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Abstract. We prove existence, uniqueness and regularity of solutions to the Einstein vacuum equations

taking the form

(4)g =− dt2 +

3∑
i,j=1

aijt
2pmax{i,j} dxi dxj

on (0, T ]t×T3
x, where aij(t, x) and pi(x) are regular functions without symmetry or analyticity assumptions.

These metrics are singular and asymptotically Kasner-like as t → 0+. These solutions are expected to be

highly non-generic, and our construction can be viewed as solving a singular initial value problem with
Fuchsian-type analysis where the data are posed on the “singular hypersurface” {t = 0}. This is the first

such result without imposing symmetry or analyticity.

To carry out the analysis, we study the problem in a synchronized coordinate system. In particular,
we introduce a novel way to perform (weighted) energy estimates in such a coordinate system based on

estimating the second fundamental forms of the constant-t hypersurfaces.
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1. Introduction

The Kasner spacetime ((0,+∞)× T3,(4) g), where

(1.1) (4)g = −dt2 +

3∑
i=1

t2pi(dxi)2

(with pi being constants such that
∑3

i=1 pi =
∑3

i=1 p
2
i = 1) is an explicit solution to the Einstein vacuum

equations

(1.2) Ric((4)g) = 0.

As long as all pi ̸= 0, the Kasner solution moreover represents a singularity as t → 0+. This is manifested in
particular by the blowup of the Kretschmann scalar RµναβR

µναβ .
In an influential paper [33], Lifshitz–Khalatnikov considered the class of spacetimes solutions to (1.2) with

the form

(1.3) (4)g = −dt2 +

3∑
i=1

t2piω2
i

where ωi are spatial 1-forms with a “finite limit” as t → 0+ and pi = pi(x) are now spatially-dependent func-

tions satisfying
∑3

i=1 pi(x) =
∑3

i=1 p
2
i (x) = 1. The spacetime metrics (1.3) are Kasner-like asymptotically

as t → 0+ except that the Kasner exponents are now functions. They are also sometimes called asymptot-
ically velocity term dominated (AVTD), a terminology that is used to mean that the asymptotics near the
singularity is described by a simpler system of velocity term dominated equations [16, 20]. Importantly, it
is argued in [33] that this class of spacetime solutions to (1.2) depend only on three “functional degrees of
freedom”, which is one fewer than that for the Cauchy problem of (1.2), and they are therefore expected to
be highly non-generic.
In this paper, we construct a large class of solutions to (1.2) with the asymptotically Kasner-like behavior

of (1.3). Our construction in fact has full three functional degrees of freedom and includes all the space-
times considered in the heuristics in [33] (see Remark 1.5). Some previous constructions are known with
either analyticity or symmetry assumptions (see Section 1.2.1); our construction is the first without such
assumptions.
More precisely, our goal will be to construct a metric taking the form

(4)g := − dt2 + g

:= − dt2 +

3∑
i,j=1

aijt
2pmax{i,j}dxi dxj ,

(1.4)

where (t, x1, x2, x3) ∈ (0, T ]× T3 for some T > 0, pi : T3 → R are smooth, time-independent functions, and
aij : (0, T ] × T3 → R are smooth functions (symmetric in i and j) which extend to continuous functions
: [0, T ]× T3 → R. Moreover, aij obey

(1.5) lim
t→0+

aij(t, x) = cij(x),

where cij are some prescribed smooth functions (symmetric in i and j).

Notice that in the language of (1.3), the ansatz (1.4) imposes the condition ω1 ∧ dω1 = 0 for ω1 = a
1
2
11dx

1.
As we will explain in Remark 1.5, this condition is what restricts the functional degrees of freedom in our
construction.
We will prove existence, uniqueness and regularity of solutions of the form (1.4). The following is our main

existence theorem:

Theorem 1.1 (Existence of solution). Suppose the following assumptions hold:

(1) The (time-independent) functions cij , pi : T3 → R are smooth for i, j = 1, 2, 3, and that cij = cji.

(2)
∑3

i=1 pi(x) =
∑3

i=1 p
2
i (x) = 1 pointwise.

(3) It holds that p1(x) < p2(x) < p3(x) < 1 pointwise.
(4) It holds that c11(x), c22(x), c33(x) > 0.
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(5) The following three asymptotic differential constraint equations are satisfied:

3∑
ℓ=1

[
∂icℓℓ
cℓℓ

(pℓ − pi) + 2∂ℓκi
ℓ + 1{ℓ>i}

∂ℓ(c11c22c33)

c11c22c33
κi

ℓ

]
= 0, i = 1, 2, 3,(1.6)

where κi
i = −pi (without summing), κ1

2 = (p1 − p2)
c12
c22

, κ2
3 = (p2 − p3)

c23
c33

, κ1
3 = (p2 − p1)

c12c23
c22c33

+

(p1 − p3)
c13
c33

and κi
ℓ = 0 if ℓ < i, 1{ℓ>i} = 1 if ℓ > i, 1{ℓ>i} = 0 if ℓ ≤ i.

Then there is a C2 solution to the Einstein vacuum equations (1.2) of the form (1.4), for a T > 0 depending
on cij , pi, which satisfies (1.5).

Remark 1.2 ((1.4) is a Lorentzian metric). Notice that under condition (3), the eigenvalues of g as in (1.4)
are approximately t2picii (i = 1, 2, 3) for small t. Hence, given pi as in the theorem and the condition (1.5),
it follows that (1.4) is a well-defined Lorentzian metric in all of (0, T0]× T3, for some T0 > 0.

Remark 1.3 (Localizing the assumptions). For technical convenience, we assume that there is a global
system of coordinates on T3 so that the assumptions of Theorem 1.1 hold. One may in principle hope to use
a localization argument to construct more general spacetimes for which we require only that around every
point in T3, there is a coordinate patch (x1, x2, x3) such that the assumptions of Theorem 1.1 hold. This,
however, is not carried out in the present paper.

Remark 1.4 (Asymptotic CMC condition and asymptotic constraints). The conditions (2) and (5) in The-
orem 1.1 guarantee that a metric of the form (1.4) satisfies asymptotically, along the level sets of t, 1) the
constraint equations and 2) the CMC gauge to leading order, as t → 0+. More precisely, condition (2) is
equivalent to

lim
t→0+

t(trk) = −1, lim
t→0+

t2[R(g)− |k|2 + (trk)2] = 0,(1.7)

while condition (5) is equivalent to

lim
t→0+

t(∇jki
j −∇itrk) = 0, i = 1, 2, 3;(1.8)

see Lemma 3.2. Note that condition (2) is algebraic in the Kasner exponents pi’s, while condition (5) is
differential in the cij ’s.

Remark 1.5 (Functional degrees of freedom and considerations in [33]). Note that cij and pi consist of 9
functions. On the other hand, the assumptions (2) and (5) in Theorem 1.1 impose a total of 5 conditions,
leaving 4 functional degrees of function.
There is in fact an additional residual gauge freedom, namely, we can introduce a change of coordinates

(1.9) x̃1 = x1, x̃2 = x2, x̃3 = f(x1, x2, x3),

for some smooth f such that ∂f
∂x3 ̸= 0, then the resulting metric will have the same form as (1.4) (in the

sense that the new g̃11 term is O(t2p1), the new g̃12, g̃22 terms are O(t2p2), and the new g̃13, g̃23, g̃33 terms
are O(t2p3).)

Thus, there are a total of 3 functional degrees of freedom, which is one fewer than that for the initial value
problem for the Einstein vacuum equations. It is for this reason that [33] argued that metrics of the form
(1.4) are non-generic.

Notice that while we only construct a non-generic class of spacetimes, we do construct a class that includes
all the metrics considered in [33] (modulo the endpoint case; see Remark 1.6). Indeed, using the change of
coordinates in (1.9), one can locally change coordinates to the form

g = a11t
2p1(dx1)2 + a22t

2p2(dx2)2 + a33t
2p3(dx3)2 + 2a12t

p2dx1dx2 + 2a13t
p3dx1dx3,

which is exactly the local form of the metrics considered in the work of Lifshitz–Khalatnikov; see [33, equation
(3.25)].

Remark 1.6 (Some limiting cases). Our analysis degenerates in any of the limits p3 → 1 or pi+1 − pi → 0
(see (3) in Theorem 1.1). A particularly interesting limiting case that we do not cover is when

{x ∈ T3 : p1(x) = −1

3
, p2(x) = p3(x) =

2

3
} ≠ ∅,
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but still assuming p3(x) < 1, ∀x. While we do not cover this case, it is possible that [29] is relevant. Notice
that to handle possible terms with p2(x) = p3(x), we need a new argument in constructing the approximate
solution in Section 2, but the analysis in the subsequent sections could in principle be carried out along the
same lines.
Finally, we note that allowing p1(x) = − 1

3 , p2(x) = p3(x) = 2
3 would also be relevant to constructing

Schwarzschild-like singularities since locally the Schwarzschild singularity could be modeled by the Kasner
singularity with p1 = − 1

3 , p2 = p3 = 2
3 (cf. [21] and discussions in Section 1.2.1).

We now turn to uniqueness. It is hard to talk about geometric uniqueness in the above singular initial
value problem, since the setup itself includes the expression (1.4) of the spacetime metric. However, we can
obtain uniqueness in our gauge, i.e. within the class of metrics satisfying (1.4) . More precisely, we prove
that given two solutions of the form (1.4) which (1) obey the estimates (1.10) and (1.11) which is proven in
Theorem 1.1 and (2) converge to each other sufficiently fast as t → 0+, then they must in fact be the same.

Theorem 1.7 (Uniqueness of solutions). Given the assumptions of Theorem 1.1, there exists Mu ∈ N
sufficiently large (depending on the given data pi and cij) such that the following holds.

Let (4)g, (4)g̃ be two C3 solutions to the Einstein vacuum equations (1.2) of the form (1.4) in (0, T ] × T3

for some T > 0, such that

• the corresponding aij and ãij converge to cij with the following rate

(1.10)
∑
|α|≤2

(|∂α
x (aij − cij)|+ |∂α

x (ãij − cij)|) = O(tε);

• the corresponding ki
j = − 1

2 (g
−1)jℓ∂tgjℓ and k̃i

j = − 1
2 (g̃

−1)jℓ∂tg̃jℓ obey the following estimates

(1.11)

1∑
r=0

∑
|α|≤2−r

tr(|∂r
t ∂

α
x (ki

j − t−1κi
j)|+ |∂r

t ∂
α
x (k̃i

j − t−1κi
j)|) = O(min{t−1+ε, t−1+ε−2pj+2pi});

and
• the g − g̃ and ∂t(g − g̃) converge to 0 sufficiently fast in the following sense:

(1.12)

1∑
r=0

∑
|α|≤3−r

|∂r
t ∂

α
x (g − g̃)| = O(tMu).

Here, ε = min{minx(p3 − p2)(x),minx(1− p3)(x)} > 0, and κi
j as in Theorem 1.1.

Then (4)g = (4)g̃ on (0, T ]× T3.

Remark 1.8 (Asymptotics determined by approximate solutions). In the proof of our existence result
(Theorem 1.1), we construct a sequence of smooth approximate solutions {g[n]}+∞

n=0, for which we get more
precise asymptotic information, as t → 0+, as n increases; see already Sections 1.1, 2 and 3. The actual
solutions that we construct in Theorem 1.1 then have asymptotics determined by an approximate solution
g[n](for some large n). From this point of view, one way to interpret our uniqueness result (Theorem 1.7) is
to say that for n sufficiently large, there is in fact only one solution whose asymptotics are governed by g[n].

Remark 1.9 (Regularity implies asymptotic expansion). Given any Mu ∈ N, there exists A ∈ N sufficiently
large such that if (1.10) and (1.11) are replaced by the stronger regularity assumptions

(1.13)
∑

|α|≤A

(|∂α
x (aij − cij)|+ |∂α

x (ãij − cij)|) = O(tε),

and

(1.14)

1∑
r=0

∑
|α|≤A−r

tr(|∂r
t ∂

α
x (ki

j − t−1κi
j)|+ |∂r

t ∂
α
x (k̃i

j − t−1κi
j)|) = O(min{t−1+ε, t−1+ε−2pj+2pi}),

then in fact the convergence condition (1.12) follows as a consequence. In fact, in this case both g and g̃
have the leading asymptotics given by an approximate solution g[n] for large n (see Remark 1.8), which then
implies (1.12). This can be proven by revisiting the argument for constructing the approximate solutions in
Theorem 2.1. We omit the details.
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Finally, we state our main regularity theorem. We remark that initially our proof of the existence theorem
(Theorem 1.1) only constructs a solution with finite regularity. In order to obtain smoothness, we need an
additional argument which relies on the uniqueness result (Theorem 1.7); see Section 1.1.5.

Theorem 1.10 (Smoothness of solutions). Given the assumptions of Theorem 1.1, there is a smooth solution
to the Einstein vacuum equations (1.2) of the form (1.4) in (0, T ] × T3, for a T > 0 depending on cij , pi,
which satisfies (1.5).

In the remainder of the introduction, we will briefly discuss the ideas of the proof (Section 1.1) and some
related works (Section 1.2).

1.1. Ideas of the proof.

1.1.1. Fuchsian analysis of a model wave equation. As far as the singularity is concerned, our basic strategy
(which is quite standard, see for instance [29]) can be most easily explained by a model semilinear equation.
Consider the following nonlinear wave equation

(1.15) 2gϕ = (∂tϕ)
2

on a Kasner spacetime (1.1) with constants p1 < p2 < p3 < 1 satisfying
∑3

i=1 pi =
∑3

i=1 p
2
i = 1. (Note

that the structure of the nonlinear terms plays no role here, and the nonlinearity (∂tϕ)
2 is chosen here for its

simplicity.)
The analogue of our main result in this setup would be to construct bounded solutions to the nonlinear

model equation (1.15). However, the results of [2] imply that even for the linear wave equation, generic data
on say, {t = 1}, give rise to solutions that blow up as O(log 1

t ) as t → 0+. Thus, in order to obtain bounded
solutions to (1.15), the solution that we build has to be special. This is achieved by imposing the leading
order behavior of ϕ(t, x) = ϕ0(x) + error, where ϕ0(x) is a prescribed smooth function which is the limit of
ϕ(t, x) as t → 0+. In fact, we build our solution as ϕ(t, x) =

∑n
j=0 ϕj(t, x) + ϕ(d), where ϕj are increasingly

precise approximations of ϕ, and ϕ(d) is determined by the condition limt→0 ϕ
(d) = 0.

Our strategy contains two steps:

(1) (Approximate solution) It is easy to first build an approximate solution by stipulating an ansatz
ϕ[n](t, x) =

∑n
j=0 ϕj(t, x), where

• ϕ0(t, x) = ϕ0(x) is the prescribed leading order behavior,
• ϕj obeys the better estimates |∂α

xϕj(t, x)| ≲α,j t
jε, and

• |∂α
x {2gϕ

[n](t, x)− (∂tϕ
[n])2(t, x)}| ≲α,n t−2+(n+1)ε.

This expansion can simply be obtained inductively by solving (1.15) iteratively as an ODE in t.
Here, we have the flexibility to carry out the expansion to an arbitrary order n so as to achieve an
arbitrarily good (in terms of the t-rates as t → 0+) approximation to a solution to (1.15).

Without analyticity, however, one cannot hope to show that this series converges. Instead we
perform energy estimates for the error.

(2) (Energy estimates) First notice that for an energy defined by

E(τ) :=
∑
|β|≤4

∫
{t=τ}

(|∂t∂β
j ϕ|

2 +

3∑
i=1

t−2pi |∂i∂β
j ϕ|

2) dx,

it is easy to obtain an estimate of the form (e.g. with C0 = 2)

d

dt
E(t) ≤ C0

t
E(t) + C1(E(t))2.

The issue is with the borderline singular term C0

t E(t), which cannot be treated by Grönwall’s

inequality (since lim supt→0+ t−C0E(t) = +∞). Nevertheless, this is where the approximation con-
structed in the previous step becomes useful: instead of controlling the full solution ϕ, we bound the
difference quantity ϕ(d) := ϕ− ϕ[n], which for n sufficiently large

• can be made to approach 0 with a fast polynomial rate as t → 0+, and
• satisfies an inhomogeneous nonlinear wave equation where the inhomogeneity also → 0 with a
fast polynomial rate.
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Define now an energy E(d) with ϕ replaced by ϕ(d). For any large N ∈ N, we can find n ∈ N large
enough (corresponding to a good enough approximation) such that under appropriate bootstrap
assumptions,

d

dt
E(d)(t) ≤ (

C0

t
+

Cn

t1−ε
)E(d)(t) + Cnt

N ,

where Cn may depend on n, but importantly, the constant C0 in the borderline term is independent of
n. The inhomogeneous Cnt

N term arises from the fact that ϕ(d) satisfies an inhomogeneous equation,
and N can be arbitrarily chosen as long as n is also taken to be large. Thus, we obtain an estimate

d

dt
(t−NE(d)(t)) +

N

t
(t−NE(d)) ≤ (

C0

t
+

Cn

t1−ε
)(t−NE(d)(t)) + Cn.

Recall now moreover that for n sufficiently large we have limt→0+(t
−NE(d)(t)) = 0. Moreover, first

choosing N large (by taking n large) and then taking t small (depending on n), it follows that
N
t (t

−NE(d)) on the LHS dominates (C0

t + Cn

t1−ε )(t
−NE(d)(t)) on the RHS. This gives an estimate for

t−NE(d)(t).

Once such energy estimates can be proven for the error ϕ(d), we can in fact deduce existence of solutions
as follows. Choosing a sequence tI → 0+, we solve for a sequence of solutions {ϕI}∞i=0 to (1.15) with
(ϕI , ∂tϕI) ↾t=tI= (ϕ[n], ∂tϕ

[n]) ↾t=tI . The energy estimates above allows us to show that {ϕI}∞i=0 can be
solved in [tI , T ]× T3 for uniform T > 0 and that there is a limit which solves (1.15) in (0, T ]× T3.

1.1.2. Construction of solutions to the Einstein vacuum equations in synchronized coordinates. While the
Fuchsian analysis is quite robust, we must also address the quasilinear, tensorial nature, as well as the gauge
invariance, of the Einstein equations.
If one were to prescribe a wave-coordinate-type gauge, then the construction of the approximate solution

will be algebraically very complex. Instead, we consider a system of synchronized coordinates, i.e. we impose
that the metric takes the form

(1.16) (4)g = −dt2 + gij dx
i dxj = −dt2 + t2pmax{i,j}aij dx

i dxj .

This gauge captures important anisotropic features of Kasner-like singularities. In particular, assuming that
the aij ’s are C2 up to {t = 0}, we know that |gij | ∼ t2pmax{i,j} , |(g−1)ij | ∼ t−2pmin{i,j} ; and importantly (see
Lemma 2.6) that

(1.17) |Rici
j(g)| ∼ t−2+ε, |Ric(g)|g ∼ t−2+ε.

In such a gauge, the construction of an approximate solution becomes more tractable. The difficulty,
however, is shifted to the estimates for the error terms. Indeed, even when no singularities are present, it is
a priori not clear that the Einstein vacuum equations are hyperbolic in the gauge (1.16); see discussions in
Section 1.1.4..

1.1.3. Constructing approximate solutions. Following ideas laid out in Section 1.1.1, we first construct ap-
proximate solutions and then use energy estimates to obtain actual solutions to the Einstein vacuum equation.
In order to construct approximate solutions, the first step is to solve a system of first order evolutionary equa-
tions. The evolutionary equations will be treated as a system of ODEs in t (compare Step 1 in Section 1.1.1).
In order to close the ODE analysis, we crucially rely on the bounds (1.17), which show that the spatial Ricci
curvature is slightly better than critical, but we also need to additionally make use of the structure of the
full system. We outline some main points here:

• The main difficulty in solving the system of ODEs is that there are many borderline terms, i.e. linear
terms with O(t−1) coefficients. It turns out that these terms have a reductive structure. By this we
mean that we can consider different components in a sequence of steps. In each step, there are two
type of terms with a borderline O(t−1) coefficient with the following properties.

– One type can be handled by introducing an integration factor. The integration factor gives a
power of t which is consistent with the initial conditions that we impose.

– Another type of terms with borderline coefficients involve only terms which have been controlled
in previous steps.

– Any other linear terms must have a coefficient that is better, at least O(t−1+ε).
Such a structure is important both in estimating the metric components (Lemmas 2.11, 2.12) and
the components of the (approximate) second fundamental form (Lemmas 2.8, 2.9).
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• In anticipation of the energy estimates needed to construct an actual solution, we also need to treat
different components on different footing in the ODE analysis. An example of this is that while for
i ≤ j, we only prove that (k[n])i

j = O(t−1); for i > j, we need a better estimate and the improvement
we need depends on the precise i, j under consideration; see Lemma 2.8. Such estimates can be traced
back to (1.17), but also require the precise structure of the system.

• Another technical difficulty is that the variable k[n] we work with is only approximately the second
fundamental form.

The evolutionary equations solved in the first step roughly asserts that the spacetime Ricci curvature
components Ric((4)g[n])i

j vanish with a very fast rate. Our second step is then to show that

• k[n] is asymptotically (as t → 0+) approximately the second fundamental form of the constant-t
hypersurfaces, and

• all other spacetime Ricci curvature components also vanish sufficiently fast as t → 0+.

Both of these are achieved again by ODE analysis. For the first point, we need again a reductive structure,
which is similar to the type used for the evolutionary equations. For the second point, the constraints as
manifested both in the conditions on the Kasner exponents and asymptotic constraint equations (1.6) play a
crucial role. See already Lemmas 2.13–2.15 and Proposition 3.3.

1.1.4. Energy estimates in synchronized coordinates. It is a priori unclear that under a gauge condition as
in (1.16), the metric components themselves satisfy any hyperbolic system. The main new ingredient is to
consider a “wave-type equation” satisfied by the second fundamental form ki

j of the spatial slice. Since this
is already new for a local existence problem without singularities, we will indicate the ingredients needed only
for a local existence result for regular data, i.e. for this subsubsection suppose we are given geometric data
(Σ, g, k) satisfying the (usual) constraint equations and we explain how to construct a spacetime solution to
the Einstein vacuum equations in the gauge (1.16).
Assuming that a metric of the form (1.16) obeys the Einstein vacuum equations, we can deduce that the

second fundamental form ki
j obeys the following system of second order equations:

(1.18) ∂2
t ki

j = ∆gki
j −∇i∇jkℓ

ℓ + (k ⋆ k ⋆ k)i
j + (∂tk ⋆ k)i

j ,

where k ⋆ k ⋆ k and ∂tk ⋆ k are nonlinear terms to be specified in (4.6) in Section 4.1.
Notice that (1.18) is not actually a wave equation, due to the term ∇i∇jkℓ

ℓ on the RHS. The key is that
the trace of k, i.e. kℓ

ℓ in fact can be proven to have additional regularity if we further use the Einstein vacuum
equations. First, the Einstein vacuum equations imply that

∂tkℓ
ℓ = |k|2.

Now we consider h = kℓ
ℓ to be a separate variable and consider the coupled system for (g, h, k):

∂th = |k|2,
∂2
t ki

j =∆gki
j −∇i∇jh+ (k ⋆ k ⋆ k)i

j + (∂tk ⋆ k)i
j ,

∂tgij =− 2ki
ℓgjℓ.

(1.19)

(This system must hold for h = kℓ
ℓ if the Einstein vacuum equations are satisfied.) We then attempt to solve

(1.19) with initial data where (gij , ki
j) is as given, h = kℓ

ℓ and ∂tki
j = Ric(g)i

j +kℓ
ℓki

j (which is completely
determined by the geometric data).
The apparent difficulty in solving (1.19) is a potential loss of derivatives. For instance, energy estimates

for the second equation requires two derivative of h and give only first-derivative estimates for k. The first
equation, however, does not seem to give two derivatives for h if we only have one derivative for k. A similar
issue arises for g and k when we consider commutators for the second equation.
This can nevertheless be resolved by a renormalization together with elliptic estimates. As an example, we

illustrate how to obtain second derivative estimates for h when only controlling one derivative of k. Commute
the first equation with ∆g so that we have, up to error terms,

∂t∆gh = 2ki
j∆gkj

i + . . . .

The idea now is to use the second equation in (1.19) so that we obtain

∂t(∆gh− 2ki
j∂tkj

i) = 2ki
j(−∂2

t +∆g)k
i
j + . . . = . . . .
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This allows us to control ∆gh even only controlling one derivative of k. The other second derivatives of h
can then be bounded by ∆gh using elliptic estimates. This avoids the loss of derivatives.
Standard energy estimates together with this renormalization/elliptic estimates trick indeed give a solution

to (1.19). Furthermore, the choice of initial data and the structure of the equations allow one to propagate
the symmetry of gij and giℓkj

ℓ. Using moreover the Hamiltonian constraint R(g) − |k|2 + (trk)2 = 0, it
can be shown a posteriori that h = kℓ

ℓ. In particular, we also have that ∂tkℓ
ℓ = |k|2, which implies that

Ric((4)g)tt = 0.
Finally, we need to upgrade the existence result (1.19) to a bona fide existence result of solutions to the

Einstein vacuum equations in the gauge (1.16), i.e. we need to show that all the Ricci components vanish
(in addition to Ric((4)g)tt). For this purpose, first note that (after accounting for symmetries) the second
equation in (1.19) gives a system of 6 first order homogeneous equations in Rici

j((4)g) and Ricti(
(4)g). At

the same time, three of the (contracted) second Bianchi equations give another 3 first order homogeneous
equations in Rici

j((4)g) and Ricti(
(4)g). (The fourth equation is redundant, and does not give us extra

information.) It turns out that these 9 equations form a coupled system of wave-transport equations (see
(5.8) and (5.10)). This wave-transport equations is similar in structure to (1.19), and can also be treated
using energy estimates together with renormalization/elliptic estimates. Moreover, the momentum constraint
and the choice of initial data, when solving (1.19), together, guarantee that Rici

j((4)g) and Ricti(
(4)g) are

initially vanishing. Combining all these we obtain that Rici
j((4)g) = 0 and Ricti(

(4)g) = 0 everywhere,
implying that the constructed solution to (1.19) indeed obeys the Einstein vacuum equations.
Obviously, in our setting, we need to handle simultaneously the existence theory and the fact that the

metric becomes singular as t → 0+. For this we combine the ideas here and Section 1.1.1. A few technical
issues arise. For instance, the Kasner-type geometry dictate that we do not have uniform control of the
isoperimetric constants as t → 0+. Some care is therefore needed in the application of Sobolev embedding; in
particular we need to be careful which terms are to be put in L2/L∞ type spaces. Finally, we note that the
Fuchsian ideas in Section 1.1.1 are used not only in solving the system (1.19), but are also used in verifying
that the solution to (1.19) is indeed a solution to the Einstein vacuum equations.

1.1.5. Uniqueness and regularity. To prove uniqueness, we again rely on the wave equation satisfied by the
second fundamental form, and perform t-weighted energy estimates in a similar way as proving existence.
The only subtlety here is that we must impose that the metrics converge to each other sufficiently fast as
t → 0+ in order to close the estimate (cf. the statement of Theorem 1.7).
Finally, we prove higher regularity relying on the uniqueness result. The issue at stake here is that for

each additional derivative we try to control, the estimate in terms of t worsens by one power. Thus, the
approximation we choose has to be successively better for higher and higher derivatives. We then redo the
construction of solutions for better and better choices of the approximations. The uniqueness result ensures
that we have in fact constructed the same solution, thus showing that the already constructed solution has
arbitrarily high derivative bounds.

1.2. Related works.

1.2.1. Fuchsian constructions of singular spacetimes. Many works have been carried out to construct AVTD
singularities in (3 + 1)-dimensional vacuum spacetimes. All previous works assume either symmetry or
analyticity (or both). The symmetry classes are typically chosen so that AVTD singularities are expected
to be stable within that class. We give a sample of such results, but refer the reader also to the references
therein for further details.
Gowdy symmetry. AVTD singularities in (unpolarized) Gowdy symmetry was first constructed by

Kichenassamy and Rendall [30] in the analytic category, in part based on the formal expansion carried out
in [25]. A similar analysis was carried out by Rendall without the analyticity assumption in [36]. See also
[46] for more general topologies, and [5] for a treatment in generalized wave gauges.
Polarized T2 symmetry. Analytic AVTD singularities under polarized T2 symmetry were first con-

structed in [26]; analyticity was later removed in [4].
U(1) polarized or half-polarized symmetry. Analytic solutions with AVTD behavior in polarized or

half-polarized symmetry with T3 topology were constructed by Isenberg–Moncrief in [28]. That for more
general topology was later carried out in [12].
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Beyond (3 + 1)-dimensional vacuum spacetimes. The first construction of analytic solutions with
AVTD behavior without symmetries was carried out in [7], albeit not for the Einstein vacuum equations.
Indeed, the construction in [7] was for the Einstein–scalar field or Einstein–stiff fluid system. An important
difference is that in the presence of a scalar field or stiff fluid, one expects AVTD singularities to be stable
[10, 9]. A similar stability phenomenon is expected to occur in vacuum for spacetime dimensions ≥ 11
[19]. Correspondingly, there is a construction of AVTD singularities for high dimensional vacuum (and more
general) solutions in [18]. See also Section 1.2.2.
Analytic singular spacetimes without symmetry assumptions. All the works above concern regimes

(either in symmetry classes or with matter, or in high dimensions) which at least heuristically should gener-
ically have AVTD behavior near the spacelike singularity. In a recent work of Klinger [32], analytic vacuum
AVTD spacetimes with no symmetry assumptions have been constructed. The work [32] can be viewed as
similar to our result except for requiring the analyticity assumption and some additional inequalities on
the Kasner exponents pi’s. (These additional inequalities were used in [32] to apply a black-box Fuchsian
theorem.)
Asymptotically Schwarzschild singularity up to a singular 2-sphere. Finally, we mention the

work [21] of the first author, who constructed a class of spacetimes approaching the Schwarzschild black hole
singularity. The construction requires no symmetry or analyticity assumptions. While it does not include a
full spacelike singular hypersurface, the construction does include a spacelike singular 2-sphere.

1.2.2. Stable singularities in general relativity. By “function-counting” arguments (cf. Remark 1.5), the class
of spacetimes we construct are not expected to be stable. For the vacuum equations in (3 + 1) dimensions,
the only known stable singularities are in fact null; see [35, 34, 17]. These singularities are in stark contrast
with the AVTD ones, which are spacelike.
As we already mentioned in Section 1.2.1, it has been suggested that in the presence of a scalar field or

stiff fluid [10, 9], or in the vacuum case in spacetime dimensions ≥ 11 [19], there is an open set of initial data
which give rise to asymptotically Kasner-like singularities. It is also for this reason that in these settings, the
construction of spacelike singularities with AVTD behavior is simpler.
Spectacular progress has recently been made which indeed proves stability of spacelike singularities in the

aforementioned settings. In the case of Einstein–scalar field or Einstein–stiff fluid, this was carried out in
the breakthrough work by Rodnianski–Speck [43, 44] and later generalized by Speck [45]. In the case of high
dimensions, assuming spacetime dimensions ≥ 39, Rodnianski–Speck has recently also constructed a class of
stable spacelike singularities in vacuum [42]. (Note that the remarkable works of Rodnianski–Speck do not
cover the whole regimes in [10, 9, 19]. Whether all of the solutions discussed in [10, 9, 19] are stable remains
an open problem.)
Very recently, the first author and Alexakis considered the stability problem for the Schwarzschild singu-

larity [1]. Unlike the settings studied by Rodnianski–Speck, the Schwarzschild singularity is unstable, but
nonetheless it was shown in [1] to be stable within the class of polarized axisymmetric perturbations.

1.2.3. Strong cosmic censorship. The understanding of AVTD singularities played an important role in un-
derstanding the strong cosmic censorship conjecture, at least under Gowdy symmetry.
The strong cosmic censorship conjecture has first been resolved in the polarized Gowdy case in [16]. The

work relies in particular on [27], in which AVTD singularities in this setting were studied.
The more general case of the strong cosmic censorship conjecture in unpolarized Gowdy symmetry turned

out to be significantly more difficult in view of the so-called “spikes”. This has been treated in the seminal
work of Ringström [39] (see also [38]). Here, a form of asymptotic velocity term domination has been
established [37] and plays an important role.
It should again be stressed that outside symmetry classes (Gowdy, polarized T2, polarized U(1), etc.),

AVTD singularities are most likely not generic, and the role of the study of AVTD singularities in the
ultimate resolution of strong cosmic censorship conjecture is quite unclear.

1.2.4. Numerical works. A discussion of the large number of related numerical works will take us too far
afield. For this we will refer the reader to [11] and the many references therein.

1.2.5. Linear wave equations on singular spacetimes. A closely related thread of works concerns solving the
linear wave equation on a spacetime with a spacelike singularity, including Kasner, FLRW and Schwarzschild.
See for instance [31, 3, 40, 22, 2, 41, 8, 24].
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1.2.6. Einstein equations in transport coordinates. At the heart of our approach is the ability to perform
energy estimates in the gauge (1.16), corresponding to a choice of coordinates such that (t, xi) are all trans-
ported by the unit normal to the spacelike hypersurfaces {t = constant}; recall Section 1.1.4. We highlight
previous works where smooth solutions to the Einstein equations are constructed in gauge where the spatial
xi coordinates are transported, i.e the metric takes the form

(1.20) −α2dt2 + gijdx
idxj .

The first is the work of Rodnianski–Speck [43, 44] (in which they constructed stable spacelike singularities;
see discussions in Section 1.2.2 above), where α is determined by stipulating that each constant-t hypersurface
has constant mean curvature. See also [23] for a different approach in handling this gauge. (Constant
mean curvature foliations, but without spatially transported coordinates, have been previously used. See for
instance [6], which used spatially harmonic instead of spatially transported coordinates.)
The second is the work of Choquet-Bruhat–Ruggeri [14], in which the authors consider the spacetime

metric of the form (1.20) and impose the condition α =
√

det g
det e , where e is some arbitrary but fixed (i.e. t-

independent) Riemannian metric. They show that in such a gauge, the Einstein equations are hyperbolic.

1.3. Outline of the paper. We end the introduction with an outline of the remainder of the paper.
The first part of the existence proof will be to construct an approximate solution. This will be carried

out in Section 2, where we give the construction and show that evolutionary equations are approximately
satisfied. In Section 3 we then show that the constraint equations are also approximately satisfied.
In Section 4 and 5 we then construct an actual solution, thus completing the proof of Theorem 1.1. This

will be carried out in two steps: in Section 4 we will solve an appropriate system of reduced equations, then
in Section 5 we show that the solutions to the reduced equations that we have constructed in fact obey the
Einstein vacuum equations.
Finally, in Section 6, we end with the proofs of uniqueness (Theorem 1.7) and smoothness (Theorem 1.10).

1.4. Acknowledgements. G.F. would like to thank Lars Andersson, Satyanad Kichenassamy, Jacques
Smulevici and Jared Speck for useful communications.
G.F. is supported by the ERC grant 714408 GEOWAKI, under the European Union’s Horizon 2020 research

and innovation program. J.L. gratefully acknowledges the support of the NSF grant DMS-1709458.

2. Construction of an approximate solution

We work under the assumptions of Theorem 1.1. In particular, we fix pi and cij to be as in Theorem 1.1.
Unless explicitly stated otherwise, all the implicit constants (given either in the ≲ or the big-O or the

· ≤ C· notation) that we have in our arguments, from now on, may depend on pi and cij . Many estimates
in this section will involve an n ∈ N or a multi-index α. Unless otherwise stated, all constants may depend
also on n and α.

Our goal in this section is to construct an approximate solution, i.e. we will construct inductively a metric
(4)g

[n]
(n ∈ N ∪ {0}), which takes the form (1.4), but with a

[n]
ij in place of aij ; as well as an approximate

second fundamental form (k[n])i
j . These a

[n]
ij are constructed so that limt→0+ a

[n]
ij (t, x) = cij(x). We will

moreover show that the pairs (g[n], k[n]) we construct indeed form an approximate solution to the evolution
equation, i.e. as n becomes larger, ∂t(k

[n])i
j − Ric(g[n])i

j − (k[n])ℓ
ℓ(k[n])i

j tends to 0 faster as t → 0+; see
already Theorem 2.1.
Unless otherwise stated, we will also be using the Einstein summation convention for repeated indices,

with lower case Latin indices running through 1, 2, 3. It should be noted that sometimes we will still write
out the sum explicitly in situations that confusion might arise (e.g. when one has factors of tpmax{i,j}).

Definition of (4)g
[n]

and k[n]. Define (4)g
[0]

by setting

(2.1) a
[0]
ij = cij .

Now given g[n−1], n ∈ N (and assuming that it is a Riemannian metric on (0, tn]× T3), define k[n] by

∂t(k
[n])i

j =Ric(g[n−1])i
j + (k[n])ℓ

ℓ(k[n])i
j ,(2.2)

subject to the following condition at t = 0:

(2.3) |(k[n])ij − t−1κi
j |(t, x) = O(t−1+ε),
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where κ is defined by κi
i = −pi ( for every i = 1, 2, 3, without summing), κ1

2 = (p1−p2)
c12
c22

, κ2
3 = (p2−p3)

c23
c33

,

κ1
3 = (−p1 + p2)

c12c23
c22c33

+ (p1 − p3)
c13
c33

and κi
j = 0 if i > j; and given k[n], n ∈ N, define g[n] by

∂tg
[n]
ij = − (k[n])i

ℓg
[n]
ℓj − (k[n])j

ℓg
[n]
ℓi ,(2.4)

subject to the following condition at t = 0:

(2.5) |a[n]ij − cij |(t, x) = O(tε),

where we recall that a[n] is related to g[n] via (1.4). It readily follows from (2.4) that the inverse metric
(g[n])−1 satisfies the equation:

(2.6) ∂t((g
[n])−1)ij = (k[n])ℓ

j((g[n])−1)iℓ + (k[n])ℓ
i((g[n])−1)jℓ.

Our goal in this section is to establish the properties of the above sequences {g[n]}+∞
n=0, {k[n]}

+∞
n=1 given in

the following theorem:

Theorem 2.1. Let pi and cij be as in the Theorem 1.1. Define

ε = min{min
x

(p3 − p2)(x),min
x

(1− p3)(x)} > 0.

Then for n ∈ N, there exist tn > 0 (depending on pi, cij and n), a smooth Lorentzian metric (4)g
[n]

and a

(1, 1)-tensor (k[n])i
j on (0, tn]× T3 such that the following holds.

(1) (4)g
[n]

takes the following form for some smooth functions a
[n]
ij : (0, tn]×T3 → R (symmetric in i, j):

(4)g
[n]

= −dt2 +

3∑
i,j=1

g
[n]
ij dxi dxj = − dt2 +

3∑
i,j=1

a
[n]
ij t2pmax{i,j}dxi dxj .

(2) (Convergence to initial data) For every multi-index α, every i, j and every n ∈ N, the functions a
[n]
ij

and (k[n])i
j satisfy

(2.7) sup
x∈T3

|∂α
x (a

[n]
ij (t, x)− cij(x))| ≤ Cα,nt

ε,

(2.8) sup
x∈T3

|∂α
x [(k

[n])i
j(t, x)− t−1κi

j(x)]| ≤ Cα,n min{t−1+ε, t−1+ε−2pj+2pi},

for some Cα,n > 0 depending on pi, cij, in addition to α and n. (Recall the definition of κi
j

immediately after (2.3).)
(3) (Estimates for spatial curvature) For every multi-index α, every i, j and every n ∈ N, the spatial

Ricci curvature satisfies

(2.9) sup
x∈T3

1∑
r=0

tr|∂α
x ∂

r
tRic(g[n])i

j(t, x)| ≤ Cα,n min{t−2+ε, t−2+ε−2pj+2pi},

for some Cα,n > 0 depending on pi, cij, in addition to α and n.

(4) (k[n] is an approximate second fundamental form) For every multi-index α, every i, j and every
n ∈ N,

(2.10)

2∑
r=0

tr|∂α
x ∂

r
t (2(k

[n])i
j + (g[n])jℓ∂tg

[n]
iℓ )|(t, x) ≤ Cn,αt

−1+(n+1)ε,

for some Cα,n > 0 depending on pi, cij, in addition to α and n.

(5) (Evolution equations approximately satisfied) For every multi-index α, the tensors (k[n])i
j, g

[n]
ij also

satisfy

sup
x∈T3

1∑
r=0

tr
∣∣∣∂α

x ∂
r
t

(
∂t(k

[n])i
j −Ric(g[n])i

j − (k[n])ℓ
ℓ(k[n])i

j
)∣∣∣ (t, x) ≤ Cα,nt

−2+(n+1)ε,(2.11)

for some Cα,n > 0 depending on pi, cij, in addition to α and n.



12 GRIGORIOS FOURNODAVLOS AND JONATHAN LUK

Remark 2.2. All the ε in the error terms in Theorem 2.1 can be improved almost to 2ε (or exactly to 2ε if
we allow some powers of log t in the error terms). Some estimates can even be further sharpened. We will
be content with the weaker estimates for the sake of simplicity of the exposition.

Remark 2.3. The definition of ε, together with conditions (2)–(3) in Theorem 1.1, imply that

−1

3
≤ p1 ≤ −ε, ε ≤ p2 ≤ 2

3
,

2

3
≤ p3 ≤ 1− ε, p3 − p2 ≥ ε.(2.12)

This can be easily checked by using the following parametric form of the Kasner exponents p1, p2, p3:

p1 =
−u

1 + u+ u2
, p2 =

1 + u

1 + u+ u2
, p3 =

u(1 + u)

1 + u+ u2
, u ∈ [1,+∞),(2.13)

which is valid at each point x ∈ T3, u = u(x).

In the rest of the section, we will prove Theorem 2.1; see the conclusion of the proof at the end of the
section. (In particular, in the course of the proof, it can be seen that g[n] and k[n] are well-defined.)

2.1. Estimates for g[0].

Lemma 2.4. There exists t0 > 0 (depending on cij and pi) such that the following are true for (t, x) ∈
(0, t0]× T3:

(1) The determinant of det g[0] satisfies, for some C > 0 (depending on cij and pi),

|det g[0](t, x)− c11c22c33t
2| ≤ Ct2+ε.(2.14)

(2) The eigenvalues λ1 ≤ λ2 ≤ λ3 of g[0] satisfy, for some C > 0 (depending on cij and pi),

|λi − t2picii| ≤ Ct2pi+ε.

In particular, choosing t0 smaller if necessary, g[0] is a Lorentzian metric on (0, t0]× T3.
(3) For every multi-index α, the inverse metric (g[0])−1 satisfies, for some Cα > 0 (depending on α, cij

and pi),

(g[0])−1 =


t−2p1

c11
− c12c33t

−2p1

c11c22c33

(c12c23−c13c22)t
−2p1

c11c22c33

− c12c33t
−2p1

c11c22c33
t−2p2

c22

(c12c13−c11c23)t
−2p2

c11c22c33
(c12c23−c13c22)t

−2p1

c11c22c33

(c12c13−c11c23)t
−2p2

c11c22c33
t−2p3

c33

+ (g−1)[0]error,(2.15)

where |∂α
x ((g

−1)
[0]
error)ij | ≤ Ct−2pmin{i,j}+ε.

Proof. This is a simple computation and the proof is omitted. □

It will be convenient to define also

(2.16) (k[0])i
j := −1

2
((g[0])−1)jℓ∂tg

[0]
iℓ .

The following lemma gives an estimate for (k[0])i
j .

Lemma 2.5. For every multi-index α, there exists Cα > 0 (depending on α, in addition to cij and p) such
that the following estimate holds for all (t, x) ∈ (0, t0]× T3:

|∂α
x [(k

[0])i
j − t−1κi

j ]|(t, x) ≤ Cαt
−1+ε.

Proof. By the definition of g[0], it is easy to see that

∂tg
[0] =

2p1t2p1−1c11 2p2t
2p2−1c12 2p3t

2p3−1c13
2p2t

2p2−1c12 2p2t
2p2−1c22 2p3t

2p3−1c23
2p3t

2p3−1c13 2p3t
2p3−1c23 2p3t

2p3−1c33

+ (∂tg)
[0]
error,

where |∂α
x ((∂tg)

[0]
error)ij | ≤ Cαt

2pmax{i,j}−1+ε. Recalling that (k[0])i
j := − 1

2 ((g
[0])−1)jℓ∂tg

[0]
iℓ , the conclusion

of the lemma can be achieved by combining the above computation with Lemma 2.4. □

The next lemma estimates the Ricci curvature of a general metric g =
∑3

i,j=1 aijt
2pmax{i,j}dxi dxj when

aij satisfies some basic bounds. This in particular gives an estimate for Ric(g[0])i
j .
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Lemma 2.6. Suppose (4)g is a metric on (0, T ]×T3 taking the form (4)g = −dt2+
∑3

i,j=1 aijt
2pmax{i,j}dxi dxj,

where aij are smooth, symmetric and obey the estimates

|∂α
x aij |(t, x) ≤ Cα, |∂α

x ∂taij |(t, x) ≤ Cαt
−1+ε,

for some Cα > 0.
Then for every multi-index α, there exists C ′

α > 0 (depending on Cα, in addition to cij and p) such that
the following estimate holds for all (t, x) ∈ (0, T ]× T3:

(2.17)

1∑
r=0

tr|∂α
x ∂

r
tRic(g)i

j |(t, x) ≤ C ′
αmin{t−2+ε, t−2+ε−2pj+2pi}.

In fact, the following slightly stronger estimate holds:

(2.18)

1∑
r=0

tr|∂α
x ∂

r
tRic(g)i

j |(t, x) ≤ C ′
α min{t−2+2ε| log t|2+|α|, t−2+2ε−2pj+2pi | log t|2+|α|}.

Proof. Clearly (2.18) implies (2.17); from now on we focus on the proof of (2.18).
For notational convenience, in this proof we write gab = (g−1)ab.
Here is the basic observation. For a pairing gab∂cgae (note the one contracted index), we have

gab∂cgae = O(t−2pmin{a,b}+2pmax{a,e})| log t| ≤ O(| log t|).
Similarly,

(∂cg
ab)(∂dgae), g

ab∂2
cdgae = O(| log t|2).

So in order to give an estimate for the Ricci curvature, we will find pairs of g−1 and derivatives of g which
share at least one index.
To make the algebraic structure clear, we will focus on proving the estimate with |α| = 0 and r = 0 in

Steps 1 and 2, and then indicate the necessary changes in Steps 3 and 4.

Step 1: Proof of the upper bound t−2+ε. We recall the formula for the Ricci curvature:

Ric(g)i
j = gab∂iΓ

j
ab − gab∂aΓ

j
bi + gabΓj

icΓ
c
ab − gabΓj

acΓ
c
ib(2.19)

and that for the Christoffel symbols

Γc
ab =

1

2
gcℓ(∂agbℓ + ∂bgaℓ − ∂ℓgab).(2.20)

Hence, we notice that every term in (2.19) has either of the forms

gab∂ℓ1 [g
ℓ2ℓ3∂ℓ4gℓ5ℓ6 ], gabgℓ1ℓ2∂ℓ3gℓ4ℓ5g

ℓ6ℓ7∂ℓ8gℓ9ℓ10(2.21)

where among the ℓi’s there is an upper j and a lower i index, while the rest are contractions among themselves
and with respect to a, b.

For the first kind of terms in (2.21), using Lemma 2.4, we notice that they are of order

|gab∂ℓ1 [gℓ2ℓ3∂ℓ4gℓ5ℓ6 ]| ≲ | log t|2t−2pmin{a,b}−2pmin{ℓ2,ℓ3}+2pmax{ℓ5,ℓ6} ,(2.22)

where the pair {ℓ5, ℓ6} contains at least one of the indices a, b, ℓ2, ℓ3. Hence, we have either −2pmin{a,b} +
2pmax{ℓ5,ℓ6} ≥ 0 or −2pmin{ℓ2,ℓ3} + 2pmax{ℓ5,ℓ6} ≥ 0, leaving

|gab∂ℓ1 [gℓ2ℓ3∂ℓ4gℓ5ℓ6 ]| ≲ | log t|2t−2pℓ ≲ | log t|2t−2+2ε,

for some ℓ. On the other hand, the second term in (2.21) satisfies:

|gabgℓ1ℓ2∂ℓ3gℓ4ℓ5gℓ6ℓ7∂ℓ8gℓ9ℓ10 |
≲ | log t|2t−2pmin{a,b}−2pmin{ℓ1,ℓ2}+2pmax{ℓ4,ℓ5}−2pmin{ℓ6,ℓ7}+2pmax{ℓ9,ℓ10} ,

where at least three from the indices a, b, ℓ1, ℓ2, ℓ6, ℓ7 are contracted against three of the indices ℓ4, ℓ5, ℓ9, ℓ10.
This implies that at least two pairs of exponents having opposite signs, among

{−2pmin{a,b},−2pmin{ℓ1,ℓ2}, 2pmax{ℓ4,ℓ5},−2pmin{ℓ6,ℓ7}, 2pmax{ℓ9,ℓ10}},
yield non-negative sums, thus, leaving only

|gabgℓ1ℓ2∂ℓ3gℓ4ℓ5gℓ6ℓ7∂ℓ8gℓ9ℓ10 | ≲ | log t|2t−2pℓ ≲ | log t|2t−2+2ε.
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Step 2: Proof of the upper bound t−2+ε−2pj+2pi . We now move on to prove the improved estimates when
i > j (when i ≤ j the desired estimate follows from that proven in Step 1). As we are now familiar with this
type of argument, let us just consider the contribution from the second type of term in (2.21) (the first type
of terms can be treated similarly). We now separate out the factor of gjℓ (which gives a contribution of at
worst of O(t−2pj )), i.e. we write

gjbgℓ1ℓ2∂ℓ3gℓ4ℓ5g
ℓ6ℓ7∂ℓ8gℓ9ℓ10 ,

where exactly one of the ℓm is b and exactly one of the ℓm is i. It is easy to check that at least one of the
following must hold:

• After relabelling gℓ1ℓ2∂ℓ3gℓ4ℓ5g
ℓ6ℓ7∂ℓ8gℓ9ℓ10 = gℓ1c∂ℓ3gℓ4cg

ℓ6d∂ℓ8gℓ9d, so that by our basic observation
gℓ1ℓ2∂ℓ3gℓ4ℓ5g

ℓ6ℓ7∂ℓ8gℓ9ℓ10 = O(| log t|2). As a result, the whole term contributes O(t−2pj | log t|2),
which is better than O(t−2+ε−2pj+2pi).

• After relabelling, we have one of the following

gjbgacgdf∂agdf∂cgbi, gjbgacgdf∂agdb∂cgfi.

For the first term, after noting gdf∂agdf = O(| log t|), gac = O(t−2+2ε), gjb = O(t−2pj ) and ∂cgbi =
O(t2pi | log t|), we have gjbgacgdf∂agdf∂cgbi = O(t−2+2ε−2pj+2pi | log t|2) ≤ O(t−2+ε−2pj+2pi). For
the second term, note that gdf∂agdb = O(| log t|), gac = O(t−2+2ε), gjb = O(t−2pj ) and ∂cgbi =
O(t2pi | log t|), which then again gives the desired estimate.

Step 3: Higher derivative bounds. It is easy to see that after differentiating by ∂α
x , we at worst pick up

additional powers of | log t||α|, we then obtain the desired estimate also for higher derivatives of Ric(g)i
j .

Step 4: Time derivative. For ∂α
x ∂tRic(g)i

j , the argument is almost identical. Indeed, exploiting the form of
the metric and using the estimate for ∂α

x ∂taij , we notice that ∂tgij = O(t2pmax{i,j}−1), ∂tg
ij = O(t−2pmin{i,j}−1)

and similar behaviors for their spatial derivatives (up to logarithms). Hence, a power of t−1 can be factored
out, leaving terms with factors that behave as in the previous steps. This completes the proof of the
lemma. □

2.2. Estimates for k[n].

Lemma 2.7. Consider the nonlinear transport equation

∂tu = f +
u2

t2
,

where f : (0, 1) × T3 → R is a function such that |f |(t, x) ≲ tδ for some δ > 0. Then there exist t∗ ∈ (0, 1)
and a unique solution u : (0, t∗)× T3 → R such that |u|(t, x) ≲ t1+δ.
Assuming moreover that |∂α

x f |(t, x) ≲α tδ. It also follows that |∂α
x u| ≲α t1+δ.

Proof. This is proven by a standard Picard iteration, with some extra care tracing the t dependence; we omit
the details. □

Lemma 2.8. Suppose the following holds for some N ≥ 1: there exists tN−1 > 0 such that for every
0 ≤ n ≤ N − 1 and every multi-index α, g[n] satisfies the following estimate for some Cα,n > 0 (depending
on α, n, in addition to cij and pi) for all (t, x) ∈ (0, tN−1)× T3:

(2.23) |∂α
x (a

[n]
ij − cij)|(t, x) ≤ Cα,nt

ε.

Then, there exists tN ∈ (0, tN−1) sufficiently small such that for every 1 ≤ n ≤ N and every multi-index
α, the following holds for all (t, x) ∈ (0, tN−1)×T3 for some C ′

α,n > 0 (depending on α, n, in addition to cij
and pi):

|∂α
x [(k

[n])i
j − t−1κi

j ]|(t, x) ≤ C ′
α,n min{t−1+ε, t−1+ε−2pj+2pi}.

Proof. The key difficulty in solving (2.2) is that there are borderline terms with O(t−1) coefficients so that we
cannot directly apply Grönwall’s lemma. One can nevertheless analyze the precise structure of the equations.

Step 1: Solving an auxiliary system. We first solve an auxiliary system

(2.24)

{
∂th

[n] = R(g[n−1]) + (h[n])2

∂t(k
[n])i

j = Ric(g[n−1])i
j + h[n](k[n])i

j
.
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The first equation in (2.24) can be rearranged to

(2.25) ∂t[t
2(h[n] +

1

t
)] = t2R(g[n−1]) + t2(h[n] +

1

t
)2.

Using the bound |R(g[n−1])| ≲ t−2+ε from the assumptions on g[n−1] together with Lemma 2.6, (2.25) can
be solved using Lemma 2.7 with h[n] satisfying

(2.26) |∂α
x (h

[n] +
1

t
)| ≲ t−1+ε.

Now the second equation in (2.24) can be rearranged to

∂t[t(k
[n])i

j ] = tRic(g[n−1])i
j + (h[n] +

1

t
)t(k[n])i

j .

Using (2.26), Grönwall’s inequality and the estimate in Lemma 2.6, it follows that there is a unique solution
(k[n])i

j that obeys the initial condition (2.3) and satisfies

(2.27) |∂α
x [(k

[n])i
j − t−1κi

j ]| ≲ min{t−1+ε, t−1+ε−2pj+2pi}.

Step 2: Finishing the argument. Now that we have solved (2.24) and obtained estimates (2.26) and (2.27),
in order to conclude the argument, it suffices to show that in fact h[n] = (k[n])ℓ

ℓ. To this end, it suffices to
note that

∂t[t
2((k[n])ℓ

ℓ +
1

t
)] = t2R(g[n−1]) + t2((k[n])ℓ

ℓ +
1

t
)2.

Hence, comparing this equation with (2.25), we obtain h[n] = (k[n])ℓ
ℓ by the uniqueness statement in

Lemma 2.7. □

Lemma 2.9. Suppose the following holds for some N ≥ 2: there exists tN−1 > 0 such that for every
1 ≤ n ≤ N − 1 and every multi-index α, g[n] satisfies the following estimate for some Cα,n > 0 (depending
on α, n, in addition to cij and pi) for all (t, x) ∈ (0, tN−1)× T3:

(2.28) |∂α
x (a

[n]
ij − a

[n−1]
ij )|(t, x) ≤ Cα,nt

nε.

Then, taking tN ∈ (0, tN−1) smaller (compared to Lemma 2.8) if necessary, for every 2 ≤ n ≤ N and every
multi-index α, the following holds for all (t, x) ∈ (0, tN−1) × T3 for some C ′

α,n > 0 (depending on α, n, in
addition to cij and pi):

(2.29) |∂α
x [(k

[n])i
j − (k[n−1])i

j ]|(t, x) ≤ C ′
α,nt

−1+nε.

Proof. Step 1: Estimates on the Ricci curvature. The estimate (2.28) implies that

(2.30) |∂α
x [Ric(g[n])i

j −Ric(g[n−1])i
j ]|(t, x) ≲ t−2+(n+2)ε| log t|2+|α|

for every 0 ≤ n ≤ N − 1. Indeed, arguing as in the proof of Lemma 2.6, we notice that the difference of

the ∂α
x derivative of the Ricci curvatures can be bounded by the differences a

[n]
ij − a

[n−1]
ij (and their spatial

derivatives), multiplied by a term that is controlled by t−2+2ε| log t|2+|α|. In particular, (2.30) implies

(2.31) |∂α
x [Ric(g[n])i

j −Ric(g[n−1])i
j ]|(t, x) ≲ t−2+(n+1)ε.

Step 2: Estimates on (k[n])i
j. The assumption (2.28) implies the assumption of Lemma 2.8 holds. Hence by

Lemma 2.8,

(2.32) |∂α
x [(k

[n])i
j − t−1κi

j ]|(t, x) ≲ t−1+ε

for every 2 ≤ n ≤ N .
In particular, since (by definition) t−1κi

i = 1
t , (2.32) implies that

(2.33) |∂α
x [(k

[n])i
i +

1

t
]|(t, x) ≲ t−1+ε.

Step 3: Estimates on the difference (k[n])i
j − (k[n−1])i

j. Using (2.2), we obtain, for 2 ≤ n ≤ N , that

∂t[(k
[n])i

j − (k[n−1])i
j ]

=Ric(g[n−1])i
j −Ric(g[n−2])i

j + [(k[n])ℓ
ℓ − (k[n−1])ℓ

ℓ](k[n])i
j + (k[n−1])ℓ

ℓ[(k[n])i
j − (k[n−1])i

j ].
(2.34)



16 GRIGORIOS FOURNODAVLOS AND JONATHAN LUK

It turns out to be useful to first control the trace of k[n] − k[n−1]. Taking the trace of (2.34), we obtain

∂t((k
[n])i

i − (k[n−1])i
i) = R(g[n−1])−R(g[n−2]) + ((k[n])i

i + (k[n−1])i
i)((k[n])i

i − (k[n−1])i
i).

This implies

∂t[t
2((k[n])i

i − (k[n−1])i
i)] = t2(R(g[n−1])−R(g[n−2])) + ((k[n])i

i + (k[n−1])i
i +

2

t
)t2((k[n])i

i − (k[n−1])i
i).

By (2.31) in Step 1, the estimate (2.33) in Step 2, the condition (2.3) and Grönwall’s inequality, it easily
follows that

(2.35) |∂α
x (k

[n] − k[n−1])i
i|(t, x) ≲ t−1+nε

for every 2 ≤ n ≤ N .
We now return to (2.34), which we rewrite as follows.

∂t[t((k
[n] − k[n−1])i

j)]

= t(Ric(g[n−1])i
j −Ric(g[n−2])i

j) + t(k[n] − k[n−1])ℓ
ℓ(k[n])i

j + [(k[n−1])ℓ
ℓ +

1

t
]t(k[n] − k[n−1])i

j .

By (2.31) in Step 1, the estimates (2.32) and (2.33) in Step 2, the estimate (2.35) that we just proved, the
condition (2.3) and Grönwall’s inequality, we obtain

|∂α
x (k

[n] − k[n−1])i
j |(t, x) ≲ t−1+nε

for every 2 ≤ n ≤ N , which is what we want to prove. □

2.3. Estimates for a
[n]
ij .

Lemma 2.10. For n ∈ N and g
[n]
ij defined by (2.4)–(2.5), the corresponding a

[n]
ij obeys the equation

∂ta
[n]
ij = −

∑
ℓ

t2pmax{ℓ,j}−2pmax{i,j}

(
(k[n] − k[0])i

ℓa
[n]
ℓj + (k[0])i

ℓ(a
[n]
ℓj − cℓj)

)
−
∑
ℓ

t2pmax{ℓ,i}−2pmax{i,j}

(
(k[n] − k[0])j

ℓa
[n]
ℓi + (k[0])j

ℓ(a
[n]
ℓi − cℓi)

)
−

2pmax{i,j}

t
(a

[n]
ij − cij),

(2.36)

where k[0] is as defined in (2.16).

Proof. By (1.4) and (2.4), with repeated indices not summed, we have on the one hand

∂tg
[n]
ij = 2pmax{i,j}t

2pmax{i,j}−1a
[n]
ij + t2pmax{i,j}∂ta

[n]
ij ,

and on the other hand

∂tg
[n]
ij = −

∑
ℓ

(k[n])i
ℓt2pmax{ℓ,j}a

[n]
ℓj −

∑
ℓ

(k[n])j
ℓt2pmax{ℓ,i}a

[n]
ℓi .

Similarly, by (1.4), (2.1) and (2.16),

−
∑
ℓ

(k[0])i
ℓt2pmax{ℓ,j}cℓj −

∑
ℓ

(k[0])j
ℓt2pmax{ℓ,i}cℓi = ∂tg

[0]
ij = 2pmax{i,j}t

2pmax{i,j}−1cij .

Therefore, we obtain

t2pmax{i,j}∂ta
[n]
ij = ∂tg

[n]
ij − 2pmax{i,j}t

2pmax{i,j}−1a
[n]
ij = ∂t(g

[n]
ij − g

[0]
ij )− 2pmax{i,j}t

2pmax{i,j}−1(a
[n]
ij − cij)

= −
∑
ℓ

(k[0])i
ℓt2pmax{ℓ,j}(a[n] − c)ℓj −

∑
ℓ

(k[0])j
ℓt2pmax{ℓ,i}(a[n] − c)ℓi

−
∑
ℓ

t2pmax{ℓ,j}(k[n] − k[0])i
ℓa

[n]
ℓj −

∑
ℓ

t2pmax{ℓ,i}(k[n] − k[0])j
ℓa

[n]
ℓi

− 2pmax{i,j}t
2pmax{i,j}−1(a

[n]
ij − cij).

Canceling t2pmax{i,j} on both sides, we obtain the desired equation. □
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Lemma 2.11. Suppose the following holds for some N ≥ 1: there exists tN > 0 such that for every 1 ≤ n ≤ N
and every multi-index α, k[n] satisfies the estimate for some Cα,n > 0 (depending on α, n, in addition to cij
and pi) for all (t, x) ∈ (0, tN−1)× T3:

|∂α
x [(k

[n])i
j − t−1κi

j ]|(t, x) ≤ Cα,nt
−1+ε.

Then, after choosing tN > 0 smaller if necessary, a
[n]
ij (t, x) is well-defined and symmetric for all (t, x) ∈

(0, tN ] × T3 and for every 1 ≤ n ≤ N . In addition, by reducing tN > 0 further, g
[n]
ij (t, x) is a Lorentzian

metric.
Moreover, for every multi-index α and 1 ≤ n ≤ N , there exists C ′

α,n > 0 such that

|∂α
x (a

[n]
ij − cij)|(t, x) ≤ C ′

α,nt
ε, |∂α

x ∂ta
[n]
ij |(t, x) ≤ C ′

α,nt
−1+ε(2.37)

for all (t, x) ∈ (0, tN ]× T3.

Proof. Clearly ∂t(a
[n]
ij − a

[n]
ji ) = 0. Moreover, at {t = 0}, a[n]ij = cij which is symmetric. It follows that a

[n]
ij is

symmetric.

Now given that a
[n]
ij is symmetric, we will only estimate the six components {a[n]ij : i ≤ j}. Using the

equation in Lemma 2.10 and the bounds in Lemmas 2.5 and 2.8 (and implicitly using the symmetry of a
[n]
ij

in the derivation), we obtain the following schematic equations:

∂t(a
[n] − c)33 =O(t−1+ε)(a[n] − c) +O(t−1+ε)a[n],(2.38)

∂t(a
[n] − c)22 =O(t−1+ε)(a[n] − c) +O(t−1+ε)a[n],(2.39)

∂t(a
[n] − c)11 =O(t−1+ε)(a[n] − c) +O(t−1+ε)a[n],(2.40)

∂t(a
[n] − c)23 =

p2 − p3
t

(a[n] − c)23 −
κ2

3

t
(a[n] − c)33 +O(t−1+ε)(a[n] − c) +O(t−1+ε)a[n],(2.41)

∂t(a
[n] − c)12 =

p1 − p2
t

(a[n] − c)12 −
κ1

2

t
(a[n] − c)22 +O(t−1+ε)(a[n] − c) +O(t−1+ε)a[n],(2.42)

∂t(a
[n] − c)13 =

p1 − p3
t

(a[n] − c)13 −
κ1

2

t
(a[n] − c)23 −

κ1
3

t
(a[n] − c)33(2.43)

+O(t−1+ε)(a[n] − c) +O(t−1+ε)a[n].

Here, we have used the schematic notation that when we write (a[n] − c) or a[n] without explicit indices, it
can represent any component.
The key point is a reductive structure for terms with O(t−1) coefficients: The diagonal (a[n] − c)ii terms

do not see any terms with O(t−1) coefficients on the right hand side. For the remaining terms, we make the
observations that (1) the linear term has coefficients which is negative and (2) by estimating the terms in the
order as listed above, the only terms with O(t−1) coefficients have already been estimated in the previous
step.
Indeed, the first three equations ((2.38)–(2.40)) give

(2.44) |(a[n] − c)33|(t) + |(a[n] − c)22|(t) + |(a[n] − c)11|(t) ≲ tε sup
[0,t]

(|a[n] − c|+ |c|),

where we have used the initial condition (2.5).
Using the fourth and fifth equations ((2.41)–(2.42)) and plugging in (2.44), we obtain

tp3−p2 |(a[n] − c)23|(t) ≲ tp3−p2 |(a[n] − c)33|(t) + tp3−p2+ε sup
[0,t]

(|a[n] − c|+ |c|)

≲ tp3−p2+ε sup
[0,t]

(|a[n] − c|+ |c|)
(2.45)

and

tp2−p1 |(a[n] − c)12|(t) ≲ tp2−p1 |(a[n] − c)22|(t) + tp2−p1+ε sup
[0,t]

(|a[n] − c|+ |c|)

≲ tp2−p1+ε sup
[0,t]

(|a[n] − c|+ |c|).
(2.46)
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The estimates (2.45) and (2.46) imply

(2.47) |(a[n] − c)23|(t) + |(a[n] − c)12|(t) ≲ tε sup
[0,t]

(|a[n] − c|+ |c|).

Finally, we consider the last equation, argue as above and plug in (2.44) and (2.47) to obtain

(2.48) |(a[n] − c)13|(t) ≲ tε sup
[0,t]

(|a[n] − c|+ |c|).

Combining (2.44), (2.47), (2.48), and choosing tN to be sufficiently small, we obtain

sup
[0,t]

|a[n] − c| ≲ tε sup |c| ≲ tε.

This proves that a
[n]
ij is well-defined and moreover shows the first inequality in (2.37) in the case |α| = 0.

The second inequality in (2.37) (that for ∂ta
[n]
ij ) follows by applying the already derived bounds to the RHS

of the system (2.38)–(2.43).
We then obtain the desired higher order estimates by induction on |α|. For example, differentiating the

equation (2.36) by ∂α
x for |α| = 1, we may treat the zeroth order terms in the differences a[n] − c as already

estimated inhomogeneous terms and repeat the above argument. The same goes for ∂α
x with |α| = 2 etc.

From this we deduce the estimate (2.50) in general. We omit the details. □

Lemma 2.12. Suppose the following holds for some N ≥ 1: there exists tN > 0 such that for every 1 ≤ n ≤ N
and for every multi-index α, k[n] satisfies the following estimate for some Cα,n > 0 (depending on α, n, in
addition to cij and pi) for all (t, x) ∈ (0, tN ]× T3:

(2.49) |∂α
x (k

[n] − k[n−1])i
j |(t, x) ≤ Cα,nt

−1+nε

for every 1 ≤ n ≤ N .
Then, after choosing tN > 0 smaller if necessary, for every multi-index α and 1 ≤ n ≤ N , there exists

C ′
α,n > 0 such that

|∂α
x (a

[n]
ij − a

[n−1]
ij )|(t, x) ≤ C ′

α,nt
nε, |∂α

x ∂t(a
[n]
ij − a

[n−1]
ij )|(t, x) ≤ C ′

α,nt
−1+nε,(2.50)

for all (t, x) ∈ (0, tN ]× T3 and for every 1 ≤ n ≤ N .

Proof. First, we note that by Lemma 2.5 and (2.49),

(2.51) |∂α
x (k

[n] − k[0])i
j |(t, x) ≲ t−1+ε

for every 1 ≤ n ≤ N .
Subtracting the n and n− 1 versions of (2.36), for i ≤ j, we have

∂t(a
[n] − a[n−1])ij

= −
∑
ℓ

t2pmax{ℓ,j}−2pmax{i,j} [(k[n] − k[0])i
ℓ(a[n] − a[n−1])ℓj + (k[n] − k[n−1])i

ℓa
[n−1]
ℓj ]

−
∑
ℓ

t2pmax{ℓ,i}−2pmax{i,j} [(k[n] − k[0])j
ℓ(a[n] − a[n−1])ℓi + (k[n] − k[n−1])j

ℓa
[n−1]
ℓi ]

−
∑
ℓ

t2pmax{ℓ,j}−2pmax{i,j}(k[0])i
ℓ(a[n] − a[n−1])ℓj −

∑
ℓ

t2pmax{ℓ,i}−2pmax{i,j}(k[0])j
ℓ(a[n] − a[n−1])ℓi

−
2pmax{i,j}

t
(a

[n]
ij − a

[n−1]
ij ).

(2.52)

Using the equation (2.52) and the estimates in Lemmas 2.5, 2.8 and (2.49), we deduce a system of schematic
equations in a similar manner as (2.38)–(2.43), namely,

∂t(a
[n] − a[n−1])33 =O(t−1+ε)(a[n] − a[n−1]) +O(t−1+nε)a[n−1],(2.53)

∂t(a
[n] − a[n−1])22 =O(t−1+ε)(a[n] − a[n−1]) +O(t−1+nε)a[n−1],(2.54)

∂t(a
[n] − a[n−1])11 =O(t−1+ε)(a[n] − a[n−1]) +O(t−1+nε)a[n−1],(2.55)

∂t(a
[n] − a[n−1])23 =

p2 − p3
t

(a[n] − a[n−1])23 −
κ2

3

t
(a[n] − a[n−1]c)33(2.56)



ASYMPTOTICALLY KASNER-LIKE SINGULARITIES 19

+O(t−1+ε)(a[n] − a[n−1]) +O(t−1+nε)a[n−1],

∂t(a
[n] − a[n−1])12 =

p1 − p2
t

(a[n] − a[n−1])12 −
κ1

2

t
(a[n] − a[n−1])22(2.57)

+O(t−1+ε)(a[n] − a[n−1]) +O(t−1+nε)a[n01],

∂t(a
[n] − a[n−1])13 =

p1 − p3
t

(a[n] − a[n−1])13 −
κ1

2

t
(a[n] − a[n−1])23 −

κ1
3

t
(a[n] − a[n−1])33(2.58)

+O(t−1+ε)(a[n] − a[n−1]) +O(t−1+nε)a[n−1].

From this point on we can argue as in Lemma 2.11, using the reductive structure of the system. Note
that the system (2.53)–(2.58) is better than the system (2.38)–(2.43) in that the inhomogeneous terms

O(t−1+nε)a[n−1] = O(t−1+nε). As a result, the argument in Lemma 2.11 gives the better estimate |∂α
x ∂

r
t (a

[n]
ij −

a
[n−1]
ij )|(t, x) ≤ C ′

α,nt
−r+nε, r = 0, 1. □

Now a straightforward induction argument using Lemmas 2.8, 2.9, 2.11, 2.12 shows there
exists a decreasing sequence of positive times tn, such that g[n] and k[n] are well-defined and
smooth in (0, tn]×T3, for all n ∈ N. Moreover, all the estimates in the conclusions (and proofs)
of Lemmas 2.8, 2.9, 2.11, 2.12 hold. In particular, points (1), (2) in Theorem 2.1 hold true;
and after using also Lemma 2.6, it can be checked that (3) in Theorem 2.1 is also verified.
In the remaining subsections, we prove points (4) and (5) in Theorem 2.1, thus completing the proof of

Theorem 2.1.

2.4. Comparing k[n] with the second fundamental form. In this subsection, we prove point (4) of
Theorem 2.1; see the main estimate in Lemma 2.15.

The heart of the matter is the following estimates for D
[n]
ij := (k[n])i

ℓg
[n]
ℓj − (k[n])j

ℓg
[n]
ℓi .

Lemma 2.13. For each n ∈ N, define D
[n]
ij = (k[n])i

ℓg
[n]
ℓj − (k[n])j

ℓg
[n]
ℓi . Then if (n+ 1)ε > 2, after choosing

tn smaller if necessary, the following estimate holds for some Cα,n > 0 (depending on α, n, in addition to
cij and pi):

|∂α
xD

[n]
ij |(t, x) ≤ Cα,nt

−1+(n+2)ε+2pmax{i,j} | log t|2+|α|, |∂α
x ∂tD

[n]
ij |(t, x) ≤ Cα,nt

−2+(n+2)ε+2pmax{i,j} | log t|2+|α|

for all (t, x) ∈ (0, tn]× T3.

Proof. Step 1: Derivation of an equation for D
[n]
ij . By (2.4),

(∂tg
[n]
ℓj )(k

[n])i
ℓ − (∂tg

[n]
ℓi )(k

[n])j
ℓ

= − g
[n]
ℓb (k

[n])j
b(k[n])i

ℓ − g
[n]
jb (k

[n])ℓ
b(k[n])i

ℓ + g
[n]
ℓb (k

[n])i
b(k[n])j

ℓ + g
[n]
ib (k[n])ℓ

b(k[n])j
ℓ

= − (g
[n]
jb (k

[n])ℓ
b − g

[n]
ℓb (k

[n])j
b)(k[n])i

ℓ + (g
[n]
ib (k[n])ℓ

b − g
[n]
ℓb (k

[n])i
b)(k[n])j

ℓ.

(2.59)

Therefore, (2.59) and the equation (2.2) that define k[n], it follows that

∂tD
[n]
ij = ∂t[(k

[n])i
ℓg

[n]
ℓj − (k[n])j

ℓg
[n]
ℓi ]

=Ric(g[n−1])i
ℓg

[n]
ℓj −Ric(g[n−1])j

ℓg
[n]
ℓi + (k[n])a

a[(k[n])i
ℓg

[n]
ℓj − (k[n])j

ℓg
[n]
ℓi ]

− (g
[n]
jb (k

[n])ℓ
b − g

[n]
ℓb (k

[n])j
b)(k[n])i

ℓ + (g
[n]
ib (k[n])ℓ

b − g
[n]
ℓb (k

[n])i
b)(k[n])j

ℓ

=Ric(g[n−1])i
ℓg

[n]
ℓj −Ric(g[n−1])j

ℓg
[n]
ℓi + (k[n])a

aD
[n]
ij −D

[n]
ℓj (k

[n])i
ℓ +D

[n]
ℓi (k

[n])j
ℓ.

(2.60)

Now since Ric(g[n−1])i
ℓg

[n−1]
ℓj is symmetric in i and j, we have

Ric(g[n−1])i
ℓg

[n]
ℓj −Ric(g[n−1])j

ℓg
[n]
ℓi

=Ric(g[n−1])i
ℓ(g[n] − g[n−1])ℓj −Ric(g[n−1])j

ℓ(g[n] − g[n−1])ℓi = O(t−2+(n+2)ε+2pmax{i,j} | log t|2),
(2.61)

where the final estimate follows from the form of the metric, Lemmas 2.6, 2.12, and the fact that

O(min{t−2+2ε, t−2+2ε−2pℓ+2pi}| log t|2 × t2pmax{j,ℓ})

=O(min{t−2+2ε+2pj , t−2+2ε+2pi}| log t|2) = O(t−2+2ε+2pmax{i,j} | log t|2).
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Therefore, combining (2.60) and (2.61), we have obtained that

(2.62) ∂tD
[n]
ij = −D

[n]
ℓj (k

[n])i
ℓ +D

[n]
ℓi (k

[n])j
ℓ + (k[n])a

aD
[n]
ij +O(t−2+(n+2)ε+2pmax{i,j} | log t|2).

Step 2: Estimating D
[n]
ij . Since D

[n]
ij is manifestly anti-symmetric, it suffices to estimate D

[n]
23 , D

[n]
13 and D

[n]
12 .

By (2.62), they satisfy the following equations:

∂tD
[n]
23 = [

p2 + p3 − 1

t
+O(t−1+ε)]D

[n]
23 − (k[n])2

1D
[n]
13 + (k[n])3

1D
[n]
12 +O(t−2+(n+2)ε+2pmax{i,j} | log t|2),

∂tD
[n]
13 = [

p1 + p3 − 1

t
+O(t−1+ε)]D

[n]
13 − (k[n])3

2D
[n]
12 − (k[n])1

2D
[n]
23 +O(t−2+(n+2)ε+2pmax{i,j} | log t|2),

∂tD
[n]
12 = [

p1 + p2 − 1

t
+O(t−1+ε)]D

[n]
12 − (k[n])2

3D
[n]
13 − (k[n])1

3D
[n]
23 +O(t−2+(n+2)ε+2pmax{i,j} | log t|2).

Applying the estimates for k[n] from Lemma 2.8, we obtain

∂t(t
p1D

[n]
23 ) =O(t−1+ε)tp1D

[n]
23 +O(t−1+ε)tp1D

[n]
13

+O(t−1+ε−2p1+2p3)tp1D
[n]
12 +O(t−2+p1+(n+2)ε+2p3 | log t|2),(2.63)

∂t(t
p2D

[n]
13 ) =O(t−1+ε)tp2D

[n]
13 +O(t−1)tp2D

[n]
23

+O(t−1+ε−2p2+2p3)tp2D
[n]
12 +O(t−2+p2+(n+2)ε+2p3 | log t|2),(2.64)

∂t(t
p3D

[n]
12 ) =O(t−1+ε)tp3D

[n]
12 +O(t−1)tp3D

[n]
13

+O(t−1)tp3D
[n]
23 +O(t−2+p3+(n+2)ε+2p2 | log t|2).(2.65)

To use these equations, note that when i, j, ℓ are all distinct,

(2.66) lim
t→0+

tpiD
[n]
jℓ = 0.

Indeed, using the estimates in Lemmas 2.8 and 2.11, one checks that D
[n]
23 , D

[n]
13 = O(t2p3−1) and D

[n]
12 =

O(t2p2−1). This implies tp1D
[n]
23 = O(tp1+2p3−1) = O(tp3−p2), tp2D

[n]
13 = O(tp2+2p3−1) = O(tp3−p1) and

tp3D
[n]
12 = O(tp3+2p2−1) = O(tp2−p1). We then obtain (2.66) using p1 < p2 < p3.

We now use equations (2.63)–(2.65) to estimate D
[n]
ij . The key is to notice a reductive structure similar to

that in the proof of Lemma 2.11, except in this situation since the different components have different rates,
we argue with a bootstrap argument.
Make the bootstrap assumptions that

|D[n]
23 |(t, x) ≤ At−1+(n+2)ε+2p3 | log t|2, |D[n]

13 |(t, x) ≤ At−1+(n+2)ε+2p3 | log t|2,

|D[n]
12 |(t, x) ≤ At−1+(n+2)ε+2p2 | log t|2,

(2.67)

where A is a large constant, such that denoting the implicit constant in the big-O notation in (2.63)–(2.65)
by C, we require C ≪ A.
Plugging (2.67) into (2.63), integrating, and using p2 > p1, we obtain

(2.68) |D[n]
23 |(t, x) ≤ Ct−1+(n+2)ε+2p3 | log t|2 + CAt−1+(n+3)ε+2p3 | log t|2.

Arguing similarly, first for D
[n]
13 and then for D

[n]
12 , we also obtain

(2.69) |D[n]
13 |(t, x) ≤ Ct−1+(n+2)ε+2p3 | log t|2 + CAt−1+(n+3)ε+2p3 | log t|2,

(2.70) |D[n]
12 |(t, x) ≤ Ct−1+(n+2)ε+2p2 | log t|2 + CAt−1+(n+3)ε+2p2 | log t|2.

Choosing tn sufficiently small (so that Atε ≤ 1), it is easy to check that (2.68)–(2.70) improves the bootstrap

assumptions in (2.67). This gives the stated estimates for D
[n]
ij in the lemma when |α| = 0.

The estimates for the spatial derivatives are similar, except that we lose a factor of | log t| for each derivative
we take (cf. (2.18)). □

Step 3: Estimating ∂tD
[n]
ij . Finally, we plug in the estimates for D

[n]
ij into (2.63)–(2.65) to obtain the desired

estimates for ∂α
x ∂tD

[n]
ij .
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Lemma 2.14. For each n ∈ N and D
[n]
ij as in Lemma 2.13, define (D̃[n])i

j := (g[n])jℓD
[n]
iℓ . Then if (n+1)ε >

2, the following estimates hold for (t, x) ∈ (0, tn]× Tn for some Cα,n > 0 (depending on α, n, in addition to
cij and pi):

(2.71)

2∑
r=0

tr|∂α
x ∂

r
t (D̃

[n])i
j |(t, x) ≤ Cn,α min{t−1+(n+2)ε| log t|2+|α|, t−1+(n+2)ε−2pj+2pi | log t|2+|α|}.

Proof. Step 1: Estimates for D̃[n] (when r = 0). By Lemma 2.13,the estimate ∂α
x (g

[n])jℓ = O(t−2pmin{j,ℓ} | log t||α|)
and the fact tε| log t|ℓ ≲ℓ 1, we immediately obtain

(2.72) |∂α
x (D̃

[n])i
j |(t, x) ≤ Cn,α min{t−1+(n+2)ε| log t|2+|α|, t−1+(n+2)ε−2pj+2pi | log t|2+|α|}.

Step 2: Deriving evolution equations for D̃[n]. Contracting (2.60) with (g[n])jb, using (2.6) and the anti-

symmetry of D[n]
ij , we obtain

(2.73) ∂t(D̃
[n])i

b = (k[n])a
a(D̃[n])i

b +Ric(g[n−1])i
b − (g[n])jbRic(g[n−1])j

ℓg
[n]
ℓi .

We notice now that since

(g[n−1])jbRic(g[n−1])j
ℓg

[n−1]
ℓi = Ric(g[n−1])i

b,

we have

Ric(g[n−1])i
b − (g[n])jbRic(g[n−1])j

ℓg
[n]
ℓi

= − (g[n])jbRic(g[n−1])j
ℓg

[n]
ℓi + (g[n−1])jbRic(g[n−1])j

ℓg
[n−1]
ℓi

= − [(g[n])jb − (g[n−1])jb]Ric(g[n−1])j
ℓg

[n]
ℓi − (g[n−1])jbRic(g[n−1])j

ℓ[g
[n]
ℓi − g

[n−1]
ℓi ]

=O(t−2pmin{j,b})×O(tnε)×O(min{t−2+2ε| log t|2+|α|, t−2+ε−2pℓ+2pj | log t|2+|α|})×O(t2pmax{ℓ,i})

=O(| log t|2 ×min{t−2+(n+2)ε, t−2+(n+2)ε−2pb+2pi}),

(2.74)

where in estimating the terms we have used the form of the metric, computation of the inverse metric (see
(2.15)), Lemmas 2.11 and 2.12, and (2.18).
Differentiating (2.74) by ∂α

x ∂
r
t , and arguing similarly, we also obtain the following higher derivative bounds

for r = 0, 1:

∂α
x {tr∂r

t [(Ric(g[n−1])i
b − (g[n])jbRic(g[n−1])j

ℓg
[n]
ℓi )]}

=O(| log t|2+|α| ×min{t−2+(n+2)ε, t−2+(n+2)ε−2pb+2pi}).
(2.75)

Plugging the estimate (2.75) into (2.73), using the estimates for k[n] (by Lemma 2.8) and ∂tk
[n] (by (2.2),

Lemma 2.6, (2.37) and Lemma 2.8), (and relabelling the indices,) we obtain

∂α
x ∂t(D̃

[n])i
b

=O(t−1)(
∑

|β|≤|α|

∂β
x (D̃

[n])i
b) +O(| log t|2+|α| ×min{t−2+(n+2)ε, t−2+(n+2)ε−2pb+2pi}),(2.76)

and

∂α
x ∂

2
t (D̃

[n])i
b =O(t−1)

∑
|β|≤|α|

∂β
x∂t(D̃

[n])i
b +O(t−2)

∑
|β|≤|α|

∂β
x (D̃

[n])i
b

+O(| log t|2+|α| ×min{t−3+(n+2)ε, t−3+(n+2)ε−2pb+2pi}).
(2.77)

Step 3: Estimates for ∂tD̃
[n] and ∂2

t D̃
[n] (when r = 1, 2). Plugging (2.72) into (2.76), we obtain

(2.78) |∂α
x ∂t(D̃

[n])i
j |(t, x) ≤ Cn,α min{t−2+(n+2)ε| log t|2+|α|, t−2+(n+2)ε−2pj+2pi | log t|2+|α|}.

Similarly, plugging in both (2.78) and (2.72) into (2.77), we obtain

(2.79) |∂α
x ∂

2
t (D̃

[n])i
j |(t, x) ≤ Cn,α min{t−3+(n+2)ε| log t|2+|α|, t−3+(n+2)ε−2pj+2pi | log t|2+|α|}.

Combining (2.72), (2.78) and (2.79) yields (2.71). □
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The next lemma shows that even though k[n] is not the second fundamental form associated to g[n], it is
close to being the second fundamental form up to an error that vanishes sufficiently fast as t → 0+.

Lemma 2.15. When (n + 1)ε > 2, the following estimates hold for (t, x) ∈ (0, tn] × Tn for some Cα,n > 0
(depending on α, n, in addition to cij and pi):

(2.80)

2∑
r=0

tr|∂α
x ∂

r
t (2(k

[n])i
j + (g[n])jℓ∂tg

[n]
iℓ )|(t, x) ≤ Cn,αt

−1+(n+2)ε| log t|2+|α|.

Proof. By (2.4) and the definition of D
[n]
ij (in Lemma 2.13) and D̃[n] (in Lemma 2.14),

2(k[n])i
j + (g[n])jℓ∂tg

[n]
iℓ

= 2(k[n])i
j − 2(k[n])i

j − (g[n])jℓD
[n]
iℓ = −(g[n])jℓD

[n]
iℓ = −(D̃[n])i

j .
(2.81)

The desired estimate is then an immediate consequence of Lemma 2.14. □

Lemma 2.15 gives point (4) in Theorem 2.1.

2.5. (k[n])i
j and g

[n]
ij satisfy evolution equations approximately. In this subsection we prove point (5)

in Theorem 2.1 (see Proposition 2.17), which then completes the proof of the theorem.

Lemma 2.16. For every n ∈ N, the following estimates hold for (t, x) ∈ (0, tn] × Tn, for some Cα,n > 0
(depending on α, n, in addition to cij and pi):∣∣∣∂α

x ∂t

(
Ric(g[n])i

j −Ric(g[n−1])i
j
)∣∣∣ (t, x) ≤ Cα,nt

−3+(n+2)ε| log t|2+|α|.

Proof. Going back to the proof of Lemma 2.6 and using the form of the metrics g[n] and g[n−1], we notice
that the each term in the difference of Ric(g[n])i

j , Ric(g[n−1])i
j has the form:

[explicit powers of t and log t with behavior O(t−2+2ε| log t|2+|α|)]

×[non-linear terms in ∂α
x a

[n], ∂α
x a

[n−1] which are linear in the difference ∂α
x (a

[n] − a[n−1]), |α| ≤ 2]

The fact that a[n], a[n−1] and their spatial derivatives are bounded, while |∂α
x (a

[n]−a[n−1])| ≲ tnε (see Lemma
2.12), was then used in Lemma 2.9 to infer the bound (2.30).
Now we verify that a time derivative acting on any of the previous type of terms, adds at worst a power of

t−1 in their behavior. For the factors which are explicit powers of t this is evident. If ∂t hits either a
[n], a[n−1]

factor or their difference a[n] − a[n−1], we make use of (2.37), (2.50) and the conclusion follows. □

Proposition 2.17. For every n ∈ N, the following estimates hold for (t, x) ∈ (0, tn]×Tn, for some Cα,n > 0
(depending on α, n, in addition to cij and pi):

1∑
r=0

tr
∣∣∣∂α

x ∂
r
t

(
∂t(k

[n])i
j −Ric(g[n])i

j − (k[n])ℓ
ℓ(k[n])i

j
)∣∣∣ (t, x) ≤Cα,nt

−2+(n+2)ε| log t|2+|α|.

Proof. Using the equation (2.2), the estimate (2.31), and Lemma 2.16, we obtain∣∣∣∂α
x

(
∂t(k

[n])i
j −Ric(g[n])i

j − (k[n])ℓ
ℓ(k[n])i

j
)∣∣∣ (t, x)

=
∣∣∣∂α

x

(
Ric(g[n])i

j −Ric(g[n−1])i
j
)∣∣∣ (t, x) ≲ t−2+(n+2)ε| log t|2+|α|

and ∣∣∣∂α
x ∂t

(
∂t(k

[n])i
j −Ric(g[n])i

j − (k[n])ℓ
ℓ(k[n])i

j
)∣∣∣ (t, x)

=
∣∣∣∂α

x ∂t

(
Ric(g[n])i

j −Ric(g[n−1])i
j
)∣∣∣ (t, x) ≲ t−3+(n+2)ε| log t|2+|α|,

as desired. □

Proposition 2.17 implies point (5) of Theorem 2.1. Together with the previous subsections,
this completes the proof of Theorem 2.1.
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3. Approximate propagation of constraints

We continue to work under the assumptions of Theorem 1.1 and take g[n] and k[n] as constructed in the
beginning of Section 2 (so that for appropriately chosen tN , the estimates in Theorem 2.1 hold).

The goal of this section is to show that metrics (4)g[n] are also approximate solutions to the constraints,
as t → 0, to an order that improves with the increase of n. To achieve this we argue by propagation of
constraints, i.e. we use the second Bianchi identity as propagation equations and use that the constraints are
asymptotically valid in the renormalized sense (1.7)–(1.8).
It will be useful to setup some notations that we use in this section. For the remainder of this section,

D will denote the Levi–Civita connection of the spacetime metric (4)g[n] and ∇ will denote the
Levi–Civita connection of the metric g[n] on the (spacelike) constant-t hypersurfaces. Moreover,
indices are lowered and raised with respect to the metric g[n] (in particular (g[n])ij = ((g[n])−1)ij in
this section).

Proposition 3.1. Let (4)g = −dt2 + g, where g is a Riemannian metric. Define k̃i
j := − 1

2 (g
−1)jℓ∂tgiℓ (the

second fundamental form). Then the following identities hold:

Ric((4)g)i
j = − ∂tk̃i

j +Ric(g)i
j + k̃ℓ

ℓk̃i
j ,(3.1)

Ric((4)g)ti = − (divgk̃)i +∇i(k̃ℓ
ℓ),(3.2)

Ric((4)g)tt = ∂t(k̃ℓ
ℓ)− |k̃|2,(3.3)

R((4)g) = − 2∂t(k̃ℓ
ℓ) +R(g) + |k̃|2 + (k̃ℓ

ℓ)2,(3.4)

G((4)g)i
j = − ∂tk̃i

j +Ric(g)i
j + k̃ℓ

ℓk̃i
j − 1

2
δi

j [−2∂t(k̃ℓ
ℓ) +R(g) + |k̃|2 + (k̃ℓ

ℓ)2],(3.5)

G((4)g)ti = − (divk̃)i +∇i(k̃ℓ
ℓ),(3.6)

G((4)g)tt =
1

2
[R(g)− |k̃|2 + (k̃ℓ

ℓ)2],(3.7)

where G((4)g)αβ is the Einstein tensor of (4)g.

Proof. The first three identities can be found in [13, Chapter 6, (3.20)–(3.22)] (after substituting the lapse to
be identically 1). The remaining identities follow from the first three by simple algebraic manipulations. □

Lemma 3.2. Given n ∈ N ∪ {0}, (4)g[n] and k[n] given by Theorem 2.1 satisfy the estimates:∣∣∂α
x [R(g[n])− |k[n]|2 + (trk[n])2]

∣∣ ≤ Cα,nt
−2+ε,

∣∣∂α
x [∂t(trk

[n])− |k[n]|2]
∣∣ ≤ Cα,nt

−2+ε∣∣∂α
x [∇j(k

[n])i
j − ∂i(k

[n])ℓ
ℓ]
∣∣ ≤Cα,nt

−1+ε
(3.8)

Proof. By point (3) in Theorem 2.1, it follows that

|∂α
xR(g[n])| ≤ Cα,nt

−2+ε.

Writing also

|k[n]|2 − (trk[n])2 =(k[n] − t−1κ)i
j(k[n] − t−1κ)j

i − [(k[n] − t−1κ)ℓℓ]
2 +

1

t2

∑
i

p2i −
1

t2

(∑
i

pi

)2

+ (k[n] − t−1κ)i
j(t−1κ)j

i + (k[n] − t−1κ)j
i(t−1κ)i

j − 2(t−1κ)ℓ
ℓ(k[n] − t−1κ)ℓ

ℓ,

we conclude the first estimate using condition 2. in Theorem 1.1 and the second inequality in 3., Theorem
2.1.
For the second estimate, first note that after tracing the first inequality in 3. of Theorem 2.1, we obtain∣∣∣∂α

x

(
∂t(trk

[n])−R(g[n])− (trk[n])2
)∣∣∣ ≤ Cα,nt

−2+(n+1)ε.

Combining this with the first estimate in (3.8) that we have just established, we obtain the second estimate
in (3.8).
We now turn to the third estimate in (3.8). For notational clarity, we focus on the case |α| = 0. All

the higher derivative bounds are be derived analogously after noticing the crucial algebraic structure. We
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compute:

∇j(k
[n])i

j − ∂i(k
[n])ℓ

ℓ

= ∂j(k
[n] − t−1κ)i

j − ∂i(k
[n] − t−1κ)ℓ

ℓ +
∂jκi

j

t
− (Γ[n])ℓij(k

[n])ℓ
j + (Γ[n])jjℓ(k

[n])i
ℓ

= ∂j(k
[n] − t−1κ)i

j − ∂i(k
[n] − t−1κ)ℓ

ℓ +
∂jκi

j

t

− 1

2
(g[n])ℓb(∂ig

[n]
jb + ∂jg

[n]
ib − ∂bg

[n]
ij )(k[n])ℓ

j +
1

2
(g[n])jb(∂jg

[n]
ℓb + ∂ℓg

[n]
jb − ∂bg

[n]
jℓ )(k

[n])i
ℓ.

(3.9)

Notice now that by (2.80), we have:

(k[n])i
j = −1

2
(g[n])jℓ∂tg

[n]
iℓ +O(t−1+(n+1)ε).

Therefore,

1

2
(g[n])ℓb(∂jg

[n]
ib − ∂bg

[n]
ij )(k[n])ℓ

j

= − 1

4
(g[n])ℓb∂jg

[n]
ib (g[n])jc∂tg

[n]
cℓ +

1

4
(g[n])ℓb∂bg

[n]
ij (g[n])jc∂tg

[n]
cℓ +O(t−1+ε) = O(t−1+ε),

(3.10)

where in order to show that this = O(t−1+ε), we look at the second term, relabel the indices b ↔ j and then
swap c ↔ ℓ (using that g[n] is symmetric), which then gives the negative of the first term.

For the term − 1
2 (g

[n])ℓb∂ig
[n]
jb (k

[n])ℓ
j , we first note that if ℓ > j, then (k[n])ℓ

j = O(t−1−2pj+2pℓ) and

(g[n])ℓb∂ig
[n]
jb = O(| log t|), so altogether we get an O(t−1+ε) contribution. If ℓ < j, then (g[n])ℓb∂ig

[n]
jb = O(tε),

which together with (k[n])ℓ
j = O(t−1), we get a combined contribution of O(t−1+ε). We therefore only get

the contribution when j = ℓ, i.e.

− 1

2
(g[n])ℓb∂ig

[n]
jb (k

[n])ℓ
j = −

3∑
j=1

1

2
(g[n])jb∂ig

[n]
jb (k

[n])j
j +O(t−1+ε).(3.11)

Combining (3.10) and (3.11), we have

(3.12) −1

2
(g[n])ℓb(∂ig

[n]
jb + ∂jg

[n]
ib − ∂bg

[n]
ij )(k[n])ℓ

j = −
3∑

j=1

1

2
(g[n])jb∂ig

[n]
jb (k

[n])j
j +O(t−1+ε).

Plugging (3.12) into (3.9), using the estimate (2.8), and noting that by symmetry (g[n])jb(∂jg
[n]
ℓb −∂bg

[n]
jℓ ) =

0, we obtain

(3.13) ∇j(k
[n])i

j − ∂itrk
[n] =

∂jκi
j

t
−

3∑
j=1

1

2
(g[n])jb∂ig

[n]
jb (k

[n])j
j +

1

2
(g[n])jb∂ℓg

[n]
jb (k

[n])i
ℓ +O(t−1+ε).

Finally, notice that the second and third terms in (3.13), when j ̸= b, contribute only O(t−1+ε). We have
thus obtained

∇j(k
[n])i

j − ∂itrk
[n] =

∂jκi
j

t
−

3∑
ℓ=1

1

2
(g[n])ℓℓ∂ig

[n]
ℓℓ (k

[n])ℓ
ℓ +

3∑
j,ℓ=1

1

2
(g[n])jj∂ℓg

[n]
jj (k

[n])i
ℓ +O(t−1+ε)

=
∂jκi

j

t
+

3∑
ℓ=1

(
1

2

∂icℓℓ
cℓℓ

pℓ
t
+

pℓ∂ipℓ
t

log t

)
+O(t−1+ε)

+

3∑
j,ℓ=1

(
κi

ℓ∂ℓpj
t

log t+ 1{ℓ>i}
∂ℓcjj
2cjj

κi
ℓ

t
− 1

2

∂icjj
cjj

pi
t

)

=
1

2t

3∑
ℓ=1

(
∂icℓℓ
cℓℓ

(pℓ − pi) + 2∂ℓκi
ℓ + 1{ℓ>i}

∂ℓ(c11c22c33)

c11c22c33
κi

ℓ

)
+O(t−1+ε),

where in the last equality we use condition (2) in Theorem 1.1. The desired estimate now follows by employing
condition (4) in Theorem 1.1. □



ASYMPTOTICALLY KASNER-LIKE SINGULARITIES 25

Combining Proposition 3.1, Lemma 3.2 and Theorem 2.1, we deduce the following bounds for the relevant
curvature components of (4)g[n].

Proposition 3.3. Given n ∈ N such that (n+1)ε > 2 and (4)g[n] as in Theorem 2.1, the following estimates
hold:

|∂α
xRici

j((4)g[n])|, |∂α
xRictt(

(4)g[n])|, |∂α
xR((4)g[n])|, |∂α

xGi
j((4)g[n])|, |∂α

xGtt(
(4)g[n])| ≤ Cα,nt

−2+(n+1)ε,(3.14)

|∂α
x ∂tRici

j((4)g[n])| ≤ Cα,nt
−3+(n+1)ε,(3.15)

|∂α
xGti(

(4)g[n])|, |∂α
xRicti(

(4)g[n])| ≤ Cα,nt
−1+(n+1)ε,(3.16)

for all (t, x) ∈ (0, tN ]× T3.

Proof. In this proof, the implicit constants in ≲ depend on α, n, cij and pi.

Step 0: Estimates for Rici
j((4)g[n]). According to (3.1) in Proposition 3.1 and the estimates in (2.8),

Lemma 2.15 and Proposition 2.17, it follows that

(3.17) |∂α
x [Ric((4)g[n])i

j ]|(t, x) ≲ t−2+(n+2)ε| log t|2+|α|,

which clearly implies in particular the needed estimate for Ric((4)g[n])i
j in (3.14).

Also, using (2.8), Lemma 2.15 and Proposition 2.17, we also obtain the estimate (3.15) for ∂α
x ∂tRici

j((4)g[n]).
It suffices then to show that the estimates for ∂α

xRicti(
(4)g[n]), ∂α

xRictt(
(4)g[n]) hold true, since all the

remaining terms in (3.14) are algebraic combinations of the previous three.

Step 1: Deriving the ODEs. By virtue of the contracted second Bianchi identity we have:

∂tRicti(
(4)g[n]) =DtRicti(

(4)g[n]) +
1

2
(g[n])jℓ∂tg

[n]
iℓ Rictj(

(4)g[n])

=− 1

2
∂iR((4)g[n]) +DjRici

j((4)g[n]) +
1

2
(g[n])jℓ∂tg

[n]
iℓ Rictj(

(4)g[n])

=
1

2
∂iRictt(

(4)g[n])−1

2
(g[n])jℓ∂tg

[n]
jℓ Ricti(

(4)g[n])︸ ︷︷ ︸
=:I

−1

2
∂iRicj

j((4)g[n]) +∇jRici
j((4)g[n])︸ ︷︷ ︸

=:II

,

(3.18)

∂tRictt(
(4)g[n]) =DtRictt(

(4)g[n]) = −1

2
∂tR((4)g[n]) +DjRictj(

(4)g[n])

=
1

2
∂tRictt(

(4)g[n])︸ ︷︷ ︸
=:III

−1

2
(g[n])jℓ∂tg

[n]
jℓ Rictt(

(4)g[n])︸ ︷︷ ︸
=:IV

+∇j(Rict)j(
(4)g[n])︸ ︷︷ ︸

=:V

−1

2
∂tRicj

j((4)g[n])︸ ︷︷ ︸
=:VI

−1

2
(g[n])jℓ∂tg

[n]
iℓ Ricj

i((4)g[n])︸ ︷︷ ︸
=:VII

.

(3.19)

where D denotes the Levi–Civita connection of (4)g[n], and ∇j(Rict)j(
(4)g[n]) means that we take (Rict)j as

a tensor field tangent to the constant-t hypersurfaces and then differentiate with the connection ∇, i.e.

∇j(Rict)j(
(4)g[n]) = (g[n])ij∂i(Rict)j(

(4)g[n])− (g[n])ij(Γ[n])ℓij(Rict)ℓ(
(4)g[n]).

We now estimate the terms in (3.18) and (3.19). For term I in (3.18), we use (2.8) and (2.10) in Theorem 2.1
to obtain

(3.20) I = [−1

t
+O(t−1+ε)]Ricti(

(4)g[n]).

The first term in II can be directly estimated by (3.17). To handle the second term in II, we compute
using the form of the metric and (2.7) to obtain

∇jRici
j((4)g[n]) = ∂jRici

j((4)g[n])− (Γ[n])ℓijRicℓ
j((4)g[n]) + (Γ[n])jjℓRici

ℓ((4)g[n])

(Γ[n])jjℓ =
1

2
(g[n])jb(∂jg

[n]
bℓ + ∂ℓg

[n]
bj − ∂bg

[n]
jℓ ) = O(| log t|)
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(Γ[n])ℓijRicℓ
j((4)g[n]) =

1

2
(g[n])ℓb(∂ig

[n]
bj + ∂jg

[n]
bi − ∂bg

[n]
ij )Ricℓ

j((4)g[n])

= [O(| log t|)− (g[n])ℓb∂bg
[n]
ij ]Ricℓ

j((4)g[n])

(g[n])ℓb∂bg
[n]
ij Ricℓ

j((4)g[n]) =Ob(| log t|)(g[n])ℓbg[n]ij Ricℓ
j((4)g[n]) = Ob(| log t|)Rici

b((4)g[n])

Combining all the above and using (3.17), we obtain

(3.21) II = O(t−2+(n+1)ε).

Plugging (3.20) and (3.21) into (3.18) yields

(3.22) ∂tRicti(
(4)g[n]) + [

1

t
+O(t−1+ε)]Ricti(

(4)g[n]) =
1

2
∂iRictt(

(4)g[n]) +O(t−2+(n+1)ε).

Equation (3.19) can be treated similarly. We subtract III to the LHS, use (2.8) and (2.10) to control the
coefficients in IV and VII, keep the term IV, and use (3.15) for term VI so that we obtain

(3.23) ∂tRictt(
(4)g[n]) + [

2

t
+O(t−1+ε)]Rictt(

(4)g[n]) = 2∇j(Rict)j(
(4)g[n]) +O(t−3+(n+1)ε).

In a similar way, we obtain the equations for higher derivatives analogous to (3.22) and (3.23). After
putting in an integrating factor, the equations read

∂t(t∂
α
xRicti(

(4)g[n])) =
t

2
∂i∂

α
xRictt(

(4)g[n]) +O(tε)
∑

|β|≤|α|

∂β
xRicti(

(4)g[n]) +O(t−1+(n+1)ε),

∂t(t
2∂α

xRictt(
(4)g[n])) = 2t2∂α

x∇j(Rict)j(
(4)g[n]) +O(t1+ε)

∑
|β|≤|α|

∂β
xRictt(

(4)g[n]) +O(t−1+(n+1)ε).
(3.24)

Step 2: Solving the ODEs. We will view the two equations in (3.24) as ODEs in t. In particular we will not

be concerned with the loss of derivatives since we have bounds for all order of derivatives of the approximate
solutions.
Note that Lemmas 2.15, 3.2 and the identities (3.2), (3.3) imply the estimates:

|∂α
xRicti(

(4)g[n])| ≲ t−1+ε, |∂α
xRictt(

(4)g[n])| ≲ t−2+ε.(3.25)

In particular, this means that the initial data (at {t = 0}) for t∂α
xRicti(

(4)g[n]) and t2∂α
xRictt(

(4)g[n]) both
vanish. Now since |∂α

xRicti(
(4)g[n])| ≲ t−1+ε (for all α), it follows that |∂α

x∇i(Rict)i(
(4)g[n])| ≲ t−3+2ε (for

this we simply use that |∂α
x (g

[n])iℓ|, |∂α
x [(g

[n])iℓ(Γ[n])jiℓ]| ≲ t−2+ε). Hence, integrating the second equation in
(3.24) and using Grönwall’s inequality, we obtain

t2|∂α
xRictt(

(4)g[n])| ≲ t2ε + t(n+1)ε =⇒ |∂α
xRictt(

(4)g[n])| ≲ t−2+2ε.(3.26)

Plugging this estimate into the first equation in (3.24), we then obtain using Grönwall’s inequality

t|∂α
xRicti(

(4)g[n])| ≲ t2ε + t(n+1)ε =⇒ |∂α
xRicti(

(4)g[n])| ≲ t−1+2ε(3.27)

Notice that (3.26) and (3.27) improves over (3.25). We now repeat the above argument, but plugging in these
improve estimates to obtain (assuming n ≥ 2)

|∂α
xRictt(

(4)g[n])| ≲ t−2+3ε, |∂α
xRicti(

(4)g[n])| ≲ t−1+3ε.

Iterating this argument then gives the desired estimates. (The rate for ∂α
xRicti is limited by the last term on

the RHS of the first equation in (3.24).) This completes the proof of the proposition. □

4. Construction of an actual solution

We continue to work under the assumptions of Theorem 1.1 and take g[n] and k[n] as constructed in the
beginning of Section 2 (so that for appropriately chosen tN , the estimates in Theorem 2.1 and Proposition 3.3
hold).
The main result of this section will be to prove existence of a solution to a system of reduced equations (to

be introduced below in (4.9) of Section 4.1). See Theorem 4.4 for the precise statement of the main result,
and see the rest of Section 4.3 for a discussion of the proof of Theorem 4.4 and an outline of the later parts
of the section.
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4.1. Deriving the reduced equations. As already described in Section 1.1.4 in the introduction, we will
control ki

j using a second-order wave-like equation. In this subsection, we derive the equation that we will
use.
By (3.1) in Proposition 3.1, if a metric takes the form (1.4), and k is the second fundamental form, then

(4.1) Ric((4)g)i
j
= −∂tki

j +Ric(g)i
j + kℓ

ℓki
j .

Taking a ∂t derivative of (4.1), we obtain

∂tRic((4)g)i
j
= −∂2

t ki
j + ∂tRic(g)i

j + ∂t[kℓ
ℓki

j ].

To compute ∂tRic(g)i
j , we use the variation of Ricci formula (see for example equation (2.31) in [15]) and

the fact ∂tgij = −2kij :

∂tRic(g)ij = ∆Lkij +∇2
ijkℓ

ℓ −∇i(divk)j −∇j(divk)i,

where ∆L is the Lichnerowicz Laplacian (on symmetric 2-tensors) given by

∆Lvij := ∆gvij + 2Riem(g)
m

ij
ℓvmℓ −Ric(g)i

ℓvjℓ −Ric(g)j
ℓviℓ.

Using again ∂tgij = −2kij , it follows that

(4.2) ∂tRic(g)i
j = ∆gki

j+2Riem(g)
m

i
j
ℓkm

ℓ+Ric(g)i
ℓkℓ

j−Ric(g)ℓ
jki

ℓ+∇i∇jkℓ
ℓ−∇i(divk)

j−∇j(divk)i.

We will further analyze two groups of terms on the RHS of (4.2):

(1) Denoting Gi := Gti(g
(4)) and considering it as a tensor on {t = constant}, we have

(4.3) ∇i∇jkℓ
ℓ −∇i(divk)

j −∇j(divk)i = (g−1)jℓ∇iGℓ +∇jGi −∇i∇jkℓ
ℓ.

(2) In three dimensions, the Riemann curvature tensor can be expressed in terms of the Ricci curvature
tensor (see (1.62) in [15]):

Riem(g)
m

i
j
ℓ = −Ric(g)

mj
giℓ +Ric(g)ℓ

mδji −Ric(g)iℓ(g
−1)mj

+Ric(g)i
jδmℓ − 1

2
R(g)(δmℓ δji − (g−1)mjgiℓ),

(4.4)

where R(g) denotes the scalar curvature of g. Therefore, the terms

2Riem(g)
m

i
j
ℓkm

ℓ +Ric(g)i
ℓkℓ

j −Ric(g)ℓ
jki

ℓ

can be written as some linear combinations of contractions of Ric(g) and k. Using again (4.1), we

can replace Ric(g)i
j by Ric((4)g)i

j
+ ∂tki

j − kℓ
ℓki

j .

It therefore follows that the second fundamental form k verifies the following equation:

− ∂2
t ki

j +∆gki
j −∇i∇jkℓ

ℓ + (k ⋆ k ⋆ k)i
j + (∂tk ⋆ k)i

j

=−∂tRici
j((4)g) +∇iGj +∇jGi − 3ki

mRicm
j((4)g) + 2δji km

ℓRicℓ
m((4)g)− kℓ

jRici
ℓ((4)g)

+2kℓ
ℓRici

j((4)g)− (kℓ
ℓδji − ki

j)Ricm
m((4)g),

(4.5)

where

(k ⋆ k ⋆ k)i
j :=− 2ka

a
[
− gmaka

jgil + kℓ
mδi

j − gaℓki
agmj + ki

jδl
m − 1

2
ka

a(δℓ
mδi

j − gmjgil)
]
km

ℓ

=4kℓ
ℓka

jki
a − 2ka

a(kℓ
mkm

ℓ)δi
j + (ka

a)3δi
j − 3(kℓ

ℓ)2ki
j

(∂tk ⋆ k)i
j := ∂t(kℓ

ℓki
j)− 2∂tka

jki
a + 2∂tkℓ

mδi
jkm

ℓ − 2∂tki
aka

j + 2∂tki
jkℓ

ℓ

− ∂tka
aδi

jkℓ
ℓ + ∂tka

aki
j + ∂tki

ℓkℓ
j − ∂tkℓ

jki
ℓ

=− 3∂tka
jki

a + ∂t(kℓ
mkm

ℓ)δi
j − ∂tki

aka
j + 2∂tkℓ

ℓki
j + 3∂tki

jkℓ
ℓ − 1

2
∂t(ka

a)2δi
j

(4.6)

We note that the terms k ⋆ k ⋆ k and ∂tk ⋆ k satisfy

(4.7) (k ⋆ k ⋆ k)i
i + (∂tk ⋆ k)i

i = ∂t|k|2 − 2kℓ
ℓ|k|2 + 2ki

i∂tkℓ
ℓ.

In particular, if (4)g solves the Einstein vacuum equations, then

(4.8) ∂2
t ki

j = ∆gki
j −∇i∇jkℓ

ℓ + (k ⋆ k ⋆ k)i
j + (∂tk ⋆ k)i

j .
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The equation (4.8) is almost a wave equation for k, except that there is a top order ∇i∇jkℓ
ℓ term on the

RHS. To proceed we think of h = kℓ
ℓ as an independent variable. If the Einstein vacuum equations were

satisfied, then (3.3) in Proposition 3.1 imposes that ∂th = |k|2. It is therefore reasonable to look for a solution
to the Einstein vacuum equations by solving the following coupled system of equations:

∂th = |k|2,
∂2
t ki

j =∆gki
j −∇i∇jh+ (k ⋆ k ⋆ k)i

j + (∂tk ⋆ k)i
j ,

∂tgij =−ki
ℓgjℓ − kj

ℓgiℓ.

(4.9)

Remark that given a solution to (4.9), it follows that g−1 satisfies

(4.10) ∂t(g
−1)ij = kℓ

j(g−1)iℓ + kℓ
i(g−1)jℓ.

Our strategy will be to solve the system (4.9) and then a posteriori justify that it is indeed a solution to
the Einstein vacuum equations (in Section 5).

4.2. Notations. Before we proceed, we introduce some notations.
In the following we will consider (at least) two spacetime metrics (4)g = −dt2 + gijdx

idxj and (4)g[n] =

−dt2 + g
[n]
ij dxidxj on the domain It × T3 (where It ⊂ R is an interval, possibly open, closed or half-open).

We make the following definitions assuming we are given such It,
(4)g and (4)g[n].

Definition 4.1 (Constant-t hypersurfaces). Given t ∈ It define

Σt := {(τ, x) : τ = t, x ∈ T3}.

Definition 4.2 (Connections). (1) Denote by ∇ the Levi–Civita connection of g, and by ∇[n] the Levi–
Civita connection of g[n].

(2) Denote ∇(d) := ∇−∇[n]. Remark that ∇(d) is a (1, 2)-tensor.
(3) Let r ∈ N and T be an (m, l)-tensor. Define ∇(r)T to be the (m, l + r)-tensor given by

(∇(r)T )ji...jma1...ari1...il
= ∇a1 · · · ∇arT

ji...jm
i1...il

.

Definition 4.3 (Norms). (1) Given two rank (m, l) tensors T (1) and T (2), define the inner product

⟨T (1), T (2)⟩g := (g−1)i1b1 . . . (g−1)ilblgj1c1 . . . gjmcm(T (1))ji...jmi1...il
(T (2))ci...cmb1...bl

.

(2) Given a rank (m, l) tensor T , define

|T |2g := ⟨T , T ⟩g = (g−1)i1b1 . . . (g−1)ilblgj1c1 . . . gjmcmT ji...jm
i1...il

T ci...cm
b1...bl

.

(3) Given a tensor T and p ∈ [1,+∞), define

∥T ∥Lp(Σt,g) := (

∫
Σt

|T |pg volΣt)
1
p ,

where volΣt
=

√
det g dx is the volume form induced by the metric g.

For p = +∞, define

∥T ∥L∞(Σt,g) := ess supx∈T3 |T |g(t, x).
(4) For r ∈ N ∪ {0} and p ∈ [1,+∞], define the geometric Sobolev space

∥T ∥W r,p(Σt,g) :=

r∑
r′=0

∥∇(r′)T ∥Lp(Σt,g).

(5) For r ∈ N ∪ {0} and p ∈ [1,+∞], define the homogeneous geometric Sobolev space

∥T ∥Ẇ r,p(Σt,g)
:= ∥∇(r)T ∥Lp(Σt,g).

(6) For r ∈ N ∪ {0}, define

Hr(Σt, g) := W r,2(Σt, g), Ḣr(Σt, g) := Ẇ r,2(Σt, g).

(7) Define the norm tαL2(Σt, g) (for α ∈ R \ {0}) by

∥T ′∥tαL2(Σt,g) := t−α∥T ∥L2(Σt,g).
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(8) Given any two Banach spaces X and Y , the vector spaces X + Y = {x + y : x ∈ X, y ∈ Y } and
X ∩ Y are endowed with Banach space structures with norms

∥v∥X+Y := inf
v=x+y, (x,y)∈X×Y

(∥x∥X + ∥y∥Y ), ∥v∥X∩Y := ∥v∥X + ∥v∥Y .

(9) Finally, define Lp(Σt, g
[n]), W r,p(Σt, g

[n]) and Ẇ r,p(Σt, g
[n]) etc. as above but with g replaced by g[n]

(and ∇ replaced by ∇[n]).

4.3. Existence of solutions to (4.9) and the main steps of the proof. Our first step of the proof of
Theorem 1.1 is to build a solution to (4.9). The following is the main existence result for (4.9), whose proof
will occupy the remainder of the section.

Theorem 4.4. For every s, N0 ∈ N obeying s ≥ 5, there exists nN0,s ∈ N sufficiently large such that for any
n ≥ nN0,s, there exist TN0,s,n > 0 sufficiently small and a solution (g, h, k) to (4.9) in (0, TN0,s,n]×T3 which
satisfy the following estimates:

s∑
r=0

t2r∥k(d)∥2Hr(Σt,g)
+

s−1∑
r=0

t2(r+1)∥∂tk(d)∥2Hr(Σt,g)
+

s+1∑
r=0

t2r∥h(d)∥2Hr(Σt,g)

+

s+1∑
r=0

t2(r−1)(∥g(d)∥Hr(Σt,g) + ∥(g−1)(d)∥Hr(Σt,g)) ≤ t2N0+2s,

(4.11)

where k(d) = k − k[n], h(d) = h − h[n], g(d) = g − g[n], (g(d))−1 = g−1 − (g[n])−1. Moreover, kij = gℓjki
ℓ is

symmetric in i and j.

We will prove Theorem 4.4 with the following steps (see the conclusion of the proof in Section 4.3.3):

(1) For Taux > 0 (with Taux ≪ TN0,s,n), we construct local solutions to (4.9) in [Taux, Taux+δ)×T3 (with
δ potentially depending on Taux) (Lemma 4.5).

(2) For s, N , n and TN0,s,n as in Theorem 4.4, we prove uniform estimates to show that the solution
can be extended to [Taux, TN0,s,n] . This is carried out in a bootstrap argument and is the main step
(Theorem 4.6, Corollary 4.7).

(3) Using a compactness argument, we take a sequence of auxiliary times (Taux)i → 0+ and extract a sub-
sequence of solutions converging to a limiting solution to (4.9) on (0, TN0,s,n]×T3 (Proposition 4.8).

We will further elucidate these steps in the subsubsections below. Most of the proofs will then be given in
later subsections.

4.3.1. Step 1: A local solution. We begin with the following local existence result for (4.9):

Lemma 4.5 (Local existence). For every Taux > 0 sufficiently small and n ∈ N, there exist a δ > 0 (depending
a priori both on Taux and n) and a unique smooth solution (gaux, kaux, haux) to (4.9) in [Taux, Taux + δ]×T3,
such that at t = Taux, (g

aux, kaux, haux) attains the following prescribed values:

gauxij ↾t=Taux
= g

[n]
ij ↾t=Taux

, haux ↾t=Taux
= (k[n])i

i ↾t=Taux
,

(kaux)i
j ↾t=Taux

= (k[n])i
j ↾t=Taux

, (∂tk
aux)i

j ↾t=Taux
= (∂tk

[n])i
j ↾t=Taux

.

Moreover, gauxij = gauxji .

Such a local existence result is almost standard. The only issue is that the second equation of the system
(4.9) contains the term ∇i∇jh on the RHS, which seems to “have one derivative too many”. This issue
can be treated by deriving elliptic estimates for h, by commuting ∂th = |k|2 with ∆g and using the wave
equation for k, see discussions in Section 1.1.4 and Lemma 4.34. We will use this result but will omit its
straightforward proof.
Once existence is obtained, since gauxij is symmetric at t = Taux and ∂t(g

aux
ij − gauxji ) = 0, it immediately

follows that gauxij = gauxji .
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4.3.2. Step 2: The main bootstrap argument. Our next step is to prove a uniform time of existence indepen-
dent of Taux. To state the result, let us define, for (gaux, kaux, haux) as in Lemma 4.5,

g
(d)
ij := gauxij − g

[n]
ij , ((g−1)(d))ij := ((gaux)−1)ij − ((g[n])−1)ij ,(4.12)

(k(d))i
j := (kaux)i

j − (k[n])i
j , h(d) := haux − h[n].(4.13)

We stipulate that the metric gauxij takes the form (1.4) and define aauxij according to (1.4).
Introduce the following bootstrap assumptions:

max
i,j

|aauxij − cij |(t, x) ≤ t
ε
2 ,(4.14)

∥g(d)∥W s−1,∞(Σt,gaux) + ∥(g−1)(d)∥W s−1,∞(Σt,gaux) ≤ 1,(4.15)

∥g(d)∥Hs+1(Σt,gaux) + ∥(g−1)(d)∥Hs+1(Σt,gaux) ≤ t
5
2 ,(4.16)

∥h(d)∥Hs+1(Σt,gaux) + ∥k(d)∥Hs(Σt,gaux) + ∥∂tk(d)∥Hs−1(Σt,gaux) ≤ t
5
2 .(4.17)

The following is the main bootstrap theorem, whose proof constitutes most of this section (in Sections 4.4–
4.8):

Theorem 4.6 (Bootstrap theorem). For every s, N0 ∈ N such that s ≥ 5, there exists nN0,s ∈ N sufficiently
large such that for every n ≥ nN0,s, the following holds for some TN0,s,n > 0 sufficiently small.
Suppose (gaux, kaux, haux) is the solution to (4.9) on a time interval [Taux, TBoot) (for some TBoot ∈

(Taux, TN0,s,n]), with initial data at t = Taux given as in Lemma 4.5. Assume moreover that the bootstrap
assumptions (4.14)–(4.17) all hold on [Taux, TBoot)× T3.
Then in fact the following estimates hold:

s∑
r=0

t2r∥k(d)∥2Hr(Σt,gaux) +

s−1∑
r=0

t2r+2∥∂tk(d)∥2Hr(Σt,gaux) +

s+1∑
r=0

t2r∥h(d)∥2Hr(Σt,gaux)

+

s+1∑
r=0

t2r−2(∥g(d)∥2Hr(Σt,gaux) + ∥(g−1)(d)∥2Hr(Σt,gaux)) ≤ Ct2N0+2s

(4.18)

on [Taux, TBoot)× T3, where C > 0 may depend on s, N0 and the data, but is independent of Taux.
Moreover, taking TN0,s,n smaller if necessary, (4.18) improves over the bootstrap assumptions (4.14)–(4.17).

As is standard, the bootstrap theorem implies immediately, using a continuity argument, that the solution
can be extended up to time TN0,s,n:

Corollary 4.7. Let s, N0, n and TN0,s,n be as in Theorem 4.6. Then the local solution given in Lemma 4.5
can in fact be extended to all of [Taux, TN0,s,n)× T3. Moreover, the estimates (4.18) hold.

4.3.3. Step 3: Conclusion of the argument.

Proposition 4.8. Let s, N0, n and TN0,s,n be as in Theorem 4.6.
Them there exists a decreasing sequence of auxiliary times {Taux,I}+∞

I=1 ⊂ (0, TN0,s,n), limI→+∞ Taux,I = 0
such that the following holds:

(1) The corresponding solutions {(gauxI , kauxI , haux
I }+∞

I=1 given by Lemma 4.5 converge locally in C3×C2×
C2 (as I → +∞) to a limit (g, k, h).

(2) The limit, which we denote by (g, k, h), solves (4.9) in (0, TN0,s,n]× T3.

(3) Denoting g(d) = g − g[n], (g−1)(d) = g−1 − (g[n])−1, k(d) = k − k[n] and h(d) = h− h[n], the estimate
(4.18) holds.

(4) The limit (g, k) satisfies kij = − 1
2∂tgij.

The proof of Proposition 4.8 will be given in Section 4.9.

Proof of Theorem 4.4. The limiting solution given by Proposition 4.8 satisfies all the conclusions of Theo-
rem 4.4. This thus concludes the proof of Theorem 4.4. □
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4.4. Definition of the energies and an outline of the proof of Theorem 4.6. From now on until the
end of Section 4.8, we focus on the proof of Theorem 4.6. To lighten our notations, in these sections
we write g = gaux, a = aaux, h = haux and k = kaux.
The crux of our proof of Theorem 4.6 is to bound an appropriate energy, which we define now.
Define the energy

Es(t) :=
s−1∑
r=0

t2r+2∥∂tk(d)∥2Ḣr(Σt,g)
+

s∑
r=0

t2r∥k(d)∥2
Ḣr(Σt,g)

+

s+1∑
r=0

t2r∥h(d)∥2
Ḣr(Σt,g)

+

s+1∑
r=0

t2r−2(∥g(d)∥2
Ḣr(Σt,g)

+ ∥(g−1)(d)∥2
Ḣr(Σt,g)

).

(4.19)

Define also the modified energy

Ẽs(t) :=
s−1∑
r=0

t2r+2∥∂t∇(r)k(d)∥2L2(Σt,g)
+

s∑
r=0

t2r∥k(d)∥2
Ḣr(Σt,g)

+

s∑
r=0

t2r∥h(d)∥2
Ḣr(Σt,g)

+

s∑
r=0

t2r−2(∥g(d)∥2
Ḣr(Σt,g)

+ ∥(g−1)(d)∥2
Ḣr(Σt,g)

)

+ t2(s+1)∥ ˜∇(s+1)
ren h(d)∥2L2(Σt,g)

+ t2s∥ ˜∇(s+1)
ren g(d)∥2L2(Σt,g)

+ t2s∥ ˜∇(s+1)
ren (g−1)(d)∥2L2(Σt,g)

,

(4.20)

where
˜∇(s+1)
ren h(d),

˜∇(s+1)
ren g(d) and

˜∇(s+1)
ren (g−1)(d) are the renormalized top-order quantities defined by

(4.21) (
˜∇(s+1)
ren h(d))i1···is−1

:= ∆g∇(s−1)
i1···is−1

h(d) − 2(k[n] + k(d))i
j∂t∇(s−1)

i1···is−1
(k(d))j

i,

(
˜∇(s+1)
ren g(d))i1···is−2aij

:= ∆g∇(s−1)
i1···is−2a

g
(d)
ij + 2gℓ(j∂t∇

(s−1)
i1···is−2a

(k(d))i)
ℓ

+ g
(d)
bj ∂t∇(s−2)

i1···is−2
((g−1)begm(i|∇e(k

(d))a)
m −∇(aki)

b − (g−1)begd(a∇i)ke
d)

+ g
(d)
ib ∂t∇(s−2)

i1···is−2
((g−1)begm(j|∇e(k

(d))a)
m −∇(akj)

b − (g−1)begd(a∇j)ke
d),

(4.22)

and

(
˜∇(s+1)

ren (g−1)(d))iji1···is−2a

:= ∆g∇(s−1)
i1···is−2a

((g−1)(d))ij − 2(g−1)ℓ(j∂t∇(s−1)
i1···is−2a

(k(d))ℓ
i)

+ ((g−1)(d))bj∂t∇(s−2)
i1···is−2

((g−1)iegm(b|∇eka)
m −∇(akb)

i − (g−1)iegd(a∇b)ke
d)

+ ((g−1)(d))ib∂t∇(s−2)
i1···is−2

((g−1)jegm(b|∇eka)
m −∇(akb)

j − (g−1)jegd(a∇b)ke
d).

(4.23)

We remark explicitly that the modified energy and the energy differ by the following:

• The energy controls the ∇(r) derivative of ∂tk
(d) while the modified energy controls the ∂t derivative

of ∇(r)k(d).
• The modified energy only controls h(d), g(d) and (g−1)(d) up to s derivatives; at the top order it only
controls the renormalized top-order quantities.

Since the proof will take several subsections, we give an outline of the strategy for proving Theorem 4.6.

• In Section 4.5, we begin with some preliminary estimates.
• In Section 4.6, we carry out the energy estimate for k(d) using the wave equation it satisfies.
• In Section 4.7, we carry out the energy estimates for h(d), g(d) and (g−1)(d) using the transport

equations they satisfy. Combining the results in Sections 4.6 and 4.7, we will obtain an estimate of

the modified energy Ẽs by the energy Es.
• In Section 4.8, we complete the proof of Theorem 4.6. The main ingredient is to control Es and

Ẽs using energy estimates, and the close everything using the Fuchsian ideas as illustrated in Sec-
tion 1.1.1.
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4.4.1. Remarks on the dependence of constants (and related conventions). Before we proceed, we make some
important remarks regarding the dependence of constants throughout the proof of Theorem 4.6.
From now on fix s ∈ N with s ≥ 5 as in Theorem 4.6.
We will use C0 and Cn as general positive constants. They may change from line to line. Both C0 and

Cn may depend on the data cij, pi and also s, but importantly Cn may depend on n while C0 is
not allowed to depend on n.
We always assume without loss of generality that TN0,s,n ≤ 1.

4.4.2. Remarks regarding k. Another important remark regarding the proof of the bootstrap argument is that
(despite the notation) we do not know that k is the second fundamental form of the constant-t hypersurfaces.
(In particular, we do not know that gℓ[ikj]

ℓ = 0.) In fact, it is only after extracting a limit in Proposition 4.8
that we know that the limiting k is an honest second fundamental form.

4.5. Preliminary estimates for the bootstrap argument. In this subsection we work under the as-
sumptions of Theorem 4.6. In particular, we assume the validity of the bootstrap assumptions (4.14)–(4.17).

4.5.1. Sobolev embedding and basic comparisons of norms.

Lemma 4.9. The following pointwise estimate holds for all scalar functions f on (0, TBoot):

C−1
0 t|∇f |g ≤

3∑
i=1

|∂if | ≤ C0t
−1|∇f |g.

Proof. By definition, |∇f |2g = (g−1)ij∂if∂jf . To get the desired estimates, we just use a very wasteful

estimate that C−1
0 t2 ≤ mini,j |(g−1)ij | ≤ maxi,j |(g−1)ij | ≤ C0t

−2 (which follows directly from (4.14) and
computations as in (2.15)). □

Lemma 4.10 (Sobolev embedding). The following holds for every (m, l) Σ-tangent tensor T :

(4.24) ∥T ∥L∞(Σt,g) ≤ C0t
− 5

4 ∥T ∥W 1,4(Σt,g), ∥T ∥L4(Σt,g) ≤ C0t
− 5

4 ∥T ∥W 1,2(Σt,g).

In particular, these inequalities imply

(4.25) ∥T ∥L∞(Σt,g) ≤ C0t
− 5

2 ∥T ∥H2(Σt,g),

and

∥∇(r)T ∥
(L2∩t−s− 5

2
+εL∞)(Σt,g)

≤ C0

r+2∑
r′=r

tr
′−r∥T ∥Ḣr′ (Σt,g)

,(4.26)

Proof. We first prove the inequalities (4.24) for scalar functions f . Using the Sobolev embedding for T3 in
coordinates, it follows that

(4.27) ∥f∥L∞(Σt,g) ≤ C0

∑
|α|≤1

(

∫
Σt

|∂α
x f |4 dx)

1
4 ≤ C0(

∫
Σt

(|f |4 + t−4|∇f |4g) dx)
1
4 ≤ C0t

− 5
4 ∥f∥W 1,4(Σt,g),

where in the penultimate inequality we used Lemma 4.9 and in the last inequality we have used C−1
0 t−1volΣ ≤

dx ≤ C0t
−1volΣ (which follows from the bootstrap assumption (4.14)).

For the second inequality in (4.24) for a scalar function f , we proceed similarly to obtain

(4.28) ∥f∥L4(Σt,g) ≤ C0t
1
4

∑
|α|≤1

(

∫
Σt

|∂α
x f |2 dx)

1
2 ≤ C0t

1
4 (

∫
Σt

(|f |2 + t−2|∇f |2) dx) 1
2 ≤ C0t

− 5
4 ∥f∥H1(Σt).

Now given a general (m, l) tensor T , using (4.27) and (4.28) with fα =
√
|T |2g + α2 (α > 0) and taking

α → 0, we obtain the desired inequalities in (4.24).
Next, it is easy to see that (4.24) implies (4.25).
Finally, by (4.25), and the fact s− ε > 2,

∥∇(r)T ∥
(L2∩t−s− 5

2
+εL∞)(Σt,g)

≤ C0(∥∇(r)T ∥L2(Σt,g) + ts+
5
2−εt−

5
2 ∥∇(r)T ∥H2(Σt,g))

≤ C0

r+2∑
r′=r

tr
′−r∥T ∥Ḣr′ (Σt,g)

,
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which is (4.26). □

We will also need to compare norms with respect to g and with respect to the trivial metric
∑3

i=1(dx
i)2.

Lemma 4.11. Given any rank (l,m) Σ-tangent tensor T ,

| ∇[n] · · · ∇[n]︸ ︷︷ ︸
k times

T |2g[n]

≤ Cnt
−k(2−ε)

k∑
r=0

∑
i1,...,ir

∑
b1,...,bl

∑
j1,...,jm

t−2pb1 · · · t−2pbl · t2pj1 · · · t2pjm |∂i1 · · · ∂irT
j1...jm
b1,...bl

|2.
(4.29)

Proof. Using the form of the metric (1.4), the bound (2.7) on a[n], and the fact p1 < p2 < p3,

|T |2g[n] = ((g[n])−1)i1b1 . . . ((g[n])−1)ilblg
[n]
j1c1

. . . g
[n]
jmcm

T ji...jm
b1...bl

T ci...cm
i1...il

≤ C0

∑
b1,...,bl

∑
j1,...,jm

∑
i1,...,il

∑
c1,...,cm

t−2pmin{i1,b1} · · · t−2pmin{il,bl} ·

· t2pmax{j1,c1} · · · t2pmax{jm,cm}T ji...jm
b1...bl

T ci...cm
i1...il

≤ C0(
∑

b1,...,bl

∑
j1,...,jm

t−pmin{i1,b1} · · · t−pmin{il,bl} · tpmax{j1,c1} · · · tpmax{jm,cm} |T ji...jm
b1...bl

|)(4.30)

× (
∑

i1,...,il

∑
c1,...,cm

t−pmin{i1,b1} · · · t−pmin{il,bl} · tpmax{j1,c1} · · · tpmax{jm,cm} |T ci...cm
i1...il

|)

≤ C0

∑
b1,...,bl

∑
j1,...,jm

t−2pb1 · · · t−2pbl · t2pj1 · · · t2pjm |T ji...jm
b1...bl

|2.

This proves (4.29) when there are no derivatives (i.e. k = 0).

Define the flat connection ∇(flat) to be Levi–Civita connection associated to
∑3

i=1(dx
i)2, i.e.

∇(flat)
i1

· · · ∇(flat)
ir

T ji...jm
b1...bl

= ∂i1 · · · ∂irT
ji...jm
b1...bl

.

Then, since pj < 1− ε < 1− ε
2 , (4.30) gives

|∇(flat)
i1

· · · ∇(flat)
ir

T |2g[n]

≤ C0

∑
i1,...,ir

∑
b1,...,bl

∑
j1,...,jm

t−2pi1 · · · t−2pir · t−2pb1 · · · t−2pbl · t2pj1 · · · t2pjm |∇(flat)
i1

· · · ∇(flat)
ir

T ji...jm
b1...bl

|2

≤ C0t
−(2−ε)r

∑
i1,...,ir

∑
b1,...,bl

∑
j1,...,jm

t−2pb1 · · · t−2pbl · t2pj1 · · · t2pjm |∂i1 · · · ∂irT
ji...jm
b1...bl

|2.

(4.31)

Now compute

∇[n]
i1

· · · ∇[n]
ik

T ji...jm
b1...bl

= ∂i1 · · · ∂ikT
ji...jm
b1...bl

+

k−1∑
s=0

l∑
e=1

∂i1 · · · ∂is [(Γ[n])fis+1be
∂is+2 · · · ∂ikT

ji...jm
b1...be−1fbe+1...bl

]

+

k−1∑
s=0

r∑
e=s+2

∂i1 · · · ∂is [(Γ[n])fis+1ie
∂is+2 · · · ∂ie−1∂if∂ie+1 · · · ∂irT

ji...jm
b1...bl

]

+

k−1∑
s=0

m∑
e=1

∂i1 · · · ∂is [(Γ[n])jeis+1f
∂is+2

· · · ∂irT
ji...je−1fje+1jm
b1...bl

] + · · ·+ (Γ[n]) · · · (Γ[n])︸ ︷︷ ︸
k − 1 factors

∂T

+ (Γ[n]) · · · (Γ[n])︸ ︷︷ ︸
k − 2 factors

(∂Γ[n])T + (Γ[n]) · · · (Γ[n])︸ ︷︷ ︸
k factors

T ,

(4.32)

where we have suppressed the indices in terms where the exact contractions do not matter.
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Our goal is to show that in the | · |g[n] norm, each term in (4.32) can be bounded above by the RHS of

(4.29). By repeated application of the Cauchy–Schwarz inequality (with respect to g[n]), and using (4.31), it
suffices to prove

(4.33) |∂i1 · · · ∂ir (Γ[n])ℓjb|g[n] ≤ Cnt
−(1− ε

2 )(r+1),

which is the goal for the remainder of the proof.

We first make the easy observation that |∂i1 · · · ∂idg
[n]
ab | ≤ Cn| log t|dt2max{pa, pb} and |∂i1 · · · ∂id((g[n])−1)bc| ≤

Cn| log t|dt−2min{pb, pc}. In particular,

|∂i1 · · · ∂id1 g
[n]
ab ∂j1 · · · ∂jd2 ((g

[n])−1)bc| ≤ Cn| log t|d1t2max{pa, pb}| log t|d2t−2min{pb, pc}

≤ Cn| log t|d1+d2t2pbt−2pb = Cn| log t|d1+d2 .

We now compute

|∂i1 · · · ∂ir (Γ[n])ℓjb|2g[n]

=
1

4
((g[n])−1)i1i

′
1 · · · ((g[n])−1)iri

′
r ((g[n])−1)jj

′
((g[n])−1)bb

′
g
[n]
ℓℓ′

× ∂i′1 · · · ∂i′r [(g
[n])−1)ℓ

′a′
(∂j′g

[n]
a′b′ + ∂b′g

[n]
a′j′ − ∂a′g

[n]
b′j′)]∂i1 · · · ∂ir [(g

[n])−1)ℓa(∂jg
[n]
ab + ∂bg

[n]
aj − ∂ag

[n]
bj )].

Consider the example expression

|((g[n])−1)bb
′
g
[n]
ℓℓ′ [∂ · · · ∂((g[n])−1)ℓ

′a′
][∂ · · · ∂g[n]a′b′ ][∂ · · · ∂(g[n])−1)ℓa][∂ · · · ∂g[n]ab ]|.

We can pair up g[n] and (g[n])−1 with a common index and conclude that this expression is ≤ Cn| log t|k+1.
All other terms are similar. Hence, we obtain

|∂i1 · · · ∂ir (Γ[n])ℓjb|2g[n]

≤ Cn| log t|r+1 max
i1, i′1,...,j, j

′
|((g[n])−1)i1i

′
1 · · · ((g[n])−1)iri

′
r ((g[n])−1)jj

′
|

≤ Cn| log t|r+1t−(r+1)(2−2ε) ≤ Cnt
−(2−ε)(r+1),

which is exactly (4.33). □

Lemma 4.12. For r ≤ s− 2,

∥∇(d)∥W r,∞(Σt,g) ≤ C0(∥g(d)∥W r+1,∞(Σt,g) + ∥(g−1)(d)∥W r,∞(Σt,g)).

For r ≤ s,

∥∇(d)∥Hr(Σt,g) ≤ C0(∥g(d)∥Hr+1(Σt,g) + ∥(g−1)(d)∥Hr(Σt,g)).

Proof. Note that

(4.34) (∇(d))ℓij =
1

2
[(g−1)ℓb − ((g−1)(d))ℓb](∇ig

(d)
bj +∇jg

(d)
bi −∇bg

(d)
ij ).

The conclusion is then an immediate consequence of Hölder’s inequality and the bootstrap assumptions (4.15)
and (4.16). □

Lemma 4.13. For r ≤ s− 1,

C−1
0 ∥T ∥W r,∞(Σt,g[n]) ≤ ∥T ∥W r,∞(Σt,g) ≤ C0∥T ∥W r,∞(Σt,g[n]).

Proof. This follows from the bootstrap assumption (4.15) and Lemma 4.12. □

Lemma 4.14. For r ≤ s+ 1,

C−1
0 ∥T ∥Hr(Σt,g[n]) ≤ ∥T ∥Hr(Σt,g) ≤ C0∥T ∥Hr(Σt,g[n]).

Proof. This follows from the bootstrap assumptions (4.15), (4.16) and Lemma 4.12. □

Note that Lemma 4.13 fails when r = s, s + 1 as we do not control ∥g(d)∥W r,∞(Σt,g). On the other hand,
Lemma 4.14 by itself will not be sufficient for our purpose. Instead we need the following
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Lemma 4.15. The following holds for any α > 0:

∥∇(s)T ∥L∞(Σt,g)+tαL2(Σt,g) ≤ C0(∥T ∥W s,∞(Σt,g[n]) + t−α+ 5
2 ∥T ∥L∞(Σt,g[n])),

and

∥∇(s+1)T ∥L∞(Σt,g)+tαL2(Σt,g) ≤ C0(∥T ∥W s+1,∞(Σt,g[n]) + t−α+ 5
2 ∥T ∥W 1,∞(Σt,g[n])).

Proof. The main difference with Lemma 4.14 is that we may have terms which involve s or s+ 1 derivatives
of g(d).

We first consider the term ∇(s)T . When writing ∇(s)T in terms of (∇[n])(s)T , there is the term

T [∇(s−1)∇(d)]

(meaning s−1 ∇ derivatives acting on the tensor ∇(d)), together with other terms which are lower order and
can be handled directly using the bootstrap assumptions (4.15) and (4.16). This term cannot be bounded in
L∞, and will instead be controlled in L2. For this we note that by Hölder’s inequality, Lemma 4.12, and the
bootstrap assumptions (4.15), (4.16),

∥T [∇(s−1)∇(d)]∥L2(Σt,g) ≤ C0∥T ∥L∞(Σt,g)(∥g
(d)∥Hs(Σt,g) + ∥(g−1)(d)∥Hs−1(Σt,g))

≤ C0t
5
2 ∥T ∥L∞(Σ,g) ≤ C0t

5
2 ∥T ∥L∞(Σ,g[n]).

This gives the first inequality in the statement of the lemma.
The term ∇(s+1)T is similar except for an additional derivative. Indeed, we need to control the terms

[∇T ][∇(s−1)∇(d)], T [∇(s)∇(d)].

Both of these can be controlled in L2(Σt, g) using Hölder’s inequality, Lemma 4.12, and the bootstrap
assumptions (4.15), (4.16) as above. □

4.5.2. An easy consequence of the bootstrap assumption.

Lemma 4.16.

∥h(d)∥W s−1,∞(Σt,g) + ∥k(d)∥W s−2,∞(Σt,g) + ∥∂tk(d)∥W s−3,∞(Σt,g) ≤ C0.

Proof. This follows from Lemma 4.10 (Sobolev embedding) and the bootstrap assumption (4.17). □

4.5.3. Estimates for background quantities.

Proposition 4.17. For each n ∈ N, define

Ih[n] := −∂th
[n] + |k[n]|2,

(Ik[n])i
j := −∂2

t (k
[n])i

j +∆g[n](k[n])i
j − (∇i∇jh)[n] + (k[n] ⋆ k[n] ⋆ k[n])i

j + (∂tk
[n] ⋆ k[n])i

j .

Given any N ∈ N, there exists nN,s ∈ N sufficiently large such that whenever n ≥ nN,s,

s+1∑
r=0

tr∥Ih[n]∥Hr(Σt,g) +

s−1∑
r=0

tr∥Ik[n]∥Hr(Σt,g) ≤ Cnt
N+s.

Proof. By Lemma 4.11, it suffices to show that for any given polynomial rate, n can be chosen sufficiently
large so that Ih[n] , (Ik[n])i

j and their coordinate derivatives tend to 0 faster than the given polynomial rate.

Step 1: Proving the estimates for Ih[n] . Recall that by definition h[n] = (k[n])ℓ
ℓ. By Proposition 3.3, (2.10)

and the expression for Rictt(
(4)g) in (3.3), it follows that given any polynomial rate in t, we can choose n ∈ N

sufficiently large so that Ih[n] := −∂th
[n] + |k[n]|2 and its coordinate derivatives go to 0 faster than the given

polynomial rate in t.

Step 2: Proving the estimates for Ik[n] . By (4.5) and (2.10),

(Ik[n])i
j =− ∂tRici

j((4)g[n]) +∇i(G[n])j +∇j(G[n])i − 3(k[n])i
mRicm

j((4)g[n])

+ 2δji (k
[n])m

ℓRicℓ
m((4)g[n])− (k[n])ℓ

jRici
ℓ((4)g[n]) + 2(k[n])ℓ

ℓRici
j((4)g[n])

− ((k[n])ℓ
ℓδji − (k[n])i

j)Ricm
m((4)g[n]) +O(tLn),

(4.35)

where (G[n])i = Ric((4)g[n])ti and Ln is linearly increasing in n.
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By Proposition 3.3, given any polynomial rate in t, we can choose n ∈ N sufficiently large so that the terms

− ∂tRici
j((4)g[n]) +∇i(G[n])j +∇j(G[n])i − 3(k[n])i

mRicm
j((4)g[n])

+ 2δji (k
[n])m

ℓRicℓ
m((4)g[n])− (k[n])ℓ

jRici
ℓ((4)g[n]) + 2(k[n])ℓ

ℓRici
j((4)g[n])

− ((k[n])ℓ
ℓδji − (k[n])i

j)Ricm
m((4)g[n])

and their coordinate derivatives go to 0 faster than the given polynomial rate in t. □

Proposition 4.18. For any n ∈ N,
s−1∑
r=1

tr∥k[n]∥Ẇ r,∞(Σt,g)
+

s−1∑
r=0

(tr+1∥∇[n]k[n]∥Ẇ r,∞(Σt,g)
+ tr+2∥∇[n]∇[n]k[n]∥Ẇ r,∞(Σt,g)

) ≤ Cnt
−1+ε,

and

∥∇(s)k[n]∥
(L∞+ts+

5
2
−εL2)(Σt,g)

≤ Cnt
−s−1+ε, ∥∇(s+1)k[n]∥

(L∞+ts+
5
2
−εL2)(Σt,g)

≤ Cnt
−s−2+ε.

Proof. This follows from Lemmas 4.11 , 4.13 and 4.15, and the estimates for k[n] in coordinates given by
(2.8). □

Proposition 4.19. For any n ∈ N,

∥k[n]∥L∞(Σt,g) ≤ C0t
−1 + Cnt

−1+ε.

Proof. This is similar to the proof Proposition 4.18, except that we need to be more careful to check that
the borderline O(t−1) terms are independent of n (since Lemma 4.11 does not give an extra tε for the zeroth
derivative). Nevertheless, by (2.8), it follows that the borderline contributions exactly come from t−1κi

j ,
which are manifestly independent of n. □

Proposition 4.20. For any n ∈ N,
s−1∑
r=1

tr∥∂tk[n]∥Ẇ r,∞(Σt,g)
≤ Cnt

−2+ε, ∥∂tk[n]∥L∞(Σt,g) ≤ C0t
−2 + Cnt

−2+ε.

Proof. This is a small variation to Propositions 4.18 and 4.19. First, note that it suffices to control terms on
the RHS of (2.2).

• For the term Ric(g[n−1])i
j , we use Lemmas 4.11 and 4.13 and the estimate (2.9). (Note that there

are no borderline terms in this estimate.)
• For the term (k[n])ℓ

ℓ(k[n])i
j , we use Lemmas 4.11 and 4.13 and the estimate (2.8). For the lowest

order term, note that the borderline terms depend only on t−1κi
j and are thus independent of n.

□

Once we obtain the estimates for k[n], the estimates for k can be controlled after using also the bootstrap
assumptions (4.17).

Proposition 4.21. The following estimates hold for k:

∥k∥L∞(Σt,g) ≤ C0t
−1 + Cnt

−1+ε,

s−2∑
r=1

tr∥∇(r)k∥L∞(Σt,g) ≤ Cnt
−1+ε,

∥∇(s−1)k∥
(L∞+ts+

5
2
−εL2)(Σt,g)

≤ Cnt
−s+ε, ∥∇(s)k∥

(L∞+ts+
5
2
−εL2)(Σt,g)

≤ Cnt
−s−1+ε,

∥∂tk∥L∞(Σt,g) ≤ C0t
−2 + Cnt

−2+ε,

s−3∑
r=1

tr∥∇(r)∂tk∥L∞(Σt,g) ≤ Cnt
−2+ε,

∥∇(s−2)∂tk∥
(L∞+ts+

5
2
−εL2)(Σt,g)

≤ Cnt
−s+ε, ∥∇(s−1)∂tk∥

(L∞+ts+
5
2
−εL2)(Σt,g)

≤ Cnt
−s−1+ε.

Moreover, the above estimates hold both when k is replaced by k[n] and k(d).

Proof. That the estimates hold for k[n] follows from Propositions 4.18, 4.19 and 4.20. That the estimates
hold for k(d) follows from (4.17) and Lemma 4.16.
Finally, since k = k[n] + k(d), the estimates also hold for k. □
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Proposition 4.22. For any n ∈ N,
s−1∑
r=1

tr∥h[n]∥Ẇ r,∞(Σt,g)
+

s−1∑
r=0

(tr+1∥∂h[n]∥Ẇ r,∞(Σt,g)
+ tr+2∥∇[n]∂h[n]∥Ẇ r,∞(Σt,g)

) ≤ Cnt
−1+ε,

and

∥h[n]∥L∞(Σt,g) ≤ C0t
−1 + Cnt

−1+ε.

Proof. Recalling that we set h[n] = (k[n])ℓ
ℓ, this can be proven in the same way as Propositions 4.18 and

4.19. □

Proposition 4.23. The following estimates hold for Ric(g):

s−3∑
r=0

tr∥Ric(g)∥W r,∞(Σt,g) ≤ Cnt
−2+ε,

∥∇(s−2)Ric(g)∥
(L∞+ts+

5
2
−εL2)(Σt,g)

≤ Cnt
−s+ε, ∥∇(s−1)Ric(g)∥

(L∞+ts+
5
2
−εL2)(Σt,g)

≤ Cnt
−s−1+ε.

Proof. For simplicity, we write in this proof Ric = Ric(g), Ric[n] = Ric(g[n]) and similarly for the Riemann
curvature tensor.
First, notice that by Lemma 4.11 and (2.9), it follows that

s−1∑
r=0

tr∥Ric[n]∥W r,∞(Σ,g[n]) ≤ Cnt
−2+ε.

As a result, Lemmas 4.13 and 4.15 imply that all the desired estimates when Ric is replaced by Ric[n].
It thus remains to estimate the difference Ric− Ric[n]. We will bound the difference of the full Riemann

curvature tensor; the bounds for the Ricci curvature tensor of course follow immediately. We compute

(Riem−Riem[n])ℓijk

= ∂i(Γ− Γ[n])ℓjk − ∂j(Γ− Γ[n])ℓik + Γp
jkΓ

ℓ
ip − Γp

ikΓ
ℓ
jp − (Γ[n])pjk(Γ

[n])ℓip + (Γ[n])pik(Γ
[n])ℓjp

= ∂i(Γ− Γ[n])ℓjk − Γp
ij(Γ− Γ[n])ℓpk − Γp

ik(Γ− Γ[n])ℓjp + Γℓ
ip(Γ− Γ[n])pjk

− ∂j(Γ− Γ[n])ℓik + Γp
ij(Γ− Γ[n])ℓpk + Γp

jk(Γ− Γ[n])ℓip − Γℓ
jp(Γ− Γ[n])pik

− (Γ− Γ[n])pjk(Γ− Γ[n])ℓip + (Γ− Γ[n])ℓjp(Γ− Γ[n])pik

=∇i(Γ− Γ[n])ℓjk −∇j(Γ− Γ[n])ℓik − (Γ− Γ[n])pjk(Γ− Γ[n])ℓip + (Γ− Γ[n])ℓjp(Γ− Γ[n])pik.

(4.36)

Combining this with (4.34) and the bootstrap assumptions (4.15) and (4.16), it is easy to see that Riem −
Riem[n] can be controlled by

s−3∑
r=0

∥Riem−Riem[n]∥W r,∞(Σt,g),

s−1∑
r=s−2

∥Riem−Riem[n]∥Hr(Σt,g) ≤ C0.

This concludes the proof of the proposition. □

4.5.4. Commutator estimates. We will often use the commutator formula between the Lie derivative in ∂t
and covariant derivatives in the spatial directions:

Proposition 4.24. The following commutation formula holds for any (m, l) Σ-tangent tensor T :

[∂t, ∇a]T j1...jm
i1...il

= −
l∑

r=1

((g−1)begm(ir|∇ek|a)
m −∇(akir)

b − (g−1)begd(a∇ir)ke
d)T j1...jm

i1... b
r−th index

...il

+

m∑
r=1

((g−1)jregm(b|∇ek|a)
m −∇(akb)

jr − (g−1)jregd(a∇b)ke
d)T j1...

r−th index

b ...jm
i1...il

.
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Proof. A direct computation shows

∂t∇aT j1...jm
i1...il

= ∇a∂tT j1...jm
i1...il

−
l∑

r=1

∂tΓ
b
airT

j1...jm
i1... b

r−th index
...il

+

m∑
r=1

∂tΓ
jr
abT

j1...
r−th index

b ...jm
i1...il

.

On the other hand, we compute using (4.9) and (4.10) that

∂tΓ
b
ac =(g−1)d(bkd

l)(∂agcl + ∂cgal − ∂lgac) + (g−1)bl(∂l(gd(akc)
d)− ∂a(gd(lkc)

d)− ∂c(gd(akl)
d))

= 2(g−1)d(bkd
l)Γm

acgml + (g−1)bl(∂l(gd(akc)
d)− ∂a(gd(lkc)

d)− ∂c(gd(akl)
d))

= (g−1)bl(∇l(gd(akc)
d)−∇a(gd(lkc)

d)−∇c(gd(akl)
d))

= (g−1)blgd(a|∇lk|c)
d −∇(akc)

b − (g−1)blgd(a∇c)kl
d.

Combining these computations yields the desired formula. □

Proposition 4.25. Let T be an (m, l) Σ-tangent tensor.
For 0 ≤ r ≤ s− 1,

(4.37) ∥[∂t,∇a]T ∥Hr(Σt,g) ≤ Cn

∑
r1+r2=r

t−2−r1+ε∥T ∥Hr2 (Σt,g).

Consequently, for 0 ≤ k ≤ s, iterated commutators can be bounded as follows:

(4.38) ∥[∂t,∇i1 · · · ∇ik ]T ∥L2(Σt,g) ≤ Cn

k−1∑
r′=0

t−2−r′+ε∥T ∥Hk−r′−1(Σt,g)
.

Finally, if T is a scalar function, then in fact (4.38) holds for 0 ≤ k ≤ s+ 1.

Proof. Step 1: Proof of (4.37). Using Proposition 4.24, we have the estimate

∥[∂t,∇a]T ∥Hr(Σt,g)

≤ C0

∑
r1+r2=r
r1≤s−3

∥∇(r1)∇k∥L∞(Σt,g)∥∇
(r2)T ∥L2(Σt,g)

+ C0

∑
r1+r2=r
r1>s−3

∥∇(r1)∇k∥
(L∞+ts+

5
2
−εL2)(Σt,g)

∥∇(r2)T ∥
(L2∩t−s− 5

2
+εL∞)(Σt,g)

.

(4.39)

We estimate each of the terms in (4.39). Using the estimates in Proposition 4.21, the first term in (4.39)
can be bounded above as follows:∑

r1+r2=r
r1≤s−3

∥∇(r1)∇k∥L∞(Σt,g)∥∇
(r2)T ∥L2(Σt,g) ≤ Cn

∑
r1+r2=r

t−2−r1+ε∥T ∥Hr2 (Σt,g).(4.40)

Before handling the second term in (4.39), we first note make the following observations on the numerology:

• When r1 > s− 3, since we have r1 + r2 = r ≤ s− 1, we have either r2 = 0 or r2 = 1. In particular,
r2 + 2 ≤ r.

We can thus bound the second term in (4.39) using Proposition 4.21, (4.26) and the above observations as
follows: ∑

r1+r2=r
r1>s−3

∥∇(r1)∇k∥
(L∞+ts+

5
2
−εL2)(Σt,g)

∥∇(r2)T ∥
(L2∩t−s− 5

2
+εL∞)(Σt,g)

≤ Cn

∑
r1+r2=r
r1>s−3

t−2−r1+ε(

r2+2∑
r′=r2

tr
′−r2∥T ∥Hr′ (Σt,g)

) ≤ Cn

∑
r1+r2=r

t−2−r1+ε∥T ∥Hr2 (Σt,g),

(4.41)

where the very last estimate follows simply after relabelling.
Combining (4.40) and (4.41) yields (4.37).
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Step 2: Proof of (4.38). When 0 ≤ k ≤ s, we compute using the triangle inequality and (4.37) to obtain

∥[∂t,∇i1 · · · ∇ik ]T ∥L2(Σt,g)

= ∥[∂t,∇i1 ]∇i2 · · · ∇ikT + · · ·+∇i1 · · · [∂t,∇iℓ ] · · · ∇ikT + · · ·+∇i1 · · · ∇ik−1
[∂t,∇ik ]T ∥L2(Σt,g)

≤ C0

k∑
r=1

∥[∂t,∇ir ]∇ir+1
· · · ∇ikT ∥Hr−1(Σt,g) ≤ Cn

k∑
r=1

∑
r1+r2=r−1

t−2−r1+ε∥∇ir+1
· · · ∇ikT ∥Hr2 (Σt,g)

≤ Cn

k∑
r=1

∑
r1+r2=r−1

t−2−r1+ε∥T ∥Hr2+k−r(Σt,g) ≤ Cn

k−1∑
r′=0

t−2−r′+ε∥T ∥Hk−r′−1(Σt,g)
.

(4.42)

This yields (4.38).
Finally, for a scalar function f , [∂t,∇i]f = 0. Hence, in (4.42), we sum only up to r = k − 1. As a result,

we can take up to k = s+ 1. This gives the desired improvement for scalar functions. □

4.5.5. Estimates for general equations.

Proposition 4.26 (Transport estimates). Let T be an (m, l) Σ-tangent tensor. Then

(4.43)
d

dt
[t−M∥T ∥2L2(Σt)

] +
M

t
[t−M∥T ∥2L2(Σt,g)

]− 2t−M

∫
Σt

|⟨T , ∂tT ⟩g| volΣt ≤
C0

t
[t−M∥T ∥2L2(Σt,g)

].

In particular,

(4.44)
d

dt
[t−M∥T ∥2L2(Σt)

] +
M

t
[t−M∥T ∥2L2(Σt,g)

] ≤ C0

t
[t−M∥T ∥2L2(Σt,g)

] + t−M+1∥∂tT ∥2L2(Σt,g)
.

Proof. We first note that by (4.9)

(4.45)
d

dt

∫
Σt

f volΣt
=

∫
Σt

(∂tf − kℓ
ℓ)f volΣt

.

We will apply (4.45) to f = t−M |T |2g. A direct computation shows that

∂tf = −Mt−M−1|T |2g + 2t−M ⟨T , ∂tT ⟩g

+ 2t−M
ℓ∑

r=1

(g−1)i1i
′
1 · · · {(g−1)ℓ(irkℓ

i′r)} · · · (g−1)iℓi
′
ℓgj1j′1 · · · gjmj′m

T j1···jm
i1···iℓ T j′1···j

′
m

i′1···i′ℓ

− 2t−M
ℓ∑

s=1

(g−1)i1i
′
1 · · · (g−1)iℓi

′
ℓgj1j′1 · · · {gℓ(jskj′s)

ℓ} · · · gjmj′m
T j1···jm
i1···iℓ T j′1···j

′
m

i′1···i′ℓ
,

(4.46)

which implies, using Proposition 4.21, that

(4.47)
d

dt
[t−M |T |2g] +

M

t
[t−M |T |2g] ≤ 2t−M |⟨T , ∂tT ⟩g|+ C0t

−M−1|T |2g.

The pointwise inequality (4.47) implies (4.43) immediately after integrating over Σt, using (4.45), and ap-
plying again the estimates in Proposition 4.21.
Finally, to derive (4.44), we simply note that by the Cauchy–Schwarz inequality,

2t−M

∫
Σt

|⟨T , ∂tT ⟩g| volΣt
≤ t−M−1∥T ∥2L2(Σt,g)

+ t−M+1∥∂tT ∥2L2(Σt,g)
.

□

Proposition 4.27 (Energy estimates for wave equations). Let T be an (m, l) Σt-tangent tensor such that
(−∂2

t +∆g)T = F for some (m, l) Σt-tangent tensor F . Then

d

dt
[t−M (∥∂tT ∥2L2(Σt,g)

+ ∥∇T ∥2L2(Σt,g)
+ t−2∥T ∥2L2(Σt,g)

)]

+
M

t
[t−M (∥∂tT ∥2L2(Σt,g)

+ ∥∇T ∥2L2(Σt,g)
+ t−2∥T ∥2L2(Σt,g)

)]

≤ (C0 + Cnt
ε)

t
[t−M (∥∂tT ∥2L2(Σt,g)

+ ∥∇T ∥2L2(Σt,g)
) + t−M−2∥T ∥2L2(Σt,g)

] + t−M+1∥F∥2L2(Σt,g)
.
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Proof. Denote by E terms bounded by (C0+Cnt
ε)

t [t−M (∥∂tT ∥2L2(Σt,g)
+ ∥∇T ∥2L2(Σt,g)

) + t−M−2∥T ∥2L2(Σt,g)
].

Step 1: Controlling the first order terms. Applying (4.43) in Proposition 4.26, integrating by parts and using
the Cauchy–Schwarz inequality,

d

dt
[t−M (∥∂tT ∥2L2(Σt,g)

+ ∥∇T ∥2L2(Σt,g)
)] +

M

t
[t−M (∥∂tT ∥2L2(Σt,g)

+ ∥∇T ∥2L2(Σt,g)
)]

= 2t−M

∫
Σt

(⟨∂tT , ∂2
t T ⟩g + ⟨∇T , ∂t∇T ⟩g) volΣt + E

= 2t−M

∫
Σt

(−⟨∂tT , F⟩g + ⟨∂tT , ∆gT ⟩g + ⟨∇T , ∂t∇T ⟩g) volΣt + E

= − 2t−M

∫
Σt

⟨∂tT , F⟩g volΣt − 2t−M

∫
Σt

(⟨∇∂tT , ∇T ⟩g − ⟨∇T , ∂t∇T ⟩g) volΣt + E

≤ t−M−1∥∂tT ∥2L2(Σt,g)
+ t−M+1∥F∥2L2(Σt,g)

+ E ≤ t−M+1∥F∥2L2(Σt,g)
+ E,

(4.48)

where we have used that by Hölder’s inequality and the following commutator estimate (which uses Propo-
sition 4.25) ∣∣∣∣∫

Σt

⟨∇T , [∂t,∇]T ⟩g
∣∣∣∣ ≤ Cnt

−2+ε∥∇T ∥L2(Σt,g)∥T ∥L2(Σt,g)

≤ Cnt
−1+ε∥∇T ∥2L2(Σt,g)

+ Cnt
−3+ε∥T ∥2L2(Σt,g)

.

Step 2: Controlling the zeroth order term. It remains to control the zeroth order term ∥T ∥2L2(Σt,g)
. For this

we simply use Proposition 4.26, and then use (4.48) to obtain

d

dt
[t−M−2∥T ∥2L2(Σt,g)

] +
M + 2

t
t−M−2∥T ∥2L2(Σt,g)

≤ C0

t
t−M−2∥T ∥2L2(Σt,g)

+ t−M−1∥∂tT ∥2L2(Σt,g)
≤ E

(4.49)

Summing (4.48) and (4.49), we obtain the desired estimate. □

4.6. Energy estimates for the wave equation for k. In this subsection we continue to work under the
assumptions of Theorem 4.6. In particular, we assume the validity of the bootstrap assumptions (4.14)–(4.17).
We insert (4.13) into (4.9) to obtain evolution equations for the difference (k(d))i

j :

∂2
t (k

(d))i
j =∆g(k

(d))i
j + (k ⋆ k ⋆ k − k[n] ⋆ k[n] ⋆ k[n])i

j

+ (∂tk ⋆ k − ∂tk
[n] ⋆ k[n])i

j + (Ik[n])i
j + Bi

j ,
(4.50)

where the terms (k ⋆ k ⋆ k), (∂tk ⋆ k) are as defined in (4.6), (Ik[n])i
j is as defined in Proposition 4.17, and

Bi
j denotes the following terms:

(4.51) Bi
j = −∇i∇jh+∇[n]

i (∇[n])jh[n] +∆g(k
[n])i

j −∆g[n](k[n])i
j .

The following is the main energy estimates for k(d):

Proposition 4.28. Given N ∈ N, let n ∈ N be sufficiently large so that the estimates in Proposition 4.17
hold. Then

d

dt
[t−2N−2s(

s−1∑
r=0

t2r+2∥∂t∇(r)k(d)∥2L2(Σt,g)
+

s∑
r=0

t2r∥k(d)∥2
Ḣr(Σt,g)

)]

+
2N + 2s

t
[t−2N−2s(

s−1∑
r=0

t2r+2∥∂t∇(r)k(d)∥2L2(Σt,g)
+

s∑
r=0

t2r∥k(d)∥2
Ḣr(Σt,g)

)]

≤ (C0t
−1 + Cnt

−1+ε)t−2N−2sEs(t) + Cnt
3,

where, as before, we have used the notation ∇(r) = ∇i1 · · · ∇ir .
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Proof. For 0 ≤ r ≤ s− 1, we differentiate (4.50) by ∇(r) to obtain the following wave equation for ∇(r)k(d):

− ∂2
t∇

(r)
i1···ir (k

(d))i
j +∆g∇(r)

i1···ir (k
(d))i

j

= −∇(r)
i1···ir (Ik[n])i

j −∇(r)
i1···irBi

j −∇(r)
i1···ir (k ⋆ k ⋆ k − k[n] ⋆ k[n] ⋆ k[n])i

j

−∇(r)
i1···ir (∂tk ⋆ k − ∂tk

[n] ⋆ k[n])i
j − [∂2

t ,∇
(r)
i1···ir ](k

(d))i
j + [∆g,∇(r)

i1···ir ](k
(d))i

j .

(4.52)

For every 0 ≤ r ≤ s− 1, our goal is to show that

tr∥ − ∂2
t∇

(r)
i1···ir (k

(d))i
j +∆g∇(r)

i1···ir (k
(d))i

j∥L2(Σt,g) ≤ (C0t
−2 + Cnt

−2+ε)E
1
2
s (t) + Cnt

N+s,(4.53)

after which we will apply Proposition 4.27.
The proof of (4.53) will be achieved in Steps 1–5 below in which we bound each term on the RHS of (4.52).

Step 1: Bounding the inhomogeneous terms. For 0 ≤ r ≤ s− 1, by Proposition 4.17,

(4.54) ∥Ik[n]∥Hr ≤ Cnt
N+s−r.

Step 2: Bounding the terms in Bi
j. Recall from (4.51) that Bi

j consists of h terms and k terms. We first
compute the exact form of the h terms:

− (g−1)jℓ∇i∂ℓh+ ((g[n])−1)jℓ∇[n]
i ∂ℓh

[n]

= − (g−1)jℓ∇i∂ℓh
(d) − (g−1)jℓ∇(d)

i ∂ℓh
[n] − ((g−1)(d))jℓ∇[n]∂ℓh

[n].
(4.55)

From (4.55), the triangle inequality and Hölder’s inequality, it follows that

∥ − (g−1)jℓ∇i∂ℓh+ ((g[n])−1)jℓ∇[n]
i ∂ℓh

[n]∥Ḣr(Σt,g)

≲ ∥∇∂ℓh
(d)∥Ḣr(Σt,g)︸ ︷︷ ︸
=:I

+
∑

r1+r2=r

∥∇(d)∥Ḣr1 (Σt,g)
∥∂ℓh[n]∥Ẇ r2,∞(Σt,g)︸ ︷︷ ︸

=:II

+
∑

r1+r2=r

∥(g−1)(d)∥Ḣr1 (Σt,g)
∥∇[n]∂ℓh

[n]∥Ẇ r2,∞(Σt,g)︸ ︷︷ ︸
=:III

.

(4.56)

Term I can be directly estimated by the definition of Es(t):

(4.57) I ≤ ∥h(d)∥Ḣr+2(Σt,g)
≤ t−r−2E

1
2
s (t).

By Proposition 4.22, Lemma 4.12, and the definition of Es(t), we have

II ≤ Cn

∑
r1+r2=r

t−2−r2+ε(∥g(d)∥Hr1+1(Σt,g) + ∥(g−1)(d)∥Hr1+1(Σt,g))

≤ Cn

∑
r1+r2=r

t−2−r2−r1+εE
1
2
s (t) ≤ Cnt

−r−2+εE
1
2
s (t).

(4.58)

For term IV, we use Proposition 4.22 and the definition of Es(t) to obtain

III ≤ Cn

∑
r1+r2=r

t−3−r2+ε∥(g−1)(d)∥Ḣr1 (Σt,g)
≤ Cn

∑
r1+r2=r

t−2−r1−r2+εE
1
2
s (t) ≤ Cnt

−r−2+εE
1
2
s (t).(4.59)

For the k terms in Bi
j , we compute

∆g(k
[n])i

j −∆g[n](k[n])i
j

= (g(d))mℓ∇[n]
m ∇[n]

ℓ (k[n])i
j + gmℓ∇(d)

m ∇[n]
ℓ (k[n])i

j + gmℓ∇m∇(d)
ℓ (k[n])i

j .
(4.60)

The terms in (4.60) are similar to those in (4.55) (with k taking the place of h) except — importantly
— that (4.60) does not contain second derivative terms of k(d). This is important because while our energy
controls up to s+1 derivatives of h(d), it only controls up to s derivatives of k(d). Other than this difference,
the remaining terms in (4.60) can in fact be controlled very similarly as those in (4.55). We will therefore
omit the details and simply give the final estimate:

(4.61) ∥∇(r)Bi
j∥L2(Σt,g) ≲ (C0 + Cnt

ε)t−r−2E
1
2
s (t)
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Step 3: Bounding the difference of the nonlinear terms. In this step we control theHr norm (for 0 ≤ r ≤ s−1)
of k ⋆ k ⋆ k − k[n] ⋆ k[n] ⋆ k[n] and ∂tk ⋆ k − ∂tk

[n] ⋆ k[n].
We begin with k ⋆ k ⋆ k − k[n] ⋆ k[n] ⋆ k[n]. For 0 ≤ r < s− 1, we use Hölder’s inequality, Proposition 4.21,

and the definition of Es(t) to obtain

∥k ⋆ k ⋆ k − k[n] ⋆ k[n] ⋆ k[n]∥Hr(Σt,g)

≤ C0

∑
r1+r2+r3=r
r1, r2≤s−2

max{r1, r2}≥1

∥∇(r1)(k[n], k(d))∥L∞(Σt,g)∥∇
(r2)(k[n], k(d))∥L∞(Σt,g)∥∇

(r3)k(d)∥L2(Σt,g)

+ C0∥(k[n], k(d))∥L∞(Σt,g)∥(k
[n], k(d))∥L∞(Σt,g)∥∇

(r)k(d)∥L2(Σt,g)

≤ Cnt
−1−r1t−1−r2tεt−r3E

1
2
s (t) + C0t

−2t−rE
1
2
s (t) ≤ (C0t

−r−2 + Cnt
−r−2+ε)E

1
2
s (t),

(4.62)

where we have used the shorthand ∥∇(r1)(k[n], k(d))∥L∞(Σt,g) = ∥∇(r1)k[n]∥L∞(Σt,g) + ∥∇(r1)k(d)∥L∞(Σt,g),
etc.
When r = s− 1, we have terms as in (4.62) which can be controlled similarly, but also the following extra

term, which we in addition use Sobolev embedding in (4.26) to obtain

∥k ⋆ k ⋆ k − k[n] ⋆ k[n] ⋆ k[n]∥Hr

≤ C0∥∇(r)(k[n], k(d))∥
(L∞+ts+

5
2
−εL2)(Σt,g)

∥(k[n], k(d))∥L∞(Σt,g)∥k
(d)∥

(L2∩t−s− 5
2
+εL∞)(Σt,g)

≤ C0∥∇(r)(k[n], k(d))∥
(L∞+ts+

5
2
−εL2)(Σt,g)

∥(k[n], k(d))∥L∞(Σt,g)

2∑
r′=0

tr
′
∥k(d)∥Ḣr′ (Σt,g)

≤ Cnt
−r−2+εE

1
2
s (t).

(4.63)

We now turn to ∂tk ⋆ k− ∂tk
[n] ⋆ k[n]. For 0 ≤ r < s− 2, we use Hölder’s inequality, Proposition 4.21, and

the definition of Es(t) to obtain

∥∂tk ⋆ k − ∂tk
[n] ⋆ k[n]∥Hr

≤ C0

∑
r1+r2=r
1≤r1≤s−3

∥∇(r1)(k[n], k(d))∥L∞(Σt,g)∥∇
(r2)∂tk

(d)∥L2(Σt,g)

+ C0

∑
r1+r2=r
1≤r1≤s−3

∥∇(r1)∂t(k
[n], k(d))∥L∞(Σt,g)∥∇

(r2)k(d)∥L2(Σt,g)

+ C0∥(k[n], k(d))∥L∞(Σt,g)∥∇
(r)∂tk

(d)∥L2(Σt,g) + C0∥∂t(k[n], k(d))∥L∞(Σt,g)∥∇
(r)k(d)∥L2(Σt,g)

≤ Cn

∑
r1+r2=r

t−1−r1+εt−r3−1E
1
2
s (t) + C0t

−1t−r−1E
1
2
s (t) ≤ (C0t

−r−2 + Cnt
−r−2+ε)E

1
2
s (t).

(4.64)

For r = s− 2, we have an additional term when all derivatives hit on ∂t(k
[n], k(d)) so that we cannot put

it in L∞. For this term we use Proposition 4.21 and (4.26) to obtain

∥∇(r)∂t(k
[n], k(d))∥

(L∞+ts+
5
2
−εL2)(Σt,g)

∥k(d)∥
(L2∩t−s− 5

2
+εL∞)(Σt,g)

≤ Cnt
−r−2+ε

2∑
r′=0

tr
′
∥k(d)∥Hr′ (Σt,g)

≤ Cnt
−r−2+εE

1
2
s (t).

(4.65)

For r = s−1, we have additionally (compared to (4.64) and (4.65)) terms where (1) all but one derivatives
hit on ∂t(k

[n], k(d)), (2) all derivatives hit on (k[n], k(d)), both of which cannot be put into L∞. For these
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terms we use Proposition 4.21 and (4.26) to get

∥∇(r−1)∂t(k
[n], k(d))∥

(L∞+ts+
5
2
−εL2)(Σt,g)

∥∇k(d)∥
(L2∩t−s− 5

2
+εL∞)(Σt,g)

+ ∥∇(r)(k[n], k(d))∥
(L∞+ts+

5
2
−εL2)(Σt,g)

∥∂tk(d)∥
(L2∩t−s− 5

2
+εL∞)(Σt,g)

≤ Cnt
−r−1+ε(

3∑
r′=1

tr
′−1∥k(d)∥Hr′ (Σt,g)

+

2∑
r′=0

tr
′
∥∂tk(d)∥Hr′ (Σt,g)

) ≤ Cnt
−r−2+εE

1
2
s (t).

(4.66)

Step 4: Bounding the commutator terms [−∂2
t +∆g, ∇(r)].

By (repeated applications of) Proposition 4.24, [−∂2
t , ∇(r)]k(d) consists exactly of terms of the form∑

r1+r2=r ∇(r1)k∇(r2)∂tk
(d),

∑
r1+r2=r ∇(r1)∂tk∇(r2)k(d) and

∑
r1+r2+r3=r ∇(r1)k∇(r2)k∇(r3)∂tk

(d). Thus
they can be controlled in exactly the same manner as in Step 3 to obtain

∥[∂2
t ,∇i1 · · · ∇ir ]k

(d)∥L2(Σ,g) ≤ (C0t
−r−2 + Cnt

−r−2+ε)E
1
2
s (t).(4.67)

On the other hand, the commutator [∆g, ∇(r)] gives rise to curvature terms. In the 3-dimensional Σt, the
Riemann curvature tensor can be expressed in terms of the Ricci curvature and thus can be controlled using
Proposition 4.23 to obtain

∥[∆g,∇i1 · · · ∇ir ]k
(d)∥L2(Σ,g) ≤ Cnt

−r−2+εE
1
2
s (t).(4.68)

Step 5: Putting everything together. Combining Steps 1–4, we have achieved (4.53).
Therefore, for every 0 ≤ r ≤ s− 1, we apply Proposition 4.27 with M = 2N + 2s− 2r − 2 to get

d

dt
[t−2N−2s+2r+2(∥∂t∇(r)k(d)∥2L2(Σt,g)

+ ∥k(d)∥2
Ḣr+1(Σt,g)

+ t−2∥k(d)∥2
Ḣr(Σt,g)

)]

+
2N + 2s− 2r − 2

t
[t−2N−2s+2r+2(∥∂t∇(r)k(d)∥2L2(Σt,g)

+ ∥k(d)∥2
Ḣr+1(Σt,g)

+ t−2∥k(d)∥2
Ḣr(Σt,g)

)]

≤ C0

t
[t−2N−2s+2r+2(∥∂t∇(r)k(d)∥2L2(Σt,g)

+ ∥k(d)∥2
Ḣr+1(Σt,g)

+ (C0 + Cnt
ε)t−2∥k(d)∥2

Ḣr(Σt,g)
)]

+ t−2N−2s+3(t2r∥ − ∂2
t∇

(r)
i1···ir (k

(d))i
j +∆g∇(r)

i1···ir (k
(d))i

j∥2L2(Σt,g)
)

≤ (C0t
−1 + Cnt

−1+2ε)t−2N−2sEs(t) + Cnt
3,

where in the last line we have controlled [t−2N−2s+2r+2(∥∂t∇(r)k(d)∥2L2(Σt,g)
+ ∥k(d)∥2

Ḣr+1(Σt,g)
+ (C0 +

Cnt
ε)t−2∥k(d)∥2

Ḣr(Σt,g)
)] using the energy and have used (4.53).

Summing over
∑s−1

r=0, we obtain the desired estimate. □

4.7. Transport estimates. In this subsection we continue to work under the assumptions of Theorem 4.6.
In particular, we assume the validity of the bootstrap assumptions (4.14)–(4.17).

We prove in this subsection estimates for h(d), g
(d)
ij , ((g−1)(d))ij , which are all derived using the transport

equations they obey.

We insert (4.12) and (4.13) into (4.9) to obtain evolution equations for the differences g
(d)
ij , (k(d))i

j , h(d),

and ((g−1)(d))ij :

∂th
(d) = 2(k[n])j

i(k(d))i
j + (k(d))i

j(k(d))j
i + Ih[n](4.69)

∂tg
(d)
ij =− 2(k[n])(i

ℓg
(d)
j)ℓ − 2(k(d))(i

ℓgj)ℓ,(4.70)

∂t((g
−1)(d))ij =2(k[n])ℓ

(j((g−1)(d))i)l + 2(k(d))ℓ
(j(g−1)i)l.(4.71)

We begin with the more straightforward, less than top-order, estimates for h(d), g
(d)
ij , ((g−1)(d))ij . Com-

muting the equations (4.69), (4.70) and (4.71) with ∇r, r ≤ s, we obtain:

∂t∇(r)h(d) =2∇(r)[(k[n])j
i(k(d))i

j ] +∇(r)(k(d))i
j(k(d))j

i +∇(r)Ih[n] + [∂t,∇(r)]h(d),(4.72)

∂t∇(r)g
(d)
ij =− 2∇(r)[(k[n])(i

ℓg
(d)
j)ℓ ]− 2gℓ(j∇(r)(k(d))i)

ℓ + [∂t,∇(r)]g
(d)
ij ,(4.73)

∂t∇(r)((g−1)(d))ij =2∇(r)[(k[n])ℓ
(j((g−1)(d))i)ℓ] + 2(g−1)ℓ(i|∇(r)(k(d))ℓ

|j) + [∂t,∇(r)]((g−1)(d))ij .(4.74)
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We use (4.72)–(4.74) to obtain the following estimates.

Proposition 4.29. Given N ∈ N, let n ∈ N be sufficiently large so that the estimates in Proposition 4.17
hold. Then

d

dt
[t−2N−2s(

s∑
r=0

t2r∥h(d)∥2
Ḣr(Σt,g)

)] +
2N

t
[t−2N−2s(

s∑
r=0

t2r∥h(d)∥2
Ḣr(Σt,g)

)]

≤ (C0t
−1 + Cnt

−1+ε)t−2N−2sEs(t) + Cnt,

(4.75)

and

d

dt
[t−2N−2s(

s∑
r=0

t2r−2(∥g(d)∥2
Ḣr(Σt,g)

+ ∥(g−1)(d)∥2
Ḣr(Σt,g)

))]

+
2N

t
[t−2N−2s(

s∑
r=0

t2r−2(∥g(d)∥2
Ḣr(Σt,g)

+ ∥(g−1)(d)∥2
Ḣr(Σt,g)

))]

≤ (C0t
−1 + Cnt

−1+ε)t−2N−2sEs(t).

(4.76)

Proof. We will only prove (4.75); the bound (4.76) can be derived similarly (and is slightly simpler).
Applying Proposition 4.26 for T = ∇(r)h(d) (0 ≤ r ≤ s) and M = 2N + 2s− 2r, it suffices to show that

(4.77) tr∥∂t∇(r)h(d)∥L2(Σt,g) ≤ (C0t
−1 + Cnt

−1+ε)E
1
2
s (t) + tN+s.

To prove this we consider each term on the RHS of (4.72). First, by Hölder’s inequality, Proposition 4.21
and (4.26), we obtain

∥(k[n])ji(k(d))ij∥Ḣr(Σt,g)
+ ∥(k(d))ij(k(d))ji∥Ḣr(Σt,g)

≤ C0

∑
r1+r2=r
r1≤s−2

∥∇(r1)(k[n], k(d))∥L∞(Σt,g)∥∇
(r2)k(d)∥L2(Σt,g)

+ Cn

∑
r1+r2=r
r1>s−2

∥∇(r1)(k[n], k(d))∥
(L∞+ts+

5
2
−εL2)(Σt,g)

(

r2+2∑
r′=r2

tr
′−r2∥∇(r′)k(d)∥L2(Σt))

≤
∑

r1+r2=r

(C0t
−r1−1 + Cnt

−r1−1+ε)∥k(d)∥Ḣr2 (Σt,g)
≤ (C0t

−1−r + Cnt
−1−r+ε)E

1
2
s (t).

(4.78)

Next, the inhomogeneous term Ih[n] can be bounded using Proposition 4.17 by

(4.79) tr∥∇(r)Ih[n]∥L2(Σt,g) ≤ Cnt
N+s.

Finally, by Proposition 4.25,

(4.80) ∥[∂t,∇(r)]h(d)∥L2(Σt,g) ≤ Cn

r−1∑
r′=0

t−2−r′+ε∥h(d)∥Hr−r′−1(Σt,g)
≤ Cnt

−1−r+εE
1
2
s (t).

Combining (4.78)–(4.80) yields (4.77). □

We next turn to the top order derivative estimates for h(d), g(d) and (g−1)(d). For this we first control
the renormalized top-order quantities introduced in (4.21)–(4.23). (Subsequently we will show using elliptic
estimates that the renormalized top-order quantities indeed control all top-order derivatives; see already
Lemma 4.34.)

Proposition 4.30. Given N ∈ N, let n ∈ N be sufficiently large so that the estimates in Proposition 4.17
hold. Then

d

dt
[t−2N−2s+2(s+1)∥ ˜∇(s+1)

ren h(d)∥2L2(Σt,g)
] +

2N

t
[t−2N−2s+2(s+1)∥ ˜∇(s+1)

ren h(d)∥2L2(Σt,g)
]

≤ (C0t
−1 + Cnt

−1+ε)t−2N−2sEs(t) + Cnt,

(4.81)
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and

d

dt
[t−2N−2s+2(s+1)−2(∥ ˜∇(s+1)

ren g(d)∥2L2(Σt,g)
+ ∥ ˜∇(s+1)

ren (g−1)(d)∥2L2(Σt,g)
)]

+
2N

t
[t−2N−2s+2(s+1)−2(∥ ˜∇(s+1)

ren g(d)∥2L2(Σt,g)
+ ∥ ˜∇(s+1)

ren (g−1)(d)∥2L2(Σt,g)
)]

≤ (C0t
−1 + Cnt

−1+ε)t−2N−2sEs(t).

(4.82)

Proof. Step 1: Proof of (4.81). The main difference with the estimates in Proposition 4.29 is that there can

potentially be (s+1) derivatives of k(d), which is not controlled by our energy Es(t). The quantity
˜∇(s+1)
ren h(d)

is in fact designed exactly to avoid such terms after using the bounds for the wave equation for k(d).
We begin our computations. First,

∂t∆g∇(s−1)
i1···is−1

h(d) = 2(k[n] + k(d))i
j∆g∇(s−1)

i1···is−1
(k(d))j

i + error,(4.83)

where the error terms have at most s derivatives hitting on k(d) and thus satisfy the estimates similar to that
in the proof of Proposition 4.29 (and their proofs are therefore omitted):

(4.84) ts+1∥error∥L2(Σt,g) ≤ (C0t
−1 + Cnt

−1+ε)E
1
2
s (t) + tN+s.

The term 2(k[n] + k(d))i
j∆g∇(s−1)

i1···is−1
(k(d))j

i, however, cannot be controlled. Nevertheless, continuing our

computations, we see that

∂t((k
[n] + k(d))i

j∂t∇(s−1)
i1···is−1

(k(d))j
i)

= (k[n] + k(d))i
j∆g∇(s−1)

i1···is−1
(k(d))j

i + (k[n] + k(d))i
j(∂2

t −∆g)(k
(d))j

i

+ {∂t(k[n] + k(d))i
j}{∂t∇(s−1)

i1···is−1
(k(d))j

i}.

(4.85)

Note that this generates a term (k[n] + k(d))i
j∆g∇(s−1)

i1···is−1
(k(d))j

i which can be used to cancel the uncon-

trollable term in (4.83). Hence, combining (4.83), (4.84) and (4.85), we obtain

∥∂t(∆g∇(s−1)
i1···is−1

h(d) − 2(k[n] + k(d))i
j∂t∇(s−1)

i1···is−1
(k(d))j

i)∥L2(Σt,g)

≤ 2∥(k[n] + k(d))i
j(∂2

t −∆g)∇(s−1)(k(d))j
i∥L2(Σt,g)

+ 2∥{∂t(k[n] + k(d))i
j}{∂t∇(s−1)

i1···is−1
(k(d))j

i}∥L2(Σt,g) + (C0t
−2−s + Cnt

−2−s+ε)E
1
2
s (t) + tN−1.

(4.86)

We now handle to two terms in (4.86). By Proposition 4.21, (4.53) and Hölder’s inequality,

∥(k[n] + k(d))i
j(∂2

t −∆g)∇(s−1)(k(d))j
i∥L2(Σt,g)

≤ (∥(k[n], k(d))∥L∞(Σt,g)∥(∂
2
t −∆g)∇(s−1)(k(d))∥L2(Σt,g) ≤ (C0t

−2−s + Cnt
−2−s+ε)E

1
2
s (t) + Cnt

N .
(4.87)

On the other hand, by Proposition 4.21 and Hölder’s inequality,

(4.88) ∥{∂t(k[n] + k(d))i
j}{∂t∇(s−1)

i1···is−1
(k(d))j

i}∥L2(Σt,g) ≤ (C0t
−2−s + Cnt

−2−s+ε)E
1
2
s (t).

Combining (4.86)–(4.88) and noticing that
˜∇(s+1)
ren h(d) is defined exactly to be (recall (4.21)) ∆g∇(s−1)

i1···is−1
h(d)−

2(k[n] + k(d))i
j∂t∇(s−1)

i1···is−1
(k(d))j

i, we thus obtain

∥∂t
˜∇(s+1)
ren h(d)∥L2(Σt,g) ≤ (C0t

−2−s + Cnt
−2−s+ε)E

1
2
s (t) + Cnt

N−1.(4.89)

The desired estimate (4.81) then follows directly from Proposition 4.26 (for M = 2N + 2s− 2(s+ 1)).

Step 2: Proof of (4.82). The main idea is similar to Step 1, so we will be brief. The main difference is that
for g(d), not only the derivatives of the inhomogeneous terms create ∇(s+1)k, but the commutator terms also
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create similar terms, which have to be taken care of by a renormalization. More precisely, by (4.70) and
Proposition 4.24,

∂t∆g∇(s−1)
i1···is−2a

g
(d)
ij

=∆g∇(s−2)
i1···is−2

∇a∂tg
(d)
ij + [∂t,∆g∇(s−1)

i1···is−2a
]g

(d)
ij

= − 2gℓ(j∆g∇(s−1)
i1···is−2a

(k(d))i)
ℓ

−∆g∇(s−2)
i1···is−2

((g−1)begm(i|∇eka)
m −∇(aki)

b − (g−1)begd(a∇i)ke
d)g

(d)
bj

−∆g∇(s−2)
i1···is−2

((g−1)begm(j|∇eka)
m −∇(akj)

b − (g−1)begd(a∇j)ke
d)g

(d)
ib + . . . ,

(4.90)

where the terms denotes by . . . have at most (s + 1) derivatives on k[n], at most s derivatives on k and at
most (s+ 1) derivatives on g(d), and therefore can be bounded as in Proposition 4.29 by

∥ . . . ∥L2(Σt,g) ≤ (C0t
−1−s + Cnt

−1−s+ε)E
1
2
s (t).

It thus remains to handle all the main terms appearing on the RHS of (4.90). Now one observes that the

quantity
˜∇(s+1)
ren g(d) is designed exactly to remove this term (in a similar way as

˜∇(s+1)
ren h(d) is designed in

Step 1) so that the additional error terms are controllable. It thus follows that

∥∂t
˜∇(s+1)
ren g(d)∥L2(Σt,g) ≤ (C0t

−1−s + Cnt
−1−s+ε)E

1
2
s (t),(4.91)

which implies the desired estimate for
˜∇(s+1)
ren g(d) in (4.82) after using Proposition 4.26..

The argument for
˜∇(s+1)

ren (g−1)(d) is similar and omitted. □

We conclude this subsection by summarizing what we have achieved so far, namely that we have obtained
an estimate for the modified energy by the energy:

Proposition 4.31. Given N ∈ N, let n ∈ N be sufficiently large so that the estimates in Proposition 4.17
hold. Then for any t ∈ [Taux, TBoot),

t−2N−2sẼs(t) + 2N

∫ t

Taux

τ−2N−2sẼs(τ)
τ

dτ ≤
∫ t

Taux

(C0τ
−1 + Cnτ

−1+ε)τ−2N−2sEs(τ) dτ + Cnt.

Proof. This is an immediate consequence of Propositions 4.28, 4.29 and 4.30. □

4.8. Conclusion of the proof of Theorem 4.6. In order to conclude the proof of Theorem 4.6, we finally

need to relate Es and Ẽs (which will be achieved in Lemmas 4.32 and 4.34), and then use the energy inequality
in Proposition 4.31 to deduce our desired estimates.

Recalling now the difference between Es and Ẽs (as described immediately after their definitions in (4.19)–
(4.23)), we need to

• relate ∂t∇(r)k(d) and ∇(r)∂tk
(d) (achieved using a commutator estimate; see Lemma 4.32), and

• relate the renormalized top-order quantities and other top-order derivatives (achieved using elliptic
estimates; see Lemma 4.34).

Lemma 4.32. The following estimate holds:

s−1∑
r=0

t2r+2∥∂tk(d)∥2Ḣr(Σt,g)
≤ (C0 + Cnt

ε)Ẽs(t).

Proof. We control the commutator [∂t,∇(r)]k(d) using Proposition 4.25 to obtain

s−1∑
r=0

t2r+2∥∇(r)∂tk
(d) − ∂t∇(r)k(d)∥2L2(Σt,g)

≤ Cnt
εẼs(t),

from which the desired estimate follows from the definition of Ẽs. □

Lemma 4.33. Given any tensor ξ tangential to Σt,

(4.92) ∥∇(2)ξ∥2L2(Σt,g)
≤ 2∥∆gξ∥2L2(Σt,g)

+ Cnt
−2+ε∥∇ξ∥2L2(Σt,g)

+ Cnt
−4+2ε∥ξ∥2L2(Σt,g)

.
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Proof. We compute

∥∆gξ∥2L2(Σt,g)

=

∫
Σt

(g−1)a1a
′
1 · · · (g−1)aℓa

′
ℓgb1b′1 · · · gbmb′m

(g−1)ii
′
(g−1)jj

′︸ ︷︷ ︸
=:G

a1···aℓa
′
1···a′

ℓ
ii′jj′

b1···bmb′1···b′m

∇i∇i′ξ
b1···bm
a1···aℓ

∇j′∇jξ
b′1···b

′
m

a′
1···a′

ℓ
volΣt

=−
∫
Σt

G
a1···aℓa

′
1···a

′
ℓii

′jj′

b1···bmb′1···b′m
∇i′ξ

b1···bm
a1···aℓ

∇i∇j′∇jξ
b′1···b

′
m

a′
1···a′

ℓ
volΣt

=

∫
Σt

G
a1···aℓa

′
1···a

′
ℓii

′jj′

b1···bmb′1···b′m
∇j′∇i′ξ

b1···bm
a1···aℓ

∇i∇jξ
b′1···b

′
m

a′
1···a′

ℓ
volΣt

+ error = ∥∇(2)ξ∥2L2(Σt,g)
+ error,

(4.93)

where terms labelled error (different in the two instances) come from commuting covariant derivatives and
obey an estimate

|error| ≤ C0∥Riem(g)∥L∞(Σ,g)∥∇ξ∥2L2(Σt,g)
+ C0∥Riem(g)∥L∞(Σ,g)∥∇(2)ξ∥L2(Σt,g)∥ξ∥L2(Σt,g).

As a consequence, since on the 3-dimensional Σt, Riem(g) can be expressed in terms of Ric(g), we can use
Hölder’s inequality and Proposition 4.23 to obtain

∥∇(2)ξ∥2L2(Σt,g)

≤ ∥∆gξ∥2L2(Σt,g)
+ C0∥Riem(g)∥L∞(Σ,g)∥∇ξ∥2L2(Σt,g)

+ C0∥Riem(g)∥L∞(Σ,g)∥∇(2)ξ∥L2(Σt,g)∥ξ∥L2(Σt,g)

≤ ∥∆gξ∥2L2(Σt,g)
+ Cnt

−2+ε∥∇ξ∥2L2(Σt,g)
+ Cnt

−2+ε∥∇(2)ξ∥L2(Σt,g)∥ξ∥L2(Σt,g),

(4.94)

which implies (4.92) after using Young’s inequality and absorbing 1
2∥∇

(2)ξ∥2L2(Σt,g)
to the LHS. □

Lemma 4.34. The top order part of the energy for h(d), g(d), (g−1)(d) is bounded by:

t2(s+1)∥h(d)∥2
Ḣs+1(Σt,g)

+ t2s(∥g(d)∥2
Ḣs+1(Σt,g)

+ ∥(g−1)(d)∥2
Ḣs+1(Σt,g)

) ≤ (C0 + Cnt
ε)Ẽs(t).

Proof. The key is to use Lemma 4.33. Consider for instance h(d). We first note that ∆g∇(s−1)h(d) can be

written as a linear combination of the renormalized top-order quantity
˜∇(s+1)
ren h(d) and terms which has at

most s derivatives of k(d) (and k[n]) so that it can be checked that

t2(s+1)∥∆g∇(s−1)h(d)∥2L2(Σt,g)
≤ (C0 + Cnt

ε)Ẽs(t).

It then follows by the elliptic estimates in Lemma 4.33 and the lower order control for h(d) by Ẽs(t) that

t2(s+1)∥h(d)∥2
Ḣs+1(Σt,g)

≤ (C0 + Cnt
ε)Ẽs(t).

The estimates for the top-order derivatives for g(d) and (g−1)(d) are similar. □

Combining Lemmas 4.32 and 4.34, we obtain

Proposition 4.35. Given N ∈ N, let n ∈ N be sufficiently large so that the estimates in Proposition 4.17
hold. Then for any t ∈ [Taux, TBoot),

Es(t) ≤ (C0 + Cnt
ε)Ẽs(t).

We are now ready to conclude the proof of the bootstrap theorem (Theorem 4.6):

Proof of Theorem 4.6. Given any N ∈ N, choose n ∈ N sufficiently large so that the estimates in Proposi-
tion 4.17 hold.
Combining Propositions 4.31 and 4.35, and integrating in t (noting that we have trivial data at Taux), we

obtain that

t−2N−2s

(C0 + Cntε)
Es(t) + 2N

∫ t

Taux

τ−2N−2sEs(τ)
(C0 + Cnτε)τ

dτ ≤
∫ t

Taux

(C0τ
−1 + Cnτ

−1+ε)τ−2N−2sEs(τ) dτ + Cnt.(4.95)

We now choose our constants. First choose N sufficiently large so that

N ≥ max{2C0(C0 + 1), 2(C0 + 1), N0, 7}.
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We then fix an nN0,s ∈ N sufficiently large so that whenever n ≥ nN0,s, (4.95) holds with the given N . After

fixing n, we then choose TN0,s,n so that CnT
ε
N0,s,n

≤ 1. Plugging C0 ≤ N
2(C0+1) and CnT

ε
N0,s,n

≤ 1 into (4.95),

we then obtain

t−2N−2s

(C0 + 1)
Es(t) + 2N

∫ t

Taux

τ−2N−2sEs(τ)
(C0 + 1)τ

dτ ≤
∫ t

Taux

(
N

2(C0 + 1)
+ 1)

τ−2N−2sEs(τ)
τ

dτ + Cnt.(4.96)

Notice that we have chosen N so that ( N
2(C0+1) + 1) ≤ N

C0+1 . We can thus subtract N
∫ t

Taux

τ−2N−2sEs(τ)
(C0+1)τ dτ

from both sides of (4.96) to obtain

t−2N−2s

(C0 + 1)
Es(t) +N

∫ t

Taux

τ−2N−2sEs(τ)
(C0 + 1)τ

dτ ≤ Cnt,(4.97)

which immediately implies

Es(t) ≤ t2N+2s,(4.98)

after choosing TN0,s,n smaller if necessary. In particular, since we have chosen N ≥ N0 and TN0,s,n ≤ 1, we
obtain (4.18).
Finally, we check that we have improved the bootstrap assumption. For (4.15)–(4.17), this is immediate

from (4.18). For (4.14), note that (4.98) and (4.25) imply

∥g − g[n]∥L∞(Σt,g) ≤ C0t
N+s− 3

2 .

Now note that the smallest eigenvalue of g−1 is ≥ C−1
0 t−2p1 ≥ C−1

0 t2. Hence

t8|aij − a
[n]
ij |2 ≤ C0t

4pmax{i,j} |aij − a
[n]
ij |2 ≤ max

i,j
|gij − g

[n]
ij |2 ≤ C0(t

−2)2∥g − g[n]∥2L∞(Σt,g)
≤ C0t

2N+2s−11.

Now since N ≥ 7 and s ≥ 4, we have |aij − a
[n]
ij | ≤ C0t

3
2 . Combining with (2.7), we thus obtain

(4.99) |aij − cij | ≤ C0t
ε,

which improves over (4.14) after taking TN0,s,n to be sufficiently small. □

As we discussed in Section 4.3.2, once we have proven Theorem 4.6, we now also obtain Corollary 4.7.

4.9. Extracting a limit: proof of Proposition 4.8. In this final subsection, we prove Proposition 4.8,
which, as indicated in Section 4.3.3, is the final step of the proof of Theorem 4.4.
We begin with some easy estimates, which will allow us to extract a limit. (Notice that these estimates

are allowed to degenerate as t → 0, but importantly they do not depend on Taux.)

Lemma 4.36. Let s, N0, n and TN0,s,n be as in Theorem 4.6. For every T ′, T ′′ satisfying 0 < T ′ < T ′′ ≤
TN0,s,n, there exists a constant C > 0 independent of Taux such that the following holds (with definitions in
(4.12) and (4.13)).
Let Taux ∈ (0, T ′] and suppose (gaux, kaux, haux) is the solution to (4.9) on [Taux, TN0,s,n) × T3 given by

Corollary 4.7. Then

sup
t∈[T ′,T ′′]

sup
x∈T3

∑
r+|α|≤4

(|∂r
t ∂

α
x g

(d)
ij |+ |∂r

t ∂
α
x ((g

−1)(d))ij |)(t, x) +
∑

r+|α|≤3

(|∂r
t ∂

α
x k

(d)
ij |+ |∂r

t ∂
α
xh

(d)|)(t, x) ≤ C.

Proof. When there is no ∂t derivative, this just follows from (4.18) and Sobolev embedding. To obtain the
estimates with the ∂t derivatives, we use in addition the equations (4.50), (4.69), (4.70) and (4.71). □

Lemma 4.37. Let s, N0, n and TN0,s,n be as in Theorem 4.6. There exists a sequence of auxiliary times
{Taux,I}+∞

I=1 ⊂ (0, TN0,s,n), limI→+∞ Taux,I = 0 such that the corresponding solutions {(gauxI , kauxI , haux
I }+∞

I=1

given by Lemma 4.5 converge locally in C3 × C2 × C2 norm (as I → +∞) to a limit (g, k, h) which solves
(4.9) in (0, TN0,s,n]× T3. Moreover, after denoting g(d) = g − g[n], (g−1)(d) = g−1 − (g[n])−1, k(d) = k − k[n]

and h(d) = h− h[n], the estimate (4.18) holds.

Proof. The existence of a limit follows from Lemma 4.36, the Arzela–Ascoli theorem, and a standard argument
extracting a diagonal sequence. Since the limit is achieved locally in C3 × C2 × C2, it follows that the limit
satisfies the system (4.9).
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Finally, we prove that the limit obeys the estimate (4.18). First, note that the estimate (4.18) implies that
for every t, there is a subsequence {Taux,Iℓ}

+∞
ℓ=1 for which {(gauxIℓ

, kauxIℓ
, haux

Iℓ
}+∞
ℓ=1 has a weak limit satisfying

(4.18). This limit must coincide with the local C3 × C2 × C2 limit, thus showing the bound (4.18). □

The very final statement we need in order to complete the proof of Proposition 4.8 is that gjj′ki
j′ is

symmetric in i and j. The key to such a statement is the following lemma.

Lemma 4.38. Suppose (g, k, h) solves (4.9). Then the term (gjj′ki
j′ − gij′kj

j′) satisfies an inhomogeneous
wave equation of the following form:

(∂2
t −∆g)(gjj′ki

j′ − gij′kj
j′)

=Xa1b1cd
a2b2ij

ka1

a2kb1
b2(gcℓkd

ℓ − gdℓkc
ℓ) + Y a1cd

a2ij
∂tk

a2
a1
(gcℓkd

ℓ − gdℓkc
ℓ) + Za1cd

a2ij
ka2
a1
∂t(gcℓkd

ℓ − gdℓkc
ℓ),

where X, Y and Z are some tensor products of g, g−1 and δ.

Proof. Step 1: Easy reductions. First, a direct computation shows that

∂2
t (gjj′ki

j′ − gij′kj
j′)

= − ∂t{(gjbkj′b − gj′bkj
b)ki

j′ − (gibkj′
b − gj′bki

b)kj
j′} − (gj′bkj

b − gjbkj′
b)∂tki

j′

+ (gjj′∂
2
t ki

j′ − gij′∂
2
t kj

j′)− 2gjj′kb
j′∂tki

b.

Notice that all the terms on the first line are of the form as required by the lemma.
It thus follows from (4.9) that

(∂2
t −∆g)(gjj′ki

j′ − gij′kj
j′)

= gjj′{(k ⋆ k ⋆ k)i
j′ + (∂tk ⋆ k)i

j′} − gij′{(k ⋆ k ⋆ k)j
j′ + (∂tk ⋆ k)j

j′} − 2gjj′kb
j′∂tki

b + . . . ,
(4.100)

where . . . denotes terms which are of the form as required by the lemma. (Notice in particular that the
Hessian of h term drops of because it is symmetric.)
Investigating now the terms in k ⋆ k ⋆ k and ∂tk ⋆ k, we only need to check that

Qi
j′gjj′ −Qj

j′gij′ , where Qi
j′ ∈ {kij

′
, δi

j′ , ki
aka

j′ , ∂tki
j′ , [(∂tki

a)ka
j′ − (∂tka

j′)ki
a]}

is of the form required by the lemma. (Note that the term [(∂tki
a)ka

j′ − (∂tka
j′)ki

a] comes from combining

terms in ∂tk ⋆ k and −2gjj′kb
j′∂tki

b.)

Now clearly if Qi
j′ ∈ {kij

′
, δi

j′}, then Qi
j′gjj′ −Qj

j′gij′ is of the desired form.

For Qj′

i = ki
aka

j′ , we compute

ki
aka

j′gjj′ − kj
aka

j′gij′ = ki
a(ka

j′gjj′ − kj
j′gaj′)− kj

a(ka
j′gij′ − ki

j′gaj′),

which is of the desired form.
For Qj′

i = ∂tki
j′ , we compute

gjj′∂tki
j′ − gij′∂tkj

j′

= ∂t(gjj′ki
j′ − gij′kj

j′) + gjbkj′
bki

j′ + gj′bkj
bki

j′ − gibkj′
bkj

j′ − gj′bki
bkj

j′

= ∂t(gjj′ki
j′ − gij′kj

j′) + (gjbkj′
b − gj′bkj

b)ki
j′ − (gibkj′

b − gj′bki
b)kj

j′ ,

which is of the desired form.
For Qj′

i = [(∂tki
a)ka

j′ − (∂tka
j′)ki

a], we compute

[(∂tki
a)ka

j′ − (∂tka
j′)ki

a]gjj′ − [(∂tkj
a)ka

j′ − (∂tka
j′)kj

a]gij′

= ∂t(ki
agj′a − kj′

agia)kj
j′ + ∂t(kj′

agja − kj
agj′a) + ∂tki

a(ka
j′gjj′ − kj

j′gaj′)− ∂tkj
a(ka

j′gij′ − ki
j′gaj′)

+ (gbakj′
a − gj′akb

a)kj
bki

j′ + (gj′aki
j′ − gj′ika

j′)kj
bkb

a

− (gbakj′
a − gj′akb

a)ki
bkj

j′ − (gj′akj
j′ − gj′jka

j′)ki
bkb

a,

which is of the desired form. This concludes the proof. □

We are now ready to show that gjj′ki
j′ is symmetric in i and j.



50 GRIGORIOS FOURNODAVLOS AND JONATHAN LUK

Lemma 4.39. Given a limit (g, k, h) as in Lemma 4.37, the limiting k is in fact the second fundamental

form, i.e. kij := gjj′ki
j′ = − 1

2∂tgij.

Proof. Denoting kij := gjj′ki
j′ , the equation for g implies that ∂tgij = −kij − kji. Hence, in order to prove

the lemma, it suffices to show that kij is symmetric in i and j.

To this end, we define (kauxI )ij := (gauxI )jj′(k
aux
I )i

j′ , and first obtain an estimate for its anti-symmetric
part. By Lemma 4.38, (kauxI )ij − (kauxI )ji satisfies a homogeneous wave equation. By the choice of initial
data for kauxI , gauxI (recall Lemma 4.5) and Lemma 2.13, it follows that

(4.101) ∥((kauxI )ij − (kauxI )ji, t∂t((k
aux
I )ij − (kauxI )ji)) ↾t=Taux,I

∥H1(ΣTaux,I
,g)×L2(ΣTaux,I

,g) ≤ Ct−1+(n+1)ε.

We now perform energy estimates for (kauxI )ij − (kauxI )ji using the wave equation in Lemma 4.38 (in
a manner similar to the k energy estimates in the proof of Theorem 4.6, only simpler). By choosing n
sufficiently large, the estimate (4.101) allows one to take care the borderline terms and moreover show that
for any T0 ∈ (0, TN0,s,n),

(4.102) lim
I→+∞

sup
t∈[T0,TN0,s,n)

∥(kauxI )ij − (kauxI )ji∥H1(Σt,g) = 0.

Finally, since kij is the pointwise limit of (kauxI )ij as I → +∞ (by Lemma 4.37), the estimate (4.102)
implies that kij is symmetric in i and j, which is what we wanted to prove. □

Proof of Proposition 4.8. Proposition 4.8 follows directly from Lemmas 4.37 and 4.39. □

5. Vanishing of the Einstein tensor

The goal of this section is to show that the solution of (4.9), constructed in Theorem 4.4 in subsection 4.3,
is in fact a solution to the Einstein vacuum equations. This then concludes the proof of Theorem 1.1; see the
conclusion of the proof at the end of the section.
We begin with the following:

Proposition 5.1. There exists Nh ∈ N sufficiently large such that the following holds.
Let s ≥ 5 and N0 ≥ Nh. Then, for n ≥ nN0,s, the solution (g, h, k) to (4.9) given by Theorem 4.4 satisfies

h = kℓ
ℓ.

In particular, (4)Ric((4)g)tt = 0.

Proof. Once we establish that h = kℓ
ℓ, it follows from the first equation in (4.9) that ∂tkℓ

ℓ = |k|2. According
to (3.3), this in turn implies that (4)Ric((4)g)tt = 0.
Taking the trace of the second equation in (4.9) and using the identity (4.7), we obtain

∂t[∂tkℓ
ℓ − |k|2] = ∆g(kℓ

ℓ − h) + 2ki
i[∂tkℓ

ℓ − |k|2].

Since by (4.9) ∂th = |k|2, it follows that

∂2
t (kℓ

ℓ − h) = ∆g(kℓ
ℓ − h) + 2ki

i∂t(kℓ
ℓ − h).(5.1)

Note that this is a wave equation for (kℓ
ℓ − h). We can then carry out a similar energy estimates as in the

proof of Theorem 4.4 to obtain

t2∥∂t(kℓℓ − h)∥2L2(Σt,g)
+

1∑
r=0

t2r∥kℓℓ − h∥2Hr(Σt,g)

≤ C0 + Cnt
ε

t
(t2∥∂t(kℓℓ − h)∥2L2(Σt,g)

+

1∑
r=0

t2r∥kℓℓ − h∥2Hr(Σt,g)
),

(5.2)

where we have used the estimates for k given in Proposition 4.21. Here, as in the previous section, we use
C0 to denote constants depending only on s, cij and pi, while Cn can depend in addition on n and N0.

At the same time, by Theorem 4.4 and the fact that h[n] = (k[n])ℓ
ℓ,

(5.3) ∥kℓℓ − h∥2H1(Σt,g)
+ ∥∂t(kℓℓ − h)∥2L2(Σt,g)

≤ 2t2N0+2s−2.
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In particular, choosing Nh sufficiently large, the estimates (5.2), (5.3) and Grönwall’s inequality implies
that

∥kℓℓ − h∥2H1(Σt,g)
+ ∥∂t(kℓℓ − h)∥2L2(Σt,g)

= 0,

which in turn implies the desired conclusion. □

Proposition 5.2. There exists NG ≥ Nh and nG sufficiently large such that the following holds.
Let s ≥ 5 and N0 ≥ NG. For n ≥ max{nN0,s, nG}, take the solution (g, h, k) to (4.9) given by Theorem 4.4.

Then (4)g = −dt2 + g is in fact a solution to the Einstein vacuum equations, i.e. Ric((4)g) = 0, and k is the
corresponding second fundamental form of the constant-t hypersurfaces.

Proof. For this proof, we denote Gi = Gti(
(4)g) and Gij = Gij(

(4)g), both thought of as Σt-tangent tensors.
We also use the notation that ∇ is the Levi–Civita connection for the spatial metric g.

Step 1: Derivation of a system of equations. By (4.5) and the wave equation (4.8), we have

∂tRici
j((4)g) =∇iGj +∇jGi − 3ki

mRicm
j((4)g) + 2δji km

ℓRicℓ
m((4)g)− kℓ

jRici
ℓ((4)g)

+ 2kℓ
ℓRici

j((4)g)− (kℓ
ℓδji − ki

j)Ricm
m((4)g).

(5.4)

Taking the trace of (5.4) and using the fact that Rictt(
(4)g) = 0, we also have:

∂tR((4)g) = 2∇jGj + 2km
ℓRicℓ

m((4)g).(5.5)

The combination of (5.4) and (5.5) implies the following equation for the Einstein tensor Gi
j((4)g):

∂tGi
j((4)g) := ∂tRici

j((4)g)− 1

2
δi

j∂tR((4)g)

=∇iGj +∇jGi − δi
j∇ℓGℓ − 3ki

mRicm
j((4)g) + δji km

ℓRicℓ
m((4)g)− kℓ

jRici
ℓ((4)g)(5.6)

+ 2kℓ
ℓRici

j((4)g)− (kℓ
ℓδji − ki

j)Ricm
m((4)g).

Note that Rici
j((4)g) can be written in terms of Gi

j((4)g): Rici
j((4)g) = Gi

j((4)g) + 1
2δi

jR((4)g), where

R((4)g) := −Rtt(
(4)g) + Rℓ

ℓ((4)g) = Rℓ
ℓ((4)g) by Proposition 5.1. Taking the trace we get Rici

i = Gi
i +

3
2Rℓ

ℓ((4)g) so that Rℓ
ℓ((4)g) = 2Gi

i((4)g). It follows that

(5.7) Rici
j((4)g) = Gi

j((4)g) + δi
jGℓ

ℓ.

We can thus rewrite (5.6) as

∂tGi
j =∇iGj +∇jGi − δi

j∇ℓGℓ + (k ⋆G)i
j ,(5.8)

where (k ⋆G)i
j is some quadratic contraction of k and G whose exact form is unimportant.

On the other hand, by the contracted second Bianchi equations and the fact thatDtGti(
(4)g) = ∂tGi+ki

jGj ,

and DjGi
j((4)g) = ∇jGi

j + kj
jGi + ki

jGj , we obtain

∂tGi = kj
jGi +∇jGi

j((4)g).(5.9)

Taking ∂t of (5.9), applying (5.8), and using the commutation formula in Proposition 4.24, we obtain the
wave equation

∂2
t Gi = ∂t(kj

jGi) +∇j(∇iGj +∇jGi − δi
j∇ℓGℓ + (k ⋆G)i

j) + [∂t,∇j ]Gi
j

=∆gGi + k ⋆ k ⋆ G + ∂tk ⋆ G + k ⋆ ∂tG +∇k ⋆G+ k ⋆∇G,
(5.10)

where in the last equality we have also used that the curvature tensor Riem(g) can be expressed in terms of
G, k and ∂tk using (4.4), (3.1), and (5.7), so that

∇j(∇iGj +∇jGi − δi
j∇ℓGℓ) = ∇j∇iGj +∆gGi −∇i∇jGj = ∆gGi + k ⋆ k ⋆ G + ∂tk ⋆ G.

Here, k ⋆ k ⋆ G, etc. are in principle explicit, but we do not carry out the computations as the exact form is
unimportant.

Step 2: Energy estimates and vanishing of the Einstein tensor. Our goal now is to perform energy estimates
using (5.8) and (5.10) so as to show that G and G are both ≡ 0. Investigating the terms in (5.8) and (5.10),
we note that the RHS of (5.10) has terms with one derivative of G, which apparently leads to a loss of
derivatives. Nevertheless, this can be treated in exactly the same manner as (4.9).
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Define the energy

E(t) =

1∑
r=0

t2r∥∂tG∥2Ḣr(Σt,g)
+

2∑
r=0

t−2+2r∥G∥2
Ḣr(Σt,g)

+

2∑
r=0

t−2+2r∥G∥2
Ḣr(Σt,g)

,(5.11)

and modified energy

Ẽ(t) =

1∑
r=0

t2r∥∂t∇(r)G∥2L2(Σt,g)
+

2∑
r=0

t−2+2r∥G∥2
Ḣr(Σt,g)

+

1∑
r=0

t−2+2r∥G∥2
Ḣr(Σt,g)

+ t2∥∇̃(2)G∥2L2(Σt,g)
,

(5.12)

where

(∇̃(2)G)i
j := ∆gGi

j − ∂t∇iGj − ∂t∇jGi + δi
j∂t∇ℓGℓ.

We now carry out energy estimates for the wave-transport system (5.8) and (5.10) in a manner similar to
that for (4.9) in Theorem 4.4. Note that we in particular need to use the elliptic estimates in Lemma 4.33.
Nevertheless, the present case is much easier because of the linearity of the system. We omit the proof and
give the estimates

(5.13)
d

dt
E(t) ≤ C0 + Cnt

ε

t
E(t),

where we again used the convention that C0 depends only on s, cij and pi, while Cn can depend in addition
on n and N0. We now fix C0 and Cn so that (5.13) holds.
We now need to show, using (5.13), that E(t) ≡ 0. For this purpose it suffices to check that

(5.14) lim
t→0+

t−C0E(t) = 0,

so that we can apply Grönwall’s inequality to d
dt (t

−C0E(t)) ≤ Cn

t1−ε (t
−C0E(t)).

Define G[n] = Gti(
(4)g[n]) and G

[n]
ij = Gij(

(4)g[n]). Then by Proposition 3.3, there exists nG ∈ N such that
if n ≥ nG, then

(5.15) lim
t→0+

t−C0

(
1∑

r=0

t2r∥∂tG[n]∥2
Ḣr(Σt,g)

+

2∑
r=0

t−2+2r∥G[n]∥2
Ḣr(Σt,g)

+

2∑
r=0

t−2+2r∥G[n]∥2
Ḣr(Σt,g)

)
= 0.

On the other hand, by (4.11) in Theorem 4.4, if NG is sufficiently large and N0 ≥ NG, then

lim
t→0+

t−C0

(
1∑

r=0

t2r∥∂t(G − G[n])∥2
Ḣr(Σt,g)

+

2∑
r=0

t−2+2r∥(G − G[n])∥2
Ḣr(Σt,g)

+

2∑
r=0

t−2+2r∥G[n]∥2
Ḣr(Σt,g)

)
= 0.

(5.16)

Therefore, choosing N0 ≥ NG and n ≥ max{nN0,s, nG}, we obtain (5.14) by using (5.15) and (5.16). This
gives E(t) ≡ 0. Together with Proposition 5.1, this gives that the Einstein tensor vanishes identically. □

We end the section with the conclusion of the proof of Theorem 1.1:

Proof of Theorem 1.1. This follows immediately from Theorem 4.4 and Proposition 5.2. □

6. Uniqueness and smoothness of solutions: proofs of Theorems 1.7 and 1.10

We prove Theorems 1.7 and 1.10 in Sections 6.1 and 6.2 respectively.
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6.1. Uniqueness of solutions.

Proof of Theorem 1.7. Let (4)g, (4)g̃ be two solutions to the Einstein vacuum equations (1.2) satisfying the
assumptions of Theorem 1.7.
In this proof, we use C to denote positive constants depending only on cij and pj, and use C ′

to denote positive constants which depend in addition on the implicit constants in (1.10), (1.11)
and (1.12).
Notice that it suffices to prove uniqueness on a sub-domain (0, T ′]×T3 (for some 0 < T ′ < T ) since in the

region [T ′, T ] × T3, we are away from the singularity, and uniqueness will follow from standard uniqueness
results. For this reason, we will take T ′ sufficiently small so as to assume C ′(T ′)ε ≤ 1.

Step 1: Estimating k and k̃. Using the estimates (1.10) and (1.11), and arguing as in Propositions 4.18 and
4.19, we obtain

(6.1)

2∑
r=0

tr(∥∇(r)k∥L∞(Σt,g) + ∥∇̃(r)k̃∥L∞(Σt,g)) ≤ Ct−1,

and

(6.2)

1∑
r=0

tr(∥∇(r)∂tk∥L∞(Σt,g) + ∥∇̃(r)∂tk̃∥L∞(Σt,g)) ≤ Ct−2,

where ∇̃ denotes the Levi–Civita connection of g̃.

Step 2: Estimating the convergence rate as t → 0+. Let

(6.3) h = kℓ
ℓ, h̃ = k̃ℓ

ℓ.

Define the variables

g(d) := g − g̃, (g−1)(d) := g−1 − g̃, h(d) := h− h̃, k(d) := k − k̃.

Given any M ′
u ∈ N we can choose Mu sufficiently large so that by (1.10) and (1.12),

(6.4) ∥g(d)∥H2(Σt,g) + ∥(g−1)(d)∥H2(Σt,g) + ∥h(d)∥H2(Σt,g) + ∥k(d)∥H1(Σt,g) ≤ C ′tM
′
u .

Moreover, given any M ′′
u ∈ N we can choose Mu even larger so that by (1.12),

(6.5) ∥Ric(g)−Ric(g̃)∥L2(Σt,g) ≤ C ′tM
′′
u .

Now since both (4)g and (4)g̃ solve (1.2), the RHS of (3.1) vanishes for both metrics. Hence, using (6.1), (6.4)
and (6.5), we obtain

(6.6) ∥∂tk(d)∥L2(Σt,g) ≤ C ′ max{tM
′
u−1, tM

′′
u }.

Step 3: Energy estimates. We now carry out energy estimates for (g(d), h(d), k(d)). First, we note that they
satisfy a system of equations analogous to (4.50), (4.69), (4.70), (4.71) as follows.

• By definition of k and k̃, we immediate obtain the transport equation ∂tg
(d) = −2k̃(i

ℓg
(d)
j)l−2(k(d))(i

ℓgj)l.

• By (6.3) and (3.3), h(d) satisfies a transport equation ∂th
(d) = |k|2 − |k̃|2

• Arguing as in Section 4, it follows that both k and k̃ satisfy the wave equation (4.8) (with the
corresponding metric g and g̃). We take the difference to obtain a wave equation for k(d).

Note that these equations are similar to but simpler than (4.50), (4.69) and (4.70) in the sense that the
system is homogeneous.
We can thus carry out energy estimates in exactly the same way as in the proof of Theorem 4.4, including

using a modified energy together with elliptic estimates. In particular, defining

Eu(t) =
2∑

r=0

[t−2+2r(∥g(d)∥2Hr(Σt,g)
+ ∥(g−1)(d)∥Hr(Σt,g)) + t2+2r∥h(d)∥Hr(Σt,g)]

+

1∑
r=0

t2r∥k(d)∥L2(Σt,g) + t2∥∂tk(d)∥L2(Σt,g),

we can run the energy estimates in Theorem 4.4 using the bounds established in Steps 1 and 2 above.
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• Estimates (6.1) and (6.2) in Step 1 guarantee that

(6.7)
d

dt
Eu(t) ≤

C

t
Eu(t)

for some fixed constant C > 0 depending only on the constants in (1.11).
• Taking C as in (6.7), estimates (6.4) and (6.6) in Step 2 guarantee that if Mu sufficiently large, then

(6.8) lim sup
t→0+

t−CEu(t) = 0.

The bounds (6.7) and (6.8) immediately imply that Eu ≡ 0, which in particular implies g ≡ g̃, which is
what we wanted to prove. □

6.2. Regularity of solutions. Our goal in this subsection is to prove Theorem 1.10. As already mentioned
in the introduction, for the proof we rely on our uniqueness result.
We first introduce a piece of notation for the rest of this subsection. Let s ≥ 5 and N0 ∈ N. For n ≥ nN0,s,

Theorem 4.4 and Proposition 5.2 give a solution to the Einstein vacuum equations of the form (1.4) which
satisfies the estimates (4.11). We denote such a solution by gN0,s,n and denote the corresponding
second fundamental form by kN0,s,n.
We need the following lemma, which checks the conditions (1.10) and (1.11) in Theorem 1.7.

Lemma 6.1. Let nN0,s be as in Theorem 4.6 and NG, nG be as in Proposition 5.2. There exists Nc ≥ NG

sufficiently large such that if N0 ≥ Nc, s ≥ 5 and n ≥ max{nN0,s, nG}, then for g = gN0,s,n and k = kN0,s,n,
there exists C > 0 depending on N0, s, n, cij and pi such that

(6.9)
∑
|α|≤2

|∂α
x (aij − cij)| ≤ Ctε,

(6.10)

1∑
r=0

∑
|α|≤2−r

tr|∂r
t ∂

α
x (ki

j − t−1κi
j)| ≤ Ct−1+ε.

Proof. In this proof, we allow the implicit constants C > 0 to depend on N0, s, n, cij and pi.
We first prove (6.9). Since s ≥ 5, by (4.11) and (4.25), we have

2∑
r=0

tr∥g − g[n]∥W r,∞(Σt,g) ≤ CtN0+s− 3
2 .

Now note that the smallest eigenvalue of g−1 is ≥ C−1t−2p1 ≥ C−1t2. Hence,

|(g − g[n])ij |+ t2|∇ℓ(g − g[n])ij |+ t4|∇b∇ℓ(g − g[n])ij | ≤ CtN0+s− 7
2 .

Writing the covariant derivatives in terms of coordinate derivatives, using gij − g
[n]
ij = t2pmax{i,j}(aij − a

[n]
ij ),

and choosing Nc sufficiently large, we thus obtain

(6.11)
∑
|α|≤2

|∂α
x (aij − a

[n]
ij )| ≤ Ctε.

The estimate (6.9) then follows from (6.11), (2.7) and the triangle inequality.
The proof of (6.10) is similar, where we first use (4.11) and (4.25) to obtain

2∑
r=0

tr∥k − k[n]∥W r,∞(Σt,g) +

1∑
r=0

tr+1∥∂t(k − k[n])∥W r,∞(Σt,g) ≤ CtN0+s− 5
2 .

Then, after choosing Nc sufficiently large, we can obtain the desired (6.10) using (2.8) and the triangle
inequality. □

We are now ready to prove Theorem 1.10:

Proof of Theorem 1.10. Given Mu as in Theorem 1.7, the following holds:
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• There exists nr ∈ N sufficiently large such that if n, n′ ≥ nr, then

(6.12)

1∑
r=0

∑
|α|≤3−r

|∂r
t ∂

α
x (g

[n] − g[n
′])| = O(tMu).

This is because of the estimates (2.29) and (2.50) derived in the proof of Theorem 2.1.
• There exists Nr ≥ Nc (where Nc is as in Lemma 6.1) sufficiently large such that the following holds.

Suppose s ≥ 5, N0 ≥ Nr and n ≥ nN0,s, then

(6.13)

1∑
r=0

∑
|α|≤3−r

|∂r
t ∂

α
x (gN0,s,n − g[n])| = O(tMu).

This is a direct consequence of (4.11) and Sobolev embedding.

Fix (gN0=Nr,s=5,n0
, kN0=Nr,s=5,n0

) on (0, TN0=Nr,s=5,n0
]× T3, where n0 ≥ max{nN0=Nr,s=5, nr, nG}. We

want to show that this particular solution is in fact smooth. Let s0 ≥ 5 be arbitrary. By Theorem 4.4 we ob-
tain a solution (gN0=Nr,s=s0,n, kN0,s=s0,n) on (0, TN0=Nr,s=s0,n]×T3 for some n ≥ max{nN0=Nr,s=s0 , nr, nG}.
We now claim that in fact on the common domain of existence (0,min{TN0=Nr,s=5,n0

, TN0=Nr,s=s0,n}]×T3,
we have

(6.14) gN0=Nr,s=5,n0
≡ gN0=Nr,s=s0,n.

To prove the claim, it suffices to verify the conditions of Theorem 1.7:

• Since s ≥ 5 and N0 = Nr ≥ Nc, the conditions (1.10) and (1.11) hold because of Lemma 6.1.
• By (6.12), (6.13) and the triangle inequality, our choice of n0, n, N0, s implies that

1∑
r=0

∑
|α|≤3−r

|∂r
t ∂

α
x (gN0=Nr,s=5,n0

− gN0=Nr,s=s0,n)| = O(tMu),

i.e. (1.12) holds.

This establishes (6.14).
As a result of (6.14), it follows that the fixed solution (gN0=Nr,s=5,n0

, kN0=Nr,s=5,n0
) is in Hs0+1 ×Hs0 for

every t ∈ (0,min{TN0=Nr,s=5,n0
, TN0=Nr,s=s0,n}]. Now we use energy estimates as in the proof of Theorem 4.4

to show propagation of regularity : it then follows that the solution is in Hs0+1×Hs0 for every t in the original
time interval, i.e. for every t ∈ (0, TN0=Nr,s=5,n0

].
Since s0 can be arbitrarily large, it follows from Sobolev embedding and the equations (4.9) that the fixed

solution (gN0=Nr,s=5,n0
, kN0=Nr,s=5,n0

) is in fact smooth in (0, TN0=Nr,s=5,n0
]×T3. This concludes the proof

of the theorem. □
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