A localized construction of Kasner-like singularities
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Abstract

We construct local, in spacetime, singular solutions to the Einstein vacuum equa-
tions that exhibit Kasner-like behavior in their past boundary. Our result can be viewed
as a localization (in space) of the construction in [I8]. We also prove a refined unique-
ness statement and give a simple argument that generates general asymptotic data for
Kasner-like singularities, enjoying all expected degrees of freedom, albeit only locally
in space. The key difference of the present work with [I8] is our use of a first order
symmetric hyperbolic formulation of the Einstein vacuum equations, relative to the
connection coeflicients of a parallelly propagated orthonormal frame which is adapted
to the Gaussian time foliation. This makes it easier to localize the construction, since
elliptic estimates are no longer required to complete the energy argument.
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1 Introduction

Ever since the discovery of the first explicit solutions to the Einstein equations containing a
Big Bang singularity, by Kasner (1921) and Friedmann (1922), there have been attempts to
understand the nature of the general cosmological singularity. Kasner-like singularities are
a specific class of spacelike singularities whose leading order behavior toward the singularity
resembles that of a Kasner solution at each spatial point on the singular hypersurface. More
precisely, the first approximation of the spacetime metric reads:

3
g —dt? + Z 2P @ ot wt = Z cij(z)da?, (1.1)
i=1 j=1

where (t,z) € (0,7] x 3, for some closed spatial topology ¥. Here, the singularity is
synchronized at the limiting hypersurface t = 0.



The asymptotic behavior first appeared in the heuristic analysis of [30], which
gave the false conclusion that general solutions do not contain singularities. Instead, what
the latter work indicated is that Kasner-like behavior is non-generic in 1+3 vacuum. In
this setting, the Kasner exponents must verify the algebraic relations

3 3
sz(x) = Zp?(x) =1, for all z € &, (1.2)
i=1 i=1

which forces one Kasner exponent to be negative, say p;(z) < 0, and the other two to be
positive, pa(x), ps(x) > 0. In [30], they concluded that (L.1)) is consistent with the Einstein
vacuum equations

R, =0, (1.3)
if and only if
wh(z) Adw!(z) =0, for all x € X. (1.4)

However, ([1.4) eliminates one of the gravitational degrees of freedom and there is a priori
no reason for it to be valid. In fact, condition ([1.4)) implies that we can make a change of
spatial Coordinates,ﬂ such that (1.1)) becomes

3
g —dt? + Z t2max{pi(‘”)’pj(x)}cij(w)d:cidxj. (1.5)
ij=1

Here, the degrees of freedom are interpreted in a function counting sense and correspond
to the functions p;(z),¢;j(z). The latter functions can also be viewed as the asymptotic
data for the Einstein vacuum equations at the singularity (see Definition .

Later, in the subsequent work [§], a more involved heuristic argument was put forth,
which concluded that the general Big Bang singularity is oscillatory, in the sense that along
a timelike curve of fixed x, as t — 0, there is an infinite number of “bounces” swapping the
Kasner exponents in a specific, but chaotic, manner. Nevertheless, in the interval between
two bounces the solution is still be modeled by a Kasner-like singularity, a different one in
each interval. This is typically referred to as the BKL conjecture.

The BKL heuristics have been extended to various settings, arriving to similar conclu-
sions. We refer the interested reader to [6] for an overview of the subject. We should only
note that, surprisingly, in the presence of a scalar field [7], a stiff fluid [5] or in sufficiently
high spatial dimensions [15], the oscillations are silenced and Kasner-like behavior at the
Big Bang singularity is expected to be generic. This is also called the sub-critical regime.

Notice that (I.4) is an integrability condition. Using the Frobenius theorem, we can assume that w' is
a multiple of a coordinate 1-form.



Given the complicated nature of the oscillatory scenario, the rigorous evidence in its
favor is scarce, restricted to the homogeneous class of solutions [9, 24] [37), [38]. In specific
symmetric settings with only one bounce, the recent works [28],29] are the first to go beyond
homogeneity. On the other hand, Kasner-like singularities have by now been understood
to a sufficient extent. The main types of results that exist are roughly divided into the
following categories:

1.

1.1

Gowdy symmetry. Classification of generic solutions, in the polarized class [13] and
in the more general unpolarized setting [28] [39] 40}, 41]. The behavior is Kasner-like,
apart from finitely many points (for unpolarized solutions) where the asymptotic data
can form discontinuities at ¢t = 0, called spikes. Constructions of singular solutions
with spikes have been achieved in [23] [34] 36].

. Constructions. Starting with the Kasner-like ansatz (1.1)), the goal is to solve the

Einstein equations for a remainder which is better behaved as ¢ — 0. Numerous
constructions have been achieved in various settings [2}, 13 4, 12}, 14), 18], 211, 25], 26, 27,
35, [49]. In the sub-critical regime, the constructed solutions enjoy all gravitational
degrees of freedom, while in 143 vacuum the condition is satisfied by assumption.

. Stability. Given initial data away from the singularity, close to explicit Kasner data,

it was first established in [45] [46] that a Kasner-like singularity will form in the past, in
the near isotropic case for the Einstein-scalar field and stiff fluid models. This result
has been extended to S spatial topology [48], negatively curved spatial topology
[16], the Einstein-Euler-scalar field model [I1], the Einstein-Vlasov-scalar field model
[17], and a localized stability result has been achieved in [10]. A moderate, but
not isotropic, range of Kasner exponents was treated in [47], for sufficiently higher
spatial dimensions. Stable Kasner-like singularity formation for the full range of
Kasner exponents in the sub-critical regime was proven in [19]. The latter result has
been recently extended to general Kasner-like initial data in [22], always within the
sub-critical regime. To have stable singularity formation outside of the sub-critical
regime, a specific class of initial data is required which guarantees that an integrability
condition, like , is verified, hence, silencing any oscillations (instabilities). One
such class is U(1) polarized symmetry [19] (see also [1]).

Conditional. Kasner-like behavior is derived by assuming scale-invariant curvature
bounds [31], B2]. Alternatively, bounds on the renormalized Weingarten map result
in a complete description of the geometry near the Kasner-like singularity [42, [43].

Goal and motivation

Our goal in the present paper is to localize the construction of Kasner-like singularities in
143 vacuum that was achieved in [I8]. Before the latter work, all previous constructions
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of Kasner-like singularities had been restricted to either symmetry or analyticity. One of
the main new ingredients in [I8] was a novel estimate of the second fundamental form
of the level sets of Gaussian time, using a formulation of the Einstein equations at third
order in the metric. Among other things, this required the derivation of elliptic estimates,
due to a derivative loss in the energy method. For this reason, the construction is not
easily localizable. Indeed, the corresponding localized elliptic estimates generate various
boundary terms that do not have a favorable sign and cannot be directly absorbed in
the main energy (e.g., via trace inequality). One would have to use the structure of the
equations in a substantial way to treat these boundary terms. Although it might be possible,
we prefer to work instead with a first order symmetric hyperbolic formulation of the Einstein
vacuum equations, at first order in the second fundamental form of the Gaussian time slices,
which does not lose derivatives, see Sections for more details on our framework of
preference. This makes it easier to localize the construction, since the boundary terms
generated in a suitably localized energy estimate are easily seen to have a favorable sign,
see the discussion in Section [LAl

Having a localized construction of Kasner-like singularities could prove useful in various
ways. Firstly, there is no reason why the entire singularity should be Kasner-like. Since
different spatial points on a Big Bang hypersurface have disjoint future cones, once we
zoom sufficiently close to the singularity, it is entirely possible that part of the singularity
is oscillatory, while in some other region Kasner-like. Hence, a local patch of a Kasner-like
singularity could be seen as part of a solution with more complicated singular behavior.
Moreover, in connection with black hole singularities, assuming that part of them is space-
like and non-oscillatory, one could envision that a local patch of a Kasner-like singularity
could be attached to another part of the singularity which happens to be null, see [28 [33]
for spherically symmetric examples.

1.2 Asymptotic data in 143 vacuum

We are working in 1+3 vacuum, where Kasner-like singularities are expected to be non-
generic. Hence, condition must be satisfied. In other words, the metric will have the
leading order behavior . The following definition is taken from [I§], only localized in
a subset of T3,

Definition 1.1 (Gauge dependent data). Let ¢;j,p; : [0,6]> C T3 — R be smooth functions,
fori,j =1,2,3. We say that they form a vacuum initial data set on the singularity, if they
satisfy the following conditions:

1. ¢i(z) > 0 and c;j(z) = cji(x), for all i,j =1,2,3 and z € [0, 5.

2. pi(z) < pa(z) < p3(x) and S0 pi(x) = S0 p2(x) = 1, for all x € [0,0)%.



3. Fori=1,2,3, there holds

3
Z [ S (py — i) + 201K + l{bz}mmz] =0, (1.6)

€11€22C33
=1

where k;* = —pi (no summation), k;' = 0 if | < i and k1% = (p1 — p2) 22, ko 1=

(p2 7p3)§§§ ,Lgl = (p2 p1)812623 + (pl p3)c13 co2

€22€33 €33

Point [1| in Definition implies that a metric with the asymptotic profile is
indeed a Lorentzian metric for sufficiently small times. The distinct Kasner exponents
assumption in point [2| should not be necessary to define asymptotic data for Kasner-like
singularities. However, contact points between the two positive Kasner exponents introduce
technical difficulties that we do not want to deal with here. There are five constraints in
Definition two algebraic and three differential, which correspond asymptotically to the
Hamiltonian and momentum constraints:

— |k]* + (trk)? =0, (1.7)
divk — Vtrk =0, (1.8)

as well as the constant mean curvature condition.

Remark 1.1 (Degrees of freedom). The degrees of freedom for general solutions to
are four. There are siz c;j’s, three p;’s, and five constraints in Definition . This leaves
roughly four free functions (see Section @) However, the asymptotic profile allows
for a coordinate change T3 = f(x', 2% x3), without changing its form. This extra gauge
freedom could for example fix cs3 = 1. Thus, we are left with three functional degrees of
freedom. According to the heuristic analysis in [30], this is the largest class of metrics with
Kasner-like behavior we could expect.

Definition|1.1|relies on the fact that there exists a certain coordinate system (¢, z*, 22, z3),
such that the asymptotic profile of the spacetime metric is given by , from which one
can read off the asymptotic data p;,c;; from that profile. Therefore, the previous data
are gauge dependent. A second, covariant, definition of asymptotic data for Kasner-like
singularities was subsequently given by Ringstrom [44].

Definition 1.2 (Covariant data). Let (M,h) be a smooth, 3-dimensional Riemannian
manifold and let K be a smooth (1,1)-tensor field defined on M. The triplet (M, h,K) is
called a non-degenerate, quiescent vacuum initial data set on the singularity if:

1. trK = (t1K)? = 1, K is symmetric with respect to h, and div; K = 0.

2. The eigenvalues p1 < pa2 < p3 of K are distinct.



3. [Xp, X3)t =0 on M, where X4 are a basis of eigenvectors of K corresponding to the
eigenvalues pa, A =1,2,3.

It turns out that Definitions are locally equivalent, see [44], Propositions 5, 6]. We
briefly discuss the connection here. Given gauge dependent data p;, c;;, define

3
Ki=—ri,  h=Y_ cyla)da'dal. (1.9)
1,7=1

Then ([0, 8]3, h, K) satisfies Deﬁnition Conversely, around every point p € M, a covariant
data set defines a coordinate patch (V,z) aligned with the eigenvectors &; of K in the
following fashion (modulo renormalization):

X3 =03,
Xo =09 + X2383 =0y + ’C2383, (1.10)
P2 — P3
1
Xy =01+ X1232 + X1383 =01 + /C1282 + (/Cls + /C12/C23)83
b1 — p2 b1 —ps3 p1 — P2
Then the functions
Di cii = h(Xi, X)), cij = X7, Cji = Cij, for v < j, (1.11)

form a gauge dependent data set as in Definition

An important advantage of covariant data sets is that they are coordinate independent.
Nonetheless, in order to relate the latter sets to Kasner-like singularities, one still relies on
the choice of a time foliation for the definition of the renormalized Weingarten map, whose
limit (as ¢ — 0) corresponds to K. Interestingly, a general construction of Kasner-like
singularities was performed in the recent work [2I], starting with covariant data, which
includes a non-linear scalar field and a cosmological constant, treating as well any closed
spatial topology. The time foliation is Gaussian and the energy argument is closely related
to the one employed in [I8]. In particular, elliptic estimates are needed to complete the
construction.

1.3 Brief framework
Consider a 143 splitting of the spacetime metric, relative to Gaussian time:
g = —dt’ + gijdxidxj, (1.12)

where (t,2) € (0,T] x [0,8]3, such that the singularity is synchronized at ¢ = 0. This makes
it easier to compare our results to the usual Kasner-like ansatz (|1.5)).



Also, we consider an orthonormal frame of the form
eg = O, er = erq0a, (1.13)
which is parallelly propagated along eq:
D.,eo = Deyer =0, (1.14)

where D is the Levi-Civita connection of g. The main unknowns
We then formulate the Einstein vacuum equations as a first order symmetric hyperbolic
system in the connection coefficients of the frame (see Section [3)):

kry = g(De,es,e0) = ki1, 178 = 8(De,eg,eB) = —71BJ- (1.15)

Here, k;; is the second fundamental form of the constant ¢-hypersurfaces, ¥;, contracted
against the frame components ey, e .

1.4 Main results
The main existence theorem that we prove is the following.

Theorem 1.1 (Existence). Let (M, h,K) be a geometric data set that induces, according
to (1.10)-(1.11), gauge dependent data p;(x),c;j(x) (see Proposition for an existence
statement). There exists a Lorentzian metric ghl = —a@1? + gl[;l]da:idfvj, defined by the

variables e[lr:l], kﬁ,’yl[vr}]B of an iterative procedure (carried out in Section , which satisfies:

’agz(gl[?] — it 2Pmaxcti} )| < O pt Pmaxtii} +e) |8§RLHV]’ < Ot~ 2,
1.1
= min {1 ps(2) > 0, ps(a) — pala)} > O, (1.16)
z€[0,8]3

for any n € N, multi-index «, indices u,v (contracted relative to the frame), and (t,z) €
(0,t,] x [0,8]3, for some t,, sufficiently small.
Moreover, for any s > 4 and Ny € N, there exists n = ny, s sufficiently large and a C?
Lorentzian metric g = g + g@ | defined by the corresponding reduced variables
d d d
€la = 6[;;] + 6327 kry = k?}] + k’};), YIJB = VBJB + 7§J)Bv (1.17)
such that it solves the Finstein vacuum equations and satisfies the estimate (see Section
for the definition of the norms):
d d d N
€49 (1 Frs ) + 114 e oy + 10 )HJQLIS(Ut) < 2o, (1.18)

in a local domain {Ut}tG(O,TNO,s,n] C (0,t,] x [0,8]® with spacelike future boundary (see
Section for the precise definition).



Proof. The first part of the theorem regarding the approximate solution g follows from
Theorem and Lemma The second part about the actual solution follows from
Theorem and Proposition O

Remark 1.2 (Choice of parameters and domain). For convenience, we define the domain
of definition {Ut}tE(O,TNO,s,n] relative to the approzimate solution g™ . It is strictly contained
in the domain of dependence of Uy, having spacelike future boundary. This is true for g as
well, since the remainder term g\ is lower order. Once we have fized Ny, which is tied
to the decay that we wish the remainder terms e%), k:%), 7%)3 to have, ast — 0, n is taken
sufficiently large and the domain is fized. Increasing s only shrinks the time of existence

TNy,s,n, such that the estimate (1.18) remains valid.

Remark 1.3 (Initial regularity). The asymptotic data at the singularity need not be smooth
for Theorem to hold. However, working with other regularity classes, like C", would
require keeping track of the dependency of r on the other parameters. For example, our
method of proof would require that r tends to infinity, as € = 0 or n — +00.

Remark 1.4 (Dependence on initial data). Although we do not keep precise track of the
constants in the proof of Theorem the norm of existence and the corresponding time
interval depend on finitely many derivatives of the asymptotic data p;, c;j, exactly how many
depends on n, Ng. In view of the relations , , this translates to the same number
of (covariant) derivatives of the geometric data h, K.

The next two theorems deal with the uniqueness and regularity of the solution in The-

orem [L.11

Theorem 1.2 (Smoothness). The solution g furnished by Theorem s smooth, provided
n, Ny are taken sufficiently large.

Theorem 1.3 (Gauge uniqueness). (i) Let g, g be two solutions to (1.3) of the form (1.12]),
satisfying

0% (e1q — 6[1(;])‘ < Ctpr2min{p1,pa}+s7 10 (G0 — e[ﬁb‘ < Ctpr2min{p1,pa}+s, L19)
ai _ o] —1+|pr—pyl+e o2 (T _ 1.10] —1+|pr—psl+e '
|8x (kIJ k[])‘ <Ct 5 |8x (kIJ k]J)| <Ct s

for all || <2, |ag| <1, and (t,7) € {Ut}se(0,1), where the latter domain is defined relative
to gl as in Section for some n sufficiently large. Also, assume that

lle = elZre oy + 1k = Kl + 17 = ey < 20, (1.20)

for all t € (0,T], for some s > 4, and an My sufficiently large, how large depending only
on the L™ (Uy) norms of the p;’s. Then the two solutions coincide.



(13) Let g, g be two solutions to (1.3)) of the form (1.12)), satisfying

08 (era = €| < Catr =2 erme e, 08 @, — ] < Cotr Emrnede
0 ke — k)| < Cat PRI |0 (R — K| < Cot PR

for all (t,x) € {Ut}te((),TNO o]y and |af < My, for some My sufficiently large, how large
depending only on €. Then the two solutions coincide in {Ut}te(O,TNO e

Point (i) in Theorem |1.3|is analogous to [I8, Theorem 1.7]. Point (ii) does not require
the two solutions to coincide to a large polynomial order. The idea here is that the latter
property can be inferred from by using the equations, see Section |7| for the proof of
Theorem [1.3]

Remark 1.5 (Geometric uniqueness). The assumptions , imply that the two
solutions g, g have the same gauge dependent data, see and the identity relating
the frame to the metric coefficients. It would be interesting to also study the problem of
geometric uniqueness, as in [21, Theorem 1.17]. Assuming the two solutions arise from the
same geometric data set, satisfying for example a covariant version of the estimate ,
do the solutions coincide? In order to apply our gauge dependent result, one would first

need to obtain a gauge dependent data set from (L.10)), (1.11), and then argue that (1.21)

follows from its covariant analogue.

1.5 Method of proof

The basic idea in such constructions is simple. First, we construct an approximate solution
g™ to a suitable degree and then solve for a remainder g(® to upgrade it to an actual
solution. What makes it hard to implement is the complicated nature of the Einstein
vacuum equations.

Step 1. Constructing an approzimate solution. The evolution equations ,
satisfied by ejq, kry (recall the notation from Section are useful for constructing an
approximate solution, in a local domain of the form (0,T] x [0, 6]2. We use them to define
an iteration scheme in Section [ that completely decouples all variables. The iterates
e[;;], k:[;]} define a metric gl whose Ricci tensor we prove that it vanishes, as t — 0, to an

increasing order in n, recall (1.16]). These derivations are analogous to those in [I8, Section
[n]
ij
form is that kgr}] is asymptotically diagonal, instead of upper triangular for (kM);7 in [I8].
The asymptotic momentum constraint, expressed in terms of the frame coefficients, takes
the form (4.19), which we show in Lemma |4.3| to be equivalent to ([1.6)). It is used to show

the approximate propagation of the constraints ((1.7))-(1.8]).

2], constructing gr-', (k™);7. One interesting difference concerning the second fundamental
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Step 2. Solving for a remainder. To construct an actual solution to the Einstein vacuum
equations with the desired behavior, we make the ansatz

g=g" +g (1.22)

and solve for the remainder term g(® in a suitable domain {Ui}ieor) € (0,T] x [0,6]°.
Moreover, we derive estimates in weighted norms which guarantee that the reduced vari-
ables associated to g(®) vanish, as t — 0, to a sufficiently high order, cf. . The main
steps in this process are the following;:

1. Express the Einstein vacuum equations relative to a first order symmetric hyperbolic
system for krj,~vrsp, see —. Here, a modification of the original equations
, , is achieved following [20], by adding appropriate multiples of the
constraints to the original equations. The latter procedure changes the principal
symbol of the original equations. Once we have recovered the full Einstein vacuum
equations (Section @, then we conclude that these added multiples actually vanish.
This is the key difference from [I8], where instead a second order system for k;/ was
used. One disadvantage of the latter formulation is that it requires the use of elliptic
estimates in order to complete the energy argument, due to a derivative loss. In a
localized construction these estimates generate various boundary terms that do not
have a favorable sign, making it difficult to absorb them in the main energy.

2. Define the local domain of definition of the solution, such that the overall boundary
terms generated in an energy argument have a favorable sign. More precisely, we
define {Uy};c(0.77 as the inward flow of the (six) faces of Uy = {0} x [0,6]* with
respect to the vector fields

a=1,2,3,

where o > 0 is a sufficiently large constant. Here V[ 2 is the gradient of 2% relative
to g, Note that g(® is not involved in the previous definition. Hence, once we have
chosen the parameters N,n, depending only on the asymptotic data, the domain
{Ut}+e(o,) s fixed throughout the existence proof. Moreover, its future boundary is
spacelike and sufficiently ingoing (for o large). The latter guarantees that the flux
terms obtained in an energy estimate using a symmetric hyperbolic system (regardless
of the precise principal symbol) have a favorable sign. We refer the reader to Section
for the geometry of the domain {Uy },¢ (o) and to the proof of Proposition for
the precise structure of the boundary terms arising in the weighted energy estimates
for the remainder variables.

11



3. Produce a solution to the modified evolution equations — for krj,vr7B, by
deriving weighted energy estimates for the remainder terms k Ii , 'y%)B in {Ut }sepnm)
with trivial data, using the corresponding equations —. The use of large
t weights is necessary to absorb terms in the equations having t~! coefficients (see
Sections . Fortunately, the magnitude of these coefficients depends only on
the asymptotic data, which allows for uniform estimates in n,n, provided s, Ny are
fixed (recall Theorem . Passing to the limit n — 0, we obtain a time interval of

existence (0,7, where ¢ = 0 corresponds to the singularity (Section .

4. Retrieve a solution to the full Einstein vacuum equations by propagating the vanishing
of constraints off of the singularity (Section @ In fact, having a solution to the
modified equations — defines a connection that is not necessarily torsion-
free. Hence, a system must be derived for the torsion and the components of the
spacetime Ricci tensor (Lemma . It turns out that the latter is also symmetric
hyperbolic, hence, admitting an energy, which enables us to propagate the vanishing
of the relevant variables off of ¢t = 0.

Step 3. Gauge uniqueness and smoothness. If two solutions satisfy point (i) of Theorem
then by subtracting them and deriving an estimate similar to (with trivial initial
data), it follows that they must be equal. Hence, to prove the second uniqueness statement
in Theorem (1.3} it remains to show that implies that the two solutions satisfy .
Condition firstly implies that the two solutions have the same asymptotic data.
Hence, they have the same approximate solution g™ . The idea now is to use the equations
to iteratively improve the behavior of the remainder terms of each solution, see Section 7.1
Every improvement by t¢ costs two spatial derivatives, hence, the requirement of M; > 0
being sufficiently large in point (ii) of Theorem

To obtain the smoothness of solutions (for smooth asymptotic data), we increase the
number of derivatives s in the existence norms. Some care is needed because increasing
s might also require to increase n, which in turn changes g, relative to which the local
domain is defined. We overcome this issue by defining the domain relative to the minimum
of n’s, which does not affect the overall estimates (see Section . Employing point (7) of
Theorem and standard unique continuation criteria yields the corresponding increased
regularity of the original solution. Since s can be taken arbitrarily large, the smoothness
property follows.
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2 Local existence for the asymptotic constraint equations

Definitions give conditions that characterize the asymptotic data of Kasner-like
singularities. However, in both works [I8],[39] there is no mention as to whether such general
asymptotic data exist. In this section, we present a simple argument that gives existence
of localized asymptotic data sets. Also, from our argument one can infer the freedom one
has in choosing such initial data sets on the singularity. Interestingly, constructing a global
initial data set, in the sense of Definition [I.2] or the analogue of Definition [I.1on the entire
T3, is more intricate than it seems and we shall not discuss it here.

Proposition 2.1. Let py,pa,p3 : [0,]% — R be smooth functions satisfying p1(x) < pa(x) <
p3(x), as well as 2?21 pi(x) = Zle pi(z) =1, for all x € [0,6]>. Then, for any freely
prescribed smooth functions o € {c11,co2 > 0}, B € {c33 > 0,k2%}, v € {K1?, k%) -
[0,6]% — R, there exist smooth functions €,(,n : [0,6]® — R such that

{o, B,7,6,¢,n} = {e11, cans ea3, k1”, m1®, k2 } (2.1)

and such that Deﬁnition holds, where c19, c13, c23 are uniquely determined by the values
of k12, k13, ko3, Moreover, the functions €,(,n are unique up to a choice of three 2-variable
functions.

Remark 2.1. From the statement of the previous proposition, it would seem that we are
free to prescribe four functions, e.g. pi,ci1,c33, and k1% (which amounts to choosing c12).
However, c33 can be fized to 1 by choosing the coordinate function x3 appropriately to begin
with. Hence, the functional degrees of freedom are three. Also, the three 2-variable functions
that we are free to prescribe come from suitably integrating , for eachi=1,2,3.

Proof. We begin by writing out (1.6|) for i = 3:

(p3 — p1)03log(ci1) + (p3 — p2)03 log(caz) + 203p3 = 0, (2.2)
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The latter equation can be solved for either c11 or cos. Without loss of generality, let us
freely prescribe coo > 0. Then ¢q; is uniquely determined by (2.2]), up to a choice of a
2-variable function:

20
logcu(x z? ac) logcnx x? ,0) / { 3log(:2 + 3P3 }(:L‘l,:cQ,s)ds
p3s—p p3s—p1

Next, we expand (1.6 for i = 2:

3
(p2 — p1)d2log i1 + (p2 — ps3) Oz log ca3 + 20opa — 203k2° — ka® > Dzlogey = 0.  (2.4)
=1

Since c11, co9 are already fixed, we can either freely prescribe c33 > 0 and solve for xo? or

vice versa. In the latter case, solving for log c33 amounts to integrating a transport equation
in the direction (pa — p3)02 — k2303, which is possible thanks to the condition py < p3. For
convenience, we freely prescribe ¢33 > 0 and rewrite ([2.4]) as follows:

1 1
D3k + = [83 log(c11¢22¢33) k2> = = (p2 — p1)02 log ey + 5(2?2 — p3)Oalog css + Dap2 (2.5)

5

3

Hence, we easily solve for ko° via integrating factors, in a unique manner up to a choice of

a 2-variable function.
Lastly, we expand (|1.6|) for i = 1:

(p1 — p2)Oh log caa + (p1 — p3)01 log csg + 201p1 — 200k1>
5 . . (2.6)
- 263/411 — K1 Z 82 log Cit — K1 Z 83 10g Cl| = 0.
=1 =1

It is clear that we can freely prescribe either k12 or k13 and solve for the other via in-

tegrating factors, using (2.6) as above. Once more, we have the freedom of choosing an
initial condition, which amounts to a 2-variable function. This completes the proof of the
proposition. ]

3 The Einstein vacuum equations as a symmetric first order

hyperbolic ADM-type system

We have defined the frame and connection coefficients ez, krs,vr7p in Section [1.3] Define
also the inverse transformation

Oy = wycec, wWpceCa = Opa, erawWac = 910, (3.1)
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where repeated indices are summed, unless underlined or otherwise stated. Then the fol-
lowing equations hold [20]E|

87561(1 - kIC'eC'a (32)
Owwpe = — kcpwyp (3.3)
Otkry —trkkry =Rry — Ryy, (3.4)

where Ry, Ry are the Ricci curvatures contracted with ey, ey of g, g respectively. These
are analogous to the ADM equations for the first and second fundamental forms of 3;. The
actual solution that we construct is in vacuum, hence, the last term in can be set to
zero. We keep it in the RHS, however, to keep track of the extra terms coming from the
approximate solution that is constructed in Section

On the other hand, the spatial Ricci can be expressed in terms of v7 5, €, wbc as follows:

Ry =ecvric — erycic — YcIpYpJc — Y1JDYCCDs (3.5)
1
Y1JB = i{waB(eIeJa —ejerq) — war(€seBq — €Beja) + was(eBera —€repa)}.  (3.6)

We will use — in Section 4| to construct an approximate solution to the Einstein
vacuum equations, as t — 0, via an iteration scheme.

We will not exploit the formula for local well-posedness. Instead, we couple ([3.4))
to the following equation satisfied by v7sp:

018 — krcycss =ekjr —ejkpr (3.7)

+vsBcker +viickse — vBicker — vBickc

To derive energy estimates in Section we consider the symmetrized system satisfied by
k]], YIJB, fOHOWing [20]:

1
Oikry —trkkry = 3 [GCVIJC —eryegc + ecviic — ejycic (3.8)
— YCIDVYDJC — YCcCDYIJD — YCJDVYDIC — ’YCCD’YJID}

1
+ 551J |:2€D’YCDC +YcEpYDEC + YccpYEED + kcpkep — (kcc)z]

1 1
- §(R1J +Ryr)+ 617 (Roo + §R),

OB — kicyess =epkyr — ejkpr (3.9)
+vsBcker +viickse — vBicker — vBicksco

*Note: In [20] the sign convention for k. is opposite than the one that we use.
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—0rB [eckm —Yccpkpy — Ycipkep — eJtrk]

+417 [eCkCB —YccpkpB — YeBpkep — GBtrk}
—drsRos + 017RoB,
coupled to equation (3.2]).

Remark 3.1. The previous equations are valid for any metric of the form (1.12) and
its associated connection coefficients (1.15). However, we will drop all R, terms in the
derivations of the energy estimates below, since we are interested in producing a vacuum
solution.

4 An approximate solution to the Einstein vacuum equations

We define the following iteration scheme for the equations (3.2)), (3.4):

eel — kel =57 ki el Y, (4.1)
C#I
ok — ke Uk = REY, (4.2)

for n > 1 and t € (0,T], where underlined indices are not summed. Here, REI}_I] is the

Ricci curvature of the metric g1l for which the frame e[ln_l] = e[;;_l]aa is orthonormal.
Similarly, we denote by RLIL] the Ricci curvature of the spacetime metric

gl = —dt* + gI". (4.3)
We set the zeroth iterates equal to:
o _ [ fra(z)t77®) I <a o _ . pi()
€ra = { 0 I>a’ k[J— 5L] PR (44)

To complete the iteration scheme, we require that the following asymptotic initial conditions
hold:

. pr(z) 0] _ f[g,($) I<a . [n] _
tgr(%t €rq { 0 I>a t1_1>r51+ tk;; drypr(x). (4.5)

Also, define the inverse frame components through the relations

Op = wl[:éle[g}, wl[)%]e[a]l = Opa, e[;gw([;g =drc. (4.6)
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The equation (4.1)) and relations (4.6) imply the equation

Owndd + kGpwig = = O wipkpp - (e  weer), (4.7)
D E#D

for n > 1. The zeroth iterates w,[)%l are computed using (4.6, see (4.16). The condition
(4.5) implies that there exist functions hyc(z) such that

lim ¢-Pe@ m _ J lc(z) b<C L0 _ [ he(@)tre(z) b<C
“bc 0 b>C T 0 b>C -

t—0+

(4.8)

Remark 4.1. The frame coefficients fr, are in one to one correspondence with the metric
coefficients ¢;j in Definition see Lemma [{.1, Moreover, the asymptotic differential

condition (|1.6)) is equivalent to

Empr+ Y (ps—pD)Erlog(f10) = > Y (07— pD)hasEsfra =0, (4.9)
7 J I<a<J

for I = 1,23, where Ef = Za>[ f1a04, see Lemma . By convention, the last sum in
. ) does not appear when I > J.

Theorem 4.1. Let p;(z), fra(z) € C*([0,6]3) and let
e i=min{l — p3(2), p3(x) — pa(2)} > 0. (4.10)

Then for every n > 1 there exists a unique solution to the iteration scheme (4.1)-(4.5) in
(0,t,] x [0,6]2, for some t,, = tn(pi, f1a) sufficiently small, such that the following points
hold:

[n] o]

1. For every multi-index o, every I, J,C,a,b, the functions e}, ,w;q, kz[r}] satisfy:

Q 0 CCX’ntipIJrE I S a/,
92 (el — ””<{Caﬂmﬂmﬁ I>a (4.11)

(63 O Coé7ntpC+a b S C’
|0 (wbc - OJ,[]C]')| < { O t2PPCF b O (4.12)
02k = K| < Copt e, (4.13)

for all (t,x) € (0,t,] x [0,8]3.
2. For every multi-index o, every I,J, the spatial Ricci curvature satisfies:
|8§R£~1}}| < Ca,nt_2+6+|p1_pJ" (4.14)

for all (t,x) € (0,t,] x [0,0]3.
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3. If in addition the constraint (4.9) is satisfied, then for every multi-index o, every
w,v=0,1,J, the spacetime Ricci curvature satisfies:

ap n —2+4+n.
0SRI| < Cont ™2, (4.15)
for all (t,z) € (0,t,] x [0,4].

Proof. The points[I] 2] are contained in Proposition[4.1I} Point [3]is contained in Proposition
for spatial indices u,v = I,J, and for the rest of the indices p = 0,v = 0,7 in
Proposition [£.4] O

4.1 The zeroth iterates and the asymptotic differential constraint

The zeroth frame coefficients determine the zeroth co-frame and metric components.

Lemma 4.1. Let 6[1(()1] be defined as in (4.4)) and let wl[)(g represent the components of the

inverse frame transformation, as in (4.6). Also, let g[0

ij] be the metric for which the frame
[0] (0]

e;’ = e, 0q 1s orthonormal. Then, the following formulas are valid:
o] frotem *fﬁllealf12tp2 fi fag [flzlfzs{ggl — fis]tPs
(W) = | 0 fop 17 oz fg3 fast™ (4.16)
0 0 fog P8
and
et et i3t
g[o} = 612t2p2 622t2p2 623t2p3 + ggﬂmr, (4.17)
013t2p3 023t2p3 633t2p3

where |02 (glhor )| < Cat™mastit e, and

fﬁQ1 , —f12ff121f2§2 ot [f12f231f2312— f13]
(cij) = 1 Q—flzfﬁ fg_zl f2_21 , —f23f2_22 fs3 (4.18)
fia [ [fiafesfas — fi3]  —fesfe fag /33
Proof. First, we expand the relations e[gw([% =dr¢. For I =3:
0] [0 0] [0 0] [0
A1 0 o
Ry S
for I = 2:
0] [0 0] [0 0] [0 0] [0
Bl =0 el o1 i+l -0
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0] 1 0 1 -1
= wyy =0, W£2 [ 172, W%rj = —fasfag fa3 t*

and for I = 1:
0] [0 0 o] [0 0 0] [0
6[11]W£1]—1a 6H£2}+[][] 0, 6[][]+[12}H+[13] gg]_o
= wﬁ] = [t wlg] = — i1 foz frat??,

w13 - f111f33 [f12f23f22 f13]tp3,

which combined give (4.16|).
[0 _ [o] o]

Hence, the metric components equal g, i = WicWios which expands to

gﬁ] _wg(i]wgl} + (gg;]ror)ll - fl_l2t2p1 + (ggv)jror)ll?
gg%] —wgg]wy + (gg?’]ror)u - _fﬂ1f12f232t2p2 + (QLTLOT)127
9%%] *%3“33 = i fa3 2 fosfay — fia] 872,

ggg] _wég]wég + (gz[z?”]ror)QQ f72t2p2 + (ggq)jrm")QZ’

ggog] —w£3]w33 = —f23/5 f 33 t2p3
gy =whywly = [t

The leading order metric coefficients c¢;; can be read from the previous formulas, giving
(4.18]), while the error terms satisfy

109(gl90 V11| < Co[t2P27 21 log t|™]#2Pr < €271 2| log |,
|8x (gerror)m’ < COé [t2p3 2p2‘ logt||a|]t2p2 < Cat2p2+2€’ logt’a7
o 9[0] 09| < C, [2P372P2| 10g ¢ laf]42p2 < Cot2P2 2| 1og ¢,
X error
which implies the claimed estimate. O

Using the relations in the previous lemma, we can now phrase the asymptotic differential
constraint in terms of the frame and co-frame coefficients, which will be used below to
approximately propagate the constraints, see Lemma [4.13

Lemma 4.2. The asymptotic differential condition (1.6) is equivalent to the following
differential set of equations:

Epr+ Y (ps—pr)Erlog(frs) — Z > (s —pD)hasEsf1a =0, (4.19)
J I<a<J

for I =1,2,3, where Ej = Zaz! f1a0q and the last sum is zero by convention for I > J.
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Proof. Tt is a straightforward, but tedious, computation. For I = 3, (4.19) becomes

0 = E3p3 + (p1 — p3)E3log f11 + (p2 — p3)E3log fa2
= f33[03p3 + (p1 — p3)03log fi1 + (p2 — p3)03log fao] (4.20)

1 1
= f33[O3ps — i(pl —p3)03logecry — i(pz — p3)03 log ca2],

since ¢y = fJ_f-, for J = 1,2,3. Given that f33 is nowhere zero, (4.20]) is equivalent to
(1.6) for i =3.
Next, we expand (4.19) for [ = 2:
(f2202 + f2303)p2 + (p1 — p2)(f2202 + f2303) log f11
+ (p3 — p2)(f2202 + fa303)10g fsz — Y (p3 — p2)hasf3303f2a = 0, (4.21)

a=2,3

where from ‘) (4.18 N it follows that f23 = —(623/633)(622)_% and h23 = —f2721f3731f23,
hs3 = fgz,)l. Multiplying (4.21)) with /cos = ]“2_21 and plugging in the formulas for fo3, fr7, ho3, h33
in terms of ¢;;, we compute:

c 1 c 1 c
0=(02 — —=283)ps — =(p1 — p2) (B2 — —283) log c11 — = (p3 — p2)(B2 — —>83) log ¢33
€33 2 33 2 33

+ (p3 — p2)v/c22.f230310g faz — (p3 — P2)/€2203 fa3

c 1 1
= Oop2 — % [O3p2 — 5(171 — p2)0slog iy — 5(103 — p2)0slog c33]

1 1
- 5(}71 —p2)02logery — §(p3 — p2)02 log ¢33
1 c c 1 c
+ 2 (p3 — po)—283l0g ez + (p3 — P2)D3(—2) — = (p3 — p2) —> D3 log can (4.22)
2 33 c33’ 2 €33
1 1 )
= Oapo — 5(101 —p2)02logc1y — 5(1?3 — p2)d2 log cs3 (rearranging terms)
c 1 1 c
- = [03p2 — = (p1 — p3)Dslogcrn — = (p2 — p3)d3log caz] + (p3 — p2)d3(=2)
C33 2 2 C33
1 C
- §(p2 - pz)ﬁas log(c11c22¢33)
€33
1 1 1 coa
= Oapa — 5(191 — pa)Oalogcin — 5(173 — p2)02log c33 — 5(1?2 = p3)%33 log(ci1c22¢33)
23 23
+ %83(]33 —p2) + (p3 —p2>83(%) (by (4.20))

which is indeed equivalent to (1.6) for i = 2, after taking into account that ko® = (pa —

€23

p3)033'
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Finally, for I = 1, we expand the first two terms in (4.19) and use in addition the
relations from (4.18]), fufﬁl = —2—2, f13fi1 — 3 4 C12Co3.

€33 c22 €33 "

E1p1 + (p2 — p1)E11og faz + (p3 — p1)E1log f33
= (f1101 + f1202 + f1303)p1 + (P2 — p1)(f1101 + f1202 + f1303) log fa2
+ (p3 — p1)(f1101 + f1202 + f1303)1og f33

1 1
= f11|O1p1 — 5(192 — p1)01 log cag — 5(?3 — p1)01 log ¢33 (by (4.18))

c19 1 c12 1 c12

— —=0op1 + - (p2 — p1)—0210g c2 + = (p3 — p1)—02log c33 (4.23)
€29 2 €22 2 €22
C12 €23 Ci13 1 €12 €23 C13
— = — —)p1 — = (p2 — p1)(—— — —)03log c22
Co2 C33 €33 2 Co2 C33 €33
1 C12 C23 (13

— =(p3 —p1)(—— — —)03logc33
2( )(022 €33 033> 8

To compute the last sum in (4.19)), for I = 1, we use the relations from (4.16]), (4.18):

hi2Es = — f1! fao [12(f2205 + f2303) = Cﬁ(@ - @33)
C22 €33

hooEoy =0y — %33

C33
3 B C
hisBs = hi3 f3303 = [11' (Frafos S — J13)05 = £83
_ C
hosks = — f221f23a3 = 233
C33
h33E3 = 83

to obtain the identity

> > (ps—p1)hasEsfra
7

1<a<J
= — (p2 — p1)h12E2 fi1 — (p2 — p1)ha2Ea f12
— (p3 —p1)hisEs fi1 — (p3 — p1)hesEs fiz — (p3 — p1)hssEs fi3

=~ (py— p1) f11 220y — “E05)log f11 — (p2 — p1)(D2 — “2285) f1a (4.24)
C22 C33 C33

—(p3 —Pl)fncﬁaza log f11 — (ps — pl)cﬁazafm — (p3 —p1)03f13
C33 C33

1 C12 1 clg -1
=fn 5(292 —p1)—0zlogcrr + (p2 — p1)cd 2 [—¢142]
C29 C22
1 C12 C23 c13
— —|(p2 —p1)——= + (p1 — p3)— |03 log c11
2 [( )022 c33 ( )633]
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1 C12 C23 C13
+ pP3 — P2 C 83 C pP3 —p1)c 83 & P :|
( ) gy 11 [ 1] = Jet19s[en (022 c33 633)}

Multiplying the identities (4.23)), (4.24) by fl_ll and adding them together gives:

1 1
0=0ip1 — 5(]92 — p1)01 log cag — 5(193 — p1)01 log ¢33

1 1
a2 [821?1 — 5 (p2 — p1)d2log car — 5(103 — p1)0zlog 033] +(p2 _pl)aQ(Clz)

€22 2 C22
€12 Co3  C13 1 1
— =) [831?1 — =(p2 — p1)03log car — =(p3 — p1)J3log ca3 (4.25)
€22 €33 €33 2 2
1 1 €12 C23
+ =(ps —p1)03logcir| — = [(p2 — p1)——=+ (p1 —p3) ]03 log c11
2 2 €22 C33
1 €23 C12 €23, C12 c12 23 C13
— 5(]93 — p2)——03log ci1 + (p3 —p2)f53( ) — (p3 — p1)O3(—— — —)
C33 C22 €22 C22 C33 €33
From (4.20)), (4.22)), we have
1 1
5(1?3 —p1)0slog ey = — O3p3 + 5(]92 — p3)03log can (4.26)
1 1 C23
5(292 —p3)02logcgz = — Dopa + 5( — p2)02log c11 — 03[ (ps — p2) 33] (4.27)

1
+ 5(192 — p3)*a3 log(ci1c22¢33)
€33

Plugging (4.26))-(4.27)) into (4.25)) we obtain:

1 1
0=0ip1 — 5(272 — p1)01 log cao — 5(]93 — p1)01 log ¢33

C 1 1
_ alz |:82(p1 p2) - 5(]72 —]31)82 log C929 + §(p1 _p2)82 log 33

1 c 1 c
+ =(p1 — p2)D2log c11 — 95[(ps —p2)cl3z] + §(p2 —p3)§53 log(crica2¢33)

2
c ci1a C c 1
+ (pg — p1)Ba(=2) + (22 _ 1) [53(101 —p3) — = (p3 — p1)03log can
€22 C22C33  C33 2
1 1 C12 €23
— ~(p3 — p1)ds] — ~[(pe — pr) 222 - 051
2(273 p1)03 0g033] 5 [((p2 — ;1 )622 - + (p1 p3) - ] 31og 11
1 c c c c12C c
~ 53— p2) 2 s logen + (s — p2) 205 %) — (ps —pr)Bs( 22 - 2
€33 C22 C22C33 €33
1 1 c
=01p1 — 5(]92 — p1)01 log cag — 5(]?3 — p1)01 log cs3 — 82 [(p1 —p2)£] (4.28)
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1 c12 1 C12 €23
— 5 (p1 — p2) — 02 log(cr1c22¢33) — 5 (p2 — p3)———03log(cricazess)
2 €22 2 €22 €33
1, ciaco3 13 1 12 C23 €13
+ 5(—— — —)(p1 — p3)03log(caacss) — = |(ps — p1)—— + (p1 — p3)— |03 logc11
2(022 33 033)( ) ( ) 2 [< )622 33 ( )633]
C12 €93 C12C23 C13
+03|(p3 —p2)——|+03|(p1 —p3)(—— — —
[( )622 633} [( )(622 €33 033)]
1 1 C12
=0ip1 — 5(]92 — p1)01 log cag — 5(]?3 —p1)01logess — x[(p1 — p2)£}
1 12 1 12 €23 €13
— —(p1 — p2)— 0z log(cricaacss) — = [(p2 — p1)—— + (p1 — p3)— | D3 log(c11¢22¢33)
2 c22 2 €22 C33 €33
C12 €23 €13
—3[(p2 —p1)—— + (p1 —p3)—]
C22 €33 33
which is (1.6) written explicitly for i = 1, after plugging in k12 = (p; — pg)%, Ko =
c23 3 _ _ c12C _ C13
(P2 —p3) 2, K1” = (P2 — P1) 222 + (p1 — p3) s O

4.2 The leading order behavior of the iterates
In this subsection, we derive the necessary bounds to prove [I] in Theorem

Lemma 4.3. Let n € N. Assume that for every I,a, every multi-index «, and for all
(t,x) € (0,t,] x [0,0)3 there holds:

m] _ [0] Cont™*  I<a,
10 (e —epy)] < { Cz th1_2pa+5 I>a (4.29)

Then, the following bound holds as well:

a/, [n] [0] Ca,ntpCJrE b<C,
el -l <{ ot ene 13 (4.30)
for all (t,z) € (0,t,] x [0,0]3, every multi-index o, and all indices b, C.
Proof. By definition, e[lrngg = d7¢. Hence, by Cramer’s rule, we have
n ]- n
(whe) = —=— (), (4.31)

det(e}?)

where (—1)b+CQZErg is the determinant of the matrix produced by deleting the b-column and
C-row of (e[g}). From our assumption (4.29)) and definition (4.4)), it holds

0% [det(el™) — det(el))| < Cunt ¢,
n 0 Cot~1HPrte b<C (4.32)
ezl - @ <{ i e 156

)
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where

- = p <O
det(e[;l]) fuifoafast™, (Q,[%) :{ [()f*f)gc bSO (4.33)
Next, we compute
n 1 n 0] det(e[l ]) det(e[lo}) [0]
(i) = (i) = ——— (@) — ()] - =1 a) (o)), (4.34)
PO det(el™y T T Get(el™ ) det(el?) T

Combining (4.31)-(4.34)), we arrive at the desired conclusion (4.30)). O

Lemma 4.4. Let n € N. Assume that for every I,C,a,b, every multi-index o, and for all
(t,x) € (0,t,] x [0,0)3 there holds:

0] Camt—pﬁ‘é‘ I <a,
|6a(61a —€ra) 3{ Ca’ntPI*QPaJFE I>a,

o 0] Cont?e™  b<C,
0% (Wbc —wo)| < { C’Z’:tQPb_pC-FE b> C.

Then, shrinking t, if necessary, the following basic estimate is valid:

\80‘1(,0[11] 8aze[n]| < Cmnt‘pD*le |logt“a|, (4.35)
|aa1wb08a2 | < Camt‘pb_pa”log t||04|’
for all (t,x) € (0,t,] x [0,0]3, all indices a,b, I, D, and |az| + |ae| = |a.

Proof. The argument for the two bounds is similar, so we only discuss the first one. If
D = I, then it is clear that the least decaying term corresponds to ¢ = I. Adding and
subtracting the zeroth iterates we have

oxwloe2e) < ¢t + 100w 022 el < (1 + [log 2], (4.36)

where each logarithm comes from when 9, hits tP/(*) t=Pr(#) in . Since t¢ < |logt|ll,
provided t,, is sufficiently small, the desired bound follows.

Let us assume now D < I. Then we have three cases, depending on the value of a. For
a > I, we have

02| < Cont P | log 2!, 02wl = 1021 (W) — W) < Cunt?Parrte (4.37)

which leads to the desired bound after noticing that 2p, — pp — pr > pr — pp = |pr — pp|-
For a < D, we instead have

02 wi| < Cant?[logt]™1], |02 = 052 (e — e[| < Cant? =22, (4.38)
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which again agrees with the claimed bound, since p; + pp — 2ps > pr — pp = |pr — ppl-
Lastly, for D < a < I, it holds

‘aoq ’ _ |8a1( ] [0] )‘ < C t2pa—pp+a
) ’ 4.39
o) = 552 O <ot -
which actually gives a t© better bound than the one in (4.35)).
The case I > D is treated similarly. O

We now proceed to the circular estimates which imply of Theorem by an
induction argument.

Lemma 4.5. Let n € N. Assume that, for all indices I,C,a,b, multi-indices o, (t,z) €
(0,t,] x [0,8])3 there holds

o 0] Cont™ P17 I<a,
oz~ e <{ Gomt e 150

o [0] Coz,ntpc+6 b< C;
|03 (wa —wye)| < { C, t2Pv—Pcte p> (O,

Then, the spatial Ricci curvature satisfies
09RM| < Gyt 2HetIPrpl, (4.40)
for all multi-indices «, indices I,.J, and (t,x) € (0,t,] x [0, 0]>.

Proof. We will prove the stronger statement, namely that for all multi-indices o and for
all I, J there holds

02 RN < 212 PrP | 10g ¢2Hle], (4.41)

Then, the desired estimate follows by shrinking ¢,, if necessary, to absorb |log t\2+|a| into
t.
Expanding R! } using the formulas ., we notice that

RY) = L(ef0i(wl ef 0, eL‘:L> o (e (e, (4.42)

afl i€ l3a

where L(-,-) is a linear expression in its arguments. Here, ¢,, are pairwise contracting or
equal to I, J (one for each term). Employing Lemma we deduce that

|8a[e€nla( Léegia eﬁn]a)” <C Lt Pa —Peg+Ipey pg2|“0gt‘2+|a|

SCa,n(t pr—pJ +t—2maXPz+\p1 pJ\)HOgﬂ?HaI (4.43)
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< Ca,anHEHprJ'\ logt‘2+|a|

and

102wl (el g;el

el [n] (ez]ﬁ eZnL)H < Clp it P2 1Pty =Pe =5 Hpt —pey| | 10g ¢ 2o

w
L4b
SCa,n(t pr=ps 4 2maxpitlpr—pily| oo ¢|2Hel (4.44)
S Ca,nt_2+28+‘p1_pJ| ’ log t‘2+|a|

Applying the bounds (4.43))-(4.44) to (4.42)) gives the claimed bound (4.41]). O

Lemma 4.6. Let n > 1 and suppose there exists t, > 0 such that for every multi-index o
and indices I,J the inequalities

|agccx(k[n—1] _ B?]})’ <0, nt—1+e+\P1—PJ|’

laaR[n 1]’ < Ca7nt_2+5+‘p1_pJ|’

hold true, for all (t,x) € (0,t,_1] x [0,0]3. Then, there exists t, € (0,t,_1) such that the
following bound holds:

0% (k] n] _ k[O hi<c. i Hetlpr—py|
for all (t,x) € (0,t,_1] x [0,6]3.

Proof. We notice that (4.2)) can be rewritten as

n n—1 1 n 0 n—1 n—1 1 0
(k™ — 1) — (k22 ]+Z)(tkl[,} — k%) = RPN (gl ]+¥)tk3}. (4.45)
By the assumed bounds on k[ 1] , however, we conclude that
n— 1 n— _
sup 02 (k" + Sl = sup 02 (kBT — EELY < Cunt 1, (4.46)
z€[0,6]3 z€[0,6]3
while the bounds on R[Ir}fl] imply that
02 RN < ¢yt eIl (2 € (0,8, 4] x [0, 6], (4.47)

Also, given definition (|4 , we notice that the asymptotic initial conditions are equiv-
n]

alent to the differences tk; ; 17 —tk[o] having trivial initial conditions at £ = 0. Hence we may
solve (4.45)) via integrating factors to obtain

t
t(k?gl}] B k:g(?]}) _ efotw[n—lldq—/o e I w[n—lltﬁ{TR[Il}fl] + (kglgl] k[CC Tk[o]}d’T (448)
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where w®=U(t, ) = (K21 — k) (¢, 2). Note that

t
sup |05 / wPdr
z€[0,6]3 0

by virtue of (4.46)). Differentiating now (4.48) with 0 and using the bounds (4.46)), (4.47)
O

yields the desired result.

< C’a,ntE

Lemma 4.7. Let N > 1 and suppose there exists ty > 0 such that for every 1 <n < N
and every multi-index «, k:gr}} satisfies the following estimate:

’ag(k[lfj _ [0])| <C, t*1+5+|p1*pJ|7
for all (t,x) € (0,ty_1] x [0,8]3. Then, after choosing tx smaller if necessary, there holds

o [0] Ca,nt_p1+6 I<a,
‘8 (ela — e[a)| <{ Ca7ntp172pa+s I> a,

for all (t,z) € (0,tn] x [0,6]® and all indices I, a.
Proof. Rewrite in the form
JECH eB‘ZJ)} (g} = ki) [ ey = epo)]
— O gln ) Sk el O] ST el i) 0, (4.49)

C#I C#I

Let us denote by Q[l 2 the preceding RHS and let w[ nj _ k?}] kﬁ} By our assumption and

finite induction in n, we have that the following bounds hold:

Cont ¢ I<a,

ol < Conte, el {0 e (S0 a0
Notlce that tPL ( [121] [O]) has trivial data at ¢ = 0, due to the asymptotic initial condition
. Solving (4 via integrating factors gives
(el — oty = il [ Lo I el glnl (4.51)
L 0 L
Differentiating with % and using , we conclude the desired result. O

A straightforward induction argument now implies that:

Proposition 4.1. Points[1] [4 of Theorem[{.1] hold true.
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Proof. Lemma implies that the assumption of Lemma is satisfied for n = 1. Hence,
points[I] 2 of Theorem [4.T] are valid for n = 0. Assume that they are satisfied for all iterates
with superscript n — 1. Then Lemma implies that (4.13) is satisfied. By Lemma

we also obtain (4.11)). Lemma [4.3|implies that (4.12)) holds true. Finally, Lemma [4.5| gives
(4.14)). This completes the induction argument and the proof of points of Theorem

4.1l O

4.3 Comparing successive iterates
In the next lemmas we derive circular estimates for kM — k[“_l], elnl — en=1],

Lemma 4.8. Let N > 2 and suppose there exists ty_1 > 0, such that for every 1 <
n < N — 1, every multi-index «, and indices I1,C,b,a the following holds for all (t,z) €
(0,ty_1] x [0,0)3:
[ 1] Cont PItme I<a
’8‘1(61a ) <{ Cz thI—Qpa—‘rna I>a
n—1] CantPctne b<C
|8a(wb0 — Wyo )| < { CZ ZtQPb*Pcﬂzs b>C

Then, taking ty € (0,ty—1) smaller if necessary, the following bound holds:

]80‘( n] . k[n 1] )| < C(/l’nt—lﬂpz—pJHnE’

for every 2 < n < N, every multi-index o, indices I,.J, and for all (t,x) € (0,tx5) x [0,6].

Proof. Step 1. First, we estimate the difference of successive Ricci curvature components

R[ ] R[Ir} 1, Going back to the expression , we notice that the previous difference
has the form

RY) — R = L((e]) — el oswll el ajel). ...,
el Moyl Vel o (e — el ), (4.52)

@5 — Wl aiel ol (eoel ), ...

a€1 al 77 (3(1

Wty (et Bregyy gy Ve Bieggy — 0, e[“ )

Every term in the last linear expression can be estimated exactly as 1n F, F, only
now each factor which is a difference of successive iterates, e or w
contributes an extra t"*, resulting in the bound

02(RM — R < ¢, b2 (42t propal g ¢ 2o (4.53)
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forevery 1 <n < N — 1.
Step 2. For 2 <n < N, ([£.2) implies the following equation for kP — kM1l

n n- n- 1 n n-
On(t(kyy — ki3 = (ke + Delkry — k™)

(4.54)
n-1 n-1 n-1 n-2
:tkgj ](k[cc] k[ }) ‘H(R[ ! R[IJ .
Solving (4.54]) via integrating factors, we obtain the formula:
n n-1
kP — k@ )
(4.55)

t n— t T n— n- n- n- n- n-
—ehv! l]dT/O e Jov! 1]Cﬁ{TkBJl](k[con - k[ccz}) + T(R[IJI} - R[IJZ])}dT,

where wP~1] = k[CC +t7t = k:[n 1 k:[g]c, satisfying [02wm 1| < O, ,t 71+, The desired
bound on k™ — k=1 follows by finite induction, after differentiating (.55 with 02, and
using the already derived estimate (4.53]). O

Lemma 4.9. Let N > 1 and suppose there exists tiy > 0 such that for every 1 < n < N,
every multi-index a and indices I, J, the following holds:

|aa( n] _ k:[n 1] )‘ < Ca’nt—1+7Z5+|pI—PJ"

for all (t,x) € (0,ty] x [0,6]2. Then, after choosing tx > 0 smaller if necessary, for every
multi-index a and 1 < n < N, the following bounds hold:

o [n 1] Coa7nt_p1+n€ I<a
’a (6’]& )| = { Ca ntp1—2pa+na I>a
fe n—1] Ca,ntchrng b<C
|a (wa Whe n-— )| < { Ca ntQpb—pC—Hw b>C
for all (t,x) € (0,tn] x [0,0]® and 1 <n < N.

Proof. We begin by writing the equation satisfied by e[;;] —e[;; 1 , using (|4.1)), in the following
form:

d; [t (e[;;j e[;;'”)} (k[;ﬂ k[‘)l)tm( (] _ cln-]y (4.56)

Ia

— 1 n Tl pln) gl g [k[“ H(r (el - o)) 4 refee iy g2y
C#I
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Then we proceed by solving the latter equation using integrating factors, as we did in the
proof of Lemma [4.7, and argue by finite induction as in the proof of the previous lemma
to infer the bound

n 1] Copt Prtme I<a
|8a(61a )| <{ Cz’zth—Zpa—i—na I>a (4'57)

for all (t,z) € (0,ty] x [0,6]> and 1 < n < N.
Once we have controlled the difference of successive iterates for the frame, we employ

the formula (4.31) to obtain an expression for the difference w — wih=1 analogous to
(14.34)):

det(e; [n ]) det(e[;; 1])
det(eBJ)det( )

W) — @l = — L[l - @) - @) (458)

det (e} [n ])
Then, we notice that the differences of determinants and co-factor matrices of the frame
iterates satisfy bounds analogous to (4.32]), only ¢"¢ by virtue of (4.57)):
|02 [det(el™) — det(el® )| < Copt 17,
a [n n—1 Ca nt_1+pb+n5 b<C
ozl - @ < { ot e 35 6

Applying the latter to the differentiated version of (4.58) gives the desired bound for the
difference of successive co-frame iterates, which completes the proof of the lemma. O

Proposition 4.2. For any N > 1, there exists ty > 0, such that for every 1 < n < N,
every multi-index «, and indices I,C,a,b, the following estimates hold:

n] [n 1] Cont P11me I<a
‘aa<61a )‘ <{ szztpf—%)a—&-ns I>a

o n-1 Cont?c™=  b<C
|8 (wa Wy, )| <{ Camt?pb—pc-‘rna b>C

92 (k) — kY )| < Cot~Hiretlies
s [
for all (t,z) € (0,ty] x [0,4]3.

Proof. For N = 1, the conclusion is satisfied by virtue of points of Theorem
Assuming the conclusion holds for N — 1, Lemmas imply that the above estimates

regarding e[I a},wl[)cl, k[;}} are valid for every 1 <n < N. By (4.53)), we also have the desired
estimate for the differences of the spatial Ricci components up to n = N. This completes
the proof by induction. O
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4.4 Approximate solution to the evolution equations

In the next lemma we prove that k™ approximately satisfies the evolution equation (3.4))
in vacuum.

Lemma 4.10. For every n > 1 and every multi-index «, there exists a t, > 0 such that
the following estimates hold for all (t,x) € (0,t,] x [0,0]3 and I, J:

0% (0 — KELE — RIPY| < €, 2 (4.59)
Proof. Plugging in we have
Oukyy — hEGkyT — Ry = (R = RYY) + (ko = kee kT

The desired bound follows by using Proposition [4.2] to control the previous RHS and its
spatial derivatives. ]

We will also need to compare k™ with the actual second fundamental form kol of the
t slices relative to g,

Lemma 4.11. For every n > 1 and every multi-index «, there exists a t, > 0 such that
the following estimate holds:

0702 (K] — RI)| < Gt ™17t resl 20,1, (4.60)
for all (t,x) € (0,t,] x [0,0]® and indices I, .J.
Proof. We note that kIl satisfies
pueltl _Fnlelnl L il Il
Plugging in , we compute

R =k + 3 Kl

Ca

C#I
ST e S e eSS gl
CHI C#I CHI
:kgn] Zk[n 1] [n 1] eca L[ln] Z k[n 1] k[l% ey
CAI CAI
or equivalently
Ry =k = ke ega " = elegy + Y (ke - kigddes  (461)

C#£I C#I
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The desired bound for » = 0 follows by employing Proposition [£.2] and point [T] of Theorem
[41] to estimate the preceding RHS. For the case r = 1, we take the time derivative of

(4.61)) and plug in the equations (4.2), (4.7)), (4.54]), (4.56) to replace all time derivatives

in the RHS with terms that have already been controlled in Proposition £.2] and point
of Theorem 1.1l We omit the details. O

With the previous lemmas at our disposal, we are now ready to complete the proof of
point [3] of Theorem [.1] for p,v =1, J.

Proposition 4.3. For every n > 1 and every multi-index o, there exists a t, > 0 such
that the following estimate hold:

OSRY)| < Camt 247, (4.62)
for all (t,x) € (0,t,] x [0,0]® and indices I, J.
Proof. The evolution equation (3.4]) holds true for any Lorentzian metric, hence, also for
gl®l. We thus have
RY) = RY) — ok + kELE)
_ R[II}] a, k[n] [n] k[n]
— ou(ky - kE‘?)) <k:£§‘]c REEIRE + kSR — ki)
The desired bound follows by using Lemmas O

4.5 Approximate solution to the constraints

The sequence of iterates g™ we have constructed so far is an approximate solution to the
evolutionary part of the Einstein vacuum equations, ie. (4.62). We will now proceed to
show that for asymptotic data satisfying Deﬁnition gl is also an approximate solution
to the constraint equations. Let us denote by vl DI the connections intrinsic to g[n], g[“]
respectively and let

g = g (DI el ) = gl (vl B ). (4.63)
I

I

Lemma 4.12. For every multi-index and indices I, J, B, the n-th spatial connection coef-
ficients satisfy

0851 < o (t7PTHPE—PIl o mprtlpmpil g s tiorpal)log g Hlel, [ B
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and

0% [ + P B log(frrt ™) = Y7 harBr(t ™ f10)]] < Caut P,
J<a<I

for all (t,z) € (0,t,] x [0,6]3, where E; ="~ ; fu0y and the last sum is not present when
J>1. -

Proof. The first bound readily follows using the formula (3.6]) and Proposition For the
second bound, employing (3.6)) and Proposition once more we have
,Y[II}]I w?}] e[n] [ ] + w[ | e[In] egl}

B log(fut M) + S P B fr0) + () error
J<a<I

= - tipiEllog(thipI Z h IEI t pJfJa) (’)/[J][)errora
J<a<I

where |0% (’ygr}]l)ermrl < Cqpnt P/ Fe. This completes the proof of the lemma. O
Next, we show that the constraints are satisfied to leading order.

Lemma 4.13. Let py, 14 satisfy the algebraic Kasner conditions and the asymptotic dif-
ferential conditions (4.9). Then, for every n € N and every multi-index «, there exists a
tn > 0 such that the following estimates hold:

|02 [RI®) — kM2 4 (trk)2] | < Cont 2P, (464
’aa[ n]k[n] [n]trk: ” < Ot~ torrte,
for all (t,x) € (0,t,] x [0,0]® and index I.
Proof. From point [2] of Theorem it follows that
|02 RM| < C,, 12

We also have

kP12 — (b kD2 = (k) — 01 (k) — B0y — (brk) — trk(0])2

+ (k) — ), 59 - 2 (KO, (k] _ glo]y,*

1 , 1 2
+ 3 2P —t2<2pi>
(2 1
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The last line cancels, by virtue of the Kasner algebraic conditions. From point [1|of Theorem
the remaining terms and their spatial derivatives are bounded by Caynt_”g. This gives

the first bound in (4.64)).
For the second bound in (4.64)), we expand the momentum constraint:
Vil el gl
— o) el ey~ )

=M, (kM — Py — o, (tr kT — trkl0])

n n n n n aap[
— e (ke = KEY) + 15 (ki = ki) = (e — e) =~ (4.65)
0] —PI
+§J: ([’y +tPLE log(frt7P7) I;Jt Pm[ (P fra)] 22 . )

— ' PLEpr =y 7 P (py — pr) [EI log(frst ™) = Y tp’_”ngJ(t_prla)}
J I<a<J

From point [T] of Theorem [£.1] and Lemma we have
05 Tela, (k1 — k%) — e, (b k) — ki)

<C, n(t—PJt—l-i-SHPI—PJ\ 4+t p[t—1+5) (4.66)
< Copt ™ 7P,

02 (e — e “pI - Z W) LBy log(frt ) 2P ;pl]\ < Cont 17PITE (4.67)

a

and

o n n 0 n n 0
o, K 4 )
< Ca7nt_1+5+|PC—pJ|(t pitlpo=psl 4 y=potlpe—pil 4 y=potlpi=pily| jog ¢| 1 Flal) (4.68)

+C, nt*1+5+|p1*pc|t*pc

< Ca,nt_l_pl e

Finally, we observe that

T PLEp + Y 7 P (py —p1) {EI log(frst ™) = > P10 B (£ f1,)
J I<a<J

=t"17PL [Efpf +> (ps —pr)Erlog(fs) —logt» (ps — pr)Eips (4.69)
J J
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> " (ps = PDhasEsfra+1ogt Y (ps— p1)51JEJPI]

J I<a<J J

=71 |:EIPI+ZPJ_pI)EIIOg Fr) =Y. > s —pr) aJEJfIa]

J J I<a<J

where in the last equality, we used the algebraic Kasner conditions. The last line vanishes

by assumption (4.9)), see also Lemma Combining (4.65)-(4.69), we deduce the second
inequality in (4.64)). The proof of the lemma is complete. O

Proposition 4.4. Assume that the conclusion of Lemma[{.13 holds true. Then for every
n > 1 the spacetime Ricct components of gl satisfy:

for every multi-index o and v =0, 1.

Proof. First, we recall the Gauss and Codazzi equations for the metric g
R(g™)y — &2 + (k)2 =Rl 4 2R (4.71)
VIR ek — g (4.72)
By Lemma and Proposition {.3] we deduce that
0eRI < ¢, e oeRl) < 0 2t (4.73)
The twice contracted second Bianchi identity reads:
DRl = pRE %DE“]R["}, pIMRY = pRE - %Dg“]R[n}. (4.74)

Expanding the covariant derivatives and subtracting the background variables, we rewrite

(4.74)) in the form

R~ () F R = LR ¢ i) LR w79
+ e RET = e pRED + Y kERGS
CAT
) R[n] — 9% %[n]R[n} -9 [n]R[n] -9 R[n] [n] R[n} _ %[n] R[n] (4 76)
tHoo r 00 —2€c Ry — 0tRee +vcctos — kepfep .

Subtracting the iterates k™ k% we are left with the system

1+pr
t

1[n

aRM™ 4 Ry = SN RERE + F (4.77)

CHI
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+ (tekl — terl 4 torl — okl 4 &) — kL)
n 2 n n n n n n
R+ 2R R o om) R
+ 2>k — ek 4 ekl — g0 R
where
n n n 1 n n n n n n
R~ LR oo R
By =~ OR¢E — REpRED

Using integrating factors and (| m, we obtain the formulas

R 1o / 1+p1[ PIRE | SRRl gl
0 C#£I

+ (trkl — torl 4 torl — okl - &) — k) kD — K

t
i =0 [ g o onty o R

+ 2(trk™ — trk 4 ek — YR, [1(1)]] dr

n 0 n
+ kY — kDR

(4.78)

(4.79)
(4.80)
(4.81)

)R{;} dr

(4.82)

By Lemma [4.11] Proposition [£.3] and Lemma [£.12] we deduce the estimates

t
ag(rl—m / THPIF}“]dr) < Gt~ 2 D2| Jog ¢
0

< Ca nt—Q—l—nE
t
oy <t2 / TQFOH} dT)
0

Applying (4.73)), (4.83)), (4.84) to (4.82)) gives the bound

S Ca7nt72+n€

|aaR[n]‘ < Ca,nt_2+2€ + Ca,nt_2+ne-

t ~
P (tz / (2rREL — 27 RIE )ar

(4.83)

- R[g]c) ’ (4.84)

(4.85)

Using the latter, along with (4.73)), (4.83)), (4.84), and Lemma we obtain

O RG] | < Cant ™72 o Cont ™21,

(4.86)

Note that for n > 1, the bounds (4.85), (4.86) are an improvement by t¢ over (4.73).
Repeating the above argument n — 2 times, using (4.85)), (4.86]), instead of (4.73]) and so

on and so forth, yields the desired (4.70]).
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5 Construction of an actual solution to the modified evolu-
tion equations

In this section, we carry out a localized construction of a singular solution ey, kry,vrsB

to the set of equations (5.12), (5.13]), (5.14), whose behavior matches that of the iterates

[]I;], k:[;}},vg J]B to a sufficiently large polynomial order, as t — 0.

5.1 Domain of definition

The domain on which the actual solution will be living is defined using the metric g™,
for some sufficiently large n which is fixed in the end. Let X; denote the level sets of ¢ in
[0,T] x [0,0]3. Denote the boundary of the initial slice by Sy = 0% = nglsi’a, where
Soa = {2* =0}, S5, = {2 = 6}. We then define H = U]_ _ HE, where H are the ingoing
hypersurfaces obtained by flowing each side SSEQ of the cube Sy through the corresponding
vector field 7

o vinlge — Pl (glnlyiag 5500 (5)

For simplicity, we suppress the index n in the notation for the domain and its geometry.
Let Uy C ¥ denote the slices whose boundary S; = nglea = OU; is in turn the slicing of
H induced by the above flow, ¢ € [0,7].

Remark 5.1. The constant o is chosen such that Xai is spacelike and sufficiently ingoing.
It will be fixed below in order to absorb any energy flux terms in the estimates coming from

H, see the proof of Proposition[5.5 and (5.51)).

Lemma 5.1. The flow of X is well defined in [0,T] and the hypersurface H is spacelike.
The coordinate functions x°, b # a, induce coordinate vector fields @, on TS;EQ that satisfy

Do = Fo"0er 105 (fye™ = Obe)| < ot HPe2Pmintecy |log g H1 (5-2)
In these coordinates, the induced metric g%¢ = glnl (@y,@.) on Sfa satisfies
|05 ( glﬁ;é gl[:cl])| < Ca,ntQPmaX{b’c}—i_aa ‘8?:‘[(9[11])% - (g[n])bC” < Ca,nt_zpmin{b’c}+€ (5.3)
[n] g elelnl
Moreover, the inward unit normal to S o n Uy 1s a perturbation of:tvia =+AL_:
T2%] o Jelel ol
B
ngs, =k |l F A ][ < Cut e (5

:F
R
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The future unit normal to SjE within H is a perturbation of
5 oMl ]

Xai = (02 - 1)_% [8t + U(egl(]le[a]l) 2er, €; ]

= RO (Y R0 ) (0 =17 S Cant
’ " i (5.5)
‘3&[ . )I - (02 _ 1) (el [n ] el ]) 26[;;” < Ca,ntlp“_p”ﬁ_

t,a

The future unit normal to HE is a perturbation of (o — 1)7% (00, &+ (e[gie[gi)*%e[ln] e[ln]].

1
Nyt = nHi&g + nHie[l ], |8°‘[n2{i —o(0? —1)72)| < Cyunts,

a 1. [m] [n]\—1 [n] pa—pil+e (5'6)
|09 [nﬂf$(a —1)72(ec e0,) 261 || < Cont!Pa?r

The induced volume forms on Stia’Hf satisfy:

Vol +
Vol,ng

02 [ i — Vet < Conth, (02 [ — (0P~ 1)7H] < Gty (57
t,a

where da®, dz¢ are the 1-forms dual to @y, @., b, c # a.

Proof. The tangential vector fields to nga are {Oy}p.q. Lie propagating them along XF
gives @, € TStjfa, b # a:

N el N N L
(Xo [ 0] =0 = (at + ool a) b T oy 0, (fa L ) =0. (5.8
(n] [n] [n] [n]
ela ela 6Ia ela
From point [1| of Theorem we observe that the coefficients in the previous equation and
their 0% derivatives satisfy the bound:

ol |
8a( Ia"Ic )' < Cmntpa—zmln{pamcﬂ 10gt||a‘ (59)

T\ el

In particular, the coefficients are bounded by Ct~!'*¢, that is to say, they are uniformly
integrable in [0, ¢]. Since is a transport equation in X;t, for flf Cji with initial data &p.
at t = 0, the flow is well-defined in [0, 7] and fgc’i satisfy (5.2).

The estimate for the induced metric components on Sf’ca follows from and
(4.17).
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Iy

For the inward unit normal ng+ to Sffa in Uy, we first subtract from :l:‘v[vn]ia| its
projections to @, b # a, to obtain (without summing in a)
vnla [n] (7] o
Vor == [n] f g VT ?ﬁ])
b |v Zz ’g[“] b;ﬁ ‘V[n]$a| glﬁlé
:i[( n])aa]f% [n] ma :FZ n] aa f% 5}) 1 lt)la,:l: l;lzj:tai (510)
b#a
From the estimates (5.2)-(5.3|) we have that
1 ~1 pa,+ pat
02 1(g™) "2 (g )~ o F Y
<C, ntpa_2pb+1+pa_2pmin{a,b}+1tpa_2pmin{a,i}| log t| ool +1 (5.11)

S CaVntpa72pmin{a,i} +e ,

since 2 — 2pp + 2pa — 2Pmin{a, b 25 Recall that [(g™)29] =z (gInl)ia ~ ¢Pe=2Pminta} | Hence,
the first term in the RHS of (| is of leading order. Rewrite

[n] [n n n
(g3 (g0 = lediwlpel) = el e ]
eCl'jc]Le[Cr'la eC’gng eCr'lgng

To conclude the desired estimate (5.4), we observe that Nk = VSt:,ta / |VSti,a| g and that
Vsti is unit to leading order as t — 0.

The estimate (/5.5]) for ngi is obtained similarly, by subtracting from X its projections
t,a

to @, b # a, and normalizing the resulting vector field. In turn, (5.6) is immediate from

(5.5). Finally, the bounds for volume forms are implied by (5.3]) and the form of the normal
H

n_.s . O]

S

t,a

5.2 The modified system of equations for the remainder terms

We now consider the system of equations (3.2 , ., . ), dropping all R( ) terms, since

we are WOTkIDg 111 vacuulin:

Oera =kicecas (5.12)
1
Otkry —trkkry = 5 |ecrue — eryeac + ecie — esyeic (5.13)

— YcIiDYDJC — YCCDYIJD — YCJDYDIC — YCCDVJID
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1
+ §5IJ [QeD'YCDC +veEpYDEC + YoopYEED + kcpkep — (koco)? |,

OB — kicycss =epkyr — ejkpr (5.14)
+vsBcker +virckse — vyBicker — vBicksc

— 4B [ecka] —Yccpkpy —ycispkep — 6Jt1"k]

+0rg [eck’CB —Yccpkps — YeBpkep — €Btrk} .

We would like to produce a solution ej,, k17,7778, each component of which is equal to the
[n] _ [n]

corresponding e[;;], kX 177175 Plus a sufficiently decaying term, as t — 0.
For this purpose, define the remainder terms

egzl) =er — 6[[1;]7 '7§J)B =7I1JB — VEJ]Ba k‘&} =krj— k[n} (5.15)

Next, we plug (|5 into - ) to obtain the system of equations satisfied by the
differences e%),%dJ B k:%) We use in the process the version of the equations -, .
for k?}], E’}]B and (4.1) to replace the terms which only contain iterates. A tedious, but

straightforward, computation gives the equations:
d n 0 d n d) (d n
duely) + . FLefl) = (kf — kE)els) + K{Qelh + kel + (@)1, (5.16)
ki + ;k‘u = 5{607%) - el’Ygl}c + ecVSi0 — earte + 251J€D7(CC%C} (5.17)

—5,J7k(d) +5u KD — 5 ch /&9 4z,

00+ P, e e — ek ) —eskED] 41 k) — i)
(5.18)

Pr_(a) DB _(d) (d) (d)
T VIBLT — Yyt 7’7BJ] "’ ; VBIJ

P d bc (d
~b1p| B, + trrpwﬁtmg+ % oi%he]
C C

D a a a
L el + 6 ple%) + 51375)46(;2 — 017 fﬁe(ﬁi

— 615
+ @%?B + (I,[},n})[L]B,
where

d d n d n n d n d n
A =2 |0t — 0000 + oo — ontle + 26ue%ic’m[c£c] (5.19)
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— 5|YcrpYpic T YeepViip T YeipTpic T YeepViip

2
d n d n (d n (d n
S ey SRy Y

d d d d d d d d
+ 18078+ 9o+ 28l + 1o

1[ n] _(d) ] (d) n] _ (d) ] ()

d d 1. (@, 1,
+ 61 [(k[c“% — kep)kep — (kge = keo)kpp + SREphED — 5 (kée)”

1 n _(d) n _(d) (d _[n (d _[n () _(d)
+ 551 J [V[OJ]EDWDEC + ’Y[cé*DVEED + PVCEDW[D]EC + ’VC(JDV%’J};D +YcEDYDEC

+ v(c‘?;mg%p} + (trkl — trkON D 4 k@ (k) - B0 4 @ (D)

d n 0 d d) [n d) _(d n d n d
8105 = (kie — KieNG)s + koo + Kiero)s + 1iscke] + Yok se (5.20)
n d n d d n 0 d n 0
— Yk S) = TlakSe: + 15D (REE = kED) + A5 (k5L — kRb)
d n 0 d n 0 d d d d
— 170 (kS — KD = 1500 (ke — BRb) + A5 BokS) +157ekSe

d d d d n d n d d n 0
—Tg0ke] — Ts1ckSe + o1 [v[cé@kr%} +10IpkED + 16Lp (kD — kpy)

@ (plnl @ L @ (@

0 n d
+vcip(kep — k[C]D) +Ycepkpr T Ycipkep o ke

n d
— 01y [V[C}C'Dké)ga +YeBpFeD

d n 0 d n 0 d d
98 (kD — ki) +1E5p(hED — kEb) +AEepk s T AEBDRED

+ e 0a (K] — K5 — €50 0a (ki) — K5)) — 91 {el0a (k) — k)
= e§00u (ks = k0D + 015 {eadalkh — kO) — ea(kil — ko6) )
and

(1= 3 e — -
CAI
n 1 n n n 1 n
(Z} ])1J=§(R[I}+R5})+5U(Rgo} + ;R™) (5.22)
— O (k™ D) ) gl

1 n n n 1 T n| 7 n T n
L0, LS, — (k2] — Lo (R R, — (R
(T 5 = 85RYY — 51/RY (5.23)
(R Rl 4 V) T ) —
+ 1o (kS = kG +1ie (K5t — kpe) = vBe ket — RoD)
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o5~ Ry — dun e ol — R — o (k) ~ 7
Al (kb — R — e el — o] 461, e, - R
—ll 05— Rh) = 2 (b, — Fob) — el ek — s

The terms in (5.19)), (5.20) should be viewed as error terms in the energy estimates below.
On the other hand, the terms explicitly written in the equations ((5.16)-(5.17) with ¢!

coefficients need more careful handling. They will be absorbed by considering appropriately

large t-weights in our norms. To this end, we will need (If[zn}) Tas (I,En]) 1Js (ILH}) 1B to decay

at a sufficiently fast polynomial rate in ¢. It is immediate from Theorem and Lemma

[4.17] that

Lemma 5.2. For every multi-index o and all indices I,J, B,a, the expressions (5.21)-
(5.23)) satisfy the following bounds:

02 () 1al, 108 1], 102 (@) 18] < Cant™, (5.24)
for all (t,x) € (0,t,] x [0,0]®, where M = M(n) — +00, as n — +oo.

The following lemma makes evident the hyperbolic structure of the system ({5.16))-(5.18]).

n] _ [n]

Lemma 5.3. The iterates satisfy kU = kBI, V1B = —’yIBJ, for all (t,z) € (0,T] x [0, 6]3.
(d) _(d)

Moreover, the variables kyj,v; ;5 enjoy the same symmetry/antisymmetry properties
(d) _ 1.(d) () ()
krg =kjrs B = ~iBg (5.25)

for all (t,x) € {Ut}sepn,m, provided that they are valid on Uy, n > 0. The same symmetries
hold for krj,vriB.

Remark 5.2. FEquations -, - form a first order symmetrz’c hyperbolic system
for kIJ,’y§J)B, provided - ) holds true. Indeed, multiplying (5.17|) with k:U, with

ifyIdJB, and adding the resulting identities we notice that the ﬁrst derivatives in the resulting

RHS combine to give only whole deriwatives of products k(@ % ~(4)
Proof. First, notice that the corresponding properties hold for k?}],fygr}]B in [0,%,] x [0, 6]3

{Ut}tepo,r)- Indeed, for VR;'}B this is clear by definition (4.63|). For k; }, equation (4.2) implies
that

n n n—1 n n
Oukyy — K5)) = kée kY — k) = 0.
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Rewrite
n n n—1 n n n—1 0 n n
otk — K] — kM R — B — kB — kL)t — Ky =0
By point [ in Theorem [.1] kK2 — k% | < ¢,¢=1+2. Also, from (EF) it follows that

lim (k" — k) = 0

t—0

Hence, solving the above ODE via integrating factors for t(k:gr}} — kgr}]), we conclude that

t(kgr}] - k:‘[]nI]) = 0 everywhere.

Now, if kg‘?,%?B satisfy (5.25) on Ur, so do krj,vrs5. Returning to equations (5.13),
(5.14), we have that

Oy(kry — kyr) —trk(kry — kjr) =0, Ot(v1sB + 1) — krc(vess +veBy) =0
The conclusion follows by observing that the initial data of k;;—k 7, vr75 -+~ are trivial
on Us and that the integral curves of J; emanating from all points in U rule the entire
domain {Ut}se(57)- O
5.3 Local existence

Our goal in this section is to prove the following.

Theorem 5.1. For every s > 4 and Ny € N, there exists nn, s € N sufficiently large, such
that for every n > ny, s, there exists T = T, sn > 0 sufficiently small and a solution

era, kry,v1sp to (5.12)-(5.14)), in the domain {Ut}tG(O,TNO,s,n] (see Section , such that

the following estimate holds:
1€ 5y + IR ey + 19l ey < 270, (5.26)

for allt € (0,Tny,sn], where the remainder terms e%), k%),’y%)B are as in (5.15)).
Proof. 1t is split in Propositions O

We first begin with a solution defined in the future of a non-singular time, furnished by
standard local existence.

Lemma 5.4. For every n > 0 sufficiently small and n € N, there exists T =T (n,n) and a
unique smooth solution ejq, kry,vrsp to (5.12)), (5.13), (5.14) in {Ui}iem 1), such that

€Ia<77a JJ) = 6[11111](777*%)7 k'IJ(Tlax) = k[[?]} (77735), FYIJB(nax) = F)/R‘l]]B(nv'T)a

for all x € Uy,. Moreover kry = kyr, Y1 = —VIBJ-
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Proof. By standard local existence for first order symmetric hyperbolic systems, we have
that a solution to — exists in the future domain of dependence of U, denoted
by D(Uy). However, given that we have modified the original equations , , the
latter domain might not a priori be the same as the domain of dependence for the Einstein
vacuum equations. D(U,) is the largest domain for which the energy associated to the
linearized version of —, on a future time slice, can be bounded from the initial
one. Moreover, D(U,) is determined from the principal terms in the equations. Hence, it
is the same for the system ([5.16) As we will show in Section u 5.4] by deriving such
energy estimates for the variables e Ia Sk J , 71 J B 0 {Ut}se)n,), we can choose the constant
o in sufficiently large and T sufficiently small (independently of 1) to guarantee
that D(Uy) necessarily contains {Uy}icf, 7). From Lemma we also have the desired

symmetry/antisymmetry relations. O
Let
d d
el 0y = Z e ey e @lwswo = - e lwswos
d
[ Z e e IR D e = DK lw - (5.27)
d
VDN s ) = Z ||71JB||Hs(Ut) VPl = - s lw=wo)-
1,J,B 1,J,B

where for a function f : {Uy}4c[o,7] — R with the appropriate regularity, the H*(Uy), W*(Uy)
norms are defined as follows:

| £ 1137 W) Z / [0S f(t, x) VOlg[n vol m) = gl |dat da?da?,

lal<a (5.28)
”fHWS(Ut) = Z eSSSUPxGUJagf(t,x”.

la|<s

We will bootstrap energy estimates with suitably large weights, which will guarantee that
the time of existence in Lemma is independent of 7 > 0 and that the differences (|5.15|)
decay to sufficiently large polynomial order.

Proposition 5.1. Let eq, kry,vr78 be as in Lemma[5.4 For every s > 4 and Ny € N,
there exists ny, s € N sufficiently large, such that for every n > np, s, there exists T =
TNy,s,;n > 0 sufficiently small such that the following estimate holds:

11wy + 1Ky + oy < 2, (529)

for allt € [0, TNy sn]. In particular, the time of existence T'(n,n) given by Lemma can
be fized to be T, sn, independent of n > 0.
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Proof. 1t is given in the end of Section after deriving the main weighted energy esti-
mates, see Proposition [5.3 O

Since the estimate ([5.26]) is independent of n > 0, it is clear now that we can a extract
a subsequence which will satisfy Theorem

Proposition 5.2. Let s, Ny, n be as in Proposition |5.1. Then there exists a sequence of
matial times 1N, — 0 such that

1. The corresponding sequence of solutions (€rqm,krjm, YrB,m) furnished by Lemma
converges in Ct, asn — 0, to a limit (erq, kr7,7178)-

2. The limit solves the system ((5.12))-(5.14]) in {Ut}te(07TN0,s,n]'

3. Moreover, the corresponding differences e(li),ky?,’y%)B satisfy the estimate (5.26)), for
allt € (0,Tngy s,n)-

Proof. Using the uniform estimate , Arzela-Ascoli, and a standard diagonal argument,
we infer that the sequence (erqm,k1.7m,V178,m) has a subsequence converging in C! to a
limit (erq, k1., v178) for every fixed t € (0, T, sn]. Also, the class C' is enough to ensure
that the limit satisfies the system -. Moreover, for every t € (0,Tn,sn], the
former subsequence has a subsequence converging weakly in H*(U;) and the limit satisfies
(5.29). By uniqueness of limits, we conclude that the limit (ezq, k1.7, v7s8) satisfies (5.29)
for all ¢t € (0, Tng,s,n)- O

5.4 Weighted energy estimates for the remainder terms

In this subsection we derive the main energy estimates for the variables e%), k%), 7%)3, see

Proposition that complete the proof Proposition [5.1] in Section [5.4.3

5.4.1 Bootstrap assumptions and basic implications

Consider the solution furnished by Lemma and fix s > 4. We make the bootstrap
assumptions

1€ ey + 1K Wreqwny + 0 lleqony < 2 (530)

for all t € [0, Toot), where Tpoot < T'(n,m). Notice that such a bootstrap time exists by

@) L) (@)

continuity, since the variables e}, k; 7,775 vanish on Uy,.

Remark 5.3. Deriving the estimate (5.29) for No > 5 clearly improves the bootstrap
assumptions. A standard continuity argument then implies that the time of existence can
be pushed to some T' = T, s n, independent of 1.
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By (4.17) and point |1| of Theorem we have that

|/ 19| = Verieaaesst| < Cpt'*e (5.31)

Hence, the bootstrap assumptions and classical Sobolev embedding imply the bound
e “Dws—2(ry + 16D =2y + 17D w20,y < CF. (5.32)

Lemma 5.5. Given a function f : {Ut}te[n,TBoot) — R, the following inequalities hold true:

t
fvol ) + / n? . fvol,,+ S/ fvol ] +/ / Or fvol mdr (5.33)
Ut g g:; Hff Ha Ha, Un g n U-,— g

t
+ / / (77! 4+ CT 19| fIvol ym dr
n T

t t
// ejfvolg[n]dTg// 7'_1+5|f|volg[n]d7 (5.34)
n UT n T
#3° [ whed 4 O flvolys
a,t Hai ¢ ‘

Proof. Applying the Stokes theorem to the divergences div[n]( for), div[n]( fer), in the
region {Ur }r¢[n¢), for t € [0, TBoot), gives the identities:

t
/ / div (f0;)vol mdr = / g™ (01, 1) fvol g (5.35)
n kd Un
_/ gl (O, Or) fvolm Z/ 8t,n7_[i)fvol7_[i
Ut a,+
t
/ / div[“](fe[)volg[n]dT:/ g[n}(€],6t)fV019[n] (5.36)
n T Un

= [ et an sl — 3 [ gPer ) ol
Ut a,t thlt

On the other hand, by (5.32]) we have

ggﬂ = -1, g[n](at,nﬂat) = —n%i,g[n](EI,at) =0, 5:37)
P cr ) | = el < o |
and
Aivi (f0,) = o f — kEnf, R+t < ot
(5.38)

divi®(fe;) =erf + g n](v[:[lj.] €I, 6%1])7
D
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where

ST 1. )l + O 00 )
_7[[1)1}D+ o ](V[ﬂ](egb)w}gegﬂ) eg:,]) (5.39)

ol + el + Dl

By Lemma point |1 of Theorem and (5.32)), we have that

g [nl(v[[},]e eth < ct1+e (5.40)
Combining (5.35)-(5.40)), we conclude the desired inequalities. O

5.4.2 Main estimates

The overall weighted energy estimate that we derive in this section is stated in the following
proposition.

Proposition 5.3. Assume that the bootstrap assumptions (5.30) are valid for some s > 4.
Then, there exists o > 0 sufficiently large in (5.1)), depending only on the principal symbol
of (5.17)-(5.18)), such that the following energy inequality holds:

1 1
SN L1 e 0y + IR ey + 517D oy}

t
NO - C* _ 1
+/ — T 2o 1€ e,y + Hk(d)\\%s(zjf)+§Hﬁ(d)H%s(UT)}dT (5.41)
n
t
S/ Cr o2 1D 5 1y + 1B DN ) + IV DN (o, Y + CEM 2N,
n

forallt € [n,Tpoot), where M is as in Lemma . The constant C, > 0 depends only on
the Kasner exponents pr, their s spatial derivatives, and it is independent of n, while the
constant C' is allowed to also depend on n.

To derive the H*(U;) estimate ((5.41]), we first differentiate the system (/5.16])-(5.18]) with
0%, for |a| < s, to obtain:

D05 ely) + 0 (Shee)) = 0 { (K[ — kidel + kQelh + Klell} + 02T (5.42)
and
202K + 1 SOk
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1
= *{eCaa%(r?c - efaa’y(cd}c + 02Vl — 108G e + 2015epI D ) (5.43)

- 3(1{51J* kS~ 51J kS + 01 Z POLDY 1+ gle 4 ooz,
o te d
I + 05 ( J('J)B)
— ek — eJaa K — 515 [ec0 k) — €00k ] + 615 [ecdkl), — epotkl)]  (5.44)

of PI (d PB (d d by
- o5 (2o, - P2 + Bl + B )

I pbc (d o d bc (d
- 1505 | 2ri%y + 3 Polfhe | + 01108 [Pl + 3 Pt |

C C
Oa Oa, Oa O,
— o [5 e + ip e + drp el —5,Jf36g2]
+ & o2 () g,
where
o 1
GRS 2[6516(;ba§26bv§‘§>c — 002200 Y + 0 ecud 0 Y, (5.45)
|1 |+]az|=|a|
|| <|a
— o e 0220y + 25Uazlemagzawg%c} T oo Rl
o= X [oemomonl) - oprenoran) (5.46)
|1 |+]az|=|af
oz |<|ev|

— 5B 02 ecad™ k) — 021 €.1,0° 04kl
+ 81 [00T ecad™ Dk, — 1,020,k ]] +aceld

Next, we write the overall differential inequality for the (5.42)-([5.44).

Lemma 5.6. There exists a constant Cy, depending only on the Kasner exponents and
their s spatial derivatives, such that the following differential inequality holds true:

1
8,5( Z 2t 2N0{ 8§ S‘? aak§}aak§}+ 8§7§J)Baa71§)3})
|| <s
N 1
+ 30 R onefllonel) + UK OTkS] + 50000 0 )

la|<s
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< 3 [ cclorsilonii] - ono) +eolmidanhal)  Gan

lof<s

12 N00ge O { (ki — kie)ecn + kigeds + kigeda} + 20000 () 1,

Ok R+ 2] + 5o Dy 615 + 02 1sm) .

for all t € 0, TBoot)-

Proof. Consider the algebraic combination of equations
> {t72MNo0gels) x (BA7) +Nag k(7 x + t Mooy Dy x BAD)},
lof<s

differentiate by parts in the top order terms and use Lemma to write them as whole
derivatives. The lower order terms with ¢! coefficients are grouped together using Young’s
inequality to give the brackets in the LHS having the C, constant coefficient. O

We will make use of the following error estimates.

Lemma 5.7. Assume that the bootstrap assumptions are valid for some s > 4. The fol-
lowing expressions satisfy

3 o (D) o n d o (d) qorn
/Ut 2N0[8w Do f (1) — kl)elD 4 gDl 4 (@)D | gacld gogioly

Ok [RD 4 0T 1] + L00r p [80 + 00T ap] [volyw (5.48)
< Ct—HEt_QNO{He(d)||%{s(Ut) + ||k d)”Hs(Ut) + ||’7(d)||12qs(Ut)} 4 Ctle2M=2No,
for all t € (1, TBoot) and |a| < s, where M is as in Lemma 5.3,

Proof. The last term in the RHS of ([5.48|) comes from Young’s inequality, using Lemma

Similarly, all quadratic terms in eg ) k%), ’y}f?B are treated by Young’s inequality, observing

that their coefficients are bounded by C, ot71T€, by virtue of point [1|in Theorem For
the cubic terms in the differences, we recall — and notice that at least one factor
has at most s — 2 spatial derivatives, since s > 4. We estimate that factor in W*=2°(U;)
using and apply Young’s inequality once more. These terms are actually much better
behaved, thanks to our bootstrap assumptions , which are used whenever the terms

e%), k%), W%)B are encountered. This accounts for all terms in the LHS of (/5.48)). ]

Now we can proceed to the
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Proof of Proposition [5.3, Integrate (5.47) in the domain {U; },¢[, 4 and employ Lemma
to obtain the inequality

t
// 3TZ 2N {oeeld) onelt) + on k) oo kYY) + 3:?7%)3 02717 }vol i
n T

\a|§s

"No—Ci_ong gy )2 ()12 Lo (@2
+ — {e s,y + IIE ez, + 511y 135 07, } VOl dT
n

t
<> / / 7280 Lo [0k Doy D] — e [0k Doy D) ] (5.49)

laf<s 71 25T
(d) ga(d) b e —2No gy (d))2
+€D[8§k11 (%,XVCDC]}VOlg[n]dT—i-/ Criter= 0{“6()HHS(UT)
n

Next, we use Lemma to integrate by parts in 0y, ec, €1, ep, recalling that e(d), k(d),’y(d)
vanish on Uy:
1 _ 1
5t 2N0{H6(d)||§{s(ut + KD N ey + *HV(d)H?{s o}
+—2N o o (d) a.(d) qay.(d) o, (d) aqa, (d)
+ Z Z/ °ng, {‘9 ela e€ra T 00k 07kry + ax'YIJB8 ’YIJB}V()le
la|<s b+
No _
/ N e ) + KO + 5O b (5.50)
—2N, a(d)a(d) a()a() a(d)a(d)
< Z Z/ 0” = (05 Ky 057D — Oakpy08 vy + 05k 896’YCDC]V017{§E
|a|<s b,
- o (d) qa (d a1.(d) qa7.(d 1 a (d) aa_(d
+ |Z<: sz; Crir N0 {oR e 0nely) + Ok ORkTY + SO0 08, vl

+ /n Cr o2 f1eD 1 1y + 1D N e ) + IV DN,y e + CE oM =20

To conclude the estimate ([5.41]), we need to show that the H-boundary terms in the previous
LHS can absorb the ones in the RHS. This is clearly possible by shrinking the interval of
existence in a manner that depends on n, but it is independent of 7, and by taking o

sufficiently large such that
1
Cr 410 /nf[in + < 4n0 (5.51)
b
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1

The latter is possible since nzi ~o ng){i ~ 1, for o sufficiently large. Replacing C, + 1

b b
by another constant labeled again C\, still independent of n, completes the proof of the
proposition. O

5.4.3 Proof of Proposition

With the energy inequality at our disposal, we choose Ny € N such that Ny > C,.
The latter number depends only on the p;’s and their s coordinate derivatives, for some
s > 4, which are all fixed to begin with. By Lemma we then choose n = n(Np)
sufficiently large, such that 2M — 2Ny + 2 — e > 0. For these choices of parameters,
implies that

t_2N0{”e(d)H%{S(Ut) + Hk(d)”%{S(Ut) + H’Y(d)H%{s(Ut)} (5.52)

t
S/n C'T*HETQNO{He(d)H?{s(UT) + Hk(d)H%{S(UT) + \W(d)”%{s(w)}dT + M 2Not2e,

Applying Gronwall’s inequality in [n, ¢] yields the energy estimate

_ _ _ iCT—1+6
£ 280 {11eMD 1Fro 0y + IR D ey + IV DMy} < O 2Nt “eln - (5.53)

In particular, shrinking the original interval of existence [n, T'(n,n)] if necessary, in a way
that only depends on n, we have that

||e(d)||§{S(Ut) + ”k(d)H?’—IS(Ut) + ||’7(d)H12LIS(Ut) S tQNOa (554)

for all t € [n,Toot). For Ny > 5, the latter estimate is an improvement of our bootstrap
assumptions . A standard continuation argument implies that the time interval on
which holds true can be enlarged up to some [n, T'], where T' = T, 5., depends only
on the parameters chosen above and not on 7.

6 Recovery of the Einstein vacuum equations

In Section [5| we constructed a singular solution ey, kry,vr75 to the modified system of
equations —. Now we need to show that it actually corresponds to a metric that
satisfies the Einstein vacuum equations.

Consider the metric g of the form , for which e; = ej,0, is a g-orthonormal frame.
This completely determines the metric. The variables kry,vr;p that we have solved for,
using — @ are not a priori the connection coefficients of ey = 0y, ey, since the
equations @, have been modified using the constraints. Nevertheless, they define
a connection D as follows:

Deye, =0, 156160 = —krjey, ﬁeIeJ = —krje0 +v1sBEB. (6.1)
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By Lemma we have that D is compatible with g. However, it is not necessarily torsion-
free. Define

Capv = 8([ea, eu) — ﬁeae# + ﬁeuea, ev) = —Chuaw (6.2)
and the curvatures

ﬁ'a,@lﬂ/ :g((ﬁeaﬁeg - ﬁeaﬁe@ -

D, cs—Deyea) e )
Ry, = — Roguo + Rugur, (6.3)
R =-Ry + Ry
It turns out that proving D is the actual Levi-Civita connection D of g and krj,v1JB
the expected connection coefficients, must be done at the same time as showing that g

is a solution to the Einstein vacuum equations. The following lemma is contained in [20}
Section 4].

Lemma 6.1. The variables Cyyy, ﬁﬁu satisfy:
Capo = Coap =0, Ry + Ryr = —61;Roo, Ro; = —Ryo (6.4)
and
0iCrsp = (k*C) 1y — 615R0 + 8;8R 10,
ORo =erRoo + %ej(ﬁu —Ryn)+ (k*R+7y*R) + (C*Q)r, (6.5)
8tf{00 :elf{m +k*fi+ry*f{+0*Q,
0(Rry—Ryr) =esRpo— e/Ryo+ (kx R+v*R) 1y + (C* Q) 1y,
where the indices in the x product terms do not malter, the factors R in these terms are

Rg, components, and Q is a linear expression in C,vyxy,v %k, k* k,ek,ey (different in
each equation,).

Remark 6.1. The equations in (6.5) constitute a first order symmetric hyperbolic system
for CryB, Rio, Roo, Ry — Ry

Next, we argue that the corresponding variables for the approximate solution given by
Theorem [4.1] are increasingly decaying for n sufficiently large, as ¢t — 0.
Lemma 6.2. Consider 5[“}, ﬁgﬂ,ngu to have exactly analogous definitions to (6.2)),
(6.3), but with g,er,kry,visp replaced by the iterates g["},e[ln],k[;}],’y}r}}B. Then we have
the following bounds:

[n]
’Cocﬁu

for all indices a, B, p, and for all t € (0,Tn, s n]-

| < C«tflJrnz-:7 |f{[ﬁlﬂ’ < Ct72+ns’ (66)
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Proof. By (4.63), we notice that C’B]B. For the rest of the indices we have

ol =~ ) + 7 -

Gty =& (eo. H,ebb + gD o, ) = (@reli )] — )
— (el + 3 kel 1]) ) - kf) (o5 @)
C#£I
=kP0rs — K+ > ke Yoo+ 3 ke e Wl — Wit
C#I C#I

Taking cases I = J and I # J, the first three terms in the last RHS amount to 0 and
k:gr}*l] — k?}] respectively. Hence, the bound for ngu follows from point |1| of Theorem
1] and Proposition

Given the deﬁmtlon of curvature RL‘%W, analogous to , we have the schematic
relations

R 1] [n]
Roz,B,uV Ra,é’,uu

[n]

where el = Or,e; and @ a homogeneous quadratic expression. Contracting a, v, we
obtain the bound for Rgﬂ by using Theorem and Lemma [4.11 O

+ el (g — By ] (gl — gl 4 Q) — Q)

We can now proceed to show that D = D and the vanishing of the Ricci tensor of g.

Proposition 6.1. Let g,l~) be the metric and connection constructed from the solution
furnished by Theorem for some Ny, nn, s sufficiently large, as discussed in the beginning
of this section. Then D = D is the Levi-Civita connection of g and moreover, g is a solution
to the Einstein vacuum equations, ie. Rg, = 0 for all indices.

Proof. Define the energy

E(t) :=t*M72 > " |[Crsliawy + 2 D IR0l 720
1,J,B I
(6.7)

+t M| Rooll 20y +

1 - -
5t MR — RutlFe
9]

By virtue of the bounds and the energy estimate , we notice for any N1 € N,
there exists Ny, n sufficiently large, such that E(t) — 0, as t — 0.

For this choice of parameters Ny, n, a similar energy argument to the one in the proof
of Proposition gives the energy inequality

%E(t) < /0 (MG ot pyar, (6.8)

T
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for all t € (0,Tn,,s,n]. The terms that contribute to the constant C, are k x C, (513f{J0,
5JBI:~{[0 in the RHS of the equation for Cj;p in , kxR and C % (kx k), C % 0tk in
the RHSs of the equations for f{m, fioo, R; 7 — Rys. More precisely, only the leading order
part of the factors k = k% + O(t=1%), 8;k = 9:k[0 + O(t=2%¢) gives rise to terms that
contribute to C,. Hence, C, depends only on the p;’s and is independent of n. Taking
N; > C, to begin with (possibly increasing Ny, n), we conclude that

t
E(t) < / Cr ' E(r)dr,  t€ (0,Tngsmnl- (6.9)
0
Gronwall’s inequality implies that E(t) = 0.

Thus, Crj5, R0, Roo, Rr7—R 1 vanish everywhere. By (6.4)), we have that Cg,,, ﬁﬁu =
0 everywhere for all indices. Hence, D = D and Rg, = Rg, = 0. 0

7 Gauge uniqueness and smoothness of solutions: Proof of
Theorems (1.2, 1.3

First, we prove the uniqueness statement (i) in Theorem This will in fact be used to
prove Theorem Then we prove that point (i7) in Theorem implies point (7).

7.1 Gauge uniqueness

Point (i) in Theorem . Let g, g be two solutions to ((1.3)) of the form (|1.12)), satisfying
(1.19)-(1.20). We first note that they have the same asymptotic data p;, ¢;;, hence, they
admit the same approximate metric gl®. Define

[n] nly _ (@) _ )

é\lazefa_gfa: (efa_ela)_(gla_ela = €14 Ia
Fry=kry —hry = (kry — k™) = (Gepy — k) = &9 — %) 7.1
1J 1J 1J ( 1J [J) ( 1J [J) IJ 1J ( . )
oo a Ay~ ]y (d)  ~(d)
Y158 =71JB — V178 = (V1JB ’YIJB) (’YIJB ’VUB)—VUB Y1JB
The variables €j,, Ky 7,178 satisfy a system similar to (5.16])-(5.18]), only without the terms

(ILH])IQ, <I}Ln])]], (ILH})UB in the corresponding RHSs. By taking My > Ny in ([1.20)), we
have that

tin 62N {20201 + [F1320) + 812200} =0 (7.2)
where Ny > C, depends only on the L*(Up) norms of the p;’s. Next, we observe that

thanks to (1.19), we may derive an L?(U;) estimate for the variables €14, k77,7778, similar
to (5.41)) for s = 0, in all of (0,7, since we control the pointwise leading order behavior
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of the original two sets variables and their first derivatives (for ,7, we use the formula
(3.6) and the behavior of w,w, inferred by the assumed bounds on the frame coefficients,
cf. Lemma . Thus, for Ng > C, we have

_ -~ I .
2N {18y + IR D2y + §||’Y(d)H%2(Ut)}

t
< / Cr= o= 2No D)2, 4 R 20y + 5D b,

tQM—QN()—‘rQ—&‘ :

where we note that there is no term in the previous RHS analogous to C' in

(5.41]), since there are no inhomogeneous terms depending purely on the iterates. Gron-
wall’s inequality yields that the differences €4, k17,7175 vanish everywhere. Thus, the two
solutions g, g coincide.

Point (n) in T heorem [1.3 Condition (1.21) clearly contains (L.19). We will show

that ( in point (7) also holds, hence, implying that the two solutions are equal. Let
e%), k; J,’y§ J)B be as in . By point |1| in Theorem and the triangle inequality we
have that

9 ef)| < Cont?-2mprad e ORK| < Cot™ ! Homslte (73

for every (¢,2) € {Ut}(0,7y, .0, and | < M. Similarly to Lemma from the bound

(7.3) on the frame components egi), we deduce the corresponding bound on the co-frame

com ts w@ — _,,ml.
ponents wy = wpo — Wyt

|8gw(§dc)’ < Ca7nt7p0+2 max{py,pc }+€ (7.4)

for every (t,2) € {Ut}(0,1y, ..., and |o| < M;.
Mult1ply1ng - ) with PL, integrating in (0, T, sn], differentiating in 0%, and using

the bounds - ) for (Z, [n] )Ias We obtain the estimate:
’a;ve%)‘ < Ca’n(tm*?min{pl,pa}Jr% + tM), (7.5)

for all || < My, which is ¢° better than (7.3). Recall that in Lemma[5.2) M = M(n) — +oo,
as n — +o0o, so we can take n sufficiently large to begin with, such that M > My. The
latter also implies the corresponding improved bound for the co-frame components:

lagwlgdc? | < Cyp(t™Pot? max{py,pc}+2e 4 M), (7.6)

Next, we recall equations (3.4)), (4.2)) to compute
k(Y + k(d) + 6 Jfk:(d) = Ryy — RM
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d n n d d d
+keokry — Ky + (ke — ko)) +keokyy  (10)
n n—1 n n—1 n
+ RE) = Ry (e — ke DR
By Proposition 4.2 we have that

08 [RYy = Ryy "+ (ke — ke k]| < Cot~HHPTpaline (7.8)

Moreover, as in Lemma expressing Ry J—R[Ir}] in terms of e%), wlgdc) and using the bounds

(7.5), (7.6), we deduce the estimate
02 (Rry = R < Con(t=2FP1ps142 4 4M) (7.9)
Also, from (7.3]) and point |1} in Theorem it holds

a d n n d d d _ —_
05 [KEG (REY — ki) + (kEe = ROk + RELk]| < Cat ™ HPml22 0 (7.00)

Combining (7.8])-(7.10]), we improve the bound ([7.3|) for k:%) as follows: First, trace ([7.7))
in (I;J), multiply with ¢?, differentiate in 9%, and integrate in (0,7, sn,) to obtain the
bound
az.(d) —142¢
105 koe| < Cant . (7.11)

Then, we take the term 51Jp£t_1k:g% to the RHS in ([7.7), multiply with ¢, integrate in
(0, TNy, s,no), differentiate in 0%, and apply the bounds (7.8)-(7.11)) to conclude that

XKD | < Cot =1 HIPI=PIIH22, (7.12)

for all (t,x) € {Ut}(ovTNo,s,n] and |a| < M; — 2. We may continue iteratively improving the

bounds on e%), wédc?, k%) by t* each time, as long as ne < M — 1, hence, deriving the bounds

0%\ ) < Cunt™2, 00w D] < Cant™ 2, |O0ED | < Cpt™ 2 (7.13)

Of course, for each ¢ improvement we sacrifice two spatial derivatives, which is possible
provided My ~ M /e. This in turn implies that

1027 V5] < Cant™ 4, (7.14)

Thus, taking into account the volume form and shrinking Ty, s n, if necessary, the following
energy estimate is valid:

e s ey + IE DN sy + 17 PNy < 277 (7.15)
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Obviously, given condition ([1.21]), the above argument applies also to the reduced variables
€ra, k17,7178 of the solution g. Hence, the corresponding differences é{f(?, k:%), ’VV%)B satisfy

the analogous energy estimate for the same n:
BN sy + IE D0y + IF Dy < M7 (7.16)

Condition (1.20) now follows from ([7.15)), (7.16) and the triangle inequality, by taking n
sufficiently large such that 2M — 7 > 2M,. Hence, point (i) can be employed to conclude

that the two solutions g, g are equal.

7.2 Smoothness

Let g be the solution furnished by Theorem for some syp > 4, defined in the domain
{Ut}te(O,TNO,so,nob which is in turn defined relative to gl®!. The corresponding variables

e%), kﬁ,’y%)B satisfy the estimate , for all ¢ € (0, TNy, s0,n0-

Consider an s; > sp and the corresponding solution g furnished by Theorem Let
Ni,n1,TN, s, n, be the parameters and existence time associated with g. It is evident from
Proposition that the constant C, in , for an H*1(U;) energy estimate, will be
larger from the corresponding constant required for H*°(Uy), since C depends on the p;’s
and their s; derivatives. Therefore, nq, N7 will possibly be larger than ng, Ng. Nevertheless,
we observe that defining the domain {Ut}te(QTNl,sl,nl] in Section relative to g®! does
not affect the existence proof. Hence, we may assume that the slicing for the two solutions
g, g is the same, albeit the times of existence differ, T, s, n; < TNy,s0,m0-

Next, we observe that the assumptions — in point (i) of Theorem are
satisfied by both sets of reduced variables ej,, kry,vr7B and €14, kry,y178 corresponding
to g, g respectively. Indeed, this is immediate provided Ny, N7 > Mj. Since My de-
pends only on the L>°(Up) norms of the p;’s and not their derivatives, we conclude that
the two solutions must coincide in their common domain of the definition. Thus, g is
H?®'(Uy) regular, for every t € (0, Ty, 4, n,)]- Also, it is H*(Uy) regular in the time interval
TNy 51.m15 TNg,s0.m0), Satisfying the uniform bound for s = sg. By standard continu-
ation criteria for first order symmetric hyperbolic systems, the variables ey, k1, vr7p are
in fact H*'(U,) regular, for every t € [Tn, sy n1s INg.somo)- Sinice s1 > sq is arbitrary, we
conclude that ejq, kry, 7778, and hence g, are smooth in x. Using the equations , ,
, iteratively differentiating in ¢, we infer that ey, k17,7775 and g are also smooth in
(t,x) € {Ut}ie(0,Tng eg.my]- L his completes the proof of Theorem
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