ASYMPTOTICALLY KASNER-LIKE SINGULARITIES

GRIGORIOS FOURNODAVLOS AND JONATHAN LUK

ABSTRACT. We prove existence, uniqueness and regularity of solutions to the Einstein vacuum equations
taking the form

3
Wg=—dt? + Z aijt*Pmaxiii} dzt dzd
i,j=1
on (0,T]¢ x T2, where a;;(t, z) and p;(z) are regular functions without symmetry or analyticity assumptions.
These metrics are singular and asymptotically Kasner-like as ¢ — 07. These solutions are expected to be
highly non-generic, and our construction can be viewed as solving a singular initial value problem with
Fuchsian-type analysis where the data are posed on the “singular hypersurface” {t = 0}. This is the first
such result without imposing symmetry or analyticity.
To carry out the analysis, we study the problem in a synchronized coordinate system. In particular,
we introduce a novel way to perform (weighted) energy estimates in such a coordinate system based on
estimating the second fundamental forms of the constant-t hypersurfaces.
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2 GRIGORIOS FOURNODAVLOS AND JONATHAN LUK

1. INTRODUCTION

The Kasner spacetime ((0,+o00) x T3,(4) g), where

3
(1.1) Wg=—dt* +) #7(da')?

i=1

(with p; being constants such that Z?:l p; = Z?:l p? = 1) is an explicit solution to the Einstein vacuum
equations

(1.2) Ric(Wg) = 0.

As long as all p; # 0, the Kasner solution moreover represents a singularity as t — 07. This is manifested in
particular by the blowup of the Kretschmann scalar RwagR“”o‘B .

In an influential paper [33], Lifshitz—Khalatnikov considered the class of spacetimes solutions to (1.2)) with
the form

3
(1.3) (4)9 = —dt? + ZtQPiwi?
=1

where w; are spatial 1-forms with a “finite limit” as ¢ — 0" and p; = p;(z) are now spatially-dependent func-
tions satisfying Zle pi(x) = Zle p?(z) = 1. The spacetime metrics are Kasner-like asymptotically
as t — 07 except that the Kasner exponents are now functions. They are also sometimes called asymptot-
ically velocity term dominated (AVTD), a terminology that is used to mean that the asymptotics near the
singularity is described by a simpler system of velocity term dominated equations [I6, 20]. Importantly, it
is argued in [33] that this class of spacetime solutions to depend only on three “functional degrees of
freedom”, which is one fewer than that for the Cauchy problem of , and they are therefore expected to
be highly non-generic.

In this paper, we construct a large class of solutions to with the asymptotically Kasner-like behavior
of . Our construction in fact has full three functional degrees of freedom and includes all the space-
times considered in the heuristics in [33] (see Remark [1.5). Some previous constructions are known with
either analyticity or symmetry assumptions (see Sectio; our construction is the first without such
assumptions.

More precisely, our goal will be to construct a metric taking the form

Wy = —dt’+¢
1.4 5 o
(14) = —de? + Z aijt2p"‘““~”dxl da’,

i,j=1

where (¢, 21, 2%, 2%) € (0,T] x T3 for some T > 0, p; : T?> — R are smooth, time-independent functions, and
aij + (0,T] x T3 — R are smooth functions (symmetric in ¢ and j) which extend to continuous functions
: [0,T] x T — R. Moreover, a;; obey
(1_5) lim Qij (t,.’l?) = Cij (CIL’),

t—0+
where ¢;; are some prescribed smooth functions (symmetric in ¢ and j).

Notice that in the language of , the ansatz imposes the condition wy; A dw; = 0 for wy = aléldxl.
As we will explain in Remark this condition is what restricts the functional degrees of freedom in our
construction.

We will prove existence, uniqueness and regularity of solutions of the form . The following is our main
ezistence theorem:

Theorem 1.1 (Existence of solution). Suppose the following assumptions hold:

(1) The (time-independent) functions c;;, p; : T> — R are smooth for i,j = 1,2,3, and that ¢;; = cj;.

(2) Z?:l pi(x) = Z?Zl p3(z) =1 pointwise.
(3) It holds that pi(x) < p2(x) < p3(x) < 1 pointwise.
(4) It holds that c11(x), caa(x), cs3(z) > 0.
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(5) The following three asymptotic differential constraint equations are satisfied:

3
0; 9
(L6) S | Zt ) 20! g 2] ) g =108
= L Cu €11€22€33
where k' = —p; (without summing), k1® = (p1 —p2) S22, Ko = (p2 — p3) &2, K1® = (p2 — p1) B2 +

(p1 —p3) &2 and Rt =040 <i, Lymiy =1 if 0>, Ly =0 if £ < 0.
Then there is a C? solution to the Einstein vacuum equations (1.2)) of the form (1.4), for a T > 0 depending
on ¢i;, i, which satisfies (1.5]).

Remark 1.2 ((1.4) is a Lorentzian metric). Notice that under condition (3), the eigenvalues of g as in (1.4))
are approximately t?Picy; (i = 1,2, 3) for small t. Hence, given p; as in the theorem and the condition (1.5)),
it follows that (1.4]) is a well-defined Lorentzian metric in all of (0,Ty] x T3, for some T > 0.

Remark 1.3 (Localizing the assumptions). For technical convenience, we assume that there is a global
system of coordinates on T? so that the assumptions of Theorem hold. One may in principle hope to use
a localization argument to construct more general spacetimes for which we require only that around every
point in T3, there is a coordinate patch (w1, 2, x3) such that the assumptions of Theorem hold. This,
however, is not carried out in the present paper.

Remark 1.4 (Asymptotic CMC condition and asymptotic constraints). The conditions (2) and (5) in The-
orem guarantee that a metric of the form (1.4) satisfies asymptotically, along the level sets of ¢, 1) the
constraint equations and 2) the CMC gauge to leading order, as t — 07. More precisely, condition (2) is
equivalent to

(1.7) lim t(trk) = —1, lim ¢*[R(g) — |k|* + (trk)?] = 0,

t—0t+ t—0+

while condition (5) is equivalent to

(1.8) lim ¢(V;k;/ — V;trk) =0, i=1,2,3;
t—0+

see Lemma Note that condition (2) is algebraic in the Kasner exponents p;’s, while condition (5) is
differential in the ¢;;’s.

Remark 1.5 (Functional degrees of freedom and considerations in [33]). Note that ¢;; and p; consist of 9
functions. On the other hand, the assumptions (2) and (5) in Theorem impose a total of 5 conditions,
leaving 4 functional degrees of function.

There is in fact an additional residual gauge freedom, namely, we can introduce a change of coordinates

(1.9) =2l =22 = f(at 2?0,

for some smooth f such that % # 0, then the resulting metric will have the same form as (in the
sense that the new g1 term is O(t?P1), the new gi2, goo terms are O(t?P2), and the new g3, g23, 33 terms
are O(t?rs).)

Thus, there are a total of 3 functional degrees of freedom, which is one fewer than that for the initial value
problem for the Einstein vacuum equations. It is for this reason that [33] argued that metrics of the form

(1.4) are non-generic.

Notice that while we only construct a non-generic class of spacetimes, we do construct a class that includes
all the metrics considered in [33] (modulo the endpoint case; see Remark [1.6]). Indeed, using the change of
coordinates in (|1.9)), one can locally change coordinates to the form

g = apt*™ (dxl)2 + agt?P? (d:r2)2 + agst?Ps (dx?’)2 + 2a1otP2datdz® + 2a5tP*datda®,

which is exactly the local form of the metrics considered in the work of Lifshitz—Khalatnikov; see [33] equation
(3.25)].

Remark 1.6 (Some limiting cases). Our analysis degenerates in any of the limits p3 — 1 or p;11 —p; = 0
(see (3) in Theorem [1.1)). A particularly interesting limiting case that we do not cover is when

(€T pi(e) = 5, (o) = pole) = 2} #0,
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but still assuming ps(z) < 1, Vz. While we do not cover this case, it is possible that [29] is relevant. Notice
that to handle possible terms with pa(z) = ps(z), we need a new argument in constructing the approximate
solution in Section [2| but the analysis in the subsequent sections could in principle be carried out along the
same lines.

Finally, we note that allowing p1(z) = —3%, p2(z) = p3(z) = 2 would also be relevant to constructing
Schwarzschild-like singularities since locally the Schwarzschild singularity could be modeled by the Kasner

singularity with p; = —%, Py =p3 = % (cf. [21] and discussions in Section [1.2.1)).

We now turn to uniqueness. It is hard to talk about geometric uniqueness in the above singular initial
value problem, since the setup itself includes the expression of the spacetime metric. However, we can
obtain uniqueness in our gauge, i.e. within the class of metrics satisfying (1.4) . More precisely, we prove
that given two solutions of the form which (1) obey the estimates nd which is proven in
Theorem and (2) converge to each other sufficiently fast as ¢ — 0%, then they must in fact be the same.

Theorem 1.7 (Uniqueness of solutions). Given the assumptions of Theorem there exists M, € N
sufficiently large (depending on the given data p; and c;;) such that the following holds.

Let Wg, Mg be two C3 solutions to the Finstein vacuum equations of the form in (0,T] x T3
for some T > 0, such that

o the corresponding a;; and G;; converge to c;; with the following rate

(1.10) > (109 (ai; — ci)| + 105 (@i — cij)|) = O(F);
la| <2
e the corresponding ki = —%(g_l)ﬂatgjg and ki = —%(g—l)-ﬂatgjg obey the following estimates

1
(L1 Y > (870 (ke — ¢ )+ 10705 (ki — 7 k?)]) = O(min{t e, ¢ e,

r=0 |a|<2—r

and
e the g— g and 0:(g — §) converge to 0 sufficiently fast in the following sense:

(1.12) Yo > 1pog(g - gl = oM.

=0 |a|<8—r

Here, ¢ = min{min, (p3 — p2)(x), min, (1 — p3)(z)} > 0, and k;’ as in Theorem .
Then Mg =®g on (0,T] x TS.

Remark 1. 8 (Asymptotics determined by approximate solutions). In the proof of our existence result
(Theorem |1. , we construct a sequence of smooth approzimate solutions {g™} 720 for which we get more
precise asymptotic information, as ¢ — 07, as n increases; see already Sections t I and [3 I The actual
solutions that we construct in Theorem [I.1] then have asymptotics determined by an approximate solution
g[“] (for some large n). From this point of view, one way to interpret our uniqueness result (Theorem j is
to say that for n sufficiently large, there is in fact only one solution whose asymptotics are governed by g™/

Remark 1.9 (Regularity implies asymptotic expansion). Given any M, € N, there exists A € N sufficiently
large such that if (1.10) and (1.11)) are replaced by the stronger regularity assumptions

(1.13) > (102 (ai; — cij)| + 102 (@ — cij)]) = O(F),
la]<A
and
(1.14) Z ST (070 (kS — 1 )|+ 10702 (ki — ¢ k7)) = Ofmin{t e g2y
r=0 |a|<A—r

then in fact the convergence condition follows as a consequence. In fact, in this case both g and §
have the leading asymptotics given by an approximate solution gi® for large n (see Remark [1.8)), which then
implies . This can be proven by revisiting the argument for constructing the approximate solutions in
Theorem 2.I1 We omit the details.
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Finally, we state our main regularity theorem. We remark that initially our proof of the existence theorem
(Theorem |1.1)) only constructs a solution with finite regularity. In order to obtain smoothness, we need an
additional argument which relies on the uniqueness result (Theorem ; see Section m

Theorem 1.10 (Smoothness of solutions). Given the assumptions of Theorem[I.1], there is a smooth solution
to the Einstein vacuum equations (1.2) of the form (L.4) in (0,T] x T2, for a T > 0 depending on c;j, p;,
which satisfies (L.5)).

In the remainder of the introduction, we will briefly discuss the ideas of the proof (Section [1.1]) and some
related works (Section [1.2)).

1.1. Ideas of the proof.

1.1.1. Fuchsian analysis of a model wave equation. As far as the singularity is concerned, our basic strategy
(which is quite standard, see for instance [29]) can be most easily explained by a model semilinear equation.
Consider the following nonlinear wave equation

(1.15) Oy¢ = (3:4)°

on a Kasner spacetime with constants p; < ps < p3 < 1 satisfying Zle P = Z?le? = 1. (Note
that the structure of the nonlinear terms plays no role here, and the nonlinearity (9;¢)? is chosen here for its
simplicity.)

The analogue of our main result in this setup would be to construct bounded solutions to the nonlinear
model equation . However, the results of [2] imply that even for the linear wave equation, generic data
on say, {t = 1}, give rise to solutions that blow up as O(log %) as t — 07. Thus, in order to obtain bounded
solutions to , the solution that we build has to be special. This is achieved by imposing the leading
order behavior of ¢(t,x) = ¢o(x) + error, where ¢o(z) is a prescribed smooth function which is the limit of
o(t,z) as t — 0. In fact, we build our solution as ¢(t,z) = Z;L:O ¢;(t,x) + ¢@ where ¢; are increasingly
precise approximations of ¢, and ¢(9 is determined by the condition lim,_,o ¢¥ = 0.

Our strategy contains two steps:

(1) (Approximate solution) It is easy to first build an approzimate solution by stipulating an ansatz
o (t,z) = Z;L:O ¢;(t, z), where
e ¢o(t,x) = ¢o(x) is the prescribed leading order behavior,
e ¢, obeys the better estimates |9%¢;(t,z)| <qa,; 15, and
o [02{0,6M(1, ) — (D612 (2, 2)}| Saun t2H D2,
This expansion can simply be obtained inductively by solving iteratively as an ODE in t.
Here, we have the flexibility to carry out the expansion to an arbitrary order n so as to achieve an
arbitrarily good (in terms of the ¢-rates as ¢ — 07) approximation to a solution to .
Without analyticity, however, one cannot hope to show that this series converges. Instead we
perform energy estimates for the error.
(2) (Energy estimates) First notice that for an energy defined by

3
€)= 3 [, (@0 2

|8l<4 i=1

&
0,00 ¢[?) da,

it is easy to obtain an estimate of the form (e.g. with Cy = 2)

L) < e+ ey
dt t
The issue is with the borderline singular term %5 (t), which cannot be treated by Gronwall’s
inequality (since limsup,_,o+ t~“°E(t) = +oc). Nevertheless, this is where the approximation con-
structed in the previous step becomes useful: instead of controlling the full solution ¢, we bound the
difference quantity ¢(9 := ¢ — ¢[?!, which for n sufficiently large
e can be made to approach 0 with a fast polynomial rate as ¢ — 0T, and
e satisfies an inhomogeneous nonlinear wave equation where the inhomogeneity also — 0 with a
fast polynomial rate.
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Define now an energy £4 with ¢ replaced by ¢(9). For any large N € N, we can find n € N large
enough (corresponding to a good enough approximation) such that under appropriate bootstrap
assumptions,

Co Chp

d
Z el < (d) N
dtg (t) <( n + tl_E)S (t) + Cut™,

where C,, may depend on n, but importantly, the constant Cj in the borderline term is independent of
n. The inhomogeneous C,,tN term arises from the fact that ¢(?) satisfies an inhomogeneous equation,
and N can be arbitrarily chosen as long as n is also taken to be large. Thus, we obtain an estimate

d N C Cp

%(t—Ng(d) () + ?@—Ng(d)) < (70 + F)(t_Ng(d) () + C.
Recall now moreover that for n sufficiently large we have lim,_,o+ (¢~ NVE@ (¢)) = 0. Moreover, first
choosing N large (by taking n large) and then taking ¢ small (depending on n), it follows that
T NED) on the LHS dominates (52 + ;22 )(t~VE@(¢)) on the RHS. This gives an estimate for
t=Negd(¢),

Once such energy estimates can be proven for the error ¢(?), we can in fact deduce ezistence of solutions
as follows. Choosing a sequence ¢t; — 0%, we solve for a sequence of solutions {¢r}:2, to (1.15) with
(61,0:01) Timt,= (6" 0,6™]) [,_;,. The energy estimates above allows us to show that {¢; o, can be
solved in [t;,T] x T2 for uniform T > 0 and that there is a limit which solves (1.15) in (0,77 x T3.

1.1.2. Construction of solutions to the Finstein vacuum equations in synchronized coordinates. While the
Fuchsian analysis is quite robust, we must also address the quasilinear, tensorial nature, as well as the gauge
invariance, of the Einstein equations.

If one were to prescribe a wave-coordinate-type gauge, then the construction of the approximate solution
will be algebraically very complex. Instead, we consider a system of synchronized coordinates, i.e. we impose
that the metric takes the form

(1.16) Wg = —dt? + gij da’ da? = —dt? + t?Pmaxtiit g5 da dad.

This gauge captures important anisotropic features of Kasner-like singularities. In particular, assuming that
the a;;’s are C? up to {t = 0}, we know that |g;;| ~ t*Pmax(isr, |(g71)¥| ~ ¢t ~2Pmin{is}; and importantly (see
Lemma [2.6)) that

(1.17) [Ric,7(g)] ~ £, |Ric(g)], ~ t2**.

In such a gauge, the construction of an approximate solution becomes more tractable. The difficulty,
however, is shifted to the estimates for the error terms. Indeed, even when no singularities are present, it is
a priori not clear that the Einstein vacuum equations are hyperbolic in the gauge (|1.16)); see discussions in
Section [LT.4l.

1.1.3. Constructing approximate solutions. Following ideas laid out in Section [1.1.1] we first construct ap-
proximate solutions and then use energy estimates to obtain actual solutions to the Einstein vacuum equation.
In order to construct approximate solutions, the first step is to solve a system of first order evolutionary equa-
tions. The evolutionary equations will be treated as a system of ODEs in ¢ (compare Step 1 in Section|1.1.1]).
In order to close the ODE analysis, we crucially rely on the bounds , which show that the spatial Ricci
curvature is slightly better than critical, but we also need to additionally make use of the structure of the
full system. We outline some main points here:

e The main difficulty in solving the system of ODEs is that there are many borderline terms, i.e. linear
terms with O(t™1) coefficients. It turns out that these terms have a reductive structure. By this we
mean that we can consider different components in a sequence of steps. In each step, there are two
type of terms with a borderline O(t~!) coefficient with the following properties.

— One type can be handled by introducing an integration factor. The integration factor gives a
power of ¢ which is consistent with the initial conditions that we impose.
— Another type of terms with borderline coefficients involve only terms which have been controlled
i previous steps.
— Any other linear terms must have a coefficient that is better, at least O(t=17¢).
Such a structure is important both in estimating the metric components (Lemmas and
the components of the (approximate) second fundamental form (Lemmas .
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e In anticipation of the energy estimates needed to construct an actual solution, we also need to treat
different components on different footing in the ODE analysis. An example of this is that while for
1 < 7, we only prove that (k:[“])ij = O(t™1); for i > j, we need a better estimate and the improvement
we need depends on the precise 4, j under consideration; see Lemma[2.8] Such estimates can be traced
back to (1.17)), but also require the precise structure of the system.

e Another technical difficulty is that the variable k[ we work with is only approximately the second
fundamental form.

The evolutionary equations solved in the first step roughly asserts that the spacetime Ricci curvature
components Ric((Yg);7 vanish with a very fast rate. Our second step is then to show that

o kM is asymptotically (as t — 07) approximately the second fundamental form of the constant-t
hypersurfaces, and
e all other spacetime Ricci curvature components also vanish sufficiently fast as ¢t — 0F.

Both of these are achieved again by ODE analysis. For the first point, we need again a reductive structure,
which is similar to the type used for the evolutionary equations. For the second point, the constraints as
manifested both in the conditions on the Kasner exponents and asymptotic constraint equations play a
crucial role. See already Lemmas [2.13 and Proposition

1.1.4. Energy estimates in synchronized coordinates. It is a priori unclear that under a gauge condition as
in , the metric components themselves satisfy any hyperbolic system. The main new ingredient is to
consider a “wave-type equation” satisfied by the second fundamental form k;7 of the spatial slice. Since this
is already new for a local existence problem without singularities, we will indicate the ingredients needed only
for a local existence result for regular data, i.e. for this subsubsection suppose we are given geometric data
(X, g, k) satisfying the (usual) constraint equations and we explain how to construct a spacetime solution to
the Einstein vacuum equations in the gauge (|1.16)).

Assuming that a metric of the form obeys the Einstein vacuum equations, we can deduce that the
second fundamental form k;7 obeys the following system of second order equations:

(1.18) Otk = Agki? — ViVl + (kxkx k) + (0:k % k)7,

where k % kx k and 9;k * k are nonlinear terms to be specified in in Section

Notice that is not actually a wave equation, due to the term V;V7k,‘ on the RHS. The key is that
the trace of k, i.e. k¢’ in fact can be proven to have additional regularity if we further use the Einstein vacuum
equations. First, the Einstein vacuum equations imply that

Oikst = |2
Now we consider h = k¢* to be a separate variable and consider the coupled system for (g, h, k):
dth = [k|?,
(1.19) Ok = Agkid —ViVIh+ (kxkx k)7 + 0k x k)7,

Drgij = — 2ki*gje.

(This system must hold for h = &, if the Einstein vacuum equations are satisfied.) We then attempt to solve
with initial data where (g5, ki7) is as given, h = k,* and 9;k;7 = Ric(g)i? +k¢'k;? (which is completely
determined by the geometric data).

The apparent difficulty in solving is a potential loss of derivatives. For instance, energy estimates
for the second equation requires two derivative of h and give only first-derivative estimates for k. The first
equation, however, does not seem to give two derivatives for h if we only have one derivative for k. A similar
issue arises for g and k& when we consider commutators for the second equation.

This can nevertheless be resolved by a renormalization together with elliptic estimates. As an example, we
illustrate how to obtain second derivative estimates for h when only controlling one derivative of k. Commute
the first equation with A, so that we have, up to error terms,

NAGh =2k Ak + ...
The idea now is to use the second equation in (|1.19)) so that we obtain
O (Agh — 2k O4k;") = 2k (0] + D)kl + ... = ...



8 GRIGORIOS FOURNODAVLOS AND JONATHAN LUK

This allows us to control Agh even only controlling one derivative of k. The other second derivatives of h
can then be bounded by Agh using elliptic estimates. This avoids the loss of derivatives.

Standard energy estimates together with this renormalization/elliptic estimates trick indeed give a solution
to (1.19). Furthermore, the choice of initial data and the structure of the equations allow one to propagate
the symmetry of g;; and giok;*. Using moreover the Hamiltonian constraint R(g) — |k|* + (trk)? = 0, it
can be shown a posteriori that h = k,*. In particular, we also have that 0;k,* = |k|?, which implies that
R’L.C((4)g)tt = U.

Finally, we need to upgrade the existence result to a bona fide existence result of solutions to the
Einstein vacuum equations in the gauge , i.e. we need to show that all the Ricci components vanish
(in addition to Ric(®™g)s). For this purpose, first note that (after accounting for symmetries) the second
equation in gives a system of 6 first order homogeneous equations in Ric;/((Y'g) and Ricy(Vg). At
the same time, three of the (contracted) second Bianchi equations give another 3 first order homogeneous
equations in Ric;’(Mg) and Ricy(Mg). (The fourth equation is redundant, and does not give us extra
information.) It turns out that these 9 equations form a coupled system of wave-transport equations (see
and ) This wave-transport equations is similar in structure to , and can also be treated
using energy estimates together with renormalization/elliptic estimates. Moreover, the momentum constraint
and the choice of initial data, when solving (L.19), together, guarantee that Ric;?((Yg) and Ric,;(Wg) are
initially vanishing. Combining all these we obtain that Ricij((‘l) g) = 0 and Rz’cti((‘l) g) = 0 everywhere,
implying that the constructed solution to indeed obeys the Einstein vacuum equations.

Obviously, in our setting, we need to handle simultaneously the existence theory and the fact that the
metric becomes singular as ¢ — 0. For this we combine the ideas here and Section A few technical
issues arise. For instance, the Kasner-type geometry dictate that we do not have uniform control of the
isoperimetric constants as t — 07. Some care is therefore needed in the application of Sobolev embedding; in
particular we need to be careful which terms are to be put in L?/L> type spaces. Finally, we note that the
Fuchsian ideas in Section are used not only in solving the system , but are also used in verifying
that the solution to is indeed a solution to the Einstein vacuum equations.

1.1.5. Uniqueness and regularity. To prove uniqueness, we again rely on the wave equation satisfied by the
second fundamental form, and perform ¢-weighted energy estimates in a similar way as proving existence.
The only subtlety here is that we must impose that the metrics converge to each other sufficiently fast as
t — 0T in order to close the estimate (cf. the statement of Theorem .

Finally, we prove higher regularity relying on the uniqueness result. The issue at stake here is that for
each additional derivative we try to control, the estimate in terms of ¢ worsens by one power. Thus, the
approximation we choose has to be successively better for higher and higher derivatives. We then redo the
construction of solutions for better and better choices of the approximations. The uniqueness result ensures
that we have in fact constructed the same solution, thus showing that the already constructed solution has
arbitrarily high derivative bounds.

1.2. Related works.

1.2.1. Fuchsian constructions of singular spacetimes. Many works have been carried out to construct AVTD
singularities in (3 + 1)-dimensional vacuum spacetimes. All previous works assume either symmetry or
analyticity (or both). The symmetry classes are typically chosen so that AVTD singularities are expected
to be stable within that class. We give a sample of such results, but refer the reader also to the references
therein for further details.

Gowdy symmetry. AVTD singularities in (unpolarized) Gowdy symmetry was first constructed by
Kichenassamy and Rendall [30] in the analytic category, in part based on the formal expansion carried out
n [25]. A similar analysis was carried out by Rendall without the analyticity assumption in [36]. See also
[46] for more general topologies, and [5] for a treatment in generalized wave gauges.

Polarized T? symmetry. Analytic AVTD singularities under polarized T? symmetry were first con-
structed in [20]; analyticity was later removed in [4].

U(1) polarized or half-polarized symmetry. Analytic solutions with AVTD behavior in polarized or
half-polarized symmetry with T2 topology were constructed by Isenberg—Moncrief in [28]. That for more
general topology was later carried out in [12].
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Beyond (3 + 1)-dimensional vacuum spacetimes. The first construction of analytic solutions with
AVTD behavior without symmetries was carried out in [7], albeit not for the Einstein vacuum equations.
Indeed, the construction in [7] was for the Einstein—scalar field or Einstein—stiff fluid system. An important
difference is that in the presence of a scalar field or stiff fluid, one expects AVTD singularities to be stable
[10, @]. A similar stability phenomenon is expected to occur in vacuum for spacetime dimensions > 11
[19]. Correspondingly, there is a construction of AVTD singularities for high dimensional vacuum (and more
general) solutions in [18]. See also Section [1.2.2}

Analytic singular spacetimes without symmetry assumptions. All the works above concern regimes
(either in symmetry classes or with matter, or in high dimensions) which at least heuristically should gener-
ically have AVTD behavior near the spacelike singularity. In a recent work of Klinger [32], analytic vacuum
AVTD spacetimes with no symmetry assumptions have been constructed. The work [32] can be viewed as
similar to our result except for requiring the analyticity assumption and some additional inequalities on
the Kasner exponents p;’s. (These additional inequalities were used in [32] to apply a black-box Fuchsian
theorem.)

Asymptotically Schwarzschild singularity up to a singular 2-sphere. Finally, we mention the
work [21] of the first author, who constructed a class of spacetimes approaching the Schwarzschild black hole
singularity. The construction requires no symmetry or analyticity assumptions. While it does not include a
full spacelike singular hypersurface, the construction does include a spacelike singular 2-sphere.

1.2.2. Stable singularities in general relativity. By “function-counting” arguments (cf. Remark, the class
of spacetimes we construct are not expected to be stable. For the vacuum equations in (3 + 1) dimensions,
the only known stable singularities are in fact null; see [35] [34] [I7]. These singularities are in stark contrast
with the AVTD ones, which are spacelike.

As we already mentioned in Section [1.2.1] it has been suggested that in the presence of a scalar field or
stiff fluid [I0L 9], or in the vacuum case in spacetime dimensions > 11 [I9], there is an open set of initial data
which give rise to asymptotically Kasner-like singularities. It is also for this reason that in these settings, the
construction of spacelike singularities with AVTD behavior is simpler.

Spectacular progress has recently been made which indeed proves stability of spacelike singularities in the
aforementioned settings. In the case of Einstein—scalar field or Einstein—stiff fluid, this was carried out in
the breakthrough work by Rodnianski-Speck [43] [44] and later generalized by Speck [45]. In the case of high
dimensions, assuming spacetime dimensions > 39, Rodnianski—Speck has recently also constructed a class of
stable spacelike singularities in vacuum [42]. (Note that the remarkable works of Rodnianski-Speck do not
cover the whole regimes in [I0, @, [19]. Whether all of the solutions discussed in [I0} [0} [1T9] are stable remains
an open problem.)

Very recently, the first author and Alexakis considered the stability problem for the Schwarzschild singu-
larity [1]. Unlike the settings studied by Rodnianski-Speck, the Schwarzschild singularity is unstable, but
nonetheless it was shown in [I] to be stable within the class of polarized azisymmetric perturbations.

1.2.3. Strong cosmic censorship. The understanding of AVTD singularities played an important role in un-
derstanding the strong cosmic censorship conjecture, at least under Gowdy symmetry.

The strong cosmic censorship conjecture has first been resolved in the polarized Gowdy case in [16]. The
work relies in particular on [27], in which AVTD singularities in this setting were studied.

The more general case of the strong cosmic censorship conjecture in unpolarized Gowdy symmetry turned
out to be significantly more difficult in view of the so-called “spikes”. This has been treated in the seminal
work of Ringstrom [39] (see also [38]). Here, a form of asymptotic velocity term domination has been
established [37] and plays an important role.

It should again be stressed that outside symmetry classes (Gowdy, polarized T?, polarized U(1), etc.),
AVTD singularities are most likely not generic, and the role of the study of AVTD singularities in the
ultimate resolution of strong cosmic censorship conjecture is quite unclear.

1.2.4. Numerical works. A discussion of the large number of related numerical works will take us too far
afield. For this we will refer the reader to [I1] and the many references therein.

1.2.5. Linear wave equations on singular spacetimes. A closely related thread of works concerns solving the
linear wave equation on a spacetime with a spacelike singularity, including Kasner, FLRW and Schwarzschild.
See for instance [31], [3, [40], 22] 2] [4T], 8, [24].
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1.2.6. FEinstein equations in transport coordinates. At the heart of our approach is the ability to perform
energy estimates in the gauge 7 corresponding to a choice of coordinates such that (¢, %) are all trans-
ported by the unit normal to the spacelike hypersurfaces {t = constant}; recall Section We highlight
previous works where smooth solutions to the Einstein equations are constructed in gauge where the spatial
2* coordinates are transported, i.e the metric takes the form

(1.20) —a?dt? + g;;dz’da’.

The first is the work of Rodnianski-Speck [43, 44] (in which they constructed stable spacelike singularities;
see discussions in Section above), where « is determined by stipulating that each constant-¢ hypersurface
has constant mean curvature. See also [23] for a different approach in handling this gauge. (Constant
mean curvature foliations, but without spatially transported coordinates, have been previously used. See for

instance [6], which used spatially harmonic instead of spatially transported coordinates.)
The second is the work of Choquet-Bruhat-Ruggeri [I4], in which the authors consider the spacetime

metric of the form (1.20) and impose the condition o = 4/ gzzg , where e is some arbitrary but fixed (i.e. t-

independent) Riemannian metric. They show that in such a gauge, the Einstein equations are hyperbolic.

1.3. Outline of the paper. We end the introduction with an outline of the remainder of the paper.

The first part of the existence proof will be to construct an approzimate solution. This will be carried
out in Section [2| where we give the construction and show that evolutionary equations are approximately
satisfied. In Section [3| we then show that the constraint equations are also approximately satisfied.

In Section (4| and [5| we then construct an actual solution, thus completing the proof of Theorem This
will be carried out in two steps: in Section [4 we will solve an appropriate system of reduced equations, then
in Section |5 we show that the solutions to the reduced equations that we have constructed in fact obey the

Einstein vacuum equations.
Finally, in Section@ we end with the proofs of uniqueness (Theorem and smoothness (Theorem [1.10]).

1.4. Acknowledgements. G.F. would like to thank Lars Andersson, Satyanad Kichenassamy, Jacques
Smulevici and Jared Speck for useful communications.

G.F. is supported by the ERC grant 714408 GEOWAKI, under the European Union’s Horizon 2020 research
and innovation program. J.L. gratefully acknowledges the support of the NSF grant DMS-1709458.

2. CONSTRUCTION OF AN APPROXIMATE SOLUTION

We work under the assumptions of Theorem In particular, we fix p; and ¢;; to be as in Theorem [1.1

Unless explicitly stated otherwise, all the implicit constants (given either in the < or the big-O or the
- < C- notation) that we have in our arguments, from now on, may depend on p; and ¢;;. Many estimates
in this section will involve an n € N or a multi-index «. Unless otherwise stated, all constants may depend
also on n and «a.

Our goal in this section is to construct an approximate solution, i.e. we will construct inductively a metric

(4)g[n] (n € NU {0}), which takes the form (1.4]), but with a[?] in place of a;;; as well as an approximate

E?] are constructed so that lim,_,q+ ag?] (t,x) = cij(x). We will

second fundamental form (kM);7. These a
moreover show that the pairs (g[“], k[“]) we construct indeed form an approximate solution to the evolution
equation, i.e. as n becomes larger, 9;(k™);7 — Ric(g™);7 — (k)£ (k)7 tends to 0 faster as t — 0%; see
already Theorem

Unless otherwise stated, we will also be using the Einstein summation convention for repeated indices,
with lower case Latin indices running through 1,2,3. It should be noted that sometimes we will still write

out the sum explicitly in situations that confusion might arise (e.g. when one has factors of tPmax{i.i}),
Definition of (4)g[n] and k™. Define (4)g[0} by setting

(2.1) aE(;] = ¢ij.

Now given g®~1 n € N (and assuming that it is a Riemannian metric on (0,,] x T%), define k™ by

(22) 0 (k)7 = Ric(g™ )7 + (KIM)* (K0),7,

subject to the following condition at ¢ = 0:

(2.3) |(k[n])ij —_ tillﬁ:ij‘(t,l') — O(tflJra)’
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where £ is defined by x;* = —p; ( for every i = 1,2, 3, without summing), k1% = (p; —po) &2 L, Ko = (p2—p3) 22,
k12 = (—p1 + p2) 222 + (p1 — p3) 22 and ki = 01if i > j; and given k™ n € N, define g™ by

(2.4) drgyy = — (k™) gp — (k) g,

subject to the following condition at ¢ = 0:

(2.5) Jajj! — cil(t,z) = O(F°),

where we recall that a[ is related to ¢gi®! via (T.4). It readily follows from (2.4) that the inverse metric
(g~ satisfies the equation:

(2.6) Ae((g™™) 1) = (K7 (™)) + (R (™) 71"
Our goal in this section is to establish the properties of the above sequences {g}1>5 {kPI} 29 given in
the following theorem:

Theorem 2.1. Let p; and c;; be as in the Theorem 1.1, Define

€= min{mxin(pg —pg)(x),ngn(l —p3)(x)} > 0.

Then for n € N, there exist t, > 0 (depending on p;, ¢;; and n), a smooth Lorentzian metric (4)g[n] and a
(1,1)-tensor (k)7 on (0,t,] x T3 such that the following holds.
[n]

(1) (4)g[n] takes the following form for some smooth functions a;;’ : (0,t,] x T3 — R (symmetric ini,j):
0] 3 3
Wg™ = —dt® + Z gl-;-l]da?’ de! = —dt* + Z ag-‘]1f2pm'<"‘“37}dgcZ da’.
i,j=1 i,5=1

(2) (Convergence to initial data) For every multi-index a, every i, j and every n € N, the functions agt.l]

J
and (E™),7 satisfy

(2.7) sup 02 (al) (¢, ) — ci5(2))] < Cant?,
€T3
(2.8) sup |97 (k) (t,2) =tk (2)]] < Can min{e 148, g7 1Fe720a 200,
€T3

for some Co, > 0 depending on p;, c;j, in addition to o and n. (Recall the definition of r;
immediately after )

(3) (Estimates for spatial curvature) For every multi-index «, every i, j and every n € N, the spatial
Ricci curvature satisfies

1

(2.9) sup Zt*\aaa’"mc( ()3 (t, )| < Cyppmin{t—2+e, ¢=2Fe= 204200}
z€T3 [ 7

for some Cy > 0 depending on p;, c;j, in addition to o and n.
(4) (k:[“] is an approzimate second fundamental form) For every multi-index o, every i, j and every
n €N,

(2:10) ZL”IGW (K + (g 0917 (1, 2) < G702,

for some Cqo.n > 0 depending on p;, c;j, in addition to o and n.

Evolution equations approzimately satisfied) For every multi-index o, the tensors (k™);7 I also
Y Y g
satisfy

(2.11) sup Z "
zeT? r=0

ocor (@(/{[n])ij _ Ric(g[“])ij _ (k[“])/(k[“])ij)‘ (t,z) < Ca,nt_2+("+1)57

for some Co , > 0 depending on p;, c;j, in addition to o and n.
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Remark 2.2. All the ¢ in the error terms in Theorem can be improved almost to 2e (or exactly to 2¢ if
we allow some powers of logt in the error terms). Some estimates can even be further sharpened. We will
be content with the weaker estimates for the sake of simplicity of the exposition.

Remark 2.3. The definition of €, together with conditions (2)—(3) in Theorem imply that

1 2 2
(2.12) —§§p1§—5> ESPzSg, gﬁpsﬁl—& P3 — P2 = €.
This can be easily checked by using the following parametric form of the Kasner exponents p1, po, p3:
—u 1+u u(l 4+ u)
2.13 =—, =, =—", €, .
(2.13) LOI SR TN =T u e Ps = T u e u € [L,+o0)

which is valid at each point x € T3, u = u(x).

In the rest of the section, we will prove Theorem see the conclusion of the proof at the end of the
section. (In particular, in the course of the proof, it can be seen that g[“] and kM are well-defined.)

2.1. Estimates for ¢l°.

Lemma 2.4. There exists to > 0 (depending on c;; and p;) such that the following are true for (t,z) €
(0, t()] x T3:
(1) The determinant of det gl% satisfies, for some C' > 0 (depending on c;j and p;),
(214) | det g[O] (t, LL’) — 611022033t2‘ S Ct2+8.
(2) The eigenvalues A1 < Ay < A3 of gl% satisfy, for some C' > 0 (depending on cij and p;),
|>\i — 42pi Cii‘ < Ct2rite,

In particular, choosing to smaller if necessary, gl® is a Lorentzian metric on (0, o] x T3.
(3) For every multi-index «, the inverse metric (gl%)~" satisfies, for some Cy, > 0 (depending on «a, ci;

and p;),
$—2r1 _ ciacazt”2P1 (c12c93—cr3C92)t ™ %P1
e €11¢22¢33 Clico2css
0l\—1 —2p —2p2 ciac13—c11c23)t” P2 —1y[0
(215) (g[ ]) = — C12¢€agt i ( 12l U 23) + (g )[er]rora
€11C22033 C22 ., €11€22C33
(c12c23—c13c22)t™ “P1 (c12c13—ci1c23)t™ “P2 t—2r3
€11€22C33 €11€22C33 c33

where 93 (7)) Svor)| < Ct~2Pmintiay +e,
Proof. This is a simple computation and the proof is omitted. O
It will be convenient to define also
(2.16) (KO = — 3 ((6) P Duglf).
The following lemma gives an estimate for (k[°1),7.

Lemma 2.5. For every multi-index «, there exists Co, > 0 (depending on «, in addition to c;; and p) such
that the following estimate holds for all (t,x) € (0,to] x T3:

05 [(KO)7 — 7 k7| (8, ) < Cot ™.
Proof. By the definition of g, it is easy to see that

21t ey 2potPP ey 2pattiTeps
0,90 = | 2pat?P2 1y 2pot?P2legy  2pat?P3 ooz | + (9,9)9,.
2pst?Psleys  2pst?PiTleys 2pst?Prless

where |09((8,9)%or)ij| < Cot2Pmestisy =14¢ . Recalling that (kl0);7 := f%((g[o])’l)ﬂ@tgl[g}, the conclusion
of the lemma can be achieved by combining the above computation with Lemma, [2.4 O

The next lemma estimates the Ricci curvature of a general metric g = Zf’ =1 a;jt?Pmaxtiar dzt dod when
a;; satisfies some basic bounds. This in particular gives an estimate for Ric(g[ol)ij .
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3

Lemma 2.6. Suppose g is a metric on (0, T|xT? taking the form Y g = fdt2+ZM=1

where a;; are smooth, symmetric and obey the estimates

|05 aij|(t, ) < Cq, |02 Opasj|(t, z) < Cat ™,

i +2Pmax{i,j} ot dz’,

for some C, > 0.
Then for every multi-index «, there exists Cl, > 0 (depending on C,, in addition to ¢;; and p) such that
the following estimate holds for all (t,x) € (0,T] x T3:

1
(2.17) > 171020 Ric(g)i|(t, x) < Clmin{t 2T, ¢=2Fe=2pit2piy
r=0
In fact, the following slightly stronger estimate holds:

1
(2.18) Ztr|8§‘8fRic(g)ij\(t,x) < ¢! min{t~2F2|log t|?Flel| =22 2p+2p:
r=0

Proof. Clearly (2.18) implies (2.17); from now on we focus on the proof of (2.18).

For notational convenience, in this proof we write g® = (g=1)?.
Here is the basic observation. For a pairing g**9.g.. (note the one contracted index), we have

gabacgae _ O(t72pmin{a,b}+2pmax{a‘e})| 10gt| < O(\ logt\).

log t|2F1ly.

Similarly,
(9cg**)(Dagae)s 9°*0zagae = O(| logt[?).
So in order to give an estimate for the Ricci curvature, we will find pairs of g~
share at least one indez.
To make the algebraic structure clear, we will focus on proving the estimate with || = 0 and r» = 0 in
Steps 1 and 2, and then indicate the necessary changes in Steps 3 and 4.

I and derivatives of ¢ which

Step 1: Proof of the upper bound t=2+¢. We recall the formula for the Ricci curvature:
(2.19) Ric(g)i? = 9" 0%, — g™ 0al3, + g*"TLTG, — 9T T,

and that for the Christoffel symbols

(2.20) ab = %gce(aagbé + Obgar — OeGab)-

Hence, we notice that every term in has either of the forms

(2.21) 900,19 00,96,05), 9792 00,90,0,9"" Ots Grotr

where among the ¢;’s there is an upper j and a lower ¢ index, while the rest are contractions among themselves
and with respect to a,b.
For the first kind of terms in (2.21]), using Lemma we notice that they are of order

(2.22) |gaball[gézlsae4ge566” 5 |1Ogt|2t72pmin{a,b}72p1nin{£2,£3}+2pmax{25‘£6}7

where the pair {5, /s} contains at least one of the indices a, b, f2, 3. Hence, we have either —2pyin{a,p} +
2pmax{€5,€6} >0or _2pmin{€2,€3} + 2pmax{55726} >0, leaving

|gab8£1 [96263 854955%” 5 | 10gt|2t_2m 5 | log t|2t_2+28a
for some ¢. On the other hand, the second term in (2.21)) satisfies:

ab _£10 Lol
|g g 28@39@4@59 ¢ 78@sgf9flo|
5 | logt|2t—2p)nin{a,b}—2pmin{21,l2}+2pmax{£4,é5}_2pmin{[6727}+2pmax{lg’glo}’

where at least three from the indices a, b, {1, {2, {g, {7 are contracted against three of the indices 44, 5, £y, {10.
This implies that at least two pairs of exponents having opposite signs, among

{_2pmin{a,b}a _2pmin{€1,€2}v 2pmax{Z4,25}a _2pmin{€6,€7}v 2pmax{lg,llo}}a
yield non-negative sums, thus, leaving only

|gabgélézafsgf4£59%&8589591510| S |10gt|2t72p’5 5 |10gt|2t72+26'
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Step 2: Proof of the upper bound t=2+=2Pi+2Pi . We now move on to prove the improved estimates when
1> j (when i < j the desired estimate follows from that proven in Step 1). As we are now familiar with this
type of argument, let us just consider the contribution from the second type of term in (the first type
of terms can be treated similarly). We now separate out the factor of g/¢ (which gives a contribution of at
worst of O(t72Pi)), i.e. we write
g]ng1Z2aﬁsgﬁdsgeﬁ&a&gfg@m’

where exactly one of the £, is b and exactly one of the £, is 7. It is easy to check that at least one of the
following must hold:

o After relabelling g% 853954359%&6489@9410 = gélcﬁgsggﬂg%dagggggd, so that by our basic observation
%200, 90,0, O0s guge,, = O(|logt|?). As a result, the whole term contributes O(t~2Pi|logt|?),
which is better than O(t~2+e=2pPi+2pi),

e After relabelling, we have one of the following

97°9°°9Y 0agarOegvi,  97° 9 9V Dagandegyi-
For the first term, after noting g% 9,g4r = O(]logt|), g%¢ = O(t=272%), ¢9* = O(t=%i) and D.gp; =
O(t?ri|logt|), we have g7®g*g¥ ,garOcgp;i = O(t‘2+28_2pﬂ'+2pi|logt|2)l < O(t=2Fe=2pi+2pi) For
the second term, note that g% 0,94 = O(|logt|), g% = O(t=2+%), g* = O(t~2Ps) and O.gp; =
O(t?Pi|logt]), which then again gives the desired estimate.

Step 3: Higher derivative bounds. It is easy to see that after differentiating by 0%, we at worst pick up

additional powers of | logt|l®l, we then obtain the desired estimate also for higher derivatives of Ric(g);’.

Step 4: Time derivative. For 029, Ric(g);’, the argument is almost identical. Indeed, exploiting the form of
the metric and using the estimate for 95 0.a,;, we notice that 0,g;; = O(t2Pmaxtiiy =1) 9, g% = O(t=2Pmintiiy 1)
and similar behaviors for their spatial derivatives (up to logarithms). Hence, a power of t~1 can be factored
out, leaving terms with factors that behave as in the previous steps. This completes the proof of the
lemma. ]

2.2. Estimates for k!,

Lemma 2.7. Consider the nonlinear transport equation

2
u
8tu:f+t—2,

where f: (0,1) x T3 = R is a function such that |f|(t,xz) < t° for some § > 0. Then there exist t, € (0,1)
and a unique solution u : (0,t,) x T> — R such that |u|(t,z) < t1+°.
Assuming moreover that |09 f|(t,z) So t°. It also follows that |0%u| <o t1°.

Proof. This is proven by a standard Picard iteration, with some extra care tracing the ¢ dependence; we omit
the details. O

Lemma 2.8. Suppose the following holds for some N > 1: there exists ty—1 > 0 such that for every
0<n<N—1 and every multi-index o, g™ satisfies the following estimate for some Con > 0 (depending
on a, n, in addition to c;; and p;) for all (t,z) € (0,ty_1) x T3:

(2.23) 102l — ¢ij)|(t, ) < Cant®.
Then, there exists ty € (0,tn_1) sufficiently small such that for every 1 < n < N and every multi-index
o, the following holds for all (t,x) € (0,ty_1) x T? for some C,, ,, > 0 (depending on o, n, in addition to c;

and p;):
02 [(K™)i? =t ki7]I(t @) < Of min{e™ 178, ¢ 1o 2pot2niy,

Proof. The key difficulty in solving (2.2)) is that there are borderline terms with O(¢t~1) coefficients so that we
cannot directly apply Gronwall’s lemma. One can nevertheless analyze the precise structure of the equations.
Step 1: Solving an auziliary system. We first solve an auxiliary system

[n] — [n—1] [n])2
(224 Ol = R(g1) + (hl*)) |
3t(k[“])/ = Ric(g—1);7 4 plol(g0l),7
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The first equation in (2.24)) can be rearranged to
1 1
(2.95) DU () 4 2)] = P R(g ) + () 4 1)

Using the bound |R(g!*~ )| < ¢=2*¢ from the assumptions on g*~1 together with Lemma (2.25) can
be solved using Lemma with hl? satisfying
1

(2.26) 102 (hm) 4 IS e,

Now the second equation in (2.24)) can be rearranged to

Orlt(kI™)7] = tRic(g )7 + (W + e(k), .

Using ([2.26]), Gronwall’s inequality and the estimate in Lemma it follows that there is a unique solution
(kIP1),7 that obeys the initial condition (2.3) and satisfies
(2.27) 0 (k™)7 — t7 k7] < minfg e, ¢ reT 2R
Step 2: Finishing the argument. Now that we have solved ([2.24)) and obtained estimates (2.26) and (2.27)),

in order to conclude the argument, it suffices to show that in fact Al = (k[®),f. To this end, it suffices to
note that

1 1
Ol () + )] = £ R(g 1) + £2(KI) " + )%,
Hence, comparing this equation with (2.25), we obtain h®) = (k)¢ by the uniqueness statement in
Lemma 2.7 "

Lemma 2.9. Suppose the following holds for some N > 2: there exists ty_1 > 0 such that for every
1 <n <N —1 and every multi-index o, g™ satisfies the following estimate for some Con > 0 (depending
on a, n, in addition to c;j and p;) for all (t,z) € (0,ty_1) x T3:
(2.28) 102 (ol — a2 )|t 2) < Camt™.

Then, taking ty € (0,tny_1) smaller (compared to Lemma@) if necessary, for every 2 < n < N and every
multi-index o, the following holds for all (t,x) € (0,txy_1) x T2 for some Cl, > 0 (depending on o, n, in
addition to ¢;; and p;):

(2.29) 1021k — (k=19 (¢, 2) < Cl e,

Proof. Step 1: Estimates on the Ricci curvature. The estimate (2.28) implies that
(2.30) |03 [Ric(g"™)i? — Ric(g™ 1) 7|(t, ) S 7272 log ¢

for every 0 < n < N — 1. Indeed, arguing as in the proof of Lemma we notice that the difference of
the 9% derivative of the Ricci curvatures can be bounded by the differences aE?] - ag?_l] (and their spatial
derivatives), multiplied by a term that is controlled by t~2+2¢|log ¢|>*1®!. In particular, ([2.30) implies
(2.31) |05 [Ric(g™™);7 — Ric(g!™))|(t, @) S ¢ e,
Step 2: Estimates on (k™);7. The assumption (2.28)) implies the assumption of Lemma holds. Hence by
Lemma [2:8
(2.32) S IR — 7 (8 2) S
for every 2 <n < N.

In particular, since (by definition) t~'x;* = 1, (2.32) implies that

(23 ORI+ 2l ) S 0

Step 3: Estimates on the difference (k)7 — (kI2=11),7. Using (2.2)), we obtain, for 2 < n < N, that
DK — (K1)

B3 Rietgn ) = Riclg™ )+ (K1) — (K- + ) — (1))
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It turns out to be useful to first control the trace of k™ — k®=11. Taking the trace of , we obtain
De((kP);" = (KIPH)%) = R(g™ M) = R(gI21) 4 ((RI),7 4 (R0 (R = (R1),0).
This implies
. . . . 2 . .
e[t ((KIP);* — (KM = 2 (R(g!" 1) = R(g™ %)) + (R0 + (k1) + 7 P((RIP)" — (k).

By (2.31) in Step 1, the estimate (2.33)) in Step 2, the condition (2.3)) and Gronwall’s inequality, it easily
follows that

(2.35) 0% (kM) — g=1yi (4 2) < ¢ 1Hne

for every 2 <n < N.
We now return to (2.34), which we rewrite as follows.
(k™ = k), 7))
. . . 1 .
= t(Ric(g™ )7 — Ric(g2)7) + (kP — k=10, (kM7 4 (k1) 4 ;]t(k[n] — k=g,

By (2.31)) in Step 1, the estimates (2.32)) and (2.33) in Step 2, the estimate (2.35) that we just proved, the
condition (2.3)) and Gronwall’s inequality, we obtain

|0 (k™ — k)| (¢ 2) S tne
for every 2 < n < N, which is what we want to prove. O

[n]

2.3. Estimates for a;

Lemma 2.10. Forn € N and gl[?] defined by (2.4)—(2.5), the corresponding aE?] obeys the equation

3ta£?] _ Zt2pmax{e,j}f2pmaxw,j} ((k[n] _ k[o])/ag?] + (k[o])/(aé?] _ %_))

(2.36) ¢ 0y
_ Zt2pmaX{5,i}_2pmaX{i,j} <(k[n] _ k[O])jeaZ‘] + (k[o])je(azl] - c&)> — 7pma:{z,j} (ag?] — ¢ij),
¢
where k% is as defined in (2.16)).
Proof. By (1.4) and ([2.4), with repeated indices not summed, we have on the one hand
915 = imaasgi gy PN T ) - PPt Gy,

and on the other hand

gl = — (k) fe2pmancey gl N7 (kI g2pmentey o[,
£

¢
Similarly, by (I4), (1) and (216),
_Z(k[o])ietQPmax{ﬁ,j}Czj _ Z(k[O])jlt%max{z,i}cﬁ _ 5tgz[?] _ 2pmax{i,j}t2pmax{i,j}7101_‘]_'
¢ ¢
Therefore, we obtain

[0]

t2pmax{1:,j}ata£?] _ atgl[;l] _ 2pmax{i7j}t2pmax{i,j}71a£?] _ 5t(gl[?] — g ) — 2pmax{i7j}t2pmax{1i,j}71(a’£?] — i)

= — Z(k[o])iétQPmaX{l,j} (a[n] _ C)fj _ Z(k-[o])jét2pma}c{é,i} (a[n] _ C)Zi

4 4
_ Zt2pmax{£,j} (k[n] _ k[o])/a?;] _ ZtQPmax{z,i} (k[n] _ k[o])jéagl]
J4 4

2Pmax{i,j} —1
= 2Pmax (it T (4 — cij)-

Canceling t?Pmax{i.i} on both sides, we obtain the desired equation. O
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Lemma 2.11. Suppose the following holds for some N > 1: there exists ty > 0 such that for everyl <n < N
and every multi-index o, k!®) satisfies the estimate for some Can > 0 (depending on «, n, in addition to c;;
and p;) for all (t,z) € (0,tn—1) x T3:

02 [(k2)i7 — t™ k7| (t @) < Camt ™.

[-?] (t,x) is well-defined and symmetric for all (t,x) €

%
[n]

(0,tx] x T2 and for every 1 < n < N. In addition, by reducing tx > 0 further, 9i;
metric.
Moreover, for every multi-index o and 1 <n < N, there exists C}, ,, > 0 such that

Then, after choosing ty > 0 smaller if necessary, a

(t,z) is a Lorentzian

(2.37) 02 (@l — ei)l(t,x) < CL 5, |00l |(ta) < O 71
for all (t,z) € (0,tn] x T3.

Proof. Clearly 8t(a£?] - a;?}) = 0. Moreover, at {t =0}, ag?] = ¢;; which is symmetric. It follows that aE?] is
symmetric.

[n]
o
equation in Lemma and the bounds in Lemmas and (and implicitly using the symmetry of ag?]
in the derivation), we obtain the following schematic equations:

Now given that a;; is symmetric, we will only estimate the six components {ag?} ;4 < j}. Using the

(2.38) Ay (al™ — ¢)33 =0t +) (@™ — ¢) + Ot~ 1F5)alM,

(2.39) A(al™ — ¢)oy =0t E) (0™ — ) + Ot F5)al?,

(2.40) d(a™ — )y =0t ) (0™ — ) + Ot FE)al?,
_ 3

(241)  Bu(al — e)ag =2 FE @l — o) — (0l — )y + O (" — ) + O H)al,
— 2

(242) at(a[rl] _ C)12 — %m(a[n] — 0)12 — %(a[l’l] _ C)22 + O(t71+€)(a[ﬂ] _ C) + O(t71+€)a[n},
— K 2 K 3

(2.43) Bi(a™ — ¢)y3 = pltip?’(a[“l = )13 = 1 (a™ = ¢)ag = T-(a" — o)

+ 0@t ) (0 — o) + Ot HF)al?,

Here, we have used the schematic notation that when we write (al® — ¢) or a/® without explicit indices, it
can represent any component.

The key point is a reductive structure for terms with O(t~!) coefficients: The diagonal (al® — ¢);; terms
do not see any terms with O(t~!) coefficients on the right hand side. For the remaining terms, we make the
observations that (1) the linear term has coefficients which is negative and (2) by estimating the terms in the
order as listed above, the only terms with O(t~!) coefficients have already been estimated in the previous
step.

Indeed, the first three equations (([2.38))—(2.40)) give
(2.44) (@™ — €)as](t) + (@™ = )aa| (8) + |(@l = €)11](2) S t° sup(lal™ — ] + e]),

)

where we have used the initial condition ([2.5]).
Using the fourth and fifth equations ((2.41)—(2.42)) and plugging in (2.44)), we obtain

1772 (0l — ) (6) S 070772 (@l = )l (£) + £ sup(|a™ — cf + e

(2.45) ’
S 7P sup([a — of + |¢])
[0.7]
and
22721 (@) = 0)10| () S P2 7P| (0l — €)g0|(£) 4 P2 P1TE s(?f(m[“] — ¢ +1cl)
(2.46) 1

<P P sup(lal? — ¢f 4 ).
(0,2]
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The estimates (2.45) and (2.46)) imply

(2.47) (™ — €)as](t) + (@™ = )12 (£) < t° sup(lal™ —¢] + [c]).

)

Finally, we consider the last equation, argue as above and plug in ) and - ) to obtain
(2.48) (@ = ¢)13(t) S t° sup(|al™ —CI + \CI)~

)

Combining (2.44)), (2.47), (2.48)), and choosing tx to be sufficiently small, we obtain

sup [ — ¢| < % sup|e| < 15
[0,¢]
This proves that a[ I'is well-defined and moreover shows the first inequality in (2.37)) in the case |a| = 0.
The second mequahty in (2.37)) (that for 8ta£?}) follows by applying the already derived bounds to the RHS

of the system (2.38)—(2.43).

We then obtain the desired higher order estimates by induction on |a|. For example, differentiating the
equation ([2.36]) by 9% for |a| = 1, we may treat the zeroth order terms in the differences al?l — ¢ as already

estimated inhomogeneous terms and repeat the above argument. The same goes for 9 with |a| = 2 etc.
From this we deduce the estimate (2.50]) in general. We omit the details. O

Lemma 2.12. Suppose the following holds for some N > 1: there exists ty > 0 such that for everyl <n < N
and for every multi-index o, k™ satisfies the following estimate for some Caon > 0 (depending on o, n, in
addition to c¢;; and p;) for all (t,z) € (0, tN] x T3:

(2.49) |02 (kW — El=100) (4 1) < Cf it 7147

for every 1 <n < N.
Then, after choosing ty > 0 smaller if necessary, for every multi-index o and 1 < n < N, there exists
Ci,.n > 0 such that

(2.50) 02 (ol — alt ) |(t,2) < CL e, (0000l — a1 @) < €t
for all (t,x) € (0,ty] x T and for every 1 <n < N.

Proof. First, we note that by Lemma and ,

(2.51) 10 (k1B — 10031, 2) < 71

for every 1 <n < N.
Subtracting the n and n — 1 versions of (2.36)), for i < j, we have
Ap(al®) — a[n—l])ij
- _ Ztgpmax{l,j}_meax{i,j} [(k[lﬂ — k[o])/(a[n] — a[n_l])gj + (k[n] — k[n—l])/azfl]]
¢
_ Zt2pmaxu,if2pmaxu,j) (kP — ElO1) £ (] — g1y, 4 (glm) — k[nfl])jfag?—l]]
¢

— Zt2pmax{l,j}72pmax{i,j} (k[o])l‘e(a[n] — a[nil])[j — Z t2pmax{€,i}72pmax{i,j} (k[o])je(a[n] — a[nfl])éi
4 14

(2.52)

2pmax{i,j} [n] [n—1]
_ 7t (aij —a;; )

Using the equation (2.52) and the estimates in Lemmas and (2.49)), we deduce a system of schematic
equations in a similar manner as (2.38)—(2.43)), namely,

(2.53) 8t(a[n] - a[n_l]) = O(t_1+s)(a[“] - a[“_l]) + O(t_1+"5)a[n_1],
(254) at(a[n] . a[nfl]) (t 1+5)( [n] a[nfl]) + O(t71+”5)a[“71],
(2.55) By (a — a1y = 0@ 1) (al] — a1y 4 Ot 1)l
3
— K
(2.56) By(al — g1y, = %(a[m — a1y, %(a[n} — aln=1l¢),,
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+ O(t71+5)(a[n] 7 a[nfl]) + O(fl*”g)a[“*l],

_ 2
(2.57) By (al™ — qln=11),, = %(am — a1y, — %(a[“} — aln—1),,
+ O<t—1+s)<a[n] _ a[n—l]) + O(t—1+ns)a[n01},
_ 2 3
(2.58) By(al — gl=1),, = %(am N P ’%(a[n} — a1y, — %(a[nl — o1y,
+ O(t71+5)(a[n} o [nfl]) + O(t71+"5)a[n71].

From this pomt on we can argue as in Lemma [2.10] usmg the reductlve structure of the system. Note
that the system is better than the system 2.43) in that the inhomogeneous terms
O(t=1re)gn—1 = O(t 1*”5) As aresult, the argument in Lemma 2 glves the better estimate |6§‘8[(a£?] —
ol )|t ) < O t7THE e = 0,1, =

Now a straightforward induction argument using Lemmas shows there
exists a decreasing sequence of positive times t,,, such that ¢ and k® are well-defined and
smooth in | x T3, for all n € N. Moreover, all the estimates in the conclusions (and proofs)
of Lemmas [2.8| . 2.9] - 2.12] hold. In particular, points (1), (2) in Theorem [2.1] hold true;
and after using also Lemma - it can be checked that (3) in Theorem [2.1]] H is also verified.

In the remaining subsections, we prove points (4) and (5) in Theorem thus completing the proof of
Theorem 211

2.4. Comparing k[ with the second fundamental form. In this subsection, we prove point (4) of
Theorem see the main estimate in Lemma [2.15
The heart of the matter is the following estimates for @E?] = (k[“]),;egé?} - (k[“])/gg;].

Lemma 2.13. For each n € N, define CDE?] = (k[“])/gz] — (kM Zggl]. Then if (n+ 1)e > 2, after choosing
t, smaller if necessary, the following estimate holds for some Cq,, > 0 (depending on o, n, in addition to
cij and p;):

|8§©£?} I(t,z) < Cawnt_1+(n+2)8+2pmax{i,j} | logt|2+‘a|, ‘33@@%?} |(t, ) < Caynt_2+(n+2)8+2pmax{i,j} | 10gt|2+‘a|
for all (t,x) € (0,t,] x T3.

Proof. Step 1: Derivation of an equation for ’DEI;]. By (2.4),
(0, g[r.l])( [n]),f — (8, g[t}])( [n])je

(259) = — giy (k1) (k) — gl (R PRI, g5 (R, (1) ¢+ gl () P (k) 5
- <g£-‘; (k)" — gi) (k) ) (), (gl (R — g (k) 2 (k1)
Therefore, (2.59) and the equation (2.2) that define k[“], it follows that
0D = (k)i g — (k) g

= Ric(g [n—1])zg£1;] _ Ric(g[n—l]) egl[rzx] (k[n])aa[(k[n]),é [r_1] _ (k[n])jégg-l]]

— (g5 (k™) — gl (k) ;) (k) + (gl () 9;21 (k1) 2 (kI 5

:RZC(Q ])i géj] _ Ric(g[ ) glgl;] + (K [n])aaggf;] _ @L‘;] (k[n])l_( _,_@L?](k[n])jé.

Now since Ric(g[“*l])iegé?_l]
Ric(g["*l])-f [r}] — Riclg [n71]) zggn}
= Ric(g~1)y; (g[n] gln= 1])23' ,Rw(g[nfll)jf(g[ 0 _ g1y, = O 2 (et 2maxtigy | Jog £]?),
where the final estimate follows from the form of the metric, Lemmas [2.6] [2:12] and the fact that
O(min{fzﬁs,t*2+25*2p”2p1’} logt|2 X tzpmx{%”)

— O(min{t—2+25+2pj’ t—2+25+2pi}| logt|2) - O(t_2+25+2pmax{i,j} ‘ logt\Q).

(2.60)

is symmetric in ¢ and j, we have

(2.61)
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Therefore, combining (|2 and -, we have obtained that
(2.62) g = z)[“ (k)¢ 4 D (k)¢ 4 (k1) 200 4 O (=2 (D 2maxtiiy | log ¢2).

Step 2: Estimating CDE-?]. Since CDE is manifestly anti-symmetric, it suffices to estimate @23 , 33[1%] and Q[f;]
By (2.62), they satisfy the following equations:

n + -1 — n n n — n .
00 = 222 1 ool — (k) D 4 (K)5 D 4+ Ot et | log ),
n + -1 — n n n n n — n o
ol = B2 1 090l — (k)oY — (k)1 2DE + 042+ (D2t Log 1),
-1
0,0l = P22 4 o)l — ()0l — (KM) 2Dl + 02+ nestn) [ og ),

t
Applying the estimates for k™ from Lemma we obtain

Ot D5y) =O(™ ) D + O )l

(2.63) FO(t sy Il (4= 2P ()5 208 [og 1)2)
(=) = ooyl 4 ool

(2.64) + O(t71+672p2+2p3)tp2@[11;] + O(t72+pz+(n+2)e+2p3 | 10gt|2),
g (s @l)y = o1+ dl) 4 o)l

(2.65) + Ot YDl 4 Ot 2tpst(nt2et 22 o0 4)2).

To use these equations, note that when 4, j, £ are all distinct,
(2.66) lim t"®% = 0.
t—0+

Indeed, using the estimates in Lemmas and [2.11] one checks that D3, @ = O(t2r+=1) and DY =
O(t?r2=1). This implies "D} = 0(751’1“‘21’3 1) = O(tp3 p2), 2@l = O(tp2t2pa=1) = O(trsP1) and
sl = O(pa+2pr2=1) = O(tP2=P1). We then obtain (2.66) using p1 < p2 < ps.

We now use equations f to estimate 33[“] The key is to notice a reductive structure similar to
that in the proof of Lemma [2.11] except in this situatlon since the different components have different rates,
we argue with a bootstrap argument.

Make the bootstrap assumptions that

D%)|(t, ) < AtV 100412 DI (1 1) < ArTIHFRE 20| 10g 12,
|©[f§|(t,x) < At—1+(n+2)e+2p2|10gt|27

where A is a large constant, such that denoting the implicit constant in the big-O notation in (2.63)—(2.65))
by C, we require C < A.
Plugging (2.67) into (2.63)), integrating, and using ps > p1, we obtain

(2.67)

(2.68) B¢, 2) < Ot I8 160 412 4 0 AL IHEBA 23| g 42,
Arguing similarly, first for Q[ln] and then for @12 , we also obtain

(2.69) ©1|(t,2) < O3 160 412 4 C AL IHEBA 23| o0 42,
(2.70) ©1|(t,2) < CtIHHD22| 160 412 4 C AL IHERA202| o0 42,

Choosing t,, sufficiently small (so that At® < 1), it is easy to check that (2.68))—(2.70]) improves the bootstrap

assumptions in (2.67)). This gives the stated estimates for @E?] in the lemma when |a| = 0.
The estimates for the spatial derivatives are similar, except that we lose a factor of |log ¢| for each derivative

we take (cf. ( - O
Step 3: Estimating 8,533[ ] Finally, we plug in the estimates for 33[“] into (2.63))—(2.65)) to obtain the desired

estimates for 050,
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Lemma 2.14. For eachn € N and @E?] as in Lemma define (D)7 = (g[“])jéﬁg?]. Then if (n+1)e >
2, the following estimates hold for (t,x) € (0,t,] x T for some Cy., > 0 (depending on «, n, in addition to
cij and p;):
2
(2.71) > 1710207 (D)7 (t, ) < Cp o min{t TR Jog |2l 2z =205 42
=0

log t|2+1ey.

Proof. Step 1: Estimates for ®® (whenr = 0). By Lemmal2.13|the estimate 9% (gm1)7t = O(t=2Pmintiey | log t]12])
and the fact t°|logt|* <, 1, we immediately obtain

(2.72) 102D 7|(t, ) < Cpp o min{t ™1+ 22| Jog ¢ 2ol = 1H(n42)e=2pi 423 | 1o 42+l

Step 2: Deriving evolution equations for Dl Contracting (2.60) with (g)7°, using (2.6) and the anti-
[n]

lj’

(2.73) oD, = (), 2D, 4 Ric(gl—11),0 — (g)7 Ri(g 1), gln),

We notice now that since

symmetry of D, ', we obtain

(™) Rie(g™™ M), g~ = Rie(gi™~M).?,

we have
Ric(g™= )2 — (gl Ric(gin— 1) gl
= — (g™ Rie(g™ 1), it + (o) Ric(gn M) gt
(274) = — [(g)7 — (g 1) Ric(gin 1), gl — (g ) Ric(gt V) gl — g

_ O(t_zpmin{j,b}) x O(") x O(min{t‘2+2s| logt|2+‘a|, $—2+e—2pe+2p; | logt\2+|a‘}) % O(t2pmaxu,i})
=0O(|log t|2 X min{t‘2+("+2)5, t_2+(”+2)5_2pb+2pi}),

where in estimating the terms we have used the form of the metric, computation of the inverse metric (see

(2.15)), Lemmas [2.11f and [2.12} and (2.18).
1-

Differentiating (2.74]) by 050}, and arguing similarly, we also obtain the following higher derivative bounds
for r =0, 1:

9o (47O [(Ric(g™ 1), — (g7 Ric(g™ 1))}
= O([log t**1*) x min{¢ =2+ (n2)e =2+ (nF2)=2pt2piy ),

Plugging the estimate (2.75) into (2.73)), using the estimates for k™! (by Lemma and 9,kM (by (2.2),
Lemma and Lemma [2.8), (and relabelling the indices,) we obtain

(2.75)

920,(DM),"
(2.76) _ O(til)( Z af(f)[n])ib) + O(| logt|2+\a| % min{t72+(n+2)5’ t72+(n+2)572pb+2pi})7
1BI<|al

and

@)L =0 Y ol o) D ol
(2.77) 181<o] 18<la]
O(l logt|2+\o¢| % min{t_3+(”+2)5, t—3+(n+2)s—2pb+2pi}).

Step 3: Estimates for 8,0 and 8?5[“] (when r =1, 2). Plugging (2.72) into (2.76)), we obtain

(2.78) |6§6t(35[“])ij|(t,x) < Cha min{t_2+("+2)6| log t|2+|0“7t_2+("+2)8_2pj+2p'i|log t|2+|°“}.
Similarly, plugging in both (2.78) and (2.72)) into (2.77)), we obtain
(2.79) 10202(D)7|(t, 2) < Cp.o min{t 3T 42| Jog ¢ 2Tl §=3+(n42)e=2pi 4201 | g 4| 2HlalY

Combining (2.72)), (2.78) and (2.79) yields (2.71). O
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The next lemma shows that even though k™ is not the second fundamental form associated to g™, it is
close to being the second fundamental form up to an error that vanishes sufficiently fast as t — 0.

Lemma 2.15. When (n+ 1)e > 2, the following estimates hold for (t,x) € (0,t,] x T™ for some Cq,, > 0
(depending on «, n, in addition to ¢;j and p;):

2
(2.80) S 1020 2 + () DT (1) < Oyt og 14,
r=0

Proof. By (2.4) and the definition of ZDE?] (in Lemma | and DM (in Lemma ,
269 + (g™ gy

(2.81) (n]y j (] j [n]\j€sy[n] [n]yj¢
=2(k™)7 = 2(k™) — (™))" D, = —(g™)"D

m _ _ (Bl

i

The desired estimate is then an immediate consequence of Lemma [2.14 O
Lemma gives point (4) in Theorem

2.5. (k)7 and gz[;'] satisfy evolution equations approximately. In this subsection we prove point (5)
in Theorem (see Proposition [2.17]), which then completes the proof of the theorem.

Lemma 2.16. For every n € N, the following estimates hold for (t,z) € (0,t,] x T", for some Cy.,n > 0
(depending on c, n, in addition to ¢;; and p;):

020, (Ric(g[“])ij - Ric(g[n_l])ij)’ (t,2) < Cont 3T +2e| og ¢2Hlol,
Proof. Going back to the proof of Lemma and using the form of the metrics ¢ and g™~ we notice
that the each term in the difference of Ric(g™);7, Ric(g™~11),7 has the form:
[explicit powers of ¢ and logt with behavior O(t=2+2¢|log t|**1e1)]
x [non-linear terms in 8%a™, 8™~ which are linear in the difference 9% (a™ — o™=, |a| < 2]

The fact that [, a1 and their spatial derivatives are bounded, while |02 (a —a™=1)| < ¢"¢ (see Lemma

2.12)), was then used in Lemma [2.9|to infer the bound (2.30).

Now we verify that a time derivative acting on any of the previous type of terms, adds at worst a power of
t~1 in their behavior. For the factors which are explicit powers of ¢ this is evident. If 9, hits either a®, g1
factor or their difference al® — a*~1, we make use of (2.37), (2.50) and the conclusion follows. O

Proposition 2.17. For every n € N, the following estimates hold for (t,x) € (0,t,] x T", for some Cq, > 0
(depending on o, n, in addition to ¢;j and p;):

1
Dt
r=0

Proof. Using the equation (2.2)), the estimate (2.31]), and Lemma [2.16] we obtain
0 (k™) ~ Rie(g™™)7 — (k) (k)7 | (¢, )

0207 (k™) — Rie(g™)7 — (k) (6).7) | (1,2) < Cat 27022 10g 1211,

0 (Ric(g™)? = Ric(g™~1)7)| (t,2) S -2+ +29| logt[2+1e]

and

020u (Ou(k))? — Ric(g™):7 — (k1) (k)7 ) | (¢, 2)

(t,2) S 7322 log ¢ PHlel,

829, (Ric(g[“])ij - Ric(g[n—l])ij>

as desired. O

Proposition implies point (5) of Theorem Together with the previous subsections,
this completes the proof of Theorem (2.1
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3. APPROXIMATE PROPAGATION OF CONSTRAINTS

We continue to work under the assumptions of Theorem and take ¢! and k[® as constructed in the
beginning of Section [2| (so that for appropriately chosen ¢y, the estimates in Theorem hold).

The goal of this section is to show that metrics (Y g[®! are also approximate solutions to the constraints,
as t — 0, to an order that improves with the increase of n. To achieve this we argue by propagation of
constraints, i.e. we use the second Bianchi identity as propagation equations and use that the constraints are
asymptotically valid in the renormalized sense (|1.7)—(1.8).

It will be useful to setup some notations that we use in this section. For the remainder of this section,
D will denote the Levi—Civita connection of the spacetime metric g and V will denote the
Levi—Civita connection of the metric g™ on the (spacelike) constant-t hypersurfaces. Moreover,
indices are lowered and raised with respect to the metric g™ (in particular (g% = ((¢®)=1)¥ in
this section).

Proposition 3.1. Let Wg = —dt?> + g, where g is a Riemannian metric. Define kit = —%(g*l)ﬂatgw (the
second fundamental form). Then the following identities hold:

3.1 Rice(Wg)i = — 0k + Ric(g)i + ke'ki,

3.2 Ric(Wg)y; = — (divgk); + V,(ke"),

3.3 Ric(“g)u = 0y (ke*) — kI,

3.4 = — 20, (k") + R(g) + [k* + (ke")?,

) ~ o~ 1 ~ ~ ~
G(Wg)d = — 8,k + Riclg) + k'k? — 55# [—20; (ke*) + R(g) + |k|® + (ke5?],

)
—~
=
Q

i = — (divk); 4+ V;(ke),
1

G(Wg)y = Q[R(Q) - |E|2 + (E/)QL

where G(M) g) 5 is the Einstein tensor of Wg.

)
)
)
) R(Wy)
)
)
)

Proof. The first three identities can be found in [13, Chapter 6, (3.20)—(3.22)] (after substituting the lapse to
be identically 1). The remaining identities follow from the first three by simple algebraic manipulations. O

Lemma 3.2. Given n € NU {0}, Wyl and k) given by Theorem satisfy the estimates:
02 [R(g™) — K2 4 (b )2]] < Coont 245, (O[04 (1rkt™) — [V2]] < ot 24
|5§ Wj(k[n])ij — 31‘(]‘?1[“])/]’ <Cupt 't
Proof. By point (3) in Theorem it follows that
02 R(g)] < C it 2=

(3.8)

Writing also
n n n — j n - % n - 1 1 g
I = (erk)? = () b 3 ) [ 4 S0t (o)

+ (P — 7 0) I (k) (R — 71 R) (k) — 20t k) AR — k)

we conclude the first estimate using condition 2. in Theorem [I.1] and the second inequality in 3., Theorem

21
For the second estimate, first note that after tracing the first inequality in 3. of Theorem we obtain

7 (B,(urkl™) — R(g™) — (k")) | < €y ur=240"

Combining this with the first estimate in (3.8 that we have just established, we obtain the second estimate

in (33).
We now turn to the third estimate in (3.8]). For notational clarity, we focus on the case |o| = 0. All
the higher derivative bounds are be derived analogously after noticing the crucial algebraic structure. We
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compute:
Vi (k) — 33kl

. ks
=9;(kM —t71k),7 — (k™ —t71k),f 4 %

(3.9 _ o
= 9;(kM — 17 k)7 — ik — 7 1k),f + @%

— @l + 035 — AR 4 Lo 0s005) + rgly) — gl (K¢
Notice now that by (2.80) , we have:

= (PR (k) -+ (PR (k)

(k[n])ij 2( [n])]la gur + O(t—l—‘,-(n—‘,-l)s)

Therefore,

1 )
5(9[11])%(5';91 31;9” DIGE
(3.10)

1 n c n nj\jc n —1+4e¢ —1+4e¢
= — ()00 g D) + L) gl g oDl + O = 06,
where in order to show that this = O(t717¢), we look at the second term, relabel the indices b <+ j and then
swap ¢ < £ (using that ¢/ is symmetric), which then gives the negative of the first term.

For the term —%(g[“])gbaigj["g](k[“])gj, we first note that if £ > j, then (k)7 = O(t~1=2»i+2r¢) and
(gt g[n] = O(|logt|), so altogether we get an O(t~1%¢) contribution. If ¢ < j, then (g[“])ébaig][z] = O(t9),
which together with (k)7 = O(t~'), we get a combined contribution of O(t~'*¢). We therefore only get
the contribution when j =/, i.e.

3
1 1 e
(3.11) —5(9[“])“’&»9 (K7 = =37 S (g™ augy (k)7 + 0(+).
Jj=1
Combining (3.10) and (3.11)), we have
3
) 1 ) e
(3.12) 2( g™ Digyy +0ig’ — Bugly V(K = =7 (g 0igy ()7 + O,

j=1

Plugging (3.12)) into (3.9)), using the estimate ([2.8)), and noting that by symmetry (g nl)ﬂb(a géb 8bg][.2]) =
0, we obtain

) 0; kit 3 1 . n 1 ) n _
(813) (kM) — gkl = S =32 (g0 (k)7 4 2 (g ey () + O,
j=1

Finally, notice that the second and third terms in (3.13)), when j # b, contribute only O(t=1*¢). We have
thus obtained

n j n a"‘ﬁ“ij > 1 n n n > 1 nl\jj n n —
Vj(k:[ ])iJ — ;trk™ :]T _25(9[ ])eeaiglgzl(k[ ])/+ Z 5(9[ ])”(%gj[-j](k’[ ])ie+0(t Lte)
(=1 G=1
Ojki 2\ (1 Bicer pe pe@pé 1
= 1 +e

; +;(2 iy ogt | + O(t=1+*)

K E)gpj 5‘gcm H/ 10;¢i5 ps

logt+1 -

+ Z ( t ogt+ {€>Z} t 2 cii t
=1 73

3
1 aicN ¢ 82(011022033) ¢ _1
=57 “(pe — pi) +200k:" + Lpsiy——————2K;" | + O(t~179),

2 zzz; < Cee ( ) =0 clreasess ( )

where in the last equality we use condition (2) in Theorem The desired estimate now follows by employing
condition (4) in Theorem O
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Combining Proposition Lemma [3.2] and Theorem we deduce the following bounds for the relevant
curvature components of @) g[“].

Proposition 3.3. Givenn € N such that (n+1)e > 2 and Byl s in Theorem the following estimates
hold:

(3.14) 09 Ric,? (W gt)], 05 Ricy (Wgt)|, 105 R(W g™, [05G7 (D gh)], 105 Gua(Vg™)| < Cot =2+ D2,
(3.15) 1020, Rici’ (W gm)| < €t 3T (D
(3.16) 109G (W g™, 102 Ricei(Wg™)| < Ot =102,
for all (t,z) € (0,tn] x T3.

Proof. In this proof, the implicit constants in < depend on «, n, ¢;; and p;.

Step 0: Estimates for Ricij((‘l)g[“]). According to (3.1) in Proposition and the estimates in (2.8)),
Lemma and Proposition it follows that

(3.17) |05 [Ric(W )| (1, 2) S 72+ log ¢,

which clearly implies in particular the needed estimate for Ric(“)gl®l);7 in (3.14).

Also, using (2.8), Lemma/2.15/and Proposition we also obtain the estimate (3.15) for 920, Ric;? (M) g,
It suffices then to show that the estimates for 9% Ricy (™ gl®)), 02 Ricy (W gl™) hold true, since all the

remaining terms in (3.14) are algebraic combinations of the previous three.
Step 1: Deriving the ODFEs. By virtue of the contracted second Bianchi identity we have:

) n : n L mg n n
0; Ricyi(“Wg!™) = Dy Ric;(Wgl™) + 5(9[ 11,95} Ricy; (Vg™

i(
1 ; 1
=— 5aiR((4)g[n]) +D'Ricij((4) ]y 4 5( n])ﬂatg ]th (D glnly
1 N n 1’1 n

(3.18) =§3iRZCtt((4)g[ h- 2( ])Matg[ I Ricy (9 gln)

=:1

1 ; .
—iaiRiij ((4)9[11]) + V,Ric;? ((4)9[11])’

=:11I

1 ,
3tRiCtt((4)g[n]) :DtRiCtt((4) [n]) - _,3tR((4) [n]) + DJRz'ct-((‘l) [n])

,@tht( []) (g[“])ﬂatg tht(() [n)+vJ(th) ( [n])

(3.19) =11 =1V =V
,,@Rw (4) [n]) 2(g[“])ﬂatgl{?]Ricji((‘l)g[“]).
= VI =VII

where D denotes the Levi-Civita connection of Vg™l and V7(Ric;);((Yg) means that we take (Ric;); as
a tensor field tangent to the constant-¢ hypersurfaces and then differentiate with the connection V| i.e.

Vj(Rz'ct)z((‘l) [n]) :( [n])ija(RZ-Ct),(M) Yy — (g [n])w(p[n]) (th) (D gy,

We now estimate the terms in (3.18)) and (3.19| - For term I in , we use (2.8) and (2.10) in Theorem

to obtain
1 - n
(3.20) I= [7 + Ot 149 Ricy (Mg,

The first term in IT can be directly estimated by (3.17). To handle the second term in II, we compute
using the form of the metric and (2.7)) to obtain

VjRicij((4)g[“])zajRicij((4)g[“])—(F[“]) Ricg (Mgl 4 (0 [n]) Rici (W glnl)

nl\Jj ]- nl\7j n n n
(™), = (6™ (9905 + gy — Bogly') = O(|log ]
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1 . 9 n
5(9[“])%(3191” + 0500 — Opgl) Rice (D gl

= [0(l1og ]) = (™) bg;} | Rice’ () g™)
(™) 0ugl Ric? (D g™y = 04 (| 1og t]) (9l Ricy? (Vgl™) = Oy (|log t]) Ric;" (4 g™))
Combining all the above and using (3.17)), we obtain

(F[“])ijngj((4)g[“]) =

(3.21) II = O(t~2+(n+ey,
Plugging (3.20)) and (3.21)) into (3.18)) yields
1
(3.22) Ay Ricy; (W gl) + [ +O(t_1+5)]Ricti((4)g[“]):i&-Rictt((‘l)g["])+O(t_2+("+1)5).

Equation (3.19) can be treated similarly. We subtract III to the LHS, use (2.8) and (2.10]) to control the
coefficients in IV and VII, keep the term IV, and use (3.15)) for term VI so that we obtain

2
(3.23) Ay Ricy (W gty + 5+ Ot~ %)  Ricy (W g™y = 2V (Ricy) (W gy + O3+ n+De),

In a similar way, we obtain the equations for higher derivatives analogous to (3.22) and (3.23). After
putting in an integrating factor, the equations read

04 (05 Ricyy(Wgi™)) = *(9(9 Ricw (W) +0(t) S 82 Ricy(Wgl) + O~ 1+m+De),
1BI<|al
5‘t(t28§Rictt((4)g[n])) 24200V (Ric,); ( n]) +O(tHe) Z afRictt((4)g[n]) n O(tilJr(nJrl)E).
1BI<|al
Step 2: Solving the ODEs. We will view the two equations in as ODEs in t. In particular we will not

(3.24)

be concerned with the loss of derivatives since we have bounds for all order of derivatives of the approximate
solutions.

Note that Lemmas and the identities (3.2)), (3.3) imply the estimates:
(3.25) |09 Ricy(Wgt™)| S t71F, 05 Ricy (Mgl S ¢34,

In particular, this means that the initial data (at {t = 0}) for td Ricy; (Y gI?) and t202 Ricyy ((Y g™ both
vanish. Now since |02 Ricy; ((Dgll)| < ¢=1+e (for all a), it follows that |09V (Ricy);(Dgl)| < ¢73+2¢ (for
this we simply use that [0 (g™)¥|, [0%[(g™)*(T)/ )| < t~2%¢). Hence, integrating the second equation in
and using Gronwall’s inequality, we obtain

(3.26) 12109 Ricy (W glPl)| < 128 4 ¢(ntDe = |09 Ricy, (W glohy| < ¢72+2,
Plugging this estimate into the first equation in (3.24]), we then obtain using Gronwall’s inequality
(3.27) 1|02 Ricy (Mgl <% 41t — |02 Ricy; (W glnhy| < =142

Notice that (3.26]) and (3.27)) improves over (3.25)). We now repeat the above argument, but plugging in these
improve estimates to obtain (assuming n > 2)

|09 Ricy (Wgl™)| S e727%, |99 Ricyy(Wgt)| S #7145
Iterating this argument then gives the desired estimates. (The rate for 02 Ricy; is limited by the last term on
the RHS of the first equation in (3.24]).) This completes the proof of the proposition. O

4. CONSTRUCTION OF AN ACTUAL SOLUTION

We continue to work under the assumptions of Theorem and take ¢/™ and k™ as constructed in the
beginning of Section [2| (so that for appropriately chosen ¢, the estimates in Theorem and Proposition
hold).

The main result of this section will be to prove existence of a solution to a system of reduced equations (to
be introduced below in of Section [4.1)). See Theorem [4.4] for the precise statement of the main result,
and see the rest of Section [£.3] for a discussion of the proof of Theorem [.4] and an outline of the later parts
of the section.
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4.1. Deriving the reduced equations. As already described in Section in the introduction, we will
control k;7 using a second-order wave-like equation. In this subsection, we derive the equation that we will
use.

By (3.1)) in Proposition if a metric takes the form (1.4), and & is the second fundamental form, then

(4.1) Ric(Wg); = —0uki? + Ric(g)i + ke'kid
Taking a 0; derivative of (4.1]), we obtain
OnRic(Wg)” = —02ki? + 0, Ric(g):? + Oylke"ki?].

To compute 9, Ric(g);?, we use the variation of Ricci formula (see for example equation (2.31) in [I5]) and
the fact 0,g;; = —2k;;:

O Ric(g);; = Apkij + Vike* — Vi(divk); — V,(divk);,
where Ay is the Lichnerowicz Laplacian (on symmetric 2-tensors) given by
Apvj = Aguij + 2Riem(g)mij£vmg — Ric(g)igng — Ric(g)jzvig.
Using again 0;g;; = —2k;;, it follows that
(4.2) O Ric(g); = Agki? +2Riem(g)™ 7 okm + Ric(g), ke’ — Ric(g) k" + ViV k" — V;(divk)’ — VI (divk);.
We will further analyze two groups of terms on the RHS of :
(1) Denoting G; := G (g) and considering it as a tensor on {t = constant}, we have
(4.3) ViVikt — Vi(divk)’ — VI (divk); = (97" )*ViGe + VIG; — ViVik,".

(2) In three dimensions, the Riemann curvature tensor can be expressed in terms of the Ricci curvature
tensor (see (1.62) in [I5]):

Riem(g)™ ¢ = — Ric(g)™ gi + Ric(g),™6] — Ric(g);, (g~ )™
(4.4) , 1 , ,
+ Ric(g);0;" — 5R(g)((¥2"5f~ — (g7 gie),

where R(g) denotes the scalar curvature of g. Therefore, the terms
2Riem(g)™ i okm" + Ric(g), ke’ — Ric(g) k"
can be written as some linear combinations of contractions of Ric(g) and k. Using again , we
can replace Ric(g):? by Ric(Wg):" + diki? — k'K
It therefore follows that the second fundamental form k verifies the following equation:
— Ok 4+ Ak — ViVIke 4 (kxkxk)? + (8tk*k:)-j
(4.5) = —8;Ric? (Wg) + ViGI +VIG; — 3k;™ Ricy’ (Dg) + 267k Rics™ (W g) — ke’ Rici* (Y g)
+2k Ric? (Vg) — (ke'0? — ki?)Ric,,™(Wg),
where
(kxkx k)i == 2ka" [ — g™k gir + k™07 — garki®g™ + kil 6™ — %kaa(éeméﬁ — 9™ gu) k'
=4k ko ki@ — 2k, (k™ k)07 + (ka®)?6:7 — 3(ko®)?ki?
(4.6) Ok % k)7 := 0y (k" ki) — 204k o ki® 4 201k ™0 ke * — 20,k ko + 20,k;7 K
— Oika 67 k" + Opka ki + Ok ke’ — Opki’ ki’
= — 30ika ki + 0y (ke ™k )07 — Opki ko + 204k ki? + 30k k" — %at(kaa)%ij
We note that the terms k x k x k and 0.k x k satisfy
(4.7) (k*kx k)i 4 (Opk * k)" = 0y|k|® — 2ke*|k|* + 2k;" 0, k"
In particular, if (Y g solves the Einstein vacuum equations, then

(4.8) Ok = Agki? — ViVl + (kxkx k) + (0:k x k)i
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The equation is almost a wave equation for k, except that there is a top order V;V7k,¢ term on the
RHS. To proceed we think of h = k, as an independent variable. If the Einstein vacuum equations were
satisfied, then in Propositionimposes that 9;h = |k|?. Tt is therefore reasonable to look for a solution
to the Einstein vacuum equations by solving the following coupled system of equations:

Oph = |k|27
(4.9) Otk = Ngki? — ViV h+ (kxkx k) + (Okx k)7,
Orgij = —ki*gje — ki’ gie-
Remark that given a solution to , it follows that ¢! satisfies
(4.10) (g™ = ke (971" + ke (g1

Our strategy will be to solve the system (4.9) and then a posteriori justify that it is indeed a solution to
the Einstein vacuum equations (in Section [5)).

4.2. Notations. Before we proceed, we introduce some notations.
In the following we will consider (at least) two spacetime metrics Wg = —dt® + gijdxidxj and gl =

—dt? + gl[?]dxidxj on the domain I; x T? (where I; C R is an interval, possibly open, closed or half-open).
We make the following definitions assuming we are given such I, g and 9 g[®,
Definition 4.1 (Constant-t hypersurfaces). Given t € I; define
Y i={(r,z): 7 =t,x € T3.
Definition 4.2 (Connections). (1) Denote by V the Levi-Civita connection of g, and by V[ the Levi-
Civita connection of g™,
(2) Denote V(@ := V — VPl Remark that V(@ is a (1, 2)-tensor.
(3) Let » € N and 7 be an (m, [)-tensor. Define V()T to be the (m, 1 + r)-tensor given by
(V(T)T)iﬂffii";il..‘il =V - vaTTijli....,.’ng/.
Definition 4.3 (Norms). (1) Given two rank (m, 1) tensors T and 7, define the inner product
(T, Ty = (67 (07 " Gjrer - Gy TV (T
(2) Given a rank (m,!) tensor T, define
Tl =T T)g = (g7 )" . (g™ ) " Gjrer - Gimen T Tl

(3) Given a tensor 7 and p € [1,400), define
1
IThrcseny = (| 1THvols,)3,

where voly;, = +v/det gdz is the volume form induced by the metric g.
For p = +o0, define
[T Lo (51.9) 7= ess5UPera| Ty (L, 2).
(4) For r € NU{0} and p € [1, 4+0o0], define the geometric Sobolev space

ITlwer e = 3 IV Tl 00
r’'=0

(5) For r € NU {0} and p € [1,4+0o0], define the homogeneous geometric Sobolev space

1Tl (50.9) = IVO T llLo(s0.0)-
(6) For r € NU {0}, define

H' (54, 9) = Wr2(Sy,9), H'(S,9) = W (Sy, g).

(7) Define the norm t*L?(%, g) (for « € R\ {0}) by

1T leor2(s1,9) =t T L2(50,0)-
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(8) Given any two Banach spaces X and Y, the vector spaces X +Y = {z+y:2 € X,y € Y} and
X NY are endowed with Banach space structures with norms

[vllx4y == inf (lzllx + llylly),  llvlixay = [lollx + [lo]ly-
v=z+y, (z,y) EX XY
(9) Finally, define LP(3,, g, W"P(2,, g™) and WP (2, g™ ete. as above but with g replaced by g
(and V replaced by V).

4.3. Existence of solutions to (4.9) and the main steps of the proof. Our first step of the proof of
Theorem is to build a solution to (4.9). The following is the main existence result for (4.9), whose proof
will occupy the remainder of the section.

Theorem 4.4. For every s, Ng € N obeying s > 5, there exists nn, s € N sufficiently large such that for any
n > ny,,s, there exist Ty, s n > 0 sufficiently small and a solution (g, h, k) to (4.9) in (0, Twn,,s,n] X T3 which
satisfy the following estimates:

s s—1 s+1
Do IE D s, g + 2 ECTVNOE D (s, )+ D IR 5,
r=0 r=0 r=0
(4.11) -
+ 3 PO g Vg + 10 D N m,,g) < 2O
r=0

where K =k — kP p@) = p — plol g(d) = g — gln] (g(d)=1 = g=1 — (glohy=1 Moreover, kij = gejki* is
symmetric in ¢ and j.

We will prove Theorem with the following steps (see the conclusion of the proof in Section |4.3.3):

(1) For Thux > 0 (with Thux < TNy,s,n), We construct local solutions to in [Taux, Taux +6) X T3 (with
0 potentially depending on T,,x) (Lemma [4.5]).

(2) For s, N, n and Ty, s, as in Theorem we prove uniform estimates to show that the solution
can be extended to [Thux, T'ng,s,n] - This is carried out in a bootstrap argument and is the main step
(Theorem [4.6, Corollary [4.7).

(3) Using a compactness argument, we take a sequence of auxiliary times (Tpux); — 01 and extract a sub-
sequence of solutions converging to a limiting solution to on (0, T, .s.n] xT? (Proposition .

We will further elucidate these steps in the subsubsections below. Most of the proofs will then be given in
later subsections.

4.3.1. Step 1: A local solution. We begin with the following local existence result for (4.9):

Lemma 4.5 (Local existence). For every Toux > 0 sufficiently small and n € N, there exist a § > 0 (depending
a priori both on Tauy and n) and a unique smooth solution (g2, k¥ h*"x) to (4.9) in [Taux, Taux + 6] x T3,
such that at t = Toux, (g2, k¥ h®">) attains the following prescribed values:

T e = O Ty B ooy = (K)i7 1o,

(k) o= (R Tr o (BRI e = (0K T,

aux aux

Moreover, gii™ = g5

Such a local existence result is almost standard. The only issue is that the second equation of the system
contains the term V;V7h on the RHS, which seems to “have one derivative too many”. This issue
can be treated by deriving elliptic estimates for h, by commuting d;h = |k|?> with A, and using the wave
equation for k, see discussions in Section and Lemma We will use this result but will omit its
straightforward proof.

Once existence is obtained, since g™

ij
follows that g™ = g%™.

is symmetric at t = T,hux and Oy (g?;lx — jz‘”‘) = 0, it immediately
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4.3.2. Step 2: The main bootstrap argument. Our next step is to prove a uniform time of existence indepen-
dent of T,.x. To state the result, let us define, for (g™, k*"*, h®"*) as in Lemma

(4.12) gl = g — gl (g DY = ((gB) T — (gl Y)Y,
(4.13) (KDY = ()7 — (ka0 pld) = pavx _ plol,

We stipulate that the metric gi;* takes the form (1.4) and define af;* according to (1.4).
Introduce the following bootstrap assumptions:

(4.14) Irlggx |a?;-lx —cij|(t,x) < 2,
(4.15) gD s 100 (2, g0y + 197 D w100 (5, ooy < 1,
(4.16) g s (2, gy + 197D rress (s, gowey < 13,
(4.17) [BD || o4t (s, gowey + KD o (s, gaue) + (0D || oz, gowey < 13

The following is the main bootstrap theorem, whose proof constitutes most of this section (in Sections

13):

Theorem 4.6 (Bootstrap theorem). For every s, Ng € N such that s > 5, there ezists nn, s € N sufficiently
large such that for every n > ny, s, the following holds for some T, s > 0 sufficiently small.

Suppose (g, k2> ha">) is the solution to on a time interval [Toux, TBoot) (for some Tpoot €
(Taux, TNy s,n) ), with initial data at t = Thux given as in Lemma . Assume moreover that the bootstrap
assumptions 4.14— all hold on [Taux, TBoot) X T3.

Then in fact the following estimates hold:

S s—1 s+1
S P ED 3, oy + D ETROED 305, oy + DT IBD 3o s, gouy
r=0 r=0 r=0
(4.18) .
+ D 2 (s, gy + 1T D (s, goy) < CEOF2
r=0

on [Taux, TBoot) X T2, where C > 0 may depend on s, Ny and the data, but is independent of Tpux.
Moreover, taking Tn, s n smaller if necessary, {4.18)) improves over the bootstrap assumptions (4.14)-(4.17).

As is standard, the bootstrap theorem implies immediately, using a continuity argument, that the solution
can be extended up to time Ty, s p:

Corollary 4.7. Let s, No, n and Ty, s n be as in Theorem[{.6 Then the local solution given in Lemmal[{.5
can in fact be extended to all of [Tauxs TNg,s,n) X T3. Moreover, the estimates ([#.18)) hold.

4.3.3. Step 3: Conclusion of the argument.

Proposition 4.8. Let s, Ny, n and T'n,,sn be as in Theorem @
Them there exists a decreasing sequence of auxiliary times {TMXJ}}-:; C (0, Tny,s,m), im7s i oo Taux,r =0
such that the following holds:
(1) The corresponding solutions {(g¥", k3, h3} 12 given by Lemma converge locally in C3 x C? x
C? (as I — +00) to a limit (g,k, h).
(2) The limit, which we denote by (g,k,h), solves [&.9)) in (0,Tn,,s.n) x T2.
(3) Denoting g\D = g — g, (gD = g=1 — (g))=1, k(D) = k — kI?) gnd h(D = b — b the estimate

(4.18) holds.
(4) The limit (g, k) satisfies ki; = — 30,95

The proof of Proposition 4.8 will be given in Section

Proof of Theorem[{.f} The limiting solution given by Proposition [I.8] satisfies all the conclusions of Theo-
rem This thus concludes the proof of Theorem O
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4.4. Definition of the energies and an outline of the proof of Theorem From now on until the
end of Section we focus on the proof of Theorem To lighten our notations, in these sections
we write g = ¢*", a = a®", h = h*"™ and k = k*"™.

The crux of our proof of Theorem is to bound an appropriate energy, which we define now.

Define the energy

s—1
2r+4+2 d) (12 2r d) (12
Elt) 1= 3 IO s, +Zt KD 5,0
(4'19) s+1 s+1
I 5+ U 5+ 10 e, )

Define also the modified energy

s—1
5 Zt%HHa VORD ||L2 (Seg) T Zt%”k(d)nz 7(St,9)
r=0
4.20 r r— —
(4.20) PRI, o Z%t? T TP (I AN

s s+1 s (s+1 s (s+1 _
+ 2TV R@D 2, g, )+ VR gD 20 g, o+ (VIR () D20 g, o,

where VLV 0@, v g@ and VEEY (g-1)(@ are the renormalized top-order quantities defined by

(4.21) (VS DR@Y; g,y = AT @ o) 4 k@), 59, w70 (@)1,

-1

(Vﬁéﬁl D) iy ais
(S 1) (d) s—1) (d)y ¢
(422) _A V 2¢lglj +29 atvll s 2!1( ))Z
atv(s 32 2((9—1)begm(l‘v (k,(d)> )m o v(akz‘)b . (g_l)begd(avi)ked)

+ gl atv(s f) L0 0m Ve (B )™ = Viaki)® = (971 ga@ Vi ke?),

and
(VD (g 1@y
(4.23) = AV (g7 D) —2(g ) g, v T (k@)D

+((g7h) D)9, V(é 3) LG gme Veka)™ = Viaky' = (97 gaa Viyke?)
+ (g DY*VETD (g7 G| Vebkay™ = Viakny = (971 gaga Vi ke ).

ls—2
We remark explicitly that the modified energy and the energy differ by the following:

e The energy controls the V(") derivative of 9,k(®) while the modified energy controls the 9, derivative
of VM),

e The modified energy only controls h(¥, g(® and (¢=1)(¥) up to s derivatives; at the top order it only
controls the renormalized top-order quantities.

Since the proof will take several subsections, we give an outline of the strategy for proving Theorem

e In Section we begin with some preliminary estimates.

e In Section [4.6] we carry out the energy estimate for k(%) using the wave equation it satisfies.

e In Section 4.7, we carry out the energy estimates for h(?, g(? and (¢~')% using the transport
equations they satisfy. Combining the results in Sections and we will obtain an estimate of
the modified energy £, by the energy &;.

e In Section we complete the proof of Theorem The main ingredient is to control & and
&s using energy estimates, and the close everything using the Fuchsian ideas as illustrated in Sec-

tion [LI.1]
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4.4.1. Remarks on the dependence of constants (and related conventions). Before we proceed, we make some
important remarks regarding the dependence of constants throughout the proof of Theorem

From now on fix s € N with s > 5 as in Theorem

We will use Cy and C,, as general positive constants. They may change from line to line. Both Cy and
C,, may depend on the data c;;, p; and also s, but importantly C,, may depend on n while C; is
not allowed to depend on n.

We always assume without loss of generality that T, ,, < 1.

4.4.2. Remarks regarding k. Another important remark regarding the proof of the bootstrap argument is that
(despite the notation) we do not know that k is the second fundamental form of the constant-¢ hypersurfaces.
(In particular, we do not know that gg[ik‘j}z = 0.) In fact, it is only after extracting a limit in Proposition
that we know that the limiting %k is an honest second fundamental form.

4.5. Preliminary estimates for the bootstrap argument. In this subsection we work under the as-
sumptions of Theorem In particular, we assume the validity of the bootstrap assumptions (4.14)—(4.17).

4.5.1. Sobolev embedding and basic comparisons of norms.
Lemma 4.9. The following pointwise estimate holds for all scalar functions f on (0, Tsoot):
3
Co MVl < D101 < Cot ™|V £l
i=1

Proof. By definition, |V f|2 = (97')“9;f0;f. To get the desired estimates, we just use a very wasteful
estimate that Cj 't < min, ; [(g71)¥| < max;; |[(g7)¥| < Cot2 (which follows directly from (£.14) and

computations as in (2.15])). O
Lemma 4.10 (Sobolev embedding). The following holds for every (m,l) X-tangent tensor T :
_s _s
(4.24) 1Tl (219) < Cot™ 2| T llwracs,,g)y,  NTlzesg) < Cot™ 2T lwras,,g)-
In particular, these inequalities imply
(4.25) 1Tl (200 < Cot™ 2Tl 2210
and
r+2
(426) IVOT N e goe g, gy < O 2 I T i 5,0

Proof. We first prove the inequalities ([4.24)) for scalar functions f. Using the Sobolev embedding for T? in
coordinates, it follows that

427) [ flli=(z.g < Co D ( / 1% f1* dar) ¥ < Cof / (fIF + 74V F12) de) T < Cot ™3| flwracs, o),
|| <1 t ¢

where in the penultimate inequality we used Lemma and in the last inequality we have used Cjy’ t=Tyoly <
dx < Cot~voly (which follows from the bootstrap assumption (4.14)).
For the second inequality in (4.24)) for a scalar function f, we proceed similarly to obtain

428) [ losson < Coth X ([ 02sPan)t < Cord( [ (0P +472V 1) dn)? < Cut™ s
jal<1 7% Z
Now given a general (m,[) tensor 7, using (4.27) and (4.28) with f, = /|T|2+ a? (o > 0) and taking

a — 0, we obtain the desired inequalities in (4.24)).
Next, it is easy to see that (4.24]) implies (4.25)).

Finally, by (4.25)), and the fact s — e > 2,
IvOT IVOT | L2(s0g) + T E 3V T r2(5,9))

r+2

<Co Y " Tl (s,

r'=r

(L2ni s § e L) (2hg) = Co(
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which is (4.26]). O

We will also need to compare norms with respect to g and with respect to the trivial metric Z?:l(dxi)z.
Lemma 4.11. Given any rank (I,m) X-tangent tensor T,

| vl ..yl 7'|§[n]

k times

< Cpt~ =9 i Z Z Z £72P0y L 4= 2Py 2P L 42Pim |

r=01%1,...,80 b1,...,b1 J150e50m

(4.29)
7' Jm

Proof. Using the form of the metric (1.4)), the bound on al™, and the fact p; < pa < ps,
|7"§[ =((g [n])fl)ilbl ...((g[“])*l)“blg][?]cl . 93[1;]%77); 7;@ Cm

C E § E E t72pmi“{i1wb1} e t72pmin{il‘bl} 3

b1,..sb1 G155 dm B1seensl C1seensCm

. $2Pmax{j1,e1} .. .tQPmax{jm,cm}th Jm7;ct

IN

(4.30) < Co( Z Z {Pmin{ig.b1} ... ¢~ Pmin{iy by} . fPmax{ir.c1} ... fPmax{im.cm} n;j;bylm )
b1,eeb1 J1seesdm

tPmin{iy by} .. ¢ Pmin{ig,by} . ¢Pmax{ji.e1} ... fPmax{m.em} "Efzzcm |)
§ : E : 1...191

©1,000y81 ClyesCrn

<o Z Z 7206y L T2 $2P5y L 2P

b1yeebi J1seesdm

This proves (4.29) when there are no derivatives (i.e. k = 0).
Define the flat connection V1% to be Levi-Civita connection associated to Zg’:l(daji)z, ie.

2

Ji---Jm
7;71...bl

vz({lat) L. Vl(i"lat 7— .]rn. _ . TJL ]m.
Then, since p; <1 —¢e <1 -5, (4.30) gives
|v(flat) L. v(flat)T|2 -

<Oy Z Z Z $72Pi L 2P 2P0y L 2P 2P0 L 2P

cobr b1y by g1, 0m

< Cot~ B Z DD T PP PP |

ot b1yebr g1y dm

v(flat V(flat)le Jm|2

(4.31)
7' Jm

Now compute

[n] ieedm
vinl .yl

=0y, Oy TR i”’+ZZ<% 0. (M) .0 0T o]

s=0e=1
(4.32) * Z Z O3y -+ O, [(F[n])iﬂieaiwz 0 1 0ipOiyy - TJL jm]
. s=0e=s5+2
+ Z Z Oy - “‘ [n])]j+1f6h+2 o aiv-Eli.'.'.bjzeilf]wrum] +t (F[n]) T (F[n]> oT
s=0e=1 —_———

k — 1 factors
+ (p[n]) e (p[n])(ap[n])7+ (p[n]) . (p[n]) T,
| — —_———
k — 2 factors k factors

where we have suppressed the indices in terms where the exact contractions do not matter.
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Our goal is to show that in the | - | ) norm, each term in (4.32) can be bounded above by the RHS of

[@29). By repeated application of the Cauchy-Schwarz inequality (with respect to g[®), and using (4.31)), it
suffices to prove

(4.33) |0; "'3i7~(r["])f'b|g[n1 < Ot~ 1=5)0+)

which is the goal for the remainder of the proof.
We first make the easy observation that |0;, - - -@-dg([;;” < Cp|logt|4t? max{pa: po} and |9;, - - -0, ((gnh)=1)be| <
Cp|log t|4t=2min{pe-pe}  In particular,

9ry++ Bi4, 005 0 -+ 030, ((9) )] < [ log ]2 mex{Pesrd log ey =2 mintpn-re)
< Cp|logt| 1t ®242Pr¢=200 = O, |log ¢ 2.
‘We now compute

i, -+ i, (L), 20
= ()Y (g T () (g ) gl
X By -+ B (™)) (050912, + Dy gl — Dur gl 10s, -+~ 05, 1(g™) T (D395 + Dl — Bugl).
Consider the example expression
(6™ ™)™ 90 a((g™) ™) 0 dgiy ][0+ g™ ) ][0+ g3

We can pair up ¢/ and (g)~! with a common index and conclude that this expression is < C,,|logt[F*?.
All other terms are similar. Hence, we obtain

104, < 0i, (TP, 20
< Cpllogt™™  max (g™ 7H)n - ((gl]) )i (gl 1)

L .,
11,2540,

< Cn| log t|r+1t_(7.+1)(2_25) < Cnt—(2—a)(7”+1)7

which is exactly (4.33)). O

Lemma 4.12. Forr <s—2,

IV sr9) < Colllg" P llwreroosg) + 107 Dllwree s,.9))-
Forr <s,
||v(d)||H"(Zt,g) < CO(||g(d)HHT+1(Zt7g) + ||(9_1)(d)||Hr(2t,g))~
Proof. Note that
1., - - d d d
Sl = () (Vigyy + Vigp — Vogly):
The conclusion is then an immediate consequence of Holder’s inequality and the bootstrap assumptions (4.15)

and (4.16)). O

Lemma 4.13. Forr <s-—1,

(4.34) (VD) =

Co T llwroe (2 gty < N T llwroo(s,,0) < Coll T llwroe (s, gio) -
Proof. This follows from the bootstrap assumption and Lemma O
Lemma 4.14. Forr < s+1,
Co T N e (s, g0y < N T e (z09) < Coll Tl e (s, gm0y
Proof. This follows from the bootstrap assumptions , and Lemmam O

Note that Lemma fails when r = s, s + 1 as we do not control ||g(d)HW7‘,tx>(Zt7g). On the other hand,
Lemma by itself will not be sufficient for our purpose. Instead we need the following
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Lemma 4.15. The following holds for any o > 0:
s il
IVOT | oo (2, g 410 22(80g) < Coll Tllweoe gty + T2 1T poe 5, gt

and
s —a4B
||v( +1)7‘||Lm(zt7g)+taL2(Et,g) < CO(”T”WS-%—Loc(Et)g[n]) 4otz ||T||W1,oc(2t)g[n])).

Proof. The main difference with Lemma [£.14)is that we may have terms which involve s or s + 1 derivatives
of (4.
We first consider the term V(*)7. When writing V(*)7 in terms of (VI?)(*)T there is the term

T[v(s—l)v(d)]

(meaning s — 1 V derivatives acting on the tensor V(#), together with other terms which are lower order and
can be handled directly using the bootstrap assumptions (4.15)) and (4.16). This term cannot be bounded in
L*°, and will instead be controlled in L2. For this we note that by Holder’s inequality, Lemma and the

bootstrap assumptions (4.15)), (4.16)),
ITIVE VD 23,9y < Coll Tl poe 000 19 Dl i (20.9) + 1097 Pl aro-1(2,.0))
< Cot? | Tl oo (s,9) < Cot? | T e (1o -

This gives the first inequality in the statement of the lemma.
The term VDT is similar except for an additional derivative. Indeed, we need to control the terms

VTVE Vv TIve v,

Both of these can be controlled in L?(3;,g) using Hélder’s inequality, Lemma and the bootstrap
assumptions (4.15]), (4.16]) as above. O

4.5.2. An easy consequence of the bootstrap assumption.

Lemma 4.16.
||h/(d)Hstl,oc(Et,g) =+ ||k(d)||W572,oo(Et7g) + ||atk(d)HW5*3=°°(Et,g) < CO.
Proof. This follows from Lemma (Sobolev embedding) and the bootstrap assumption (4.17)). O

4.5.3. Estimates for background quantities.
Proposition 4.17. For each n € N, define
Ty i= —0phl) + |k 2,
(Iym)i = —02 (k)7 + Ag[n](k[“])ij — (Va7 h) ) 4 (k] s gl gy g (9, kM) S nD) 0
Given any N € N, there exists nn,s € N sufficiently large such that whenever n > ny s,

s+1 s—1
S Wl 0.9y + 3 gt 51, < Crat ¥
r=0 r=0

Proof. By Lemma [4.11] it suffices to show that for any given polynomial rate, n can be chosen sufficiently
large so that Ijm), (I;m )7 and their coordinate derivatives tend to 0 faster than the given polynomial rate.

Step 1: Proving the estimates for I,m. Recall that by definition hl? = (kM]),£. By Proposition
and the expression for Ricy ((Yg) in , it follows that given any polynomial rate in ¢, we can choose n € N
sufficiently large so that I},m = —0,h® + |k[n] |2 and its coordinate derivatives go to 0 faster than the given
polynomial rate in ¢.

Step 2: Proving the estimates for Im . By and ,
(Im)i? = — 8, Ricy? (Dgl) 4 v, (g7 4+ vi (gl — 3(kM),™Ric,,” (D gln])
(4.35) + 207 (),  Ric,™ (W gy — (B 7 Ric; (D gl 4 2(kB)) £ Rie? (1 gnT)
— ((K™),8] = (R ) Ricy™ (D) + O(t1),

where (GI?); = Ric(WgMnl),; and L, is linearly increasing in n.
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By Proposition [3.3] given any polynomial rate in ¢, we can choose n € N sufficiently large so that the terms
— O Ric? (Wgy + v, (67 + vi (g, — 3(kM),™ Ric,, (4 gln])
+ 263(k[“])meRi(:gm((“)g[“]) — (k)7 Ric (D gy 4 2k £ Rie,d (D gInTy
= (k) 6] — (™)) Ricyy™ (D g1
and their coordinate derivatives go to 0 faster than the given polynomial rate in ¢. O

Proposition 4.18. For any n € N,

s—1 s—1
SR e g+ SOE IR gy < Ot
r=1 r=0
and
(s) [n] ; —s—l+e (s+1) 1.[n] ) —s—2+e
||v k ||(L°°+ts+%7aL2)(Et,g) S Ont ’ ||V k ||(Loo+ts+%76L2)(Et,g) S Cnt :

Proof. This follows from Lemmas [4.11], [4.13 and [4.15] and the estimates for k™! in coordinates given by
3. 0

Proposition 4.19. For any n € N,
||k[n] ‘|L°°(E,,,g) S CvOti1 + CntilJrE-

Proof. This is similar to the proof Proposition [£.18] except that we need to be more careful to check that
the borderline O(t~!) terms are independent of n (since Lemma does not give an extra t® for the zeroth
derivative). Nevertheless, by , it follows that the borderline contributions exactly come from ¢t 'x;7,
which are manifestly independent of n. O

Proposition 4.20. For any n € N,
s—1
D N0k e (s, gy < Ot ™24, 10K Lo, ) < Cot ™2 4 Crut72F5.
r=1
Proof. This is a small variation to Propositions [£.18 and [£.19] First, note that it suffices to control terms on
the RHS of (2.2).
e For the term Ric(gi*~11);7, we use Lemmas and and the estimate (2.9). (Note that there
are no borderline terms in this estimate.)
e For the term (kM),*(k[);7, we use Lemmas and and the estimate (2.8]). For the lowest
order term, note that the borderline terms depend only on t~'x;7 and are thus independent of n.

O

Once we obtain the estimates for k™, the estimates for k can be controlled after using also the bootstrap
assumptions (4.17)).

Proposition 4.21. The following estimates hold for k:

5]l o 51,9y < Cot™" + Ot ™1, ftrllv‘”k\lmmt,g) < Cpt ™,
r=1
VDRI s ge paygsy gy S Ot IV et oy, ) S Cnt "
|0k oo (3,9 < Cot ™2 + Cpt2F=, §t7‘||v<”atk||mgmg) < Cpt=2te,
||V(5’2)3tk|| < Ot ||T;15*1)8tk|| <O it

5 5
(Loot" T2 75 L2)(5y,9) — (Loot"T 275 L2)(Sy,9) —

Moreover, the above estimates hold both when k is replaced by k™ and k(4.

Proof. That the estimates hold for k[ follows from Propositions [4.18] [4.19| and 4.20L That the estimates

hold for k(4 follows from (4.17) and Lemma
Finally, since k = k®) + k(9 the estimates also hold for k. O
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Proposition 4.22. For any n € N,

s—1 s—1
Z tTHh[n} HV'VT‘OO(Z“g) + Z(trJrl ”ah[n] HWnOO(Zhg) 4+ g2 ”v[n] onml ||WT=°°(Et,g)) < Cnt71+s,
r=1 r=0

and
Hh[n]HLw(Et,g) < Ot~ + Ot 1,

Proof. Recalling that we set h® = (k[®)),¢, this can be proven in the same way as Propositions and
[4.19] O

Proposition 4.23. The following estimates hold for Ric(g):
Ztr |R7/C ||W7‘ oo(zt g < C t 2+€

(s—2) p,; s+5 (s—1) p; s—l4e
||v Rlc(g)||(Loo+t5+§_sL2)(zt g) — O 12 ||v RZC(g)”(L‘”-{—tH'?_ELQ)(Et g) — C t

Proof. For simplicity, we write in this proof Ric = Ric(g), Ric® = Ric(g™) and similarly for the Riemann
curvature tensor.
First, notice that by Lemma and (12.9)), it follows that

s—1
D I Rie™ [y (5 gy < Crt ™2
r=0

As a result, Lemmas and imply that all the desired estimates when Ric is replaced by Ric®!
It thus remains to estimate the difference Ric — Ric™!. We will bound the difference of the full Riemann
curvature tensor; the bounds for the Ricci curvature tensor of course follow immediately. We compute

(Riem — Riem[n])fjk
= 0;(T —T)f, — 0, — TG + T8, 10 — T8 1 — (TP (Ti))] 4 (ri)p (ri)E)
= 0,0 — T, — T2 (0 — 1)l — TP (0 — 1) 4+ T8 (0 —Ti)E,

— 0;(0 = ThG + T2 (0 — TN 4+ T8 (T = T] -1 (1 — T,

— (0 =TPhe (T —TPHE + (T - F[“])jp( - T
= V(T =TS, — (0 =T, — (0 = TR)P (0 — TR 4 (1 — T (- T,

(4.36)

Combining this with (4.34) and the bootstrap assumptions (4.15)) and (4.16)), it is easy to see that Riem —
Riem™ can be controlled by

s—3 s—1
Z ||Riem — Riem!™ lwr.oe(21.9)> Z ||Riem — Riem!™ e (s0,9) < Co.
r=0 r=s—2
This concludes the proof of the proposition. O

4.5.4. Commutator estimates. We will often use the commutator formula between the Lie derivative in 9;
and covariant derivatives in the spatial directions:

Proposition 4.24. The following commutation formula holds for any (m,l) X-tangent tensor T :

l
[atﬂ vﬂ],];jllzljm = - Z((gil)begm(ir\vek\a)m - v(akiT)b - (g ) gd(a . )TJl Im

r—th index
r=1

7—th index

Z Y G Vekia)™ = Viake” = (97 ga@ Vi ke YT 5, 0 I
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Proof. A direct computation shows

r—th index

l m
J1e-Jm J1---J b J1..-J Jr g1 b —Jm
IV T =NV 0T 7™ — E oL, Tt m}b e + E oLy T .
r—th index
r=1 r=1

On the other hand, we compute using and that
Tl =(g7") " kg (Daget + Ocgar — D1gac) + (97 ) (01(gaakey”) — Oalgauker) — Oc(gaaky™))
=2(g7 ) kT gt + (7 (O (Ga(aker?) — Dalgakey®) — Oe(gacakny®))
= (97" (Vi(9aako”) = Va(gauks ) = Ve(ga@kn®)
= (97" 940 Viki)? = Viake)” — (071 ga Ve k.
Combining these computations yields the desired formula. O

Proposition 4.25. Let T be an (m,l) X-tangent tensor.
For0<r<s-—1,

(4.37) ARG FECMESIED DEL I (s
r1+re=r
Consequently, for 0 < k < s, iterated commutators can be bounded as follows:

k—1
(4.38) 1106 Vi, -+ Vi Tlre g < Cn 342 T g1 (s, -

r’=0

Finally, if T is a scalar function, then in fact (4.38)) holds for 0 < k < s+ 1.

Proof. Step 1: Proof of . Using Proposition we have the estimate
1[0, Val Tl e (50.9)
<Co Y IVUIVE| e, IV T 2,9
(4.39) Ny
+Co > IVUIVE|

ri+reo=r
r1>s—3

We estimate each of the terms in (4.39)). Using the estimates in Proposition the first term in (4.39)
can be bounded above as follows:

Y IVOIVE (5, ) IV T 2m09) SCa D 725 T ir2(9,,)-

r1+re=r r1+re=r
r1<s—3

IV 7|

5 5 .
(Loo°F 375 L2)(2,,g) (L2t "2+ L)(Sy,g)

(4.40)

Before handling the second term in (4.39)), we first note make the following observations on the numerology:

e When r; > s — 3, since we have r{ + 1, = r < s — 1, we have either ro = 0 or ro = 1. In particular,
ro+2<r.

We can thus bound the second term in (4.39)) using Proposition (4.26) and the above observations as
follows:

() (r2)
2. v UVEN eyt 31y IV T o4 ey 0,0)

r1+reo=r
r1>s—3
(441) ro+2
SCo DL T T T 00) S Cn Do T T s 5100,
r1+re=r r'=rg r1+re=r
ry>s—3

where the very last estimate follows simply after relabelling.

Combining (4.40) and (4.41)) yields (4.37).
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Step 2: Proof of (4.38). When 0 < k < s, we compute using the triangle inequality and (4.37)) to obtain
1[0, Vi, -+ Vi Tl L2(s19)
=06, Vi,[Viy - Vi, T4+ + Vi -+ [0, Vi |- Vi, T -+ Vi - Vi 00 Vi T 22(3409)

k k
(4.42) <CoY MO0 VilVi - Vi T 1w SCny D, 72V Vi Tl (s,

r=1 r=1ri+ro=r—1
k k—1
<c, Z Z t7277‘1+€||7'||H7-2+k77-(2t7g) <C, Z tizirura”THH’C—T’—l(Zt,g)'
r=1ri+ro=r—1 r'=0
This yields .
Finally, for a scalar function f, [0, V;]f = 0. Hence, in , we sum only up to r = k — 1. As a result,
we can take up to k = s+ 1. This gives the desired improvement for scalar functions. (]

4.5.5. Estimates for general equations.

Proposition 4.26 (Transport estimates). Let T be an (m,l) X-tangent tensor. Then

M

d. _
(443)  ZVIT IR m) + —

dt

In particular,

) ~ Co,,_
T 2 ) — 267 / (TS0 T)glvols, < 20Tl (s, )

d. _ M. _ Co,,_ ,
(4.44) ZMIT o)) + M 2 s,0) < =2 1T 22w, 0] + 10T 2 (5, -
dt t t
Proof. We first note that by (4.9)
d
(4.45) pn fvols, :/ (O f — k‘gz)f vols, .
I p

We will apply ([@.45) to f =t—M |T|2. A direct computation shows that
Of = — Mt M NTP + 207 (T, 0,T),

¢
-M —1id, (=N DY (= Niedy g dm el
(4.46) +2t ;(9 )l R Y () gy g Tir " T

Y

_ _ Y] _ . ¢ i1 Fm ,;n

— 9 MZ(Q 1)11“...(9 l)l“zgjlj{"'{gajskj;) }"'gjmj;n,ﬁjﬁuii 7;{11; ,
s=1

which implies, using Proposition that
d M

(4.47) VTR S

The pointwise inequality (4.47) implies (4.43) immediately after integrating over 3, using (4.45)), and ap-
plying again the estimates in Proposition [£.21]
Finally, to derive (4.44)), we simply note that by the Cauchy—Schwarz inequality,

EMIT2 < 26T, 0,T) gl + Cot™ 1T

2t g (T, 0¢T)g| volg, < t7M71||T||%2(Et,g) + t7M+1\|3tT||2L2(zt,g)-

O

Proposition 4.27 (Energy estimates for wave equations). Let T be an (m,l) X;-tangent tensor such that
(=02 + Ay)T = F for some (m,l) E;-tangent tensor F. Then

d. _ _

!t MU T N 2(s0.9) + IVT 225, 0) + 1 21T 72(s,.0))]
M _

+ [t M(||8tTH%2(Zt,g) + HVTH%Z'(&,Q) +1 2||TH%2(Z“Q)>}

t

(CO + Cnts)
t

< M UNOT 25,0 + IVT 1202, ) + 1Y 2T 25, 0]+ HIF N5, -
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CoFCnt®) r,— M-
Proof. Denote by E terms bounded by (Oiit)ﬁ M(||8tT||%2(Et)g) VT 2(s,.) 1 M N7 072500
Step 1: Controlling the first order terms. Applying (4.43]) in Proposition integrating by parts and using
the Cauchy—Schwarz inequality,
d
dt

="M [ (T, 2Ty +(VT, VT),) vols, + E
¢

_ M.
M WO T2 509y T IV T W25, )]+ S M U0 T (5,00 + IV T N 22(3,.))]

(4.48) =2"M [ (3T, F)y+ (0T, AyT)y + (VT, :VT),) vols, + E
¢

= —2"M [ (0T, F)yvolg, —2t™™ [ ((VO,T,VT)y— (VT, VT),) vols, + E

I 3¢
< t7M71||6tTH%2(Et,g) +t7M+1HF||i2(Zt,g) +E < t7M+1H‘F||%2(Zt7g) +E,

where we have used that by Holder’s inequality and the following commutator estimate (which uses Propo-

sition [4.25))

< Cut " IVT 20 | Tl 251 0)

/wa%Wﬂg

<Ot VT 20,9y + Cnt > T2 2(x, )

Step 2: Controlling the zeroth order term. It remains to control the zeroth order term ||T||2L2( For this

we simply use Proposition and then use (4.48]) to obtain
d. . M+ 2
SN T ] +
(4.49)

Co,_p— T
< M T e, g+t 0T e(w, ) < B

26,9)°

t_M_QHT”%?(Et,g)

Summing (4.48) and (4.49), we obtain the desired estimate. O

4.6. Energy estimates for the wave equation for k. In this subsection we continue to work under the
assumptions of Theorem[4.6| In particular, we assume the validity of the bootstrap assumptions (4.14)—(4.17).
We insert ({.13)) into (£.9) to obtain evolution equations for the difference (k(%)7:

R (kD) = Ay D)7 4 (ko kxk — kP x g0 gloly,o

(4.50) , , .
+ (8ek * k — 0pk™) 5 kPN T (L)) + B,

where the terms (k x k x k), (0;k x k) are as defined in (4.6), (I );’ is as defined in Proposition and
B;7 denotes the following terms:

(4.51) Bii = —V;VIh + V() B A (k)7 — A (B,
The following is the main energy estimates for k(%):

Proposition 4.28. Given N € N, let n € N be sufficiently large so that the estimates in Proposition
hold. Then
s—1 s
d — — a8
E[t 2N -2 (ZtQHQHatV(T)k(d)||2L2(Zt,g)+Zt2r||k(d)”?ﬁlr(zt,g))]
r=0 r=0
s—1 s
2N +2s . _on_o 2042 () 1.(d) |2 211 1.(d) |2
+f[t S(Zot?“ ||8tv7 k ||L2(Et’g)+zot "||k‘ || 7r(
< (Cotfl + Cnt71+a)t72N72sgs(t) + CntB,

)]

where, as before, we have used the notation V(") = Vi, -V,

.
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Proof. For 0 <r < s — 1, we differentiate ([#.50) by V(") to obtain the following wave equation for V(") k(@):
azv(r) (k(d)) iy A, V(T) (k(d))

i1y 1t

(4.52) = =V L) =V BT V) (kwkeox ke — kI k) gl

11 ’L 11 17

— V) (ko ke — Ok % kYT — (92,9 (k@) 4 (A, VD (kD)

11 ’L 11 7,

For every 0 < r < s — 1, our goal is to show that

(4.53) )| = 02V L D)+ AV (K D) 2w, g < (Cot ™2+ Cy, 2HE)ER (1) + OtV Fe,

’Ll Z
after which we will apply Proposition [£:27]
The proof of (4.53)) will be achieved in Steps 1-5 below in which we bound each term on the RHS of (4.52)).

Step 1: Bounding the inhomogeneous terms. For 0 < r < s — 1, by Proposition [£.17]
(4.54) | o || e < CtNFeT.

Step 2: Bounding the terms in B;7. Recall from (4.51) that B,7 consists of h terms and k terms. We first
compute the exact form of the h terms:

— (g7 Videh + ((g™) 7MYV M ohl
= — (g7 1)'V,9,h D — (gfl)jlvl(,d)aeh[n] — ((g7H@D)yitynlg,pnl
From (4.55)), the triangle inequality and Holder’s inequality, it follows that
I = (g™ sdeh + (™) Y0 aphm |

SV DN grmg + 2o IV Dt (g 102 s 0 55, )

r1+ro=r

(4.55)

(4.56) =

+ Z —1 (dl

r1+re=r

=:I1

H"l(Ztg)Hv (%h[ HW72 0 (S4,9)

=111
Term I can be directly estimated by the definition of &(¢):
1
(4.57) LD s, o <1260
By Proposition Lemma and the definition of &(t), we have
H<C, > t272 (gl

r1+re=r

1 1
SCp Y ATETEIMEEE (1) < CptTTTRTEER (1),
r1+ro=r

For term IV, we use Proposition and the definition of £(¢) to obtain

(4'59) nr<c, Z t737r2+5|‘(g71)(d)”HT1 Seg) <, Z 2= r2+€5 ( ) < Ontiri2+€gs%(t).

ritro=r rit+re=r

Hr+1(5,,9) T [ (g_l)(d) ||H"'1+1(Et79))
(4.58)

For the k terms in B;7, we compute

Ag(k[“])ij _ Ag[n](k[“])ij
= (g Oy VIRV )+ g DV R 4 g,V ()

The terms in (4.60) are similar to those in (4.55) (with k taking the place of h) except — importantly
— that (4.60) does not contain second derivative terms of k(?). This is important because while our energy
controls up to s+ 1 derivatives of (4, it only controls up to s derivatives of k(¥). Other than this difference,

the remaining terms in (4.60) can in fact be controlled very similarly as those in (4.55). We will therefore
omit the details and simply give the final estimate:

(4.61) IVTIBI | 12(s,.9) S (Co + Cpt)t™"~ 262 (1)

(4.60)
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Step 3: Bounding the difference of the nonlinear terms. In this step we control the H” norm (for 0 <r < s—1)
of kxkxk — kM x kM 5 k) and 0,k x k — 0,kM) % k2.

We begin with k * k% k — k™ « kPl x k2] For 0 < r < s — 1, we use Holder’s inequality, Proposition
and the definition of &(t) to obtain

e k% ke — KD R B )
< Y IV D) o ) [V R KDY o ) [V 35

ri+ra+ry=r

(4.62) ry,ra<s-2

max{ry,ra}>1

+ Col| (R, KD | oo (5,00 | (B2, BD) [ oo (52, ) IV R D | L2 (3, )

1 1 1
SOt 1Tl S T €2 ()  Cot T2t TTEZ (1) < (Cot ™" 2 4+ Cpt "2 E2 (1),

where we have used the shorthand ||V (kP k(D)) (s, o) = [VOVED| pc s, o) + IVOVED | Lo (5,00,
etc.

When r = s — 1, we have terms as in (4.62)) which can be controlled similarly, but also the following extra
term, which we in addition use Sobolev embedding in (4.26) to obtain

[k x kx k — kP« k] o)

< Col| V7 (M, k() K ED) | e (5,0 1K

e L (L2t~ e Loo)(2,,9)

(4.63) . . 2 o
< ColVO LB o, N E D) g S 8 B s, )

r’'=0

< CptTregR ().

We now turn to 9k  k — 9.k % k. For 0 < r < s — 2, we use Holder’s inequality, Proposition [4.21] and
the definition of &,(t) to obtain

Hatk *k — 3tk[n] * k/’[n] ||H7‘
<Co Y VIR ED)| oo 5,0 VD OED | 125, )

r1+ro=r
1<r;<s—3

(4.64) + C’O Z Hv(rl)at(k[n]ak(d))”Lm(Et,g)||v(7.2)k(d)”L2(Et,g)

r14ro=r
1<r;1<s-3
+ Coll (K™, )| oo (5, ) IV 01k D 25, ) + Coll 0 (kP K D) | oo (5, ) VR D | 255, )
<Cn Y fimre g B (1) 4 Ot HTTIER (1) < (Cot "2 4 Cut T EE (1),

r14+ro="7

For r = s — 2, we have an additional term when all derivatives hit on 9 (k™ k(?) so that we cannot put
it in L*°. For this term we use Proposition and (4.26)) to obtain

A, (0] 1.(d) @
[V 0 (K™, k )H(LochtS*%*EL?)(Et,g)”k ”(LQﬂt’S*%“Lw)(Et’g)
(4.65) o :
< Cnt_r_2+5 Z + ||]{,‘(d) ||H’"/(Et’g) < Cnt—r—2+€gs2 (t)
r’=0

For r = s — 1, we have additionally (compared to (4.64]) and (4.65))) terms where (1) all but one derivatives
hit on 9; (k™ k(D). (2) all derivatives hit on (kM k(@) both of which cannot be put into L>. For these
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terms we use Proposition and (4.26) to get
IV 0, (6, KD

(r) (] 1.(d)
w66) IV L KDY e

3 2
r_ » e 1
< C'nt_r_HE(Z ¢ 1||k(d)||Hr’(zt,g) + Z t Hatk(d)”m’(zt,g)) < CptTHEER (1),

r'=1 r’'=0

(d)
(L°°+t3+%’EL2)(Z g ||Vk ||
10|

_5
(L2Nt™* 7275 L) (Se,9)

._ 5
(L2t~ 34 L) (8,,9)

Step 4: Bounding the commutator terms [—0? + A, vl.
By (repeated applications of) Proposition [ 82 Vk(D consists exactly of terms of the form

> trgey VUVEV DG D 50 V9, kV PEG and Y L VOOEVEDEV DGR Thus
they can be controlled in exactly the same manner as in Step 3 to obtain

1
(467) ||[6t2’ Vh . vir]k(d)”Lz(E,g) < (Cot_r_Q + Cnt_r_2+s)832 (t)

On the other hand, the commutator [Ag, V(T)] gives rise to curvature terms. In the 3-dimensional ¥, the
Riemann curvature tensor can be expressed in terms of the Ricci curvature and thus can be controlled using
Proposition to obtain

1
(4.68) 1[Ag, Viy - Vi kD | L2539y < Crt T772HE2 (2).
Step 5: Putting everything together. Combining Steps 1-4, we have achieved (4.53]).
Therefore, for every 0 < r < s — 1, we apply Proposition with M = 2N + 25 — 2r — 2 to get

d

5 [t 2N — 2s+2r+2(”a v(r)k(d)”LZ(E, " + ||k (d) |

2N +2s —2r — 2
t

[t72N72s+2r+2(Hatv(r)k(d) ”%2 (Se.g) + ||k (d) ||H7+1(§] ) (CO + CntE)t72Hk(d) H2

+t 2R3

A s, T =)

[t 2N 222 10,V KD Ta s, gy + KD, g T8 IR D s, )]
Co
<7
-t

2N 20| 920 L (RD) + AV (KDY 2, )

[ARER 2%

< (C()t_ 4 Cnt—1+2a)t—2N 2958( ) + Cntg,
where in the last line we have controlled [t=2N=25+2r+2(||9, V(M@ 2, 2(sg) T (| £(D)|2
eV+—2(|1(d)||2 :
Cnt)t 2| Y| T(Zt’g))] using the energy and have used (4.53)).

Summing over Zf_;(l), we obtain the desired estimate. 0

T(Etag))}

+ (Co +

H7+1(S¢,9)

4.7. Transport estimates. In this subsection we continue to work under the assumptions of Theorem
In particular, we assume the validity of the bootstrap assumptions (4.14)-(4.17).

We prove in this subsection estimates for h(%), gl(;i), ((g=H) @)% which are all derived using the transport
equations they obey.

We insert and into to obtain evolution equations for the differences ggl), (k(d))ij, h(@,
and ((g~1)@)":

(4.69) O = 2K (D)7 4 (D)7 (D)5 4 Ty
(4.70) gy = — 2k g = 2D gjpe,
(4.71) Or((g™) D)7 =2(k), 0 (g7 D) +2(kD), 0 (g7

We begin with the more straightforward, less than top-order, estimates for h(®, gl(;l), ((g_l)(d))ij. Com-
muting the equations (4.69)), (4.70) and (4.71) with V", r < s, we obtain:
(4.72) AV D = og [l .i(k.(d)).j] + v(r)(k(d))ij(k(d))ji + VO L + [0, VO R,
T d n T T d
(4.73) Vgl = — 29O (k) *g )] — 200,V (K D)y + [0, Vgl

(474) 9V ((g71) )Y =2 I (g7 D) + 2(g™ ) IV ®RD) D + [8, V(7))
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We use (4.72)—(4.74) to obtain the following estimates.

Proposition 4.29. Given N € N, let n € N be sufficiently large so that the estimates in Proposition
hold. Then

d : 2N °

i W ] - )+ =[N0 AR, )]
(475) dt = (%¢,9) t ~ (3¢,9)
< (Cot™ + Cpt e 2N=25¢8 () + Cht,

and

d - —2s . r— —

E[t ANy 2(Ilg(d)I\fap»(ghg)+H(g D@3 el

r=0

(4.76) 2N N 9e o oy _

+l N2y 2(Ilg(d)llzy\@t’g)+||(9 1)(d)||2»(2t,g)))]

r=0
< (Cot_l + Cnt_1+8)t_2N_2555(t).

Proof. We will only prove (4.75); the bound (4.76]) can be derived similarly (and is slightly simpler).
Applying Proposition for T=V"h@ (0 <r <s)and M = 2N + 2s — 2r, it suffices to show that

(4.77) 18,V RD]| 25, 4y < (Cot™ + Ot~ 1H9)E2 (1) + N+,

To prove this we consider each term on the RHS of (4.72)). First, by Holder’s inequality, Proposition
and ([4.26]), we obtain

D ED) | g s, g + IED) RD) s,
<y Z HV(”)(k[n],k(d))HLoo(zt,g)HV(”)k(d)||L2(2,,,g)

r1+re=r
ri<s—2
(4.78) (r2) (gln] (@ L,
+Cn D IV R gy, (Do IV D 2s,)
r1+re=r r'=r9
r1>s—2
1
< Z (Cotfrlfl+CntfrlflJra)”k(d)”HW(E“g) < (Cotflfr_’_cntflfﬂra)gsz (t)
r14+ro=1r

Next, the inhomogeneous term I}, can be bounded using Proposition by
(4.79) IV Ly | 23, 9) < Cnt M Fo.
Finally, by Proposition

r—1

’ 1
(4.80) 110, VTR D || L2, gy < Cn D 72 TR D | o, gy < Cut ™ T TEER (2).
r’=0
Combining (4.78)—(4.80) yields (4.77)). O

We next turn to the top order derivative estimates for hA(®, ¢(4) and (g_l)(d). For this we first control
the renormalized top-order quantities introduced in (4.21)—(4.23). (Subsequently we will show using elliptic
estimates that the renormalized top-order quantities indeed control all top-order derivatives; see already

Lemma [1.34] )

Proposition 4.30. Given N € N, let n € N be sufficiently large so that the estimates in Proposition
hold. Then

d o —an- s s s+1 2N _on— s s s+1
(4.81) GNPV R@ s, )+ N TR @) 7,

< (Cot™H 4 Cpt 1)t =2N=25¢ (1) + Cput,

(Zt;g)]
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and
d _ . s st s 1
TRV gD s, g + IV (07 D s )]
4.82 2N s+2(s ! '
(4.82) D[N 22 )2 g D) o D|72(x,, g>+||VrZi (g~ D@2, )]

t
< (Cot71 + Cnt71+5)t72N72s€s(t)'

Proof. Step 1: Proof of (4.81)). The main difference with the estimates in Proposition is that there can

potentially be (s+ 1) derivatives of k(?), which is not controlled by our energy &£(t). The quantity VSZZl)h d)

is in fact designed exactly to avoid such terms after using the bounds for the wave equation for k(¢
We begin our computations. First,

(4.83) O A V(S 1) h(d) (k[n] k(d))JA V(s iy

11 Z 15- 1

(k'D);* + error,

where the error terms have at most s derivatives hitting on £(¥ and thus satisfy the estimates similar to that
in the proof of Proposition (and their proofs are therefore omitted):

(4.84) "t lerror| 12(x, ) < (Cot ™"+ C t_H'E)E (t) +tNFs.

The term 2(k[ + k(D)7 Agvgsz (k@);? however, cannot be controlled. Nevertheless, continuing our

—1
computations, we see that

(k) + kD) 79,71 (kD))

(4.85) = (k1) 4 k@) IAVETD (KDY (k) 4 kD)7 (02 — Ay (kD)

11 1

+{at(k[n k(d))J}{at (s— 1) l(k(d))ji}.

’Ll ’L

Note that this generates a term (k™ + k‘(d)) JA V(S b (k®);* which can be used to cancel the uncon-

clg1

trollable term in (4.83]). Hence, combining (4.83 and , we obtain

10n( AV h(d)—2<k[“]+k<d>>ﬂatv§f..1 L EDY ) L2, g)

s s—

(4.86) < 2[(k™ + kD)7 (07 — A )VETV(RD) L2, g
+20[{0, (K™ + kDY HBVETD (KDY, iY|| 2, g + (Cot 2% + Cot=27549)E2 (8) + V1,

ipodg_1

We now handle to two terms in (4.86). By Proposition (4.53) and Holder’s inequality,
(487) IR+ KDY (0F — Ag) VOV ED) ;7 123,
4.87
< (IR KDY Lo (5,9 10F = Dg)VETD (R D) | 2033, ) < (Cot 27" + Ct ™7 OER (1) + Cot™

On the other hand, by Proposition [£.21] and Holder’s inequality,

(4.88) {0 (k1™ 4+ kD) I8,V ETY (kD) 123, .0 < (Cot ™27 + Cput " 2754) 82 (1).

i1 ls—1

Combining {j 4.88)) and noticing that V,nml)h(d) is defined exactly to be (recall (4.21] - JAV V(S 1) hd)—
2kl + k<d>)ﬁatv§f_ 1) (k(d );%, we thus obtain

(4.89) 10,V VR | pacs, g) < (Cot 7275 + Cut ™27 S+5)5 (t) + Cat™ .

The desired estimate (4.81]) then follows directly from Proposition (for M = 2N + 2s — 2(s + 1)).

Step 2: Proof of (4.82)). The main idea is similar to Step 1, so we will be brief. The main difference is that
for ¢¥, not only the derivatives of the inhomogeneous terms create VE+DE, but the commutator terms also
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create similar terms, which have to be taken care of by a renormalization. More precisely, by (4.70) and
Proposition [£.24]
atA V(‘? 1) (d)

is_za¥ij
=2,V 9,060 + [0, A,V | 1g@
(4.90) =~ 20080 Vi; i) La (K
-4, V . f L0 Veka)™ = Viakn” = (97" ga@ Vi ke )gbj
- Agvif--iﬁ(<9_1)b69m(jlveka)m — V" = (67 ga@Vike gty + .-,
where the terms denotes by ... have at most (s 4 1) derivatives on k[, at most s derivatives on k and at

most (s + 1) derivatives on P and therefore can be bounded as in Proposition by

1
Il 2., < (Cot ™75 + Ot~ 175T5)E2 ().
It thus remains to handle all the main terms appearing on the RHS of - Novv one observes that the

quantity Sas)) 9@ is designed exactly to remove this term (in a similar way as Vrenl)h is designed in

Step 1) so that the additional error terms are controllable. It thus follows that

1
(4.91) 10V b 9@ | L2, gy < (Cot ™7 + Cpt T 579)E2 (1),

which implies the desired estimate for V&ZZD 9@ in ([4.82)) after using Proposition |4.26].

The argument for VSZ*,;”(

1)(d) is similar and omitted. O

We conclude this subsection by summarizing what we have achieved so far, namely that we have obtained
an estimate for the modified energy by the energy:

Proposition 4.31. Given N € N, let n € N be sufficiently large so that the estimates in Proposition
hold. Then for any t € [Taux, TBoot)s

t 7_72N 255

t
t72N72555(t) + 2N (7) dr < / (C()T71 + Cn771+6)772N72855(T) dr + Cpt.

T
Taux aux

Proof. This is an immediate consequence of Propositions [£.28] [4.29] and [£.30} g

4.8. Conclusion of the proof of Theorem In order to conclude the proof of Theorem we finally
need to relate £ and 55 (which will be achieved in Lemmas and , and then use the energy inequality
in Proposition [£:31] to deduce our desired estimates.
Recalling now the difference between £, and ES (as described immediately after their definitions in f
(4.23)), we need to
o relate 9, V@ and V() 9, k(@ (achieved using a commutator estimate; see Lemma , and

e relate the renormahzed top-order quantities and other top-order derivatives (achleved using elliptic
estimates; see Lemma [4.34)).

Lemma 4.32. The following estimate holds:

Zt"‘”?”a KN s, < (Co+ Cut)E(1),

r=0

Proof. We control the commutator [0, V(" ]k(?) using Proposition to obtain
s—1
S 2P VOoED — 9,V IED |2, 5, ) < CutE(t),
r=0

from which the desired estimate follows from the definition of é: O

Lemma 4.33. Given any tensor £ tangential to Xy,
(4.92) VD€l 25,00 < 20180817 2(5,,9) + Cut > IVE T2, g) + Ot 1€l 2(s5,,)-
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Proof. We compute
1AgENI7 255,09

_ , aval _ _ 4 Boob
Z/ (g7H) ™% (g ) ™% gyr -+ Gy, (g N (g~ Y,V £ a’;Vj/ijai.. 7 voly,
=

a1~-~a5a’14-4a2ii'jj'

- ’
m

(4.93) Tbnbmby b
ai--a a’n-a’ii’jj’ by-
- _/ Gyl ety V€ ViV iV f VOlzt

Iy .
/ (G Z:ZZ} R AT A ’"V % 5 1 VOth + error = ||V(2)£||L2 5,,g) T €rTor,

where terms labelled error (different in the two instances) come from commuting covariant derivatives and
obey an estimate
lerror| < Col|Riem(g) |50 | V€l 72(x, g) + CollRiem(g)]| 1= (,0) IV D€l L2 (5,0 1€]] 2 (21.0)-

As a consequence, since on the 3-dimensional 3;, Riem(g) can be expressed in terms of Ric(g), we can use
Hoélder’s inequality and Proposition to obtain

HV(Q)ﬁH%%Zt,g)
<Ayl Z25,.4) + CollRiem(g)l| Lo 5.0l VEN 25, 9

(4.94) . o
+ Col[Riem(g)|| L (2.9) IV V¢l L2 (000 (€ 2(21.0)
< \\Ag£||%2@,,g> + Ot Vel Las, g + Cnt Vel 20, €]l 25,00
which implies (#.92) after using Young’s inequality and absorbing 3 [[V*¢[2. g, ) to the LHS. O

Lemma 4.34. The top order part of the energy for b9, g(® (g~ @ is bounded by:
PO RO o 2 (0D s, g + 10O s, ) < (Co+ Cat)E).

Proof. The key is to use Lemma Consider for instance (9. We first note that A,VE~Dh(@ can be

written as a linear combination of the renormalized top-order quantity V&Zi:”h(d) and terms which has at
most s derivatives of (9 (and k) so that it can be checked that

VA VEIRD o s, ) < (Co + Cut)Es(1).
It then follows by the elliptic estimates in Lemma and the lower order control for h(9) by &,(t) that
t2(a+1) ||h(d) HH (g (CO =+ Cnte)gs (t)

The estimates for the top-order derivatives for ¢(¥ and (g’l)(d) are similar. O

Combining Lemmas and we obtain

Proposition 4.35. Given N € N, let n € N be sufficiently large so that the estimates in Proposition
hold. Then for any t € [Taux, TBoot)s
Es(t) < (Co + Cut®)Es(t).

We are now ready to conclude the proof of the bootstrap theorem (Theorem [4.6):

Proof of Theorem[{.6 Given any N € N, choose n € N sufficiently large so that the estimates in Proposi-
tion .17 hold.

Combining Propositions and [4.35] and integrating in ¢ (noting that we have trivial data at Tj,.), we
obtain that

t72N72s t ,7_72N72s(c/' (T) t
Goreat 0+ [ g irs [, (Gr G r e ar s G
0 n Taux 0 n

We now choose our constants. First choose N sufficiently large so that
N > max{2C’0(Co + 1), 2(C0 + 1)7 No, 7}

(4.95)

aux
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We then fix an ny, s € N sufficiently large so that whenever n > ny, s, ) holds with the given N. After

fixing n, we then choose T, s n so that C,, T, o, < 1. Plugging Co < 2(0 5y and CR TR, < 1into (4.95),
we then obtain

7§—2N 2@ —2N 298 ( ) t N T—2N—2sg (7_)
4.96 )+ 2N/ dr < / +1 22 dr 4+ Cyt.
( ) (C() + 1 Taux CO + 1 Taux(Q(CO + 1) ) T
Notice that we have chosen N so that (2(0 1 T 1) < . We can thus subtract NfT - % dr
from both sides of (4.96) to obtain

4—2N—2s bopm2N=2sg ()

4.97 —&({t)+ N — 2 dr < Cyt,
(4.97) Grne 0N | e s
which immediately implies
(4.98) E,(t) < t2N+2s,

after choosing T, s,» smaller if necessary. In particular, since we have chosen N > Ny and T, sn < 1, we

obtain (4.18)). B

Finally, we check that we have improved the bootstrap assumption. For (4.15)—(4.17), this is immediate

from (4.18). For (4.14)), note that (4.98)) and (4.25]) imply

lg — g™ Lo (20,9) < Co
Now note that the smallest eigenvalue of g~ is > Cy 't~ > Oy *t2. Hence

tN+sf%.

tlai; — alf) [ < Cot'Prstiot |ag; — alf) 2 < max|g;; — g7 < Colt g = g™ (5, ) < Cot?V 271,

Now since N > 7 and s > 4, we have |a;; — a£?1| < C’ot%. Combining with , we thus obtain

(4.99) la;; — cij| < Cot,

which improves over after taking T, s,» to be sufficiently small. O
As we discussed in Section once we have proven Theorem we now also obtain Corollary [£.7}

4.9. Extracting a limit: proof of Proposition In this final subsection, we prove Proposition [£.8]
which, as indicated in Section is the final step of the proof of Theorem

We begin with some easy estimates, which will allow us to extract a limit. (Notice that these estimates
are allowed to degenerate as t — 0, but importantly they do not depend on Ty,,.)

Lemma 4.36. Let s, No, n and Tn, s be as in Theorem . For every T', T" satisfying 0 <T' < T" <
Tny,s,n, there exists a constant C > 0 independent of Thux such that the following holds (with definitions in

and (TT3).

Let Touz € (0,T'] and suppose (g2, k™, h*"x) is the solution to ([&9) on [Taux, TNgsm) X T2 given by
Corollary[{.7} Then

sup sup > (107089 | + 10,02 (97N )N a) + D (1970gk | + 10,95 R D)) (1, @) < C.

te[T T €T | Sy lal<3

Proof. When there is no 9; derivative, this just follows from (4.18]) and Sobolev embedding. To obtain the
estimates with the 0; derivatives, we use in addition the equations (4.50), (4.69), (4.70) and (4.71). O

Lemma 4.37. Let s, Nyo, n and Ti,.sn be as in Theorem 4.6, There exists a sequence of auxiliary times
{Taux 13725 C (0, Ty s.m), imy—y oo Taux,r = O such that the corresponding solutions {(g3™, k3w, hawx}toe
given by Lemma converge locally in C3 x C? x C? norm (as I — +00) to a limit (g, k, h) which solves
@9 in (0, Tny,s,n] x T2. Moreover, after denoting g'¥ = g — gl?l, (g71)@ = g=1 — (glnh)=1 k(@) = | — g[n]
and W9 = h — hl?l | the estimate (£.18) holds.

Proof. The existence of a limit follows from Lemmal[.36] the Arzela—Ascoli theorem, and a standard argument
extracting a diagonal sequence. Since the limit is achieved locally in C3 x C? x C?, it follows that the limit

satisfies the system (4.9)).
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Finally, we prove that the limit obeys the estimate (4.18). First, note that the estimate (4.18) implies that
for every ¢, there is a subsequence {Thux,z, };} for which {(g§"™, k3™, hg /2 has a weak limit satisfying
([4.18). This limit must coincide with the local C3 x C? x C? limit, thus showing the bound (4.18]. O

The very final statement we need in order to complete the proof of Proposition is that gjjfkij/ is
symmetric in ¢ and j. The key to such a statement is the following lemma.

Lemma 4.38. Suppose (g, k,h) solves (4.9). Then the term (gjj/kij' — gij/kjj/) satisfies an inhomogeneous
wave equation of the following form.:
(07 = Ag)gigki’ = gigrki?)
= Xk, 2k, " (getka” — garke") + Yo 00ki? (geeka® — gacke’) + Zoii kG2 04 (gerka” — gacke"),

where X, Y and Z are some tensor products of g, g~ and 6.
Proof. Step 1: Easy reductions. First, a direct computation shows that

0} (95k7" — gigrks?)

= — 3u{(gjohs® — gk Vki? — (givkyr® — 9ok} — (gyoks® — giukyr®)Ouks”
+ (g 0%ki" — i1 02k ) — 29,5k Ok

Notice that all the terms on the first line are of the form as required by the lemma.
It thus follows from (4.9)) that

(07 = Dg)(g557k7 = gigrks?)
=g {(kxkx k) + Ok x k)i Y — gij {(kx kk);7 + Ok x k)7 } — 29,5k’ Ouki® + . ..,

where ... denotes terms which are of the form as required by the lemma. (Notice in particular that the
Hessian of h term drops of because it is symmetric.)
Investigating now the terms in k * k x k and 0.k x k, we only need to check that

Q7 955 = Q7 gir, where Q7" € (k7' 67", kiko?', Ok, [(Oeki®Yha? — (Dika’ )hi"T}
is of the form required by the lemma. (Note that the term [(3;k;*)kq’ — (Otka? )ki?] comes from combining
terms in O:k x k and —29jj/kbj/8tkib.)
Now clearly if Q;7 € {k;7', 8,7}, then Q7" g;;» — Q;7 gijr is of the desired form.
For Q{/ = k;%k,?", we compute

ki%ko? gji0 — kjakaj/gij’ =k (ka? g5 — kjj/gaj’) - kja(kaj/gij’ — k¥ gajr),

which is .9f the desired form.
For Q! = 9;k;” , we compute

95 Ocki? — gijrOiky?
= 3t(gjj/kij — gij/k'jj ) + gjbkj/bk,-j + gj/bkjbkij - gibkj/bkjj — gj/bkibkjj
= 0955k — gigrki” ) + (giokr” — gynki" Wk = (giksr” = gk ks,

which is of the desired form.
For Q) = [(0:ki*)ka?" — (3ika? k%], we compute

[(Orki®Vka” — (@cka® Vhi®lgisr — [(Oeh; Vo — (Oeka” Vhj")giy
= 0y (ki®gra — k" gia)ks? + 0y(kj®gja — ki gjra) + Ouki®(ka? gj50 — kj7 gagr) — Ouk;®(ka® giyr — k¥ gayr)
+ (o = gyake "k + (g5aki’ — gyrika® ki k"
— (ghakij® = girakv ik — (gjraki? — gjrika® VhiPk®,
which is of the desired form. This concludes the proof. O

/

(4.100)

We are now ready to show that gjjzkij "is symmetric in ¢ and j.
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Lemma 4.39. Given a limit (g,k,h) as in Lemma the limiting k is in fact the second fundamental
form, i.e. kij = gjj/ki] = —%&gij.

Proof. Denoting k;; := gjj/kij/, the equation for g implies that 0;¢;; = —ki; — kj;. Hence, in order to prove
the lemma, it suffices to show that k;; is symmetric in ¢ and j.

To this end, we define (k2%);; = (g3"),;(k¥);7, and first obtain an estimate for its anti-symmetric
part. By Lemma (k3"™)i; — (k7");; satisfies a homogeneous wave equation. By the choice of initial
data for k3", g3"* (recall Lemma [1.5) and Lemma [2.13] it follows that

(4.201)  [[((RF™)ij — (BF™)jis t0((KF™)ig — (KF™)ji)) Te=Tumes 115y )} L2 (S g0 < O HHOHDE,

We now perform energy estimates for (k3"*);; — (k3"%);; using the wave equation in Lemma m (in
a manner similar to the k energy estimates in the proof of Theorem only simpler). By choosing n
sufficiently large, the estimate allows one to take care the borderline terms and moreover show that
for any Ty € (OaTNo7s,n)7

4102 llm Sup kaux i — kaux illm s, _ 0.
( ) I=400 €Ty, Ty s,n) N3 = BRFiilanr e

Finally, since k;; is the pointwise limit of (k3"*);; as I — 400 (by Lemma , the estimate (4.102))
O

implies that £;; is symmetric in ¢ and j, which is what we wanted to prove.

Proof of Proposition[{.8 Proposition [I.§| follows directly from Lemmas [£.37) and [£:39] O

5. VANISHING OF THE EINSTEIN TENSOR

The goal of this section is to show that the solution of , constructed in Theorem in subsection
is in fact a solution to the Einstein vacuum equations. This then concludes the proof of Theorem [T.1} see the
conclusion of the proof at the end of the section.

We begin with the following:

Proposition 5.1. There exists Ny, € N sufficiently large such that the following holds.
Let s > 5 and No > Nyp,. Then, for n > ny, s, the solution (g, h, k) to (4.9) given by Theorem satisfies

h = k.
In particular,  Ric(‘Yg)y = 0.
Proof. Once we establish that h = k*, it follows from the first equation in (£.9) that d;k,* = |k|?. According
to ([3-3), this in turn implies that ) Ric(Yg)y = 0.
Taking the trace of the second equation in (4.9)) and using the identity (4.7), we obtain
O[Ok — k2] = Dg(ke® — h) + 2k;'[0yke" — |K|?].
Since by (4.9) d;h = |k|?, it follows that
(5.1) O (ke® — h) = Ay (ke* — h) + 2k 0, (k" — h).

Note that this is a wave equation for (k' — h). We can then carry out a similar energy estimates as in the
proof of Theorem [£.4] to obtain

1
2110k (ke = W) I32(m,.9) + D 7 ke = Rl s, 4
(5.2) oo =0 X
0 + n € r
< f(tzllat(k/ = W) F2em g + Dt IS = Bl (s, 0):
r=0

where we have used the estimates for k£ given in Proposition [4.21l Here, as in the previous section, we use
Co to denote constants depending only on s, ¢;; and p;, while C), can depend in addition on n and Np.
At the same time, by Theorem and the fact that hl?l = (k[I),*,

(5.3) I[kot — h||%1(2t7g) + 118y (K’ — h)H%Z(Et7g) < 9p2No+25—2
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In particular, choosing N}, sufficiently large, the estimates (5.2)), (5.3)) and Gronwall’s inequality implies
that

Ike® = hll3 s, gy + 10 (ke" = W) Z2(s, 4) = 0,
which in turn implies the desired conclusion. O

Proposition 5.2. There exists Ng > Ny, and ng sufficiently large such that the following holds.

Let s > 5 and Ny > Ng. Forn > max{ny, s, ng}, take the solution (g, h, k) to given by Theoremm.
Then Mg = —dt? + g is in fact a solution to the Einstein vacuum equations, i.e. Ric(‘Yg) =0, and k is the
corresponding second fundamental form of the constant-t hypersurfaces.

Proof. For this proof, we denote G; = G¢;((Yg) and &;; = G4;(‘Yg), both thought of as ¥;-tangent tensors.
We also use the notation that V is the Levi-Civita connection for the spatial metric g.

Step 1: Derivation of a system of equations. By and the wave equation , we have
O Ric (Wg) = V.67 + VG, — 3k Ricy (Pg) + 267k Rice™ (M g) — ky? Ric (Dg)
+ 2k Ric? (Wg) — (k'] — ki? ) Ric,,™(Wyg).
Taking the trace of and using the fact that Rictt((4) g) = 0, we also have:
(5.5) HR(Wg) =2V,;G7 4 2k, Ric,™(Wyg).
The combination of and implies the following equation for the Einstein tensor G;7 () g):

(5.4)

, 4 1.
0iG (Wg) := 0, Ric; (M g) — 551']3153((4)9)
(5.6) =ViG7 + VG — 6V,G" — 3k Ricy,? (Mg) + 67k Rics™(Wg) — ki Rici (M g)
+ 2k Ric? (WDg) — (k') — k) Ric,, ™ (Wg).
Note that Ric;?(®g) can be written in terms of Gi7(Wg): Ric/ (Wg) = G/ (Wg) + %5in((4)g), where

R(Wg) := =Ry (Wg) + R (Wg) = R(Wg) by Proposition Taking the trace we get Ric;' = G;* +
3R (Wyg) so that R, (Wg) = 2G;*(Wg). It follows that

(5.7) Ric? (Vg) = &7 (Wg) +5,76,°.
We can thus rewrite (5.6) as
(5.8) 067 =V, + VG — 67V, G + (k®),

where (k x ®);7 is some quadratic contraction of k and & whose exact form is unimportant.
On the other hand, by the contracted second Bianchi equations and the fact that D,Gy; (M g) = 9,G;+ k7 g;,
and DjGij((4)g) e Vjﬁij + kjjg,- + kijgj, we obtain
(5.9) 0G; = kjjgi + vquij((4)g)-
Taking 0; of (5.9)), applying (5.8)), and using the commutation formula in Proposition we obtain the

wave equation
0;Gi = 0u(k*Gi) + V3 (ViG’ +V?G; — 67VG" + (kx 8),7) + [0, V167
=0 Gi+kxkxG+0kxG+Ekx0G+Vkx®+Ek*xV8,
where in the last equality we have also used that the curvature tensor Riem(g) can be expressed in terms of
&, k and Ok using , 7 and , so that
Vi(ViG? + VG = 67V,G") = V;ViG? + AyGi — ViV;G7 = AyGi + b+ k+G + 0k *G.

Here, k% k x G, etc. are in principle explicit, but we do not carry out the computations as the exact form is
unimportant.

(5.10)

Step 2: Energy estimates and vanishing of the Finstein tensor. Our goal now is to perform energy estimates

using (5.8)) and (5.10]) so as to show that & and G are both = 0. Investigating the terms in (5.8) and (5.10)),
we note that the RHS of (5.10) has terms with one derivative of G, which apparently leads to a loss of

derivatives. Nevertheless, this can be treated in ezactly the same manner as (4.9)).
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Define the energy

1

(5.11) B(t) = Y 106 3 s, )+ Zt—ann? vt Zt-“”neﬂﬁ e

r=0

and modified energy

(5.12)

Zt”natv G2 (5,.) + Zt—“”ngn? s+ Zt-wneﬂf N T .
r=0

where

—_~—

(VO®)J = A&7 — 9 V,G7 — 0,VIG; +5,70,V,G".

We now carry out energy estimates for the wave-transport system and in a manner similar to
that for in Theorem Note that we in particular need to use the elliptic estimates in Lemma m
Nevertheless, the present case is much easier because of the linearity of the system. We omit the proof and
give the estimates

d Co + Cpt¢

(5.13) th( ) < ; E(t),

where we again used the convention that Cjy depends only on s, ¢;; and p;, while ), can depend in addition
on n and Ny. We now fix Cy and C, so that (5.13]) holds.
We now need to show, using (5.13)), that E(t) = 0. For this purpose it suffices to check that

(5.14) lim =% E(t) =0,

t—0t

so that we can apply Gronwall’s inequality to & (t~C0E(t)) < ;£ (1~ E(1)).

Define G = G ((YgM) and QSE?] = Gij((‘l)g[“}). Then by Proposition there exists ng € N such that
if n > ng, then

1 2 2
(5.15)  lim ¢ <Z PG e s, g+ Dt NG G, ) T D8I T(Zug)) -
r=0 r=0

r=0

On the other hand, by (4.11) in Theorem if Ng¢ is sufficiently large and Ny > N¢, then
1
. —Co 2r _ 2
b (z_;)t 196 = G0,

2
F G- M, +Zt et "QTW) -

r=0

(5.16)

Therefore, choosing Ny > Ng and n > max{nn, s, n¢}, we obtain (5.14) by using and (| - This
gives E(t) = 0. Together with Proposition n 5.1} this gives that the Emsteln tensor Vanlshes identically. O

We end the section with the conclusion of the proof of Theorem

Proof of Theorem[1.1] This follows immediately from Theorem [4.4] and Proposition O

6. UNIQUENESS AND SMOOTHNESS OF SOLUTIONS: PROOFS OF THEOREMS [I.7] AND [L.10]
We prove Theorems [I.7] and [I.10] in Sections [6.1] and [6.2] respectively.
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6.1. Uniqueness of solutions.

Proof of Theorem[1.7 Let @ g, ™G be two solutions to the Einstein vacuum equations satisfying the
assumptions of Theorem

In this proof, we use C' to denote positive constants depending only on ¢;; and p;, and use C’
to denote positive constants which depend in addition on the implicit constants in ,
and .

Notice that it suffices to prove uniqueness on a sub-domain (0,7”] x T? (for some 0 < 7" < T') since in the
region [T”,T] x T2, we are away from the singularity, and uniqueness will follow from standard uniqueness
results. For this reason, we will take 7" sufficiently small so as to assume C’'(T")° < 1.

Step 1: Estimating k and k. Using the estimates (1.10) and (1.11)), and arguing as in Propositions and
[M19] we obtain

2

(6.1) ZtT(HV(T)kHL‘”(Zhg) + ||@(r)z’||L<>o(zt7g)) <ct,
r=0
and
1 ~ ~
(6.2) S (VOO e s0g) + [VOOE] 1o (5,)) < CE2,
r=0

where V denotes the Levi-Civita connection of §.
Step 2: Estimating the convergence rate ast — 0. Let
(6.3) h=kd, h=k"
Define the variables
gV i=g—g (G HD:=gt—g rD=h—-h kD :=f—Fk
Given any M/ € N we can choose M, sufficiently large so that by and ,

(6.4) 19N a2 (50.0) + 10 Dl r2(m0.0) + 1B D 1250 ,0) + 16D a5, 4y < C8M5
Moreover, given any M, € N we can choose M, even larger so that by (1.12)),
(6.5) IRic(g) — Ric(§) ]| L2(s,.q) < C'tY.

Now since both g and ) solve (T.2)), the RHS of (3.1)) vanishes for both metrics. Hence, using (6.1]), (6.4)
and (6.5]), we obtain

(6.6) 10k D || 12,4y < C' max{tMu—t MY,

Step 3: Energy estimates. We now carry out energy estimates for (¢(?, h(®, k(D). First, we note that they
satisfy a system of equations analogous to (4.50), (4.69), (4.70), (4.71) as follows.

e By definition of k and k, we immediate obtain the transport equation 8,¢(¥ = —2]5(1-@9%) —Z(k(d))(izgj)l.

e By and (3:3), h(? satisfies a transport equation 9;h(¥ = |k[? — |k[?

e Arguing as in Section [| it follows that both k and k satisfy the wave equation (with the

corresponding metric g and §). We take the difference to obtain a wave equation for k()
Note that these equations are similar to but simpler than 7 and in the sense that the
system is homogeneous.
We can thus carry out energy estimates in exactly the same way as in the proof of Theorem [£-4] including
using a modified energy together with elliptic estimates. In particular, defining
2

Eu) =D 29 i 09y + 10 Dt 309) + IR D 115, 9))
r=0

1
+ Y D 25,0 + 0K D L2 (5,,9),
r=0

we can run the energy estimates in Theorem using the bounds established in Steps 1 and 2 above.
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e Estimates (6.1) and (6.2) in Step 1 guarantee that

SEut) < SEu)

=t
for some fixed constant C' > 0 depending only on the constants in (1.11)).
e Taking C as in , estimates (6.4) and in Step 2 guarantee that if M, sufficiently large, then

(6.7)

(6.8) limsupt~“&,(t) = 0.
t—0+
The bounds (6.7) and immediately imply that £, = 0, which in particular implies ¢ = g, which is
what we wanted to prove. O

6.2. Regularity of solutions. Our goal in this subsection is to prove Theorem [I.10] As already mentioned
in the introduction, for the proof we rely on our uniqueness result.

We first introduce a piece of notation for the rest of this subsection. Let s > 5 and Ny € N. For n > ny, s,
Theorem and Proposition give a solution to the Einstein vacuum equations of the form which
satisfies the estimates . We denote such a solution by gy, s, and denote the corresponding
second fundamental form by kn; s .-

We need the following lemma, which checks the conditions and in Theorem

Lemma 6.1. Let ny, s be as in Theorem[{.6| and N¢, ng be as in Proposition[5.3 There exists N. > Ng
sufficiently large such that if No > N, s > 5 and n > max{nn, s, ng}, then for g = gngs,n and k =kn, s n,
there exists C' > 0 depending on Ny, s, n, ¢;; and p; such that

(6.9) > 109 (aij — ciy)| < CF,
la|<2
1
(6.10) ST Eorog (ki —t e < Ot
r=0|a|<2—7r

Proof. In this proof, we allow the implicit constants C' > 0 to depend on Ny, s, n, ¢;; and p;.

We first prove . Since s > 5, by (4.11]) and (4.25]), we have
2

3" t7llg — g e s,y < CEVOFSE
r=0

Now note that the smallest eigenvalue of ¢~ ! is > C~1t=2P1 > C~'¢2. Hence,
(g — 9™)ij| + IVelg — g™)ij| + 1V Ve(g — gi™)5| < CtNoFs—3,

[n] _ $+2Pmax{i,j} (aij — a[.r.l])7

Writing the covariant derivatives in terms of coordinate derivatives, using g;; — g; y i

and choosing N, sufficiently large, we thus obtain

(6.11) 37102 (ai; — al)| < O,

lor]<2

The estimate (6.9)) then follows from (6.11]), (2.7) and the triangle inequality.
The proof of (6.10) is similar, where we first use (4.11)) and (4.25) to obtain

2 1
Ztruk - k[n]||W7m(2tyg) + Zt’"+1|\5t(k _ k[n])HWmo(zt,g) < OtNot+s—3,
r=0 r=0

Then, after choosing N, sufficiently large, we can obtain the desired (6.10) using (2.8) and the triangle
inequality. U

We are now ready to prove Theorem [T.10}
Proof of Theorem[1.10, Given M, as in Theorem the following holds:
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e There exists n, € N sufficiently large such that if n, n’ > n,, then

1
(6.12) DD orag (g — g™ = o@M).
r=0 |a|<3—7r
This is because of the estimates (2.29)) and (2.50]) derived in the proof of Theorem
e There exists N, > N, (where N, is as in Lemma sufficiently large such that the following holds.
Suppose s > 5, Ng > N, and n > ny, s, then

1
(6.13) DD 10702 (gngsn — g™ = O(M™).
7=0 |a|<3—r
This is a direct consequence of (4.11)) and Sobolev embedding.

FiX (gNo=N,.s=5.10> KNo=N, .s=5.1n0) 01 (0, TNy=N, s=5.n] X T2, where ng > max{ny,=n, s=5, r, ng}. We
want to show that this particular solution is in fact smooth. Let so > 5 be arbitrary. By Theorem [£.4] we ob-
tain a solution (gng =N, s=so.n» kNg,s=so.n) ON (0, TNg=N,. s=s¢.n) X T> for some n > max{ny,—n, s=so, Mr, NG }-
We now claim that in fact on the common domain of existence (0, min{Tn,=n, s=5.n0s I No=N,,s=s0.n}] X T°,
we have

(6.14) INo=N,,s=5,n0 = YNo=N,,s=s0,n"
To prove the claim, it suffices to verify the conditions of Theorem

e Since s > 5 and Ny = N,. > N,, the conditions ([1.10) and (1.11]) hold because of Lemma
e By (6.12), (6.13)) and the triangle inequality, our choice of ng, n, Ny, s implies that

1
3 S 10708 (GNe=Ns s5.m0 — TNy ssmson)| = O(E),

=0 |a| <3—r

i.e. holds.
This establishes (|6.14)).
As a result of (6.14), it follows that the fixed solution (gny=n, s=5.n0s ENo=N, s=5.ny) is in H%T1 x H% for
every t € (0, min{Tn,=n, s=5,n0s TNo=N,,s=s0,n }])- NOw we use energy estimates as in the proof of Theorem[4.4]
to show propagation of reqularity: it then follows that the solution is in H®0+! x H*® for every t in the original
time interval, i.e. for every t € (0, Tny=nN,.s=5no)-
Since sg can be arbitrarily large, it follows from Sobolev embedding and the equations that the fixed
solution (gny=nN, s=5.n9s KNo=N,.s=5.n,) 18 in fact smooth in (0, T,=n, s=5.ne] X T>. This concludes the proof
of the theorem. O
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