHSs, and
accounting for the commutators [tP−1, ∂t] and [tP , ∂t].

5.6.2 Pointwise estimates for the error terms in the scalar field evolution equations

In this section, we derive the pointwise estimates for the error terms in the equations of Lemma 5.22 that we
will later use to control e0ψ − ∂tψ̃ at derivative levels ≤ N0 + 1 and eIψ at derivative levels ≤ N0.

Lemma 5.23 (Pointwise estimates for the error terms in the evolution equations for ∂≤N0+1(e0ψ − ∂tψ̃)
and {∂≤N0eIψ}I=1,··· ,D). Recall that D(t) is a norm from Definition 3.1, and assume that the bootstrap as-

sumptions (3.9) hold. Recall that the error terms P(Border;ι),Q
(Border;ι)
I ,P(Junk;ι), and Q

(Junk;ι)
I are defined



5 MAIN ESTIMATES 54

in (5.39a)–(5.39d). There exists a constant C = CN,N0,A∗,D,q,σ > 0 such that if N is sufficiently large in
a manner that depends on N0, A∗,D, q, and σ, and if ε is sufficiently small (in a manner that depends on
N,N0, A∗,D, q, and σ), then the following pointwise estimates hold for (t, x) ∈ (TBoot, 1]× TD:∑

|ι|≤N0+1

t|neC∂ιeCψ|(t, x) ≤ Ct−1+σD(t), (5.40a)

∑
|ι|≤N0+1

|P(Border;ι)|(t, x) +
∑

|ι|≤N0+1

t|P(Junk;ι)|(t, x) ≤ Ct−1+σD(t), (5.40b)

∑
|ι|≤N0

∑
I=1,··· ,D

tq |neI∂ιe0ψ| (t, x) ≤ Cε
∑

|ι|≤N0

∑
I,i=1,··· ,D

tq−1|∂ι(eiI − ẽiI)|(t, x)

+ Ct−1+σD(t),
(5.40c)

∑
|ι|≤N0

∑
I=1,··· ,D

tq|Q(Border;ι)
I |(t, x) ≤ Cε

∑
|ι|≤N0

∑
I=1,·,D

tq−1|∂ιeIψ|(t, x)

+ Cε
∑

|ι|≤N0

∑
I,i=1,··· ,D

tq−1|∂ι(eiI − ẽiI)|(t, x)

+ Ct−1+σD(t),

(5.40d)

∑
|ι|≤N0

∑
I=1,··· ,D

tq|Q(Junk;ι)
I |(t, x) ≤ Ct−1+σD(t). (5.40e)

Proof. We apply the same arguments we used in the proof of Lemmas 5.10 and Lemma 5.17, taking into
account the structure of the terms on RHS (5.39a)–(5.39d) and the fact that the low order norm (3.8a)
controls e0ψ at up to derivative level N0 + 1 (in particular, we use this fact to derive (5.40b)–(5.40c)).

5.6.3 Differential energy identity for the scalar field

We will derive our top-order energy estimates for the scalar field by integrating the differential identity
provided by the following lemma.

Lemma 5.24 (Top-order differential energy identity for e0ψ and {eIψ}I=1,··· ,D). Let ι be a top-order spatial
multi-index, i.e., |ι| = N . For solutions to the ∂ι-commuted equations (5.38a)–(5.38b) with P := A∗ + 1,

the following differential energy identity holds, where the error terms P(Border;ι),Q
(Border;ι)
I ,P(Junk;ι), and

Q
(Junk;ι)
I are defined in (5.39a)–(5.39d):

∂t
{
(tA∗+1∂ιe0ψ)

2
}
+ ∂t

{
(tA∗+1∂ιeIψ)(t

A∗+1∂ιeIψ)
}

=
2A∗

t
(tA∗+1∂ιe0ψ)

2 +
2(A∗ + 1− q̃I)

t
(tA∗+1∂ιeIψ)(t

A∗+1∂ιeIψ)

+ 2(tA∗+1∂ιe0ψ)
(
tA∗P(Border;ι) + tA∗+1P(Junk;ι)

)
+ 2(tA∗+1∂ιeIψ)

(
tA∗+1Q

(Border;ι)
I + tA∗+1Q

(Junk;ι)
I

)
− 2 {∂c(necC)} (tA∗+1∂ιeCψ)(t

A∗+1∂ιe0ψ) + 2t2A∗+2∂c {necC(∂ιeCψ)(∂ιe0ψ)} .

(5.41)

Proof. This lemma follows from straightforward calculation, so we only explain the main steps. We first note
that ∂ι∂tψ̃ = 0 and thus we can ignore the formal presence of this term on LHS (5.38a). Next, we expand
LHS (5.41) using the Leibniz rule. When ∂t falls on t

A∗+1∂ιe0ψ, we plug in (5.38a) with P := A∗ +1. When
∂t falls on t

A∗+1∂ιeIψ, we plug in (5.38b) with P := A∗ + 1. Differentiating by parts on the resulting terms,
we arrive at the desired identity (5.41).

5.6.4 Control of the error terms in the top-order commuted scalar field evolution equations

In this section, at the top-order derivative level, we derive L2 estimates for the error terms in the evolution
equations of Lemma 5.22.
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Lemma 5.25 (L2-control of the error terms in the top-order commuted scalar field equations). Recall that
H(γ,k),H(ψ), and D(t) are norms from Definition 3.1, and assume that the bootstrap assumptions (3.9) hold.

Recall that the error terms P(Border;ι),Q
(Border;ι)
I ,P(Junk;ι), and Q

(Junk;ι)
I are defined in (5.39a)–(5.39d).

There exists a constant C∗ > 0 independent of N,N0, and A∗ and a constant C = CN,N0,A∗,D,q,σ > 0 such
that if N is sufficiently large in a manner that depends on N0, A∗,D, q, and σ, and if ε is sufficiently small
(in a manner that depends on N,N0, A∗,D, q, and σ), then the following estimates hold for t ∈ (TBoot, 1]:

tA∗

√ ∑
|ι|=N

∥P(Border;ι)∥2L2(Σt)
+ tA∗+1

√ ∑
|ι|=N

∑
I=1,··· ,D

∥Q(Border;ι)
I ∥2L2(Σt)

≤ C∗t
−1H(γ,k)(t) + C∗t

−1H(ψ)(t) + Ct−1+σD(t),

(5.42a)

tA∗+1

√ ∑
|ι|=N

∥P(Junk;ι)∥2L2(Σt)
+ tA∗+1

√ ∑
|ι|=N

∑
I=1,··· ,D

∥Q(Junk;ι)
I ∥2L2(Σt)

≤ Ct−1+σD(t).

(5.42b)

Proof. We apply the same arguments that we used in the proof of Lemma 5.21 to the terms on RHSs (5.39a)–
(5.39d).

5.7 Integral inequality for the low order solution norms

In the next proposition, we combine some of the results derived earlier in Sect. 5 to obtain an integral
inequality for the low order solution norms. In Sect. 5.8, we will derive a related integral inequality for the
high order solution norms. Then, in Sect. 5.9, we will combine the two integral inequalities and carry out the
proof of our main a priori estimates.

Proposition 5.26 (Integral inequality for the low order solution norms). Recall that L(e,ω,γ,k,ψ)(t) is a
low order norm and that D(t) is the total norm of the dynamic solution variables (see Definition 3.1).
Under the assumptions of Proposition 5.1, including the bootstrap assumptions (3.9), there exists a constant
C = CN,N0,A∗,D,q,σ > 0 such that if N0 ≥ 1 and N is sufficiently large in a manner that depends on
N0, A∗,D, q, and σ, and if ε is sufficiently small (in a manner that depends on N,N0, A∗,D, q, and σ), then
the following estimate holds for t ∈ (TBoot, 1]:

L2
(e,ω,γ,k,ψ)(t) ≤ CL2

(e,ω,γ,k,ψ)(1) + C

∫ 1

t

s−1+σD2(s) ds. (5.43)

Proof. The polarized U(1)-symmetric case will require an additional observation, which we provide at the
end of the proof.

The proof except for the U(1)-symmetric case. Recall (5.22) and Remark 1.1. We define the scalar function
Q(t, x) ≥ 0 as follows, where the background Kasner scalars are defined in Sect. 2.3 and we suppress the (t, x)
arguments on RHS (5.44):

Q2 = Q2(t, x) :=
∑

|ι|≤N0

∑
I,J,B=1,··· ,D

I<J

[tq∂ι(γIJB + γJBI)]
2 +

∑
|ι|≤N0+1

∑
I,J=1,··· ,D

[t∂ι(kIJ − k̃IJ)]
2

+
∑

|ι|≤N0

∑
I,i=1,··· ,D

[tq∂ι(eiI − ẽiI)]
2 +

∑
|ι|≤N0

∑
I,i=1,··· ,D

[tq∂ι(ωI
i − ω̃I

i )]
2

+
∑

|ι|≤N0+1

[t∂ι(e0ψ − ∂tψ̃]
2 +

∑
|ι|≤N0

∑
I=1,··· ,D

[tq∂ιeIψ]
2.

(5.44)

Throughout the proof, we will silently use the estimates C−1∥Q∥L∞(Σt) ≤ L(e,ω,γ,k,ψ)(t) ≤ C∥Q∥L∞(Σt)

and ∥Q∥L∞(Σt) ≤ CD(t), which follow easily from the definitions of the quantities involved and the identity
(5.22). In particular, to prove (5.43), it suffices to derive the following pointwise bound for Q2(t, x):

Q2(t, x) ≲ L2
(e,ω,γ,k,ψ)(1) +

∫ 1

t

s−1+σD2(s) ds. (5.45)
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To prove (5.45), we will derive the following pointwise bound for (t, x) ∈ (TBoot, 1]× TD:

Q2(t, x) ≤ CL2
(e,ω,γ,k,ψ)(1) + (Cε− 4σ)

∫ 1

t

s−1
∑

|ι|≤N0

∑
I,J,B=1,··· ,D

I<J

[sq∂ι(γIJB + γJBI)(s, x)]
2 ds

+ (Cε− 4σ)

∫ 1

t

s−1
∑

|ι|≤N0

∑
I=1,··· ,D

[sq∂ιeIψ]
2 ds

+ (Cε− 4σ)

∫ 1

t

s−1
∑

|ι|≤N0

∑
I,i=1,··· ,D

[sq∂ι(eiI − ẽiI)(s, x)]
2 ds

+ (Cε− 4σ)

∫ 1

t

s−1
∑

|ι|≤N0

∑
I,i=1,··· ,D

[sq∂ι(ωI
i − ω̃I

i )(s, x)]
2 ds

+ C

∫ 1

t

s−1+σD2(s) ds.

(5.46)

Then for ε sufficiently small, the first four integrals on RHS (5.46) are negative, and we can discard them;
the desired bound (5.45) then follows.
It remains for us to prove (5.46). We will show that the following pointwise estimates hold for (t, x) ∈

(TBoot, 1]×TD, where to condense the notation, we omit the arguments (t, x) on the LHSs and the integrand
arguments (s, x) on the RHSs:∑

|ι|≤N0

∑
I,J,B=1,··· ,D

I<J

[tq∂ι(γIJB + γJBI)]
2 ≤ CL2

(γ,k)(1)

+ (Cε− 4σ)

∫ 1

t

s−1
∑

|ι|≤N0

∑
I,J,B=1,··· ,D

I<J

[sq∂ι(γIJB + γJBI)]
2 ds

+ Cε

∫ 1

t

s−1
∑

|ι|≤N0

∑
I,i=1,··· ,D

[sq∂ι(eiI − ẽiI)]
2 ds

+ C

∫ 1

t

s−1+σD2(s) ds,

(5.47)∑
|ι|≤N0+1

∑
I,J=1,··· ,D

[t∂ι(kIJ − k̃IJ)]
2 ≤ CL2

(γ,k)(1)

+ C

∫ 1

t

s−1+σD2(s) ds,

(5.48)

∑
|ι|≤N0

∑
I,i=1,··· ,D

[tq∂ι(eiI − ẽiI)]
2 ≤ CL2

(e,ω)(1)

+ (Cε− 4σ)

∫ 1

t

s−1
∑

|ι|≤N0

∑
I,i=1,··· ,D

[sq∂ι(eiI − ẽiI)]
2 ds

+ C

∫ 1

t

s−1+σD2(s) ds,

(5.49)

∑
|ι|≤N0

∑
I,i=1,··· ,D

[tq∂ι(ωI
i − ω̃I

i )]
2 ≤ CL2

(e,ω)(1)

+ (Cε− 4σ)

∫ 1

t

s−1
∑

|ι|≤N0

∑
I,i=1,··· ,D

[sq∂ι(ωI
i − ω̃I

i )]
2 ds

+ C

∫ 1

t

s−1+σD2(s) ds,

(5.50)
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∑
|ι|≤N0+1

[t∂ι(e0ψ − ∂tψ̃)]
2 ≤ CL2

(ψ)(1)

+ C

∫ 1

t

s−1+σD2(s) ds,

(5.51)

∑
|ι|≤N0

∑
I=1,··· ,D

[tq∂ιeIψ]
2 ≤ CL2

(ψ)(1)

+ (Cε− 4σ)

∫ 1

t

s−1
∑

|ι|≤N0

∑
I=1,··· ,D

[sq∂ιeIψ]
2 ds

+ Cε

∫ 1

t

s−1
∑

|ι|≤N0

∑
I,i=1,··· ,D

[sq∂ι(eiI − ẽiI)]
2 ds

+ C

∫ 1

t

s−1+σD2(s) ds.

(5.52)

Then adding (5.47)–(5.52), we arrive at (5.46).
To prove (5.47), we first multiply equation (5.20) by 2[tq∂ι(γIJB+γJBI)] to obtain the evolution equation

∂t
{
[tq∂ι(γIJB + γJBI)]

2
}
= 2[tq∂ι(γIJB + γJBI)] × RHS (5.20). We then integrate this equation in time

over [t, 1] with respect to ds, apply the fundamental theorem of calculus, and then sum the resulting identity
over all ι with |ι| ≤ N0 and over all I, J,B = 1, · · · ,D with I < J . The left-hand side of the resulting identity
is equal to LHS (5.47), while the resulting initial data term (on Σ1) is ≤ the term CL2

(γ,k)(1) on RHS (5.47).

Next, using (3.6), we see that the terms generated by the first term
{
q − (q̃I + q̃J − q̃B)

}
tq−1∂ι(γIJB + γJBI)

on RHS (5.20) are ≤ the term −4σ
∫ 1

t
s−1

∑
|ι|≤N0

∑
I,J,B=1,··· ,D[sq∂ι(γIJB+γJBI)]

2 ds on RHS (5.47) (note

that the overall minus sign is correct, since t ∈ (TBoot, 1]). Finally, with the help of the identity (5.22),
the error term estimates (5.23a)–(5.23b), and Young’s inequality, we see that the terms generated by the
remaining terms on RHS (5.20) are ≤ the sum of the remaining terms on RHS (5.47) as desired.
The estimate (5.48) follows from a similar argument based on equation (5.31a) with P := 1 and |ι| ≤ N0+1

and the error term estimates (5.33a)–(5.33b).
The estimate (5.49) follows from a similar argument based on equation (5.27a) with P := q and the error

term estimates (5.29a)–(5.29b). The estimate (5.50) can be proved via similar arguments based on equation
(5.27b) with P := q and the error term estimates (5.29c)–(5.29d).

The estimate (5.51) follows from a similar argument based on equation (5.38a) with P := 1 and |ι| ≤ N0+1
and the error term estimates (5.40a)–(5.40b).
Finally, the estimate (5.52) follows from a similar argument based on equation (5.38b) with P := q and

the error term estimates (5.40c)–(5.40e). This completes the proof except in the polarized U(1)-symmetric
case.

The proof in the polarized U(1)-symmetric case. By (5.25), in polarized U(1)-symmetry with D = 3, the
structure coefficient γIJB+γJBI vanishes unless I = B ̸= J (in which case (2.20) implies γIJB+γJBI = γIJB
– though this identity is not needed for our results) or B = J ̸= I. The key point is that for the non-zero

structure coefficients, when I = B, the factor
q̃I+q̃J−q̃B

t on LHS (5.19) reduces to
q̃J
t , and similarly, when

B = J , the factor
q̃I+q̃J−q̃B

t on LHS (5.19) reduces to
q̃I
t . Hence, using the definition (3.6) of q in the

polarized U(1)-symmetric case, we can repeat the proof of (5.47) given above in the non-symmetric case –

but making the change
(q̃I+q̃J−q̃B)

t → q̃J
t or

(q̃I+q̃J−q̃B)

t → q̃I
t in the relevant spots – to derive the desired

estimates.

5.8 Integral inequality for the high order solution norms

In the next proposition, we combine some of the results derived earlier in Sect. 5 to obtain an integral
inequality for the high order solution norms.

Proposition 5.27 (Top-order energy integral inequalities). Recall that H(γ,k),H(ψ),H(e,ω), and D(t) are
norms from Definition 3.1. Under the assumptions of Proposition 5.1, including the bootstrap assumptions
(3.9), there exists a constant C∗ > 0 independent of N,N0, and A∗ and a constant C = CN,N0,A∗,D,q,σ > 0
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such that if N0 ≥ 1 and N is sufficiently large in a manner that depends on N0, A∗,D, q, and σ, and if ε is
sufficiently small (in a manner that depends on N,N0, A∗,D, q, and σ), then the following estimates hold for
t ∈ (TBoot, 1]:

H2
(γ,k)(t) ≤ CH2

(γ,k)(1)

+ (C∗ −A∗)

∫ 1

t

s−1H2
(γ,k)(s) ds+ C∗

∫ 1

t

s−1H2
(ψ)(s) ds+ C

∫ 1

t

s−1+σD2(s) ds,
(5.53a)

H2
(ψ)(t) ≤ CH2

(ψ)(1)

+ C∗

∫ 1

t

s−1H2
(γ,k)(s) ds+ (C∗ −A∗)

∫ 1

t

s−1H2
(ψ)(s) ds+ C

∫ 1

t

s−1+σD2(s) ds,
(5.53b)

H2
(e,ω)(t) ≤ CH2

(e,ω)(1)

+ C∗

∫ 1

t

s−1H2
(γ,k)(s) + (C∗ −A∗)

∫ 1

t

s−1H2
(e,ω)(s) ds+ C

∫ 1

t

s−1+σD2(s) ds.
(5.53c)

Proof. We stress that throughout the proof, C and C∗ denote constants that have the properties stated in
Sect. 1.11, and that these constants can vary from line to line. In particular, the “final” constants appearing
in (5.53a)–(5.53c) do not have to coincide with the constants appearing in the proof.
To proceed, we first integrate the differential energy identity (5.34) over [t, 1]× TD with respect to ds dx,

sum the resulting identity over all ι with ι = N , use (5.5a) to control the top-order derivatives of the lapse,
use the estimates ∥n− 1∥W 1,∞(Σt) ≲ tσ and ∥e∥W 1,∞(Σt) ≲ t−1+2σ (which are simple consequences of (2.58),
the inequalities in (3.6), and the bootstrap assumptions), and use the Cauchy–Schwarz inequality for integrals
and sums and Young’s inequality to deduce that the following estimate holds for t ∈ (TBoot), 1], where C∗ > 0
and C > 0 are as in the statement of the proposition:∑

|ι|=N

∑
I,J=1,··· ,D

t2A∗+2∥∂ιkIJ∥2L2(Σs)
+

1

2
t2A∗+2

∑
|ι|=N

∑
I,J,B=1,··· ,D

∥∂ιγIJB∥2L2(Σs)

≤ CH2
(γ,k)(1)

+ (C∗ −A∗)

∫ 1

t

 ∑
|ι|=N

∑
I,J=1,··· ,D

s2A∗+1∥∂ιkIJ∥2L2(Σs)
+

∑
|ι|=N

∑
I,J,B=1,··· ,D

s2A∗+1∥∂ιγIJB∥2L2(Σs)

 ds

+
∑
|ι|=N

∑
I,J=1,··· ,D

∫ 1

t

s2A∗+1
∥∥∥K(Border;ι)

IJ

∥∥∥2
L2(Σs)

ds

+
∑
|ι|=N

∑
I,J,B=1,··· ,D

∫ 1

t

s2A∗+3
∥∥∥G(Border;ι)

IJB

∥∥∥2
L2(Σs)

ds

+
∑
|ι|=N

∑
J=1,··· ,D

∫ 1

t

s2A∗+3
∥∥∥M(Border;ι)

J

∥∥∥2
L2(Σs)

ds

+ C
∑
|ι|=N

∑
I,J=1,··· ,D

∫ 1

t

∥sA∗+1∂ιkIJ∥L2(Σs)

∥∥∥sA∗+1K
(Junk;ι)
IJ

∥∥∥
L2(Σs)

ds

+ C
∑
|ι|=N

∑
I,J,B=1,··· ,D

∫ 1

t

∥sA∗+1∂ιγIJB∥L2(Σs)

∥∥∥sA∗+1G
(Junk;ι)
IJB

∥∥∥
L2(Σs)

ds

+ C
∑
|ι|=N

∑
I,J,B,E=1,··· ,D

∫ 1

t

{
∥sA∗+1∂ιγIJB∥L2(Σs) + sσD(s)

}∥∥∥sA∗+1M
(Junk;ι)
E

∥∥∥
L2(Σs)

ds

+ C
∑
|ι|=N

∑
I,J,B,E,F=1,··· ,D

∫ 1

t

s−1+σ∥sA∗+1∂ιkIJ∥L2(Σs)

{
∥sA∗+1∂ιγBEF ∥L2(Σs) + sσD(s)

}
ds.

(5.54)
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Using Lemma 5.21, we deduce that the three integrals involving the borderline terms K
(Border;ι)
IJ ,G

(Border;ι)
IJB ,

and M
(Border;ι)
J are

≤ C∗

∫ 1

t

s−1
{
H2

(γ,k)(s) +H2
(ψ)(s)

}
ds+ C

∫ 1

t

s−1+σD2(s) ds,

and that (in view of Definition 3.1) the three integrals involving the terms K
(Junk;ι)
IJ , G

(Junk;ι)
IJB , and M

(Junk;ι)
J

are ≤ C
∫ 1

t
s−1+σD2(s) ds. Moreover, appealing to Definition 3.1, we see that the integrals

C
∑
|ι|=N

∑
I,J,B,E,F=1,··· ,D

∫ 1

t

s−1+σ∥sA∗+1∂ιkIJ∥L2(Σs)

{
∥sA∗+1∂ιγBEF ∥L2(Σs) + sσD(s)

}
ds

on the last line of RHS (5.54) are ≤ C
∫ 1

t
s−1+σD2(s) ds. From these estimates, we arrive, in view of

Definition 3.1, at the desired estimate (5.53a).
The inequality (5.53b) follows from a similar argument based on the scalar field differential energy identity

(5.41) and the error term estimates of Lemma 5.25; we omit the details.
To prove (5.53c), we first set P := A∗ + q in equation (5.27a) and multiply it by 2[tA∗+q∂ι(eiI − ẽiI)] to

deduce

∂t
{
[tA∗+q∂ι(eiI − ẽiI)]

2
}
=

2(A∗ + q − q̃I)

t
[tA∗+q∂ι(eiI − ẽiI)]

2

+ 2(tA∗+qE
i;(Border;ι)
I )[tA∗+q∂ι(e

i
I − ẽ

i
I)] + 2(tA∗+qE

i;(Junk;ι)
I )[tA∗+q∂ι(e

i
I − ẽ

i
I)].

(5.55)

We then argue as in the proof of (5.53a), but using (5.55) in place of (5.34) and the error term estimates of
Lemma 5.15 in place of those of Lemma 5.21. Summing the resulting inequality over I, i = 1, · · · ,D and also
noting that Cε ≤ C∗, we deduce that the following estimate holds for t ∈ (TBoot), 1]:

t2(A∗+q)∥e∥2
ḢN (Σt)

≤ ∥e∥2
ḢN (Σ1)

+ C∗

∫ 1

t

s−1H2
(γ,k)(s) ds+C∗

∫ 1

t

s−1H2
(e,ω)(s) ds

−A∗

∫ 1

t

s−1
{
s2(A∗+q)∥e∥2

ḢN (Σs)

}
ds+ C

∫ 1

t

s−1+σD2(s) ds.

(5.56)

Next, we note that the one-form components {ωI
i }I,i=1,··· ,D satisfy the same inequality, that is, (5.56) holds

with ω in place of e; to see this, one argues as in the proof of (5.56), but using the evolution equation
(5.27b) with P := A∗+ q and the last two error term estimates in Lemma 5.15. Adding this top-order energy
inequality for the {ωI

i }I,i=1,··· ,D to the inequality (5.56), and considering the definition (3.8b) of H(e,ω)(t),
we arrive at the desired estimate (5.53c). We have therefore proved the proposition.

5.9 Proof of Proposition 5.1

We start by adding the integral inequalities (5.43) and (5.53a)–(5.53c) to obtain, in view of Definition 3.1
and (5.1), the following inequality for t ∈ (TBoot, 1], valid under largeness/smallness assumptions on the
parameters that we describe just below (and we again stress that constants labeled “C∗” – though we allow
them to vary from line to line – are always independent of N0, N and A∗):

D2(t) ≤ Cϵ̊2 + (C∗ −A∗)

∫ 1

t

s−1H2
(e,ω,γ,k,ψ)(s) ds+ C

∫ 1

t

s−1+σD2(s) ds. (5.57)

We now fix A∗ to be sufficiently large so that the factor C∗ − A∗ on RHS (5.57) is negative. For this fixed
value of A∗ and any fixed integer N0 ≥ 1, we choose N to be sufficiently large (in a manner that depends on
N0, A∗,D, q, and σ) and then ε to be sufficiently small (in a manner that depends on N,N0, A∗,D, q, and σ)
such that all of the previous estimates proved in the paper hold true. For this fixed value of A∗, this justifies
inequality (5.57). We now note that the negativity of the factor C∗−A∗ ensures that we can discard the first

time integral on RHS (5.57), that is, for t ∈ (TBoot, 1], we have D2(t) ≤ Cϵ̊2+C
∫ 1

t
s−1+σD2(s) ds. From this

inequality and Grönwall’s lemma, we deduce that D2(t) ≤ Cϵ̊2. From this estimate and (5.6), we conclude
the desired bound (5.2).
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5.10 Existence of perturbed solutions on the entire half-slab (0, 1]× TD

In the next proposition, we use the a priori estimates of Proposition 5.1 and standard local well-posedness/continuation
results to show that the perturbed solution exists on (0, 1]× TD.

Proposition 5.28 (Existence of perturbed solutions on the entire half-slab (0, 1]×TD). Let (Σ1 = TD, g̊, k̊, ψ̊, ϕ̊)
be geometric initial data (see Sect. 1.1) for the Einstein-scalar field equations verifying the constraint equa-
tions (1.2a)–(1.2b) and the CMC condition trk = −1 (see Remark 1.4), and let {̊eI}I=1,··· ,D be the initial
orthonormal frame (on Σ1) constructed in Sect. 5.11. Recall that L(n)(t),H(n)(t), and D(t) are norms from
Definition 3.1 and that ϵ̊ := D(1). Assume that the following conditions are satisfied:

� N0 ≥ 1.

� A∗ ≥ 1 is sufficiently large.

� N is sufficiently large in a manner that depends on N0, A∗,D, q, and σ.

� The norm ϵ̊ defined in (5.1) is sufficiently small in a manner that depends on N,N0, A∗,D, q, and σ.

Then there exists a constant CN,N0,A∗,D,q,σ > 0 such these data launch a perturbed solution

(n, kIJ ,γIJB , e
i
I ,ω

I
i , ψ)I,J,B,i=1,··· ,D

to the reduced equations of Proposition 2.2 that exists classically on (0, 1] × TD and satisfies the following
estimate for t ∈ (0, 1]:

D(t) + L(n)(t) +H(n)(t) ≤ CN,N0,A∗,D,q,σϵ̊. (5.58)

Moreover, if we define gij and g in terms of the reduced variables by gij := ωA
i ω

A
j and g := −n2dt⊗ dt+

gabdx
a ⊗ dxb (where t is the CMC time function and {xi}i=1,··· ,D are the transported spatial coordinates),

then the tensorfields (g, ψ) are also classical solutions to the Einstein-scalar field system (1.1a)–(1.1b) on
(0, 1]× TD.

Proof. We first fix N0 ≥ 1, A∗ sufficiently large, and N sufficiently large such that if the bootstrap smallness
parameter ε is sufficiently small, then all of the estimates proved in the previous subsections hold true on
(TBoot, 1] × TD, as long as the bootstrap assumption (3.9) holds for t ∈ (TBoot, 1]. By standard local well-
posedness, if ϵ̊ is sufficiently small and C is sufficiently large, then there exists a maximal time TMax ∈ [0, 1),
such that the solution (n, k,γ, e,ω, n, ψ) to the reduced equations of Proposition 2.2 exists classically for
(t, x) ∈ (TMax, 1]×TD and such that the bootstrap assumptions (3.9) hold with TBoot = TMax and ε := Cϵ̊.
By enlarging C if necessary, we can assume that C ≥ 2CN,N0,A∗,D,q,σ, where CN,N0,A∗,D,q,σ is the constant on
RHS (5.2). For the reader’s convenience, we now comment on the “standard local well-posedness” mentioned
above. Specifically, readers can consult [6] for the main ideas behind the proof of local well-posedness in a
similar but distinct elliptic-hyperbolic gauge for Einstein’s equations, or [59, Theorem 14.1] for a sketch of a
proof of local well-posedness in CMC-transported spatial coordinates; local well-posedness for the equations
of Proposition 2.2 can be proved via similar arguments. We emphasize that, as is stated in Proposition 2.2,
solutions to the reduced equations (including the constraints) are also solutions to the Einstein-scalar field
system (1.1a)–(1.1b), where the spacetime metric can be reconstructed from the reduced variables via the
equations g = −n2dt⊗ dt+ gabdx

a ⊗ dxb and gij = g(∂i, ∂j) = ωC
i ω

C
j (see (2.7)). Moreover, in view of the

norms defined in Definition 3.1, it is a standard result (again, see [6] for the main ideas) that if ε is sufficiently
small, then either i) TMax = 0 or ii) TMax ∈ (0, 1) and the bootstrap assumptions are saturated on the time
interval (TMax, 1], that is,

sup
t∈(TMax,1]

{
D(t) + L(n)(t) +H(n)(t)

}
= ε. (5.59)

The latter possibility is ruled out by inequality (5.2) when ϵ̊ is small enough. Thus, TMax = 0. In particular,
the solution exists classically for (t, x) ∈ (0, 1]× TD, and the estimate (5.58) holds for t ∈ (0, 1].
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5.11 Construction of the initial orthonormal spatial frame

Thus far, we have not constructed the initial orthonormal spatial frame {̊eI}I=1,··· ,D on Σ1. To achieve
this away from symmetry, we simply apply the Gram–Schmidt process to the transported spatial coordinate
vectorfield frame {∂i}i=1,··· ,D. More precisely, with g̊ denoting the Riemannian metric on Σ1, we set

e̊1 :=
∂1√
g̊11

=
∂1√

g̊(∂1, ∂1)
, (5.60a)

E̊M+1 := ∂M+1 −
∑

L=1,··· ,M
g̊cdδ

c
M+1e̊

d
L︸ ︷︷ ︸

g̊(∂M+1,e̊L)

e̊L, M = 1, · · · ,D− 1, (5.60b)

e̊M+1 :=
E̊M+1√

g̊cdE̊cM+1E̊
d
M+1

, M = 1, · · · ,D− 1. (5.60c)

By construction, for 1 ≤ I, J ≤ D, we have the desired identity g̊(̊eI , e̊J) = δIJ , where δIJ is the Kronecker
delta.
In the polarized U(1)-symmetric case with D = 3, we proceed in a similar fashion, but starting with

e̊3 := ∂3√
g̊33

= ∂3√
g̊(∂3,∂3)

. Note that for metrics that are initially polarized and U(1)-symmetric in the sense

described in Lemma 2.3, this Gram–Schmidt process leads to an initial frame that respects the ∂3 symmetry:
L∂3 e̊I = 0 for I = 1, 2, 3. Hence, Lemma 2.4 ensures that throughout the classical evolution, we have
e3 = ∂3√

g33
and L∂3eI = 0 for I = 1, 2, 3.

5.12 The near-Kasner smallness condition on the geometric initial data

Before proving our main theorems, we will first define a norm of the “geometric” initial data (Σ1 =

TD, g̊, k̊, ψ̊, ϕ̊) minus the background Kasner data. The smallness of this difference will be sufficient for
the validity of our main results. We highlight that the lapse n is not among the geometric initial data; it is a
gauge-dependent quantity that can be controlled in terms of the geometric data. Then, in Lemma 5.29, we
show that if the geometric data are sufficiently near-Kasner, then the full data norm D(1)+L(n)(1)+H(n)(1)
is small, i.e., we have smallness not only for the geometric data, but also for all of the gauge-dependent
quantities such as n− 1, eiI − ẽiI , kIJ − k̃IJ , etc.

To proceed, we let (Σ1 = TD, g̊, k̊, ψ̊, ϕ̊) be an initial data set, as described in Sect. 1.1. Recall that
relative to standard coordinates on TD, the Kasner background data (on Σ1) have the following components:

g̊KASij := δij , k̊
KAS
ij := −q̃iδij , ψ̊KAS := 0, ϕ̊KAS := B̃, where δij is the Kronecker delta, we do not sum

over repeated underlined indices, and by assumption, the Kasner exponent constraints (1.7) are satisfied.
For N ∈ N, we define the following norm which, relative to the standard coordinates on TD, measures the
perturbation of the initial data set away from the Kasner background:

α̊ = α̊(N) :=
∑

i,j=1,··· ,D

∥̊gij − δij∥HN+1(TD) +
∑

i,j=1,··· ,D

∥̊kij + q̃iδij∥HN (TD)

+ ∥ψ̊∥HN+1(TD) + ∥ϕ̊− B̃∥HN (TD).

(5.61)

In the next lemma, we show that the norms appearing in the bootstrap assumptions (3.9) are initially
small, provided α̊ is sufficiently small.

Lemma 5.29 (A near-Kasner smallness condition on the geometric initial data implies smallness of all
solution variables along Σ1). Recall that D(t) is the total norm of the dynamic variables and that L(n) and
H(n) are the norms of the lapse (see Definition 3.1). For N ∈ N, we define

ϵ̊ = ϵ̊(N) := D(1) + L(n)(1) +H(n)(1). (5.62)

Let α̊ be the norm of the perturbation of the geometric initial data away from the Kasner data, as defined in
(5.61). Let {̊eI}I=1,··· ,D be the initial orthonormal frame constructed in Sect. 5.11, and let the initial lapse
n̊ := n|Σ1

be the solution to the elliptic PDE (2.25). Fix N0 ≥ 1. There exists a constant C = CN,N0,D > 0
such that if N is sufficiently large in a manner that depends on N0 and D, and if α̊ is sufficiently small, then

ϵ̊ ≤ Cα̊. (5.63)
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Sketch of the proof. This is a standard result, so we will only sketch the proof. Throughout, we will assume
that α̊ is sufficiently small. From (5.61), we see that the D×D matrix g̊ij is equal to the identity matrix up
to an error matrix whose components are bounded in the norm ∥ · ∥HN+1(TD) by ≲ α̊. From this fact, the
Gram–Schmidt process described in Sect. 5.11, and the standard Sobolev calculus (i.e., estimates of the type
appearing in Lemma 4.1), it follows that for 1 ≤ I, i ≤ D, we have ∥̊eiI − δiI∥HN+1(TD) ≲ α̊, where δiI denotes
the Kronecker delta. To complete the proof of (5.63), we must show that when t = 1, the remaining norms
in Definition 3.1 are all ≲ α̊. This can be achieved by working relative to the standard spatial coordinates
{xi}i=1,··· ,D on Σ1 and using the definition of α̊, the definitions of the quantities appearing in the norms
of Definition 3.1, the standard Sobolev calculus, and elliptic estimates for the lapse, similar to the ones we
used to prove Proposition 5.3. As one example, we will show that ∥γIJB∥HN (Σ1) ≲ α̊. First, we note that

γIJB |Σ1 = g̊abe̊
c
I(∂ce̊

a
J )̊e

b
B + e̊iI e̊

j
J e̊
b
BΓ̊ibj , where Γ̊ibj =

1
2 {∂ig̊bj + ∂j g̊ib − ∂bg̊ij} are the (lowered) Christoffel

symbols of g̊ relative to the spatial coordinates {xi}i=1,··· ,D on Σ1. Thus, from this expression for γIJB |Σ1
,

definition (5.61), the estimates ∥̊eiI−δiI∥HN+1(TD) ≲ α̊ and ∥̊gij−δij∥HN+1(TD) ≲ α̊, and the standard Sobolev
calculus, we conclude the desired bound ∥γIJB∥HN (Σ1) ≲ α̊. This concludes our proof sketch.

6 The two stable blowup theorems

In this section, we prove our two main theorems. The derivation of the a priori estimate (5.58) was the
difficult part of the proof, and based on this estimate, the proofs of the main results will unfold in a natural
fashion.

6.1 Statement of the theorems

In this section, we state the two theorems. The proofs are located in Sect. 6.4. Before proving the theorems,
we will first establish, in separate sections, some of their key aspects. We start by stating our main theorem
for solutions without symmetry.

Theorem 6.1 (Precise version of stable Big Bang formation without symmetry assumptions). Let g̃ :=

−dt⊗dt+
∑D
I=1 t

2q̃IdxI ⊗dxI , ψ̃ := B̃ log t be an explicit generalized Kasner solution on (0,∞)×TD, where

the constants {q̃I}I=1,··· ,D and B̃ satisfy the algebraic constraints
∑D
I=1 q̃I = 1 and

∑D
I=1 q̃

2
I = 1− B̃2 as well

as the following stability condition:

max
I,J,B=1,··· ,D

I<J

{q̃I + q̃J − q̃B} < 1. (6.1)

Note that in the vacuum case, we have B̃ = 0. As we discussed in Sect. 1.4, in the vacuum case, the set
of Kasner solutions satisfying the algebraic constraints and the condition (6.1) is non-empty when D ≥ 10,
while in the presence of a scalar field, the set of Kasner solutions satisfying the algebraic constraints and the
condition (6.1) is non-empty when D ≥ 3. Let k̃IJ = −q̃IδIJ t−1 be the components of the second fundamental
form of Σt relative to the Kasner metric, with respect to the background orthonormal frame vectors ẽI =
t−q̃I∂I , where we recall that we do not sum repeated underlined indices. Let (Σ1 = TD, g̊, k̊, ψ̊, ϕ̊) be geometric
initial data (see Sect. 1.1) for the Einstein-scalar field equations verifying the constraint equations (1.2a)–
(1.2b) and the CMC condition trk = −1 (see Remark 1.4), and let {̊eI}I=1,··· ,D be the initial orthonormal

frame (on Σ1) constructed in Sect. 5.11. Note that ψ̊ = ϕ̊ = 0 corresponds to the Einstein-vacuum equations.
Let

α̊ :=
∑

i,j=1,··· ,D

∥̊gij − δij∥HN+1(TD) +
∑

i,j=1,··· ,D

∥̊kij + q̃iδij∥HN (TD)

+ ∥ψ̊∥HN+1(TD) + ∥ϕ̊− B̃∥HN (TD)

(6.2)

denote the norm of the perturbation of the geometric initial data away from the Kasner data, as defined in
(5.61). Assume that:

� N0 ≥ 1 is a fixed positive integer (we are free to choose N0).
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� A∗ is sufficiently large in a manner that depends on D and the parameters q and σ fixed in (3.6).

� N is sufficiently large in a manner that depends on N0, A∗,D, q, and σ.

� α̊ is sufficiently small in a manner that depends on N,N0, A∗,D, q, and σ.

Then the following conclusions hold.

Existence and norm estimates on (0, 1]× TD. The initial data launch a unique solution

(n, kIJ ,γIJB , e
i
I ,ω

I
i , ψ)I,J,B,i=1,··· ,D

to the reduced Einstein-scalar field equations of Proposition 2.2 existing on the slab (t, x) ∈ (0, 1] × TD.
Moreover, if we define gij and g in terms of the reduced variables by gij := ωA

i ω
A
j and g := −n2dt ⊗ dt +

gabdx
a ⊗ dxb (where t is the CMC time function and {xi}i=1,··· ,D are the transported spatial coordinates),

then the tensorfields (g, ψ) are also classical solutions to the Einstein-scalar field system (1.1a)–(1.1b) on
(0, 1] × TD. In addition, there exists a constant C = CN,N0,A∗,D,q,σ such that the following estimates hold
for t ∈ (0, 1]:

D∑
I,i=1

tq∥eiI − ẽiI∥WN0,∞(Σt) +
D∑

I,i=1

tq∥ωI
i − ω̃I

i ∥WN0,∞(Σt)+
D∑

I,J,B=1

tq∥γIJB∥WN0,∞(Σt)

+

D∑
I,J=1

t∥kIJ − k̃IJ∥WN0+1,∞(Σt) +

D∑
I=1

tq∥eIψ∥WN0,∞(Σt) + ∥t∂tψ − B̃∥WN0+1,∞(Σt)

+ t−σ∥n− 1∥WN0+1,∞(Σt) +

D∑
I

tq−σ∥eIn∥WN0,∞(Σt)

≤ Cα̊,

(6.3a)

D∑
I,i=1

tA∗+q∥eiI − ẽiI∥ḢN (Σt)
+

D∑
I,i=1

tA∗+q∥ωI
i − ω̃I

i ∥ḢN (Σt)
+

D∑
I,J,B=1

tA∗+1∥γIJB∥ḢN (Σt)

+

D∑
I,J=1

tA∗+1∥kIJ∥ḢN (Σt)
+

D∑
I=1

tA∗+1∥eIψ∥ḢN (Σt)
+ tA∗+1∥∂tψ∥ḢN (Σt)

+ tA∗∥n∥ḢN (Σt)
+tA∗+1∥e⃗n∥ḢN (Σt)

+

D∑
I=1

tA∗+1∥eIψ∥ḢN (Σt)

≤ Cα̊.

(6.3b)

Kasner-like behavior. The scalar component functions {tkIJ(t, x)}I,J=1,··· ,D of the renormalized second
fundamental form of Σt with respect to the g-orthonormal frame {eI(t, x)}I=1,··· ,D, as well as the renormalized
time derivative t∂tψ(t, x) of the scalar field, have continuous WN0+1,∞(TD) limits, denoted respectively by39{
κ
(∞)
IJ (x)

}
I,J=1,··· ,D

and B(∞)(x), as t ↓ 0. Moreover, the following estimates hold for t ∈ (0, 1]:∑
I,J=1,··· ,D

∥tkIJ(t, ·)− κ
(∞)
IJ ∥WN0+1,∞(TD) ≤ Cα̊tσ, ∥t∂tψ(t, ·)−B(∞)∥WN0+1,∞(TD) ≤ Cα̊tσ, (6.4a)

∑
I,J=1,··· ,D

∥κ(∞)
IJ + q̃IδIJ∥WN0+1,∞(TD) ≤ Cα̊, ∥B(∞) − B̃∥WN0+1,∞(TD) ≤ Cα̊. (6.4b)

In addition, for each x ∈ TD, the symmetric D×D matrix (−κ
(∞)
IJ (x))I,J=1,··· ,D has D (possibly repeated)

eigenvalues q
(∞)
I (x) – which are the “final” Kasner exponents of the perturbed spacetime – that can be ordered

such that

q
(∞)
1 , · · · , q(∞)

D ∈ C0(TD) (6.5)

39Here we are slightly abusing notation by, for example, using the expression κ
(∞)
IJ (x) to denote the function x→ κ

(∞)
IJ (x).
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and such that the following estimate holds:

∥q(∞)
I − q̃I∥L∞(TD) ≤ Cα̊

1
D . (6.6)

Moreover, the {q(∞)
I (x)}I=1,··· ,D and B(∞)(x) satisfy the following pointwise algebraic relations:

D∑
I=1

q
(∞)
I (x) = 1,

D∑
I=1

[q
(∞)
I (x)]2 = 1− [B(∞)(x)]2. (6.7)

Curvature blowup. The Kretschmann scalar of g, namely RiemαµβνRiemαµβν , blows up as t ↓ 0, as is

evident from the following pointwise estimate, valid for (t, x) ∈ (0, 1]× TD:

RiemαµβνRiemαµβν(t, x) = 4t−4


D∑
I=1

[
(q

(∞)
I (x))2 − q

(∞)
I (x)

]2
+

∑
1≤I<J≤D

(q
(∞)
I (x))2(q

(∞)
J (x))2


+O(α̊t−4+σ)

= 4t−4


D∑
I=1

[
q̃2I − q̃I

]2
+

∑
1≤I<J≤D

q̃2I q̃
2
J

+O(α̊t−4).

(6.8)

Inextendibility. The spacetime is past-inextendible as a C2 Lorentzian manifold.

Remark 6.2 (No regular limit is claimed for the orthonormal frame vectorfields). Despite the convergence
of the renormalized component functions {tkIJ(t, x)}I,J=1,··· ,D, our proof does not yield (or require!) that

the component functions {eiI(t, x)}I,i=1,··· ,D of the frame vectorfields with respect to the transported spatial
coordinates can be rescaled by powers of t so as to have non-trivial, regular limits as t ↓ 0.

Remark 6.3 (In general, no additional regularity is claimed for the final Kasner exponents). Although

κ
(∞)
IJ (x) ∈ WN0+1(TD) (where we assume N0 ≥ 1), in general, the function space C0(TD) in (6.5) and

the norm ∥ · ∥L∞(TD) on LHS (6.6) are optimal (in the class of Cm(TD) spaces with m ∈ N), due to the
fact that the background solution is allowed to have repeated Kasner exponents. However, by analyzing
the dependence of the characteristic polynomial of the matrix (tkIJ(t, x))I,J=1,··· ,D on the entries tkIJ , we

could show that if q̃I ̸= q̃J for 1 ≤ I < J ≤ D, then the space C0(TD) in (6.5) could be replaced with

CN0+1(TD), the norm ∥ · ∥L∞(TD) on LHS (6.6) could be replaced with ∥ · ∥WN0+1,∞(TD), and the factor α̊
1
D

on RHS (6.6) could be replaced with α̊. However, we would have to impose another smallness assumption
on α̊: α̊ ≪ min

1≤I<J≤D
|q̃I − q̃J |. We thank one of the referees for providing helpful comments tied to this issue.

Remark 6.4. The eigenvectors of the symmetric matrix (κ
(∞)
IJ (x))I,J=1,··· ,D might fail to be continuous in

x, for example in the case where the q
(∞)
I (x)’s have contact points of infinite order; see [38, Chapter Two,

Example 5.3].

We now state our main theorem for polarized U(1)-symmetric solutions.

Theorem 6.5 (Precise version of stable Big Bang formation for polarized U(1)-symmetric Einstein-vacuum
solutions in 1 + 3 dimensions). Let g̃ = −dt ⊗ dt + t2q̃1dx1 ⊗ dx1 + t2q̃2dx2 ⊗ dx2 + t2q̃3dx3 ⊗ dx3 be a
“background” Kasner solution on (0,∞)× T3 with Kasner exponents satisfying

3∑
I=1

q̃I =

3∑
I=1

q̃2I = 1, max
I=1,2,3

q̃I < 1. (6.9)

Let k̃IJ = −q̃IδIJ t−1 be the components of the second fundamental form of Σt relative to the Kasner metric,

with respect to the background orthonormal frame vectors ẽI = t−q̃I∂I . Let (Σ1 = T3, g̊, k̊) be polarized U(1)-
symmetric initial data (see Sects. 1.1 and 1.4.2) for the Einstein-vacuum equations verifying the constraint
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equations (1.2a)–(1.2b) (for ψ = 0) and the CMC condition tr̊k = −1 (see Remark 1.4), and such that
X̊ := ∂3 is the hypersurface-orthogonal Killing vectorfield of the data. Let α̊ be the norm of the perturbation
of the initial data away from the Kasner data, as defined in (5.61) (where the scalar field data on RHS (5.61)
are vanishing by assumption). Let {eI}I=1,2,3 be the g-orthonormal frame obtained by constructing the initial
orthonormal frame as in Sect. 5.11 and then using Lemma 2.4 to ensure that throughout the evolution, the
corresponding frame solution to the Fermi–Walker transport equation (2.8) verifies e3 = ∂3√

g33
and L∂3eI = 0

for I = 1, 2, 3, where L denotes Lie differentiation. Assume that the parameters N , N0, A∗, q, σ, α̊ satisfy
the assumptions of Theorem 6.1, where in polarized U(1)-symmetry, q,σ are fixed constants verifying

0 < 2σ < 2σ+max{|q̃1|, |q̃2|, |q̃3|} < q < 1− 2σ. (6.10)

Then the conclusions stated in Theorem 6.1 hold for the solution to the reduced equations of Proposition 2.2
(which also yields a solution to the Einstein-vacuum equations, i.e., (1.1a) with ψ ≡ 0) that arises from the

prescribed polarized U(1)-symmetric initial data (̊g, k̊). Moreover, the solution is polarized U(1)-symmetric in
the sense that relative to the transported spatial coordinates, ∂3 is a hypersurface-orthogonal Killing vectorfield
of the spacetime metric g, and g is of the form (2.37).

6.2 Limiting functions

In the next proposition, we show that the scalar functions {tkIJ(t, ·)}I,J=1,··· ,D and t∂tψ(t, ·) have limits

in WN0+1(Td), as t ↓ 0. Moreover, the limiting fields obey a limiting Hamiltonian constraint equation and
exhibit other “Kasner-like” properties.

Proposition 6.6 (Asymptotic, Kasner-like limits). Under the assumptions and conclusions of Proposition
5.28, the scalar component functions {tkIJ(t, x)}I,J=1,··· ,D of the renormalized second fundamental form of Σt
with respect to the g-orthonormal frame {eI(t, x)}I=1,··· ,D and the renormalized scalar field velocity t∂tψ(t, x)

have continuous limits in WN0+1,∞(TD), denoted respectively by
{
κ
(∞)
IJ (x)

}
I,J=1,··· ,D

and B(∞)(x), as t ↓ 0.

Moreover, the following estimates hold:∑
I,J=1,··· ,D

∥tkIJ(t, ·)− κ
(∞)
IJ ∥WN0+1,∞(TD) ≲ ϵ̊tσ, ∥t∂tψ(t, ·)−B(∞)∥WN0+1,∞(TD) ≲ ϵ̊tσ, (6.11a)

∑
I,J=1,··· ,D

∥κ(∞)
IJ + q̃IδIJ∥WN0+1,∞(TD) ≲ ϵ̊, ∥B(∞) − B̃∥WN0+1,∞(TD) ≲ ϵ̊. (6.11b)

In addition, for each x ∈ TD, the symmetric D×D matrix (−κ
(∞)
IJ (x))I,J=1,··· ,D has D (possibly repeated)

eigenvalues q
(∞)
I (x) – which are the “final” Kasner exponents of the perturbed spacetime – that can be ordered

such that q
(∞)
1 , · · · , q(∞)

D ∈ C0(TD) and such that the following estimate holds:∑
I=1,··· ,D

∥q(∞)
I − q̃I∥L∞(TD) ≲ ϵ̊

1
D . (6.12)

Moreover, the {q(∞)
I (x)}I=1,··· ,D and B(∞)(x) satisfy the following pointwise algebraic relations:

D∑
I=1

q
(∞)
I (x) = 1,

D∑
I=1

[q
(∞)
I (x)]2 = 1− [B(∞)(x)]2. (6.13)

Proof. Let {tn}∞n=1 ⊂ (0, 1] be a decreasing sequence of times such that limn→∞ tn = 0. A straightforward
modification of the proof of (5.48), based on the evolution equation (5.31a) and the estimate (5.58), yields

that when 0 < a < b ≤ 1, we have ∥akIJ(a, ·) − bkIJ(b, ·)∥WN0+1,∞(TD) ≲ ϵ̊
∫ b
a
s−1+σD(s) ds ≲ ϵ̊bσ. Hence,

{tnkIJ(tn, ·)}∞n=1 is a Cauchy sequence in WN0+1,∞(TD), and its limit, which we denote by κ
(∞)
IJ , verifies

∥κ(∞)
IJ − tkIJ(t, ·)∥WN0+1,∞(TD) ≲ ϵ̊tσ. In particular, ∥κ(∞)

IJ − kIJ(1, ·)∥WN0+1,∞(TD) ≲ ϵ̊. Since ∥kIJ(1, ·) +
q̃IδIJ∥WN0+1,∞(TD) = ∥kIJ(1, ·) − k̃IJ∥WN0+1,∞(TD) ≲ ϵ̊, we infer from the triangle inequality that ∥κ(∞)

IJ +
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q̃IδIJ∥WN0+1,∞(TD) ≲ ϵ̊. We have therefore proved (6.11a) and (6.11b) for κ
(∞)
IJ . Moreover, the symmetric

matrix (κ
(∞)
IJ (x))I,J=1,··· ,D is O(̊ϵ)-close to the diagonal matrix diag(−q̃1, · · · ,−q̃D). Thus, at each fixed x,

−(κ
(∞)
IJ (x))I,J=1,··· ,D is diagonalizable, and by standard perturbation theory (see [63, Theorem 1.4 in Chapter

IV]), its (possibly repeated) eigenvalues qI(x) can be ordered such that q
(∞)
1 (x), · · · , q(∞)

D (x) ∈ C0(TD) and
such that the following estimate holds:∑

I=1,··· ,D

|q(∞)
I (x)− q̃I | ≲

∑
I,J=1,··· ,D

∣∣∣κ(∞)
IJ (x) + q̃IδIJ

∣∣∣ 1
D

. (6.14)

From (6.14) and (6.11b), we conclude (6.12).
The convergence results and estimates for t∂tψ can be proved in a similar fashion by making straightforward

modifications to the proof of (5.51).
To derive the first relation in (6.13), we employ the CMC condition (2.17) (which is equivalent to −1 =

tkCC) and the estimate ∥κ(∞)
IJ − tkIJ(t, ·)∥WN0+1,∞(TD) ≲ ϵ̊tσ proved above to deduce the following pointwise

estimate:

−1 = ttrk(t, x) = O(̊ϵtσ) + trκ(∞)(x) = O(̊ϵtσ)−
D∑
I=1

q
(∞)
I (x), (6.15)

where to obtain the last equality, we used that the trace of the D×D matrix (κ
(∞)
IJ )I,J=1,··· ,D is the sum of

its eigenvalues −q(∞)
1 , · · · ,−q(∞)

D . Taking the limit t ↓ 0 on RHS (6.15), we obtain the desired relation.
To derive the second relation in (6.13), we multiply the Hamiltonian constraint (2.26a) by t2 and use

the estimate (5.58), the inequalities in (3.6), and the estimates ∥κ(∞)
IJ − tkIJ(t, ·)∥WN0+1,∞(TD) ≲ ϵ̊tσ and

∥B(∞) − t∂tψ(t, ·)∥WN0+1,∞(TD) ≲ ϵ̊tσ noted above to deduce the following pointwise estimate:

1 = t2kCD(t, x)kCD(t, x)−t2 {2eCγDDC − γCDEγEDC − γCCDγEED} (t, x)
+ n−2[t∂tψ(t, x)]

2 + t2[eCψ(t, x)]eCψ(t, x)

= κ
(∞)
CD (x)κ

(∞)
CD (x) + [B(∞)(x)]2 +O(̊ϵtσ) =

D∑
I=1

[q
(∞)
I (x)]2 + [B(∞)(x)]2 +O(̊ϵtσ).

(6.16)

The desired second relation in (6.13) now follows from taking the limit t ↓ 0 on RHS (6.16). This completes
the proof of the proposition.

6.3 Monotonic blowup of curvature

In the following proposition, we show that the Kretschmann scalars of the solutions studied in the present
paper blow up like t−4.

Proposition 6.7 (Monotonic blow up of the Kretschmann scalar). Under the assumptions and conclusions
of Proposition 5.28, the Kretschmann scalar RiemαµβνRiemαµβν obeys the following pointwise estimate for

(t, x) ∈ (0, 1]× TD, where the functions {q(∞)
I (x)}I=1,··· ,D are as in the conclusions of Proposition 6.6:

RiemαµβνRiemαµβν(t, x) = 4t−4


D∑
I=1

[
(q

(∞)
I (x))2 − q

(∞)
I (x)

]2
+

∑
1≤I<J≤D

(q
(∞)
I (x))2(q

(∞)
J (x))2


+O(̊ϵt−4+σ)

= 4t−4


D∑
I=1

[
q̃2I − q̃I

]2
+

∑
1≤I<J≤D

q̃2I q̃
2
J

+O(̊ϵt−4).

(6.17)
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Proof. We first use the standard symmetries and antisymmetries of the Riemann curvature tensor of g to
compute the following identity for its Kretschmann scalar:

RiemαµβνRiemαµβν = Riem(eA, eI , eB , eJ)Riem(eA, eI , eB , eJ)

+ 4Riem(e0, eI , e0, eJ)Riem(e0, eI , e0, eJ)

− 4Riem(eA, eI , e0, eJ)Riem(eA, eI , e0, eJ).

(6.18)

Next, using the Gauss equation (2.29), the estimate (5.58), the inequalities in (3.6), and the convergence
estimate (6.11a) for tkIJ , we derive the following pointwise estimate:

t2Riem(eA, eI , eB , eJ) = (tkIJ)(tkAB)− (tkAJ)(tkBI) +O(̊ϵ)tσ = κ
(∞)
IJ κ

(∞)
AB − κ

(∞)
AJ κ

(∞)
BI +O(̊ϵ)tσ. (6.19)

Similarly, with the help of the Codazzi equations (2.33) and (2.19), we compute the following pointwise
estimate:

t2Riem(eA, eI , e0, eJ) = t2 {ecA∂ckIJ − ecI∂ckAJ − γAIBkBJ − γAJBkIB + γIABkBJ + γIJBkAB}
= O(̊ϵ)tσ.

(6.20)

Similarly, with the help of (2.28) and (2.22a), we deduce the following pointwise estimate:

t2Riem(e0, eI , e0, eJ) = −tkIJ − (tkIC)(tkCJ)

+ t2 {ecD∂cγIJD − ecI∂cγDJD − γDICγCJD − γDDCγIJC − (eIψ)eJψ}

= −κ
(∞)
IJ − κ

(∞)
IC κ

(∞)
CJ +O(̊ϵ)tσ.

(6.21)

Inserting (6.19)–(6.21) into (6.18), we deduce the following pointwise estimate:

RiemαµβνRiemαµβν

= t−4
{
(κ

(∞)
IJ κ

(∞)
AB − κ

(∞)
AJ κ

(∞)
BI )(κ

(∞)
IJ κ

(∞)
AB − κ

(∞)
AJ κ

(∞)
BI ) + 4(κ

(∞)
IJ + κ

(∞)
IB κ

(∞)
BJ )(κ

(∞)
IJ + κ

(∞)
IC κ

(∞)
CJ )

}
+O(̊ϵt−4+σ).

(6.22)

Consider now the symmetric matrix K := (κ
(∞)
IJ )I,J=1,··· ,D, whose eigenvalues are −q(∞)

I , · · · ,−q(∞)
D . Using

that for m ∈ N, we have tr(Km) =
∑D
I=1[−q

(∞)
I ]m, we rewrite the expression in braces on RHS (6.22) as

follows:

(κ
(∞)
IJ κ

(∞)
AB − κ

(∞)
AJ κ

(∞)
BI )(κ

(∞)
IJ κ

(∞)
AB − κ

(∞)
AJ κ

(∞)
BI ) + 4(κ

(∞)
IJ + κ

(∞)
IB κ

(∞)
BJ )(κ

(∞)
IJ + κ

(∞)
IC κ

(∞)
CJ )

= 2[tr(KK)]2 + 4tr(KK) + 8tr(KKK) + 2tr(KKKK)

= 4


D∑
I=1

[
(q

(∞)
I )2 − q

(∞)
I

]2
+

∑
1≤I<J≤D

(q
(∞)
I )2(q

(∞)
J )2

 .

(6.23)

Combining (6.22)–(6.23), we arrive at the first equality stated in (6.17). To prove the second equality stated

in (6.17), we simply use (6.11b) to replace all factors of κ
(∞)
IJ on RHS (6.22) with −q̃IδIJ up to O(̊ϵ) error

terms (which, in view of the factor of t−4 in front of the braces in (6.22), leads to the error term O(̊ϵt−4) on
RHS (6.17). This completes the proof of the proposition.

6.4 Proof of Theorems 6.1 and 6.5

We first prove Theorem 6.1. The conclusions regarding existence and norm estimates, generalized Kasner
behavior, and blow up of curvature follow from Propositions 5.28, 6.6, and 6.7, and the estimate (5.63). The
C2-inextendibility is a direct consequence of the curvature blowup.

To prove Theorem 6.5, we simply note that the polarized U(1)-symmetric solutions satisfy the same
estimates as the solutions from Theorem 6.1. Hence, the same arguments used to prove Theorem 6.1 also
yield Theorem 6.5. Finally, we note that the symmetry properties of polarized U(1)-symmetric solutions
relative to CMC-transported spatial coordinates stated in the conclusions of the theorem are provided by
Lemma 2.3.
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[56] H. Ringström, Wave equations on silent big bang backgrounds, arXiv:2101.04939.

[57] H. Ringström, On the geometry of silent and anisotropic big bang singularities, arXiv:2101.04955.

[58] I. Rodnianski and J. Speck, A regime of linear stability for the Einstein-scalar field system with applica-
tions to nonlinear big bang formation, Ann. of Math. (2) 187 (2018), no. 1, 65–156.

[59] I. Rodnianski and J. Speck, Stable big bang formation in near-FLRW solutions to the Einstein-scalar
field and Einstein-stiff fluid systems, Selecta Math. (N.S.) 24 (2018), no. 5, 4293–4459.

[60] I. Rodnianski and J. Speck, On the nature of Hawking’s incompleteness for the Einstein-vacuum equa-
tions: The regime of moderately spatially anisotropic initial data, to appear in JEMS, preprint available
at https://arxiv.org/abs/1804.06825 (2018), 1–73.

[61] J. Speck, The maximal development of near-FLRW data for the Einstein-scalar field system with spatial
topology S3, Comm. Math. Phys. 364 (2018), no. 3, 879–979.

[62] F. St̊ahl, Fuchsian analysis of S2 × S1 and S3 Gowdy spacetimes, Class. Quant. Grav. 19 (2002), no. 17,
4483–4504.

[63] G. W. Stewart and Ji-guang Sun, Matrix perturbation theory, Computer Science and Scientific Comput-
ing, Academic Press, Inc., Boston, MA, 1990. xvi+365 pp.

[64] R. Wald, General Relativity, University of Chicago Press, Chicago, IL, 1984. xiii+491 pp.


	Introduction
	The Cauchy problem for the Einstein-scalar field equations
	The Einstein-scalar field equations
	The initial value problem formulation and the initial data
	Globally hyperbolic developments

	Connections with the Hawking–Penrose singularity theorems
	Beyond the Hawking–Penrose singularity theorems
	The models
	Regimes with no symmetry assumptions on the perturbed initial data
	The definition of the polarized U(1)-symmetry class

	Rough version of the main theorem
	Background on ``Kasner-like behavior:'' Heuristics
	Related works
	Big Bang formation under symmetry assumptions
	The construction of solutions with Big Bang singularities – without a proof of stability
	Stable Big Bang formation without symmetry assumptions
	Conditional Kasner-like behavior

	Overview of our proof
	The gauge
	The lapse, the dynamic variables, and the ``less singular'' nature of spatial derivative terms
	Approximately diagonal form of the structure coefficient evolution equations
	The bootstrap argument and initial discussion of the behavior of the high order energies
	The behavior of the low order L norms
	The high order energy estimates

	Applicability of the method
	Polarized T2-symmetry
	Potential further applications

	Paper outline
	Notation and conventions
	Acknowledgments

	Analytic setup and the formulation of the Einstein-scalar field equations
	The reduced equations relative to a CMC-transported orthonormal frame
	The form of the spacetime metric, the lapse, and the transported spatial coordinates
	The orthonormal frame
	The second fundamental form, the CMC condition, and the connection coefficients
	Curvature tensors
	The reduced equations

	Polarized U(1)-symmetry
	Propagation of symmetry
	The normalized Killing direction in polarized U(1)-symmetry in 1+3 dimensions

	The background Kasner variables

	Norms, bootstrap assumptions, and key parameters
	Running assumption
	Some additional differentiation notation
	Sobolev norms of the reduced variables
	Key parameters
	Definitions of the solution norms
	Bootstrap assumptions

	Basic estimates and identities
	Interpolation and product inequalities
	Two simple commutation formulas

	Main estimates
	Statement of the main a priori estimates
	Schematic notation
	Borderline terms vs. Junk terms
	Control of the lapse n in terms of the dynamic solution variables
	Equations for controlling the lapse
	A standard elliptic identity
	Control of the error terms in the top-order commuted lapse equation
	Proof of Proposition ??

	Preliminary identities and inequalities for k, , e, and 
	The key evolution equation verified by the structure coefficients
	Pointwise estimates for the error terms in the structure coefficient evolution equations
	Absence of certain structure coefficients in polarized U(1)-symmetry
	Commuted evolution equations for e and 
	Pointwise estimates for the error terms in the frame component evolution equations
	L2-control of the error terms in the top-order commuted frame component evolution equations
	Commuted equations for k and 
	Pointwise estimates for the error terms in the spatial metric evolution equations
	Differential energy identity for the second fundamental form and connection coefficients
	Control of the error terms in the top-order commuted spatial metric equations

	Preliminary identities and inequalities for the scalar field 
	Commuted evolution equations for e0  and eI 
	Pointwise estimates for the error terms in the scalar field evolution equations
	Differential energy identity for the scalar field
	Control of the error terms in the top-order commuted scalar field evolution equations

	Integral inequality for the low order solution norms
	Integral inequality for the high order solution norms
	Proof of Proposition ??
	Existence of perturbed solutions on the entire half-slab (0,1]TD
	Construction of the initial orthonormal spatial frame
	The near-Kasner smallness condition on the geometric initial data

	The two stable blowup theorems
	Statement of the theorems
	Limiting functions
	Monotonic blowup of curvature
	Proof of Theorems ?? and ??


