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Abstract

We construct local, in spacetime, singular solutions to the Einstein vacuum equa-
tions that exhibit Kasner-like behavior in their past boundary. Our result can be viewed
as a localization (in space) of the construction in [18]. We also prove a refined unique-
ness statement and give a simple argument that generates general asymptotic data for
Kasner-like singularities, enjoying all expected degrees of freedom, albeit only locally
in space. The key difference of the present work with [18] is our use of a first order
symmetric hyperbolic formulation of the Einstein vacuum equations, relative to the
connection coefficients of a parallelly propagated orthonormal frame which is adapted
to the Gaussian time foliation. This makes it easier to localize the construction, since
elliptic estimates are no longer required to complete the energy argument.

Contents

1 Introduction 2
1.1 Goal and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Asymptotic data in 1+3 vacuum . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Brief framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Method of proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.7 Conflict of interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.8 Data availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Local existence for the asymptotic constraint equations 13

*Department of Mathematics & Applied Mathematics, University of Crete, Voutes Campus, 70013 Her-
aklion, Greece, n.athanasiou@uoc.gr.

�Department of Mathematics & Applied Mathematics, University of Crete, Voutes Campus, 70013 Her-
aklion, Greece, gfournodavlos@uoc.gr.

�Institute of Applied and Computational Mathematics, FORTH, 70013 Heraklion, Greece.

1



3 The Einstein vacuum equations as a symmetric first order hyperbolic
ADM-type system 14

4 An approximate solution to the Einstein vacuum equations 16
4.1 The zeroth iterates and the asymptotic differential constraint . . . . . . . . 18
4.2 The leading order behavior of the iterates . . . . . . . . . . . . . . . . . . . 23
4.3 Comparing successive iterates . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Approximate solution to the evolution equations . . . . . . . . . . . . . . . 31
4.5 Approximate solution to the constraints . . . . . . . . . . . . . . . . . . . . 32

5 Construction of an actual solution to the modified evolution equations 37
5.1 Domain of definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 The modified system of equations for the remainder terms . . . . . . . . . . 39
5.3 Local existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.4 Weighted energy estimates for the remainder terms . . . . . . . . . . . . . . 45

5.4.1 Bootstrap assumptions and basic implications . . . . . . . . . . . . . 45
5.4.2 Main estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.4.3 Proof of Proposition 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Recovery of the Einstein vacuum equations 51

7 Gauge uniqueness and smoothness of solutions: Proof of Theorems 1.2,
1.3 54
7.1 Gauge uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.2 Smoothness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

1 Introduction

Ever since the discovery of the first explicit solutions to the Einstein equations containing a
Big Bang singularity, by Kasner (1921) and Friedmann (1922), there have been attempts to
understand the nature of the general cosmological singularity. Kasner-like singularities are
a specific class of spacelike singularities whose leading order behavior toward the singularity
resembles that of a Kasner solution at each spatial point on the singular hypersurface. More
precisely, the first approximation of the spacetime metric reads:

g ∼= −dt2 +

3∑
i=1

t2pi(x)ωi ⊗ ωi, ωi =

3∑
j=1

cij(x)dx
j , (1.1)

where (t, x) ∈ (0, T ] × Σ, for some closed spatial topology Σ. Here, the singularity is
synchronized at the limiting hypersurface t = 0.
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The asymptotic behavior (1.1) first appeared in the heuristic analysis of [30], which
gave the false conclusion that general solutions do not contain singularities. Instead, what
the latter work indicated is that Kasner-like behavior is non-generic in 1+3 vacuum. In
this setting, the Kasner exponents must verify the algebraic relations

3∑
i=1

pi(x) =
3∑

i=1

p2i (x) = 1, for all x ∈ Σ, (1.2)

which forces one Kasner exponent to be negative, say p1(x) < 0, and the other two to be
positive, p2(x), p3(x) > 0. In [30], they concluded that (1.1) is consistent with the Einstein
vacuum equations

Rµν = 0, (1.3)

if and only if

ω1(x) ∧ dω1(x) = 0, for all x ∈ Σ. (1.4)

However, (1.4) eliminates one of the gravitational degrees of freedom and there is a priori
no reason for it to be valid. In fact, condition (1.4) implies that we can make a change of
spatial coordinates,1 such that (1.1) becomes

g ∼= −dt2 +
3∑

i,j=1

t2max{pi(x),pj(x)}cij(x)dx
idxj . (1.5)

Here, the degrees of freedom are interpreted in a function counting sense and correspond
to the functions pi(x), cij(x). The latter functions can also be viewed as the asymptotic
data for the Einstein vacuum equations at the singularity (see Definition 1.1).

Later, in the subsequent work [8], a more involved heuristic argument was put forth,
which concluded that the general Big Bang singularity is oscillatory, in the sense that along
a timelike curve of fixed x, as t → 0, there is an infinite number of “bounces” swapping the
Kasner exponents in a specific, but chaotic, manner. Nevertheless, in the interval between
two bounces the solution is still be modeled by a Kasner-like singularity, a different one in
each interval. This is typically referred to as the BKL conjecture.

The BKL heuristics have been extended to various settings, arriving to similar conclu-
sions. We refer the interested reader to [6] for an overview of the subject. We should only
note that, surprisingly, in the presence of a scalar field [7], a stiff fluid [5] or in sufficiently
high spatial dimensions [15], the oscillations are silenced and Kasner-like behavior at the
Big Bang singularity is expected to be generic. This is also called the sub-critical regime.

1Notice that (1.4) is an integrability condition. Using the Frobenius theorem, we can assume that ω1 is
a multiple of a coordinate 1-form.
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Given the complicated nature of the oscillatory scenario, the rigorous evidence in its
favor is scarce, restricted to the homogeneous class of solutions [9, 24, 37, 38]. In specific
symmetric settings with only one bounce, the recent works [28, 29] are the first to go beyond
homogeneity. On the other hand, Kasner-like singularities have by now been understood
to a sufficient extent. The main types of results that exist are roughly divided into the
following categories:

1. Gowdy symmetry. Classification of generic solutions, in the polarized class [13] and
in the more general unpolarized setting [28, 39, 40, 41]. The behavior is Kasner-like,
apart from finitely many points (for unpolarized solutions) where the asymptotic data
can form discontinuities at t = 0, called spikes. Constructions of singular solutions
with spikes have been achieved in [23, 34, 36].

2. Constructions. Starting with the Kasner-like ansatz (1.1), the goal is to solve the
Einstein equations for a remainder which is better behaved as t → 0. Numerous
constructions have been achieved in various settings [2, 3, 4, 12, 14, 18, 21, 25, 26, 27,
35, 49]. In the sub-critical regime, the constructed solutions enjoy all gravitational
degrees of freedom, while in 1+3 vacuum the condition (1.4) is satisfied by assumption.

3. Stability. Given initial data away from the singularity, close to explicit Kasner data,
it was first established in [45, 46] that a Kasner-like singularity will form in the past, in
the near isotropic case for the Einstein-scalar field and stiff fluid models. This result
has been extended to S3 spatial topology [48], negatively curved spatial topology
[16], the Einstein-Euler-scalar field model [11], the Einstein-Vlasov-scalar field model
[17], and a localized stability result has been achieved in [10]. A moderate, but
not isotropic, range of Kasner exponents was treated in [47], for sufficiently higher
spatial dimensions. Stable Kasner-like singularity formation for the full range of
Kasner exponents in the sub-critical regime was proven in [19]. The latter result has
been recently extended to general Kasner-like initial data in [22], always within the
sub-critical regime. To have stable singularity formation outside of the sub-critical
regime, a specific class of initial data is required which guarantees that an integrability
condition, like (1.4), is verified, hence, silencing any oscillations (instabilities). One
such class is U(1) polarized symmetry [19] (see also [1]).

4. Conditional. Kasner-like behavior is derived by assuming scale-invariant curvature
bounds [31, 32]. Alternatively, bounds on the renormalized Weingarten map result
in a complete description of the geometry near the Kasner-like singularity [42, 43].

1.1 Goal and motivation

Our goal in the present paper is to localize the construction of Kasner-like singularities in
1+3 vacuum that was achieved in [18]. Before the latter work, all previous constructions
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of Kasner-like singularities had been restricted to either symmetry or analyticity. One of
the main new ingredients in [18] was a novel estimate of the second fundamental form
of the level sets of Gaussian time, using a formulation of the Einstein equations at third
order in the metric. Among other things, this required the derivation of elliptic estimates,
due to a derivative loss in the energy method. For this reason, the construction is not
easily localizable. Indeed, the corresponding localized elliptic estimates generate various
boundary terms that do not have a favorable sign and cannot be directly absorbed in
the main energy (e.g., via trace inequality). One would have to use the structure of the
equations in a substantial way to treat these boundary terms. Although it might be possible,
we prefer to work instead with a first order symmetric hyperbolic formulation of the Einstein
vacuum equations, at first order in the second fundamental form of the Gaussian time slices,
which does not lose derivatives, see Sections 1.3, 3 for more details on our framework of
preference. This makes it easier to localize the construction, since the boundary terms
generated in a suitably localized energy estimate are easily seen to have a favorable sign,
see the discussion in Section 1.5.

Having a localized construction of Kasner-like singularities could prove useful in various
ways. Firstly, there is no reason why the entire singularity should be Kasner-like. Since
different spatial points on a Big Bang hypersurface have disjoint future cones, once we
zoom sufficiently close to the singularity, it is entirely possible that part of the singularity
is oscillatory, while in some other region Kasner-like. Hence, a local patch of a Kasner-like
singularity could be seen as part of a solution with more complicated singular behavior.
Moreover, in connection with black hole singularities, assuming that part of them is space-
like and non-oscillatory, one could envision that a local patch of a Kasner-like singularity
could be attached to another part of the singularity which happens to be null, see [28, 33]
for spherically symmetric examples.

1.2 Asymptotic data in 1+3 vacuum

We are working in 1+3 vacuum, where Kasner-like singularities are expected to be non-
generic. Hence, condition (1.4) must be satisfied. In other words, the metric will have the
leading order behavior (1.5). The following definition is taken from [18], only localized in
a subset of T3.

Definition 1.1 (Gauge dependent data). Let cij , pi : [0, δ]
3 ⊂ T3 → R be smooth functions,

for i, j = 1, 2, 3. We say that they form a vacuum initial data set on the singularity, if they
satisfy the following conditions:

1. cii(x) > 0 and cij(x) = cji(x), for all i, j = 1, 2, 3 and x ∈ [0, δ]3.

2. p1(x) < p2(x) < p3(x) and
∑3

i=1 pi(x) =
∑3

i=1 p
2
i (x) = 1, for all x ∈ [0, δ]3.
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3. For i = 1, 2, 3, there holds

3∑
l=1

[
∂icll
cll

(pl − pi) + 2∂lκi
l + 1{l>i}

∂l(c11c22c33)
c11c22c33

κi
l
]
= 0, (1.6)

where κi
i := −pi (no summation), κi

l = 0 if l < i and κ1
2 := (p1 − p2)

c12
c22

, κ2
3 :=

(p2 − p3)
c23
c33

, κ1
3 := (p2 − p1)

c12c23
c22c33

+ (p1 − p3)
c13
c33

.

Point 1 in Definition 1.1 implies that a metric with the asymptotic profile (1.5) is
indeed a Lorentzian metric for sufficiently small times. The distinct Kasner exponents
assumption in point 2 should not be necessary to define asymptotic data for Kasner-like
singularities. However, contact points between the two positive Kasner exponents introduce
technical difficulties that we do not want to deal with here. There are five constraints in
Definition 1.1, two algebraic and three differential, which correspond asymptotically to the
Hamiltonian and momentum constraints:

R− |k|2 + (trk)2 =0, (1.7)

divk −∇trk =0, (1.8)

as well as the constant mean curvature condition.

Remark 1.1 (Degrees of freedom). The degrees of freedom for general solutions to (1.3)
are four. There are six cij’s, three pi’s, and five constraints in Definition 1.1. This leaves
roughly four free functions (see Section 2). However, the asymptotic profile (1.5) allows
for a coordinate change x̃3 = f(x1, x2, x3), without changing its form. This extra gauge
freedom could for example fix c33 = 1. Thus, we are left with three functional degrees of
freedom. According to the heuristic analysis in [30], this is the largest class of metrics with
Kasner-like behavior we could expect.

Definition 1.1 relies on the fact that there exists a certain coordinate system (t, x1, x2, x3),
such that the asymptotic profile of the spacetime metric is given by (1.1), from which one
can read off the asymptotic data pi, cij from that profile. Therefore, the previous data
are gauge dependent. A second, covariant, definition of asymptotic data for Kasner-like
singularities was subsequently given by Ringström [44].

Definition 1.2 (Covariant data). Let (M, h) be a smooth, 3-dimensional Riemannian
manifold and let K be a smooth (1, 1)-tensor field defined on M. The triplet (M, h,K) is
called a non-degenerate, quiescent vacuum initial data set on the singularity if:

1. trK = (trK)2 = 1, K is symmetric with respect to h, and divhK = 0.

2. The eigenvalues p1 < p2 < p3 of K are distinct.
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3. [X2,X3]
1 = 0 on M, where XA are a basis of eigenvectors of K corresponding to the

eigenvalues pA, A = 1, 2, 3.

It turns out that Definitions 1, 2 are locally equivalent, see [44, Propositions 5, 6]. We
briefly discuss the connection here. Given gauge dependent data pi, cij , define

Ki
j = −κi

j , h =
3∑

i,j=1

cij(x)dx
idxj . (1.9)

Then ([0, δ]3, h,K) satisfies Definition 2. Conversely, around every point p ∈ M, a covariant
data set defines a coordinate patch (V, x) aligned with the eigenvectors Xi of K in the
following fashion (modulo renormalization):

X3 = ∂3,

X2 = ∂2 + X2
3∂3 = ∂2 +

1

p2 − p3
K2

3∂3, (1.10)

X1 = ∂1 + X1
2∂2 + X1

3∂3 = ∂1 +
1

p1 − p2
K1

2∂2 +
1

p1 − p3

(
K1

3 +
1

p1 − p2
K1

2K2
3
)
∂3

Then the functions

pi, cii = h(Xi,Xi), cij = Xi
j , cji = cij , for i < j, (1.11)

form a gauge dependent data set as in Definition 1.
An important advantage of covariant data sets is that they are coordinate independent.

Nonetheless, in order to relate the latter sets to Kasner-like singularities, one still relies on
the choice of a time foliation for the definition of the renormalized Weingarten map, whose
limit (as t → 0) corresponds to K. Interestingly, a general construction of Kasner-like
singularities was performed in the recent work [21], starting with covariant data, which
includes a non-linear scalar field and a cosmological constant, treating as well any closed
spatial topology. The time foliation is Gaussian and the energy argument is closely related
to the one employed in [18]. In particular, elliptic estimates are needed to complete the
construction.

1.3 Brief framework

Consider a 1+3 splitting of the spacetime metric, relative to Gaussian time:

g = −dt2 + gijdx
idxj , (1.12)

where (t, x) ∈ (0, T ]× [0, δ]3, such that the singularity is synchronized at t = 0. This makes
it easier to compare our results to the usual Kasner-like ansatz (1.5).
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Also, we consider an orthonormal frame of the form

e0 = ∂t, eI = eIa∂a, (1.13)

which is parallelly propagated along e0:

De0e0 = De0eI = 0, (1.14)

where D is the Levi-Civita connection of g. The main unknowns
We then formulate the Einstein vacuum equations as a first order symmetric hyperbolic

system in the connection coefficients of the frame (see Section 3):

kIJ = g(DeIeJ , e0) = kJI , γIJB = g(DeIeJ , eB) = −γIBJ . (1.15)

Here, kIJ is the second fundamental form of the constant t-hypersurfaces, Σt, contracted
against the frame components eI , eJ .

1.4 Main results

The main existence theorem that we prove is the following.

Theorem 1.1 (Existence). Let (M, h,K) be a geometric data set that induces, according
to (1.10)-(1.11), gauge dependent data pi(x), cij(x) (see Proposition 2.1 for an existence

statement). There exists a Lorentzian metric g[n] = −dt2 + g
[n]
ij dxidxj, defined by the

variables e
[n]
Ia , k

[n]
IJ , γ

[n]
IJB of an iterative procedure (carried out in Section 4), which satisfies:

|∂α
x (g

[n]
ij − cijt

2pmax{i,j})| ≤Cα,nt
2pmax{i,j}+ε, |∂α

xR
[n]
µν | ≤ Cα,nt

−2+nε,

ε = min
x∈[0,δ]3

{1− p3(x) > 0, p3(x)− p2(x)} > 0,
(1.16)

for any n ∈ N, multi-index α, indices µ, ν (contracted relative to the frame), and (t, x) ∈
(0, tn]× [0, δ]3, for some tn sufficiently small.

Moreover, for any s ≥ 4 and N0 ∈ N, there exists n = nN0,s sufficiently large and a C2

Lorentzian metric g = g[n] + g(d), defined by the corresponding reduced variables

eIa = e
[n]
Ia + e

(d)
Ia , kIJ = k

[n]
IJ + k

(d)
IJ , γIJB = γ

[n]
IJB + γ

(d)
IJB, (1.17)

such that it solves the Einstein vacuum equations and satisfies the estimate (see Section
5.3 for the definition of the norms):

∥e(d)∥2Hs(Ut)
+ ∥k(d)∥2Hs(Ut)

+ ∥γ(d)∥2Hs(Ut)
≤ t2N0 , (1.18)

in a local domain {Ut}t∈(0,TN0,s,n
] ⊂ (0, tn] × [0, δ]3 with spacelike future boundary (see

Section 5.1 for the precise definition).
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Proof. The first part of the theorem regarding the approximate solution g[n] follows from
Theorem 4.1 and Lemma 4.1. The second part about the actual solution follows from
Theorem 5.1 and Proposition 6.1.

Remark 1.2 (Choice of parameters and domain). For convenience, we define the domain
of definition {Ut}t∈(0,TN0,s,n

] relative to the approximate solution g[n]. It is strictly contained
in the domain of dependence of U0, having spacelike future boundary. This is true for g as
well, since the remainder term g(d) is lower order. Once we have fixed N0, which is tied

to the decay that we wish the remainder terms e
(d)
Ia , k

(d)
IJ , γ

(d)
IJB to have, as t → 0, n is taken

sufficiently large and the domain is fixed. Increasing s only shrinks the time of existence
TN0,s,n, such that the estimate (1.18) remains valid.

Remark 1.3 (Initial regularity). The asymptotic data at the singularity need not be smooth
for Theorem 1.1 to hold. However, working with other regularity classes, like Cr, would
require keeping track of the dependency of r on the other parameters. For example, our
method of proof would require that r tends to infinity, as ε → 0 or n → +∞.

Remark 1.4 (Dependence on initial data). Although we do not keep precise track of the
constants in the proof of Theorem 1.1, the norm of existence and the corresponding time
interval depend on finitely many derivatives of the asymptotic data pi, cij, exactly how many
depends on n,N0. In view of the relations (1.10), (1.11), this translates to the same number
of (covariant) derivatives of the geometric data h,K.

The next two theorems deal with the uniqueness and regularity of the solution in The-
orem 1.1.

Theorem 1.2 (Smoothness). The solution g furnished by Theorem 1.1 is smooth, provided
n,N0 are taken sufficiently large.

Theorem 1.3 (Gauge uniqueness). (i) Let g, g̃ be two solutions to (1.3) of the form (1.12),
satisfying

|∂α1
x (eIa − e

[0]
Ia )| ≤ CtpI−2min{pI ,pa}+ε, |∂α1

x (ẽIa − e
[0]
Ia )| ≤ CtpI−2min{pI ,pa}+ε,

|∂α1
x (kIJ − k

[0]
IJ )| ≤ Ct−1+|pI−pJ |+ε, |∂α2

x (k̃IJ − k
[0]
IJ )| ≤ Ct−1+|pI−pJ |+ε,

(1.19)

for all |α1| ≤ 2, |α2| ≤ 1, and (t, x) ∈ {Ut}t∈(0,T ], where the latter domain is defined relative

to g[n], as in Section 5.1, for some n sufficiently large. Also, assume that

∥e− ẽ∥2Hs(Ut)
+ ∥k − k̃∥2Hs(Ut)

+ ∥γ − γ̃∥2Hs(Ut)
≤ t2M0 , (1.20)

for all t ∈ (0, T ], for some s ≥ 4, and an M0 sufficiently large, how large depending only
on the L∞(U0) norms of the pi’s. Then the two solutions coincide.
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(ii) Let g, g̃ be two solutions to (1.3) of the form (1.12), satisfying

|∂α
x (eIa − e

[0]
Ia )| ≤ Cαt

pI−2min{pI ,pa}+ε, |∂α
x (ẽIa − e

[0]
Ia )| ≤ Cαt

pI−2min{pI ,pa}+ε,

|∂α
x (kIJ − k

[0]
IJ )| ≤ Cαt

−1+|pI−pJ |+ε, |∂α
x (k̃IJ − k

[0]
IJ )| ≤ Cαt

−1+|pI−pJ |+ε,
(1.21)

for all (t, x) ∈ {Ut}t∈(0,TN0,s,n
], and |α| ≤ M1, for some M1 sufficiently large, how large

depending only on ε. Then the two solutions coincide in {Ut}t∈(0,TN0,s,n
].

Point (i) in Theorem 1.3 is analogous to [18, Theorem 1.7]. Point (ii) does not require
the two solutions to coincide to a large polynomial order. The idea here is that the latter
property can be inferred from (1.21) by using the equations, see Section 7 for the proof of
Theorem 1.3.

Remark 1.5 (Geometric uniqueness). The assumptions (1.19), (1.21) imply that the two
solutions g, g̃ have the same gauge dependent data, see (4.4) and the identity (4.18) relating
the frame to the metric coefficients. It would be interesting to also study the problem of
geometric uniqueness, as in [21, Theorem 1.17]. Assuming the two solutions arise from the
same geometric data set, satisfying for example a covariant version of the estimate (1.21),
do the solutions coincide? In order to apply our gauge dependent result, one would first
need to obtain a gauge dependent data set from (1.10), (1.11), and then argue that (1.21)
follows from its covariant analogue.

1.5 Method of proof

The basic idea in such constructions is simple. First, we construct an approximate solution
g[n] to a suitable degree and then solve for a remainder g(d) to upgrade it to an actual
solution. What makes it hard to implement is the complicated nature of the Einstein
vacuum equations.

Step 1. Constructing an approximate solution. The evolution equations (3.2), (3.4)
satisfied by eIa, kIJ (recall the notation from Section 1.3) are useful for constructing an
approximate solution, in a local domain of the form (0, T ]× [0, δ]3. We use them to define
an iteration scheme in Section 4 that completely decouples all variables. The iterates

e
[n]
Ia , k

[n]
IJ define a metric g[n] whose Ricci tensor we prove that it vanishes, as t → 0, to an

increasing order in n, recall (1.16). These derivations are analogous to those in [18, Section

2], constructing g
[n]
ij , (k[n])i

j . One interesting difference concerning the second fundamental

form is that k
[n]
IJ is asymptotically diagonal, instead of upper triangular for (k[n])i

j in [18].
The asymptotic momentum constraint, expressed in terms of the frame coefficients, takes
the form (4.19), which we show in Lemma 4.3 to be equivalent to (1.6). It is used to show
the approximate propagation of the constraints (1.7)-(1.8).
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Step 2. Solving for a remainder. To construct an actual solution to the Einstein vacuum
equations with the desired behavior, we make the ansatz

g = g[n] + g(d) (1.22)

and solve for the remainder term g(d) in a suitable domain {Ut}t∈(0,T ] ⊂ (0, T ] × [0, δ]3.
Moreover, we derive estimates in weighted norms which guarantee that the reduced vari-
ables associated to g(d) vanish, as t → 0, to a sufficiently high order, cf. (1.18). The main
steps in this process are the following:

1. Express the Einstein vacuum equations relative to a first order symmetric hyperbolic
system for kIJ , γIJB, see (3.8)-(3.9). Here, a modification of the original equations
(3.4), (3.5), (3.7) is achieved following [20], by adding appropriate multiples of the
constraints to the original equations. The latter procedure changes the principal
symbol of the original equations. Once we have recovered the full Einstein vacuum
equations (Section 6), then we conclude that these added multiples actually vanish.
This is the key difference from [18], where instead a second order system for ki

j was
used. One disadvantage of the latter formulation is that it requires the use of elliptic
estimates in order to complete the energy argument, due to a derivative loss. In a
localized construction these estimates generate various boundary terms that do not
have a favorable sign, making it difficult to absorb them in the main energy.

2. Define the local domain of definition of the solution, such that the overall boundary
terms generated in an energy argument have a favorable sign. More precisely, we
define {Ut}t∈(0,T ] as the inward flow of the (six) faces of U0 = {0} × [0, δ]3 with
respect to the vector fields

X±
a = ∂t ± σ

∇[n]xa

|∇[n]xa|g[n]

, a = 1, 2, 3,

where σ > 0 is a sufficiently large constant. Here ∇[n]xa is the gradient of xa relative
to g[n]. Note that g(d) is not involved in the previous definition. Hence, once we have
chosen the parameters N,n, depending only on the asymptotic data, the domain
{Ut}t∈(0,T ] is fixed throughout the existence proof. Moreover, its future boundary is
spacelike and sufficiently ingoing (for σ large). The latter guarantees that the flux
terms obtained in an energy estimate using a symmetric hyperbolic system (regardless
of the precise principal symbol) have a favorable sign. We refer the reader to Section
5.1 for the geometry of the domain {Ut}t∈(0,T ] and to the proof of Proposition 5.3 for
the precise structure of the boundary terms arising in the weighted energy estimates
for the remainder variables.
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3. Produce a solution to the modified evolution equations (3.8)-(3.9) for kIJ , γIJB, by

deriving weighted energy estimates for the remainder terms k
(d)
IJ , γ

(d)
IJB in {Ut}t∈[η,T ]

with trivial data, using the corresponding equations (5.17)-(5.18). The use of large
t weights is necessary to absorb terms in the equations having t−1 coefficients (see
Sections 5.2, 5.4). Fortunately, the magnitude of these coefficients depends only on
the asymptotic data, which allows for uniform estimates in n, η, provided s,N0 are
fixed (recall Theorem 1.1). Passing to the limit η → 0, we obtain a time interval of
existence (0, T ], where t = 0 corresponds to the singularity (Section 5.3).

4. Retrieve a solution to the full Einstein vacuum equations by propagating the vanishing
of constraints off of the singularity (Section 6). In fact, having a solution to the
modified equations (3.8)-(3.9) defines a connection that is not necessarily torsion-
free. Hence, a system must be derived for the torsion and the components of the
spacetime Ricci tensor (Lemma 6.1). It turns out that the latter is also symmetric
hyperbolic, hence, admitting an energy, which enables us to propagate the vanishing
of the relevant variables off of t = 0.

Step 3. Gauge uniqueness and smoothness. If two solutions satisfy point (i) of Theorem
1.3, then by subtracting them and deriving an estimate similar to (1.18) (with trivial initial
data), it follows that they must be equal. Hence, to prove the second uniqueness statement
in Theorem 1.3, it remains to show that (1.21) implies that the two solutions satisfy (1.20).
Condition (1.21) firstly implies that the two solutions have the same asymptotic data.
Hence, they have the same approximate solution g[n]. The idea now is to use the equations
to iteratively improve the behavior of the remainder terms of each solution, see Section 7.1.
Every improvement by tε costs two spatial derivatives, hence, the requirement of M1 > 0
being sufficiently large in point (ii) of Theorem 1.3.

To obtain the smoothness of solutions (for smooth asymptotic data), we increase the
number of derivatives s in the existence norms. Some care is needed because increasing
s might also require to increase n, which in turn changes g[n], relative to which the local
domain is defined. We overcome this issue by defining the domain relative to the minimum
of n’s, which does not affect the overall estimates (see Section 7.2). Employing point (i) of
Theorem 1.3 and standard unique continuation criteria yields the corresponding increased
regularity of the original solution. Since s can be taken arbitrarily large, the smoothness
property follows.
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2 Local existence for the asymptotic constraint equations

Definitions 1.1, 1.2 give conditions that characterize the asymptotic data of Kasner-like
singularities. However, in both works [18, 39] there is no mention as to whether such general
asymptotic data exist. In this section, we present a simple argument that gives existence
of localized asymptotic data sets. Also, from our argument one can infer the freedom one
has in choosing such initial data sets on the singularity. Interestingly, constructing a global
initial data set, in the sense of Definition 1.2 or the analogue of Definition 1.1 on the entire
T3, is more intricate than it seems and we shall not discuss it here.

Proposition 2.1. Let p1, p2, p3 : [0, δ]
3 → R be smooth functions satisfying p1(x) < p2(x) <

p3(x), as well as
∑3

i=1 pi(x) =
∑3

i=1 p
2
i (x) = 1, for all x ∈ [0, δ]3. Then, for any freely

prescribed smooth functions α ∈ {c11, c22 > 0}, β ∈ {c33 > 0, κ2
3}, γ ∈ {κ12, κ13} :

[0, δ]3 → R, there exist smooth functions ϵ, ζ, η : [0, δ]3 → R such that{
α, β, γ, ϵ, ζ, η

}
=

{
c11, c22, c33, κ1

2, κ1
3, κ2

3
}

(2.1)

and such that Definition 1.1 holds, where c12, c13, c23 are uniquely determined by the values
of κ1

2, κ1
3, κ2

3. Moreover, the functions ϵ, ζ, η are unique up to a choice of three 2-variable
functions.

Remark 2.1. From the statement of the previous proposition, it would seem that we are
free to prescribe four functions, e.g. p1, c11, c33, and κ1

2 (which amounts to choosing c12).
However, c33 can be fixed to 1 by choosing the coordinate function x3 appropriately to begin
with. Hence, the functional degrees of freedom are three. Also, the three 2-variable functions
that we are free to prescribe come from suitably integrating (1.6), for each i = 1, 2, 3.

Proof. We begin by writing out (1.6) for i = 3:

(p3 − p1)∂3 log(c11) + (p3 − p2)∂3 log(c22) + 2∂3p3 = 0, (2.2)
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The latter equation can be solved for either c11 or c22. Without loss of generality, let us
freely prescribe c22 > 0. Then c11 is uniquely determined by (2.2), up to a choice of a
2-variable function:

log c11(x
1, x2, x3) = log c11(x

1, x2, 0)−
∫ x3

0

{p3 − p2
p3 − p1

∂3 log c22 +
2∂3p3
p3 − p1

}
(x1, x2, s)ds

(2.3)

Next, we expand (1.6) for i = 2:

(p2 − p1)∂2 log c11 + (p2 − p3)∂2 log c33 + 2∂2p2 − 2∂3κ2
3 − κ2

3
3∑

l=1

∂3 log cll = 0. (2.4)

Since c11, c22 are already fixed, we can either freely prescribe c33 > 0 and solve for κ2
3 or

vice versa. In the latter case, solving for log c33 amounts to integrating a transport equation
in the direction (p2 − p3)∂2 − κ2

3∂3, which is possible thanks to the condition p2 < p3. For
convenience, we freely prescribe c33 > 0 and rewrite (2.4) as follows:

∂3κ2
3 +

1

2
[∂3 log(c11c22c33)]κ2

3 =
1

2
(p2 − p1)∂2 log c11 +

1

2
(p2 − p3)∂2 log c33 + ∂2p2 (2.5)

Hence, we easily solve for κ2
3 via integrating factors, in a unique manner up to a choice of

a 2-variable function.
Lastly, we expand (1.6) for i = 1:

(p1 − p2)∂1 log c22 + (p1 − p3)∂1 log c33 + 2∂1p1 − 2∂2κ1
2

− 2∂3κ1
3 − κ1

2
3∑

l=1

∂2 log cll − κ1
3

3∑
l=1

∂3 log cll = 0.
(2.6)

It is clear that we can freely prescribe either κ1
2 or κ1

3 and solve for the other via in-
tegrating factors, using (2.6) as above. Once more, we have the freedom of choosing an
initial condition, which amounts to a 2-variable function. This completes the proof of the
proposition.

3 The Einstein vacuum equations as a symmetric first order
hyperbolic ADM-type system

We have defined the frame and connection coefficients eIa, kIJ , γIJB in Section 1.3. Define
also the inverse transformation

∂b = ωbCeC , ωbCeCa = δba, eIaωaC = δIC , (3.1)
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where repeated indices are summed, unless underlined or otherwise stated. Then the fol-
lowing equations hold [20]:2

∂teIa = kICeCa (3.2)

∂tωbC =− kCDωbD (3.3)

∂tkIJ − trk kIJ =RIJ −RIJ , (3.4)

where RIJ ,RIJ are the Ricci curvatures contracted with eI , eJ of g,g respectively. These
are analogous to the ADM equations for the first and second fundamental forms of Σt. The
actual solution that we construct is in vacuum, hence, the last term in (3.4) can be set to
zero. We keep it in the RHS, however, to keep track of the extra terms coming from the
approximate solution that is constructed in Section 4.

On the other hand, the spatial Ricci can be expressed in terms of γIJB, e
a
I , ω

C
b as follows:

RIJ = eCγIJC − eIγCJC − γCIDγDJC − γIJDγCCD, (3.5)

γIJB =
1

2

{
ωaB(eIeJa − eJeIa)− ωaI(eJeBa − eBeJa) + ωaJ(eBeIa − eIeBa)

}
. (3.6)

We will use (3.2)-(3.6) in Section 4 to construct an approximate solution to the Einstein
vacuum equations, as t → 0, via an iteration scheme.

We will not exploit the formula (3.6) for local well-posedness. Instead, we couple (3.4)
to the following equation satisfied by γIJB:

∂tγIJB − kICγCJB = eBkJI − eJkBI (3.7)

+ γJBCkCI + γJICkBC − γBJCkCI − γBICkJC

To derive energy estimates in Section 5.4, we consider the symmetrized system satisfied by
kIJ , γIJB, following [20]:

∂tkIJ − trk kIJ =
1

2

[
eCγIJC − eIγCJC + eCγJIC − eJγCIC (3.8)

− γCIDγDJC − γCCDγIJD − γCJDγDIC − γCCDγJID

]
+

1

2
δIJ

[
2eDγCDC + γCEDγDEC + γCCDγEED + kCDkCD − (kCC)

2

]
− 1

2
(RIJ +RJI) + δIJ(R00 +

1

2
R),

∂tγIJB − kICγCJB = eBkJI − eJkBI (3.9)

+ γJBCkCI + γJICkBC − γBJCkCI − γBICkJC

2Note: In [20] the sign convention for kIJ is opposite than the one that we use.
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− δIB

[
eCkCJ − γCCDkDJ − γCJDkCD − eJtrk

]
+ δIJ

[
eCkCB − γCCDkDB − γCBDkCD − eBtrk

]
− δIBR0J + δIJR0B,

coupled to equation (3.2).

Remark 3.1. The previous equations are valid for any metric of the form (1.12) and
its associated connection coefficients (1.15). However, we will drop all Rµν terms in the
derivations of the energy estimates below, since we are interested in producing a vacuum
solution.

4 An approximate solution to the Einstein vacuum equations

We define the following iteration scheme for the equations (3.2), (3.4):

∂te
[n]
Ia − k

[n]
II e

[n]
Ia =

∑
C ̸=I

k
[n−1]
IC e

[n−1]
Ca , (4.1)

∂tk
[n]
IJ − k

[n−1]
CC k

[n]
IJ =R

[n−1]
IJ , (4.2)

for n ≥ 1 and t ∈ (0, T ], where underlined indices are not summed. Here, R
[n−1]
IJ is the

Ricci curvature of the metric g[n−1] for which the frame e
[n−1]
I = e

[n−1]
Ia ∂a is orthonormal.

Similarly, we denote by R
[n]
µν the Ricci curvature of the spacetime metric

g[n] = −dt2 + g[n]. (4.3)

We set the zeroth iterates equal to:

e
[0]
Ia =

{
fIa(x)t

−pI(x) I ≤ a
0 I > a

, k
[0]
IJ = −δIJ

pI(x)

t
, (4.4)

To complete the iteration scheme, we require that the following asymptotic initial conditions
hold:

lim
t→0+

tpI(x)e
[n]
Ia =

{
fIa(x) I ≤ a
0 I > a

, lim
t→0+

tk
[n]
IJ = −δIJpI(x). (4.5)

Also, define the inverse frame components through the relations

∂b = ω
[n]
bCe

[n]
C , ω

[n]
bCe

[n]
Ca = δba, e

[n]
Iaω

[n]
aC = δIC . (4.6)
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The equation (4.1) and relations (4.6) imply the equation

∂tω
[n]
bC + k

[n]
C Cω

[n]
bC = −

∑
D

∑
E ̸=D

ω
[n]
bDk

[n−1]
DE

(
e
[n−1]
Ea ω

[n]
aC

)
, (4.7)

for n ≥ 1. The zeroth iterates ω
[0]
bC are computed using (4.6), see (4.16). The condition

(4.5) implies that there exist functions hbC(x) such that

lim
t→0+

t−pC(x)ω
[n]
bC =

{
hbC(x) b ≤ C
0 b > C

, ω
[0]
bC =

{
hbC(x)t

pC (x) b ≤ C
0 b > C

. (4.8)

Remark 4.1. The frame coefficients fIa are in one to one correspondence with the metric
coefficients cij in Definition 1.1, see Lemma 4.1. Moreover, the asymptotic differential
condition (1.6) is equivalent to

EIpI +
∑
J

(pJ − pI)EI log(fJJ)−
∑
J

∑
I≤a≤J

(pJ − pI)haJEJfIa = 0, (4.9)

for I = 1, 2, 3, where EI =
∑

a≥I fIa∂a, see Lemma 4.2. By convention, the last sum in
(4.9) does not appear when I > J .

Theorem 4.1. Let pi(x), fIa(x) ∈ C∞([0, δ]3) and let

ε := min
x

{1− p3(x), p3(x)− p2(x)} > 0. (4.10)

Then for every n ≥ 1 there exists a unique solution to the iteration scheme (4.1)-(4.5) in
(0, tn] × [0, δ]3, for some tn = tn(pi, fIa) sufficiently small, such that the following points
hold:

1. For every multi-index α, every I, J, C, a, b, the functions e
[n]
Ia , ω

[n]
bC , k

[n]
IJ satisfy:

|∂α
x (e

[n]
Ia − e

[0]
Ia )| ≤

{
Cα,nt

−pI+ε I ≤ a,
Cα,nt

pI−2pa+ε I > a,
(4.11)

|∂α
x (ω

[n]
bC − ω

[0]
bC)| ≤

{
Cα,nt

pC+ε b ≤ C,
Cα,nt

2pb−pC+ε b > C,
(4.12)

|∂α
x (k

[n]
IJ − k

[0]
IJ )| ≤Cα,nt

−1+ε+|pI−pJ |, (4.13)

for all (t, x) ∈ (0, tn]× [0, δ]3.

2. For every multi-index α, every I, J , the spatial Ricci curvature satisfies:

|∂α
xR

[n]
IJ | ≤ Cα,nt

−2+ε+|pI−pJ |, (4.14)

for all (t, x) ∈ (0, tn]× [0, δ]3.
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3. If in addition the constraint (4.9) is satisfied, then for every multi-index α, every
µ, ν = 0, I, J , the spacetime Ricci curvature satisfies:

|∂α
xR

[n]
µν | ≤ Cα,nt

−2+nε, (4.15)

for all (t, x) ∈ (0, tn]× [0, δ]3.

Proof. The points 1, 2 are contained in Proposition 4.1. Point 3 is contained in Proposition
4.3, for spatial indices µ, ν = I, J , and for the rest of the indices µ = 0, ν = 0, I in
Proposition 4.4.

4.1 The zeroth iterates and the asymptotic differential constraint

The zeroth frame coefficients determine the zeroth co-frame and metric components.

Lemma 4.1. Let e
[0]
Ia be defined as in (4.4) and let ω

[0]
bC represent the components of the

inverse frame transformation, as in (4.6). Also, let g
[0]
ij be the metric for which the frame

e
[0]
I = e

[0]
Ia∂a is orthonormal. Then, the following formulas are valid:

(ω
[0]
bC) =

f−1
11 tp1 −f−1

11 f−1
22 f12t

p2 f−1
11 f−1

33

[
f12f23f

−1
22 − f13

]
tp3

0 f−1
22 tp2 −f−1

22 f−1
33 f23t

p3

0 0 f−1
33 tp3

 (4.16)

and

g[0] =

c11t2p1 c12t
2p2 c13t

2p3

c12t
2p2 c22t

2p2 c23t
2p3

c13t
2p3 c23t

2p3 c33t
2p3

+ g[0]error, (4.17)

where |∂α
x (g

[0]
error)ij | ≤ Cαt

2pmax{i,j}+ε, and

(cij) =

 f−2
11 −f12f

−1
11 f−2

22 f−1
11 f−2

33

[
f12f23f

−1
22 − f13

]
−f12f

−1
11 f−2

22 f−2
22 −f23f

−1
22 f−2

33

f−1
11 f−2

33

[
f12f23f

−1
22 − f13

]
−f23f

−1
22 f−2

33 f−2
33

 (4.18)

Proof. First, we expand the relations e
[0]
Iaω

[0]
aC = δIC . For I = 3:

e
[0]
33ω

[0]
33 = 1, e

[0]
33ω

[0]
32 = 0, e

[0]
33ω

[0]
31 = 0

⇒ ω
[0]
33 = f−1

33 tp3 , ω
[0]
32 = ω

[0]
31 = 0,

for I = 2:

e
[0]
22ω

[0]
21 = 0, e

[0]
22ω

[0]
22 = 1, e

[0]
22ω

[0]
23 + e

[0]
23ω

[0]
33 = 0,
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⇒ ω
[0]
21 = 0, ω

[0]
22 = f−1

22 tp2 , ω
[0]
23 = −f23f

−1
22 f−1

33 tp3

and for I = 1:

e
[0]
11ω

[0]
11 = 1, e

[0]
11ω

[0]
12 + e

[0]
12ω

[0]
22 = 0, e

[0]
11ω

[0]
13 + e

[0]
12ω

[0]
23 + e

[0]
13ω

[0]
33 = 0

⇒ ω
[0]
11 = f−1

11 tp1 , ω
[0]
12 = −f−1

11 f−1
22 f12t

p2 ,

ω
[0]
13 = f−1

11 f−1
33

[
f12f23f

−1
22 − f13

]
tp3 ,

which combined give (4.16).

Hence, the metric components equal g
[0]
ij = ω

[0]
iCω

[0]
jC , which expands to

g
[0]
11 =ω

[0]
11ω

[0]
11 + (g[0]error)11 = f−2

11 t2p1 + (g[0]error)11,

g
[0]
12 =ω

[0]
12ω

[0]
22 + (g[0]error)12 = −f−1

11 f12f
−2
22 t2p2 + (g[0]error)12,

g
[0]
13 =ω

[0]
13ω

[0]
33 = f−1

11 f−2
33

[
f12f23f

−1
22 − f13

]
t2p3 ,

g
[0]
22 =ω

[0]
22ω

[0]
22 + (g[0]error)22 = f−2

22 t2p2 + (g[0]error)22,

g
[0]
23 =ω

[0]
23ω

[0]
33 = −f23f

−1
22 f−2

33 t2p3 ,

g
[0]
33 =ω

[0]
33ω

[0]
33 = f−2

33 t2p3

The leading order metric coefficients cij can be read from the previous formulas, giving
(4.18), while the error terms satisfy

|∂α
x (g

[0]
error)11| ≤Cα

[
t2p2−2p1 | log t||α|

]
t2p1 ≤ Cαt

2p1+2ε| log t|α,
|∂α

x (g
[0]
error)12| ≤Cα

[
t2p3−2p2 | log t||α|

]
t2p2 ≤ Cαt

2p2+2ε| log t|α,
|∂α

x (g
[0]
error)22| ≤Cα

[
t2p3−2p2 | log t||α|

]
t2p2 ≤ Cαt

2p2+2ε| log t|α,

which implies the claimed estimate.

Using the relations in the previous lemma, we can now phrase the asymptotic differential
constraint in terms of the frame and co-frame coefficients, which will be used below to
approximately propagate the constraints, see Lemma 4.13.

Lemma 4.2. The asymptotic differential condition (1.6) is equivalent to the following
differential set of equations:

EIpI +
∑
J

(pJ − pI)EI log(fJJ)−
∑
J

∑
I≤a≤J

(pJ − pI)haJEJfIa = 0, (4.19)

for I = 1, 2, 3, where EI =
∑

a≥I fIa∂a and the last sum is zero by convention for I > J .
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Proof. It is a straightforward, but tedious, computation. For I = 3, (4.19) becomes

0 =E3p3 + (p1 − p3)E3 log f11 + (p2 − p3)E3 log f22

= f33
[
∂3p3 + (p1 − p3)∂3 log f11 + (p2 − p3)∂3 log f22

]
(4.20)

= f33
[
∂3p3 −

1

2
(p1 − p3)∂3 log c11 −

1

2
(p2 − p3)∂3 log c22

]
,

since cJ J = f−2
J J , for J = 1, 2, 3. Given that f33 is nowhere zero, (4.20) is equivalent to

(1.6) for i = 3.
Next, we expand (4.19) for I = 2:

(f22∂2 + f23∂3)p2 + (p1 − p2)(f22∂2 + f23∂3) log f11

+ (p3 − p2)(f22∂2 + f23∂3) log f33 −
∑
a=2,3

(p3 − p2)ha3f33∂3f2a = 0, (4.21)

where from (4.16), (4.18), it follows that f23 = −(c23/c33)(c22)
− 1

2 and h23 = −f−1
22 f−1

33 f23,
h33 = f−1

33 . Multiplying (4.21) with
√
c22 = f−1

22 and plugging in the formulas for f23, fJJ , h23, h33
in terms of cij , we compute:

0 = (∂2 −
c23
c33

∂3)p2 −
1

2
(p1 − p2)(∂2 −

c23
c33

∂3) log c11 −
1

2
(p3 − p2)(∂2 −

c23
c33

∂3) log c33

+ (p3 − p2)
√
c22f23∂3 log f22 − (p3 − p2)

√
c22∂3f23

= ∂2p2 −
c23
c33

[
∂3p2 −

1

2
(p1 − p2)∂3 log c11 −

1

2
(p3 − p2)∂3 log c33

]
− 1

2
(p1 − p2)∂2 log c11 −

1

2
(p3 − p2)∂2 log c33

+
1

2
(p3 − p2)

c23
c33

∂3 log c22 + (p3 − p2)∂3(
c23
c33

)− 1

2
(p3 − p2)

c23
c33

∂3 log c22 (4.22)

= ∂2p2 −
1

2
(p1 − p2)∂2 log c11 −

1

2
(p3 − p2)∂2 log c33 (rearranging terms)

− c23
c33

[
∂3p2 −

1

2
(p1 − p3)∂3 log c11 −

1

2
(p2 − p3)∂3 log c22

]
+ (p3 − p2)∂3(

c23
c33

)

− 1

2
(p2 − p3)

c23
c33

∂3 log(c11c22c33)

= ∂2p2 −
1

2
(p1 − p2)∂2 log c11 −

1

2
(p3 − p2)∂2 log c33 −

1

2
(p2 − p3)

c23
c33

∂3 log(c11c22c33)

+
c23
c33

∂3(p3 − p2) + (p3 − p2)∂3(
c23
c33

) (by (4.20))

which is indeed equivalent to (1.6) for i = 2, after taking into account that κ2
3 = (p2 −

p3)
c23
c33

.
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Finally, for I = 1, we expand the first two terms in (4.19) and use in addition the
relations from (4.18), f12f

−1
11 = − c12

c22
, f13f

−1
11 = − c13

c33
+ c12

c22
c23
c33

:

E1p1 + (p2 − p1)E1 log f22 + (p3 − p1)E1 log f33

=(f11∂1 + f12∂2 + f13∂3)p1 + (p2 − p1)(f11∂1 + f12∂2 + f13∂3) log f22

+ (p3 − p1)(f11∂1 + f12∂2 + f13∂3) log f33

= f11

[
∂1p1 −

1

2
(p2 − p1)∂1 log c22 −

1

2
(p3 − p1)∂1 log c33 (by (4.18))

− c12
c22

∂2p1 +
1

2
(p2 − p1)

c12
c22

∂2 log c22 +
1

2
(p3 − p1)

c12
c22

∂2 log c33 (4.23)

+ (
c12
c22

c23
c33

− c13
c33

)∂3p1 −
1

2
(p2 − p1)(

c12
c22

c23
c33

− c13
c33

)∂3 log c22

− 1

2
(p3 − p1)(

c12
c22

c23
c33

− c13
c33

)∂3 log c33

]
To compute the last sum in (4.19), for I = 1, we use the relations from (4.16), (4.18):

h12E2 =− f−1
11 f−1

22 f12(f22∂2 + f23∂3) =
c12
c22

(∂2 −
c23
c33

∂3)

h22E2 = ∂2 −
c23
c33

∂3

h13E3 =h13f33∂3 = f−1
11 (f12f23f

−1
22 − f13)∂3 =

c13
c33

∂3

h23E3 =− f−1
22 f23∂3 =

c23
c33

∂3

h33E3 = ∂3

to obtain the identity

−
∑
J

∑
1≤a≤J

(pJ − p1)haJEJf1a

=− (p2 − p1)h12E2f11 − (p2 − p1)h22E2f12

− (p3 − p1)h13E3f11 − (p3 − p1)h23E3f12 − (p3 − p1)h33E3f13

=− (p2 − p1)f11
c12
c22

(∂2 −
c23
c33

∂3) log f11 − (p2 − p1)(∂2 −
c23
c33

∂3)f12 (4.24)

− (p3 − p1)f11
c13
c33

∂3 log f11 − (p3 − p1)
c23
c33

∂3f12 − (p3 − p1)∂3f13

= f11

[
1

2
(p2 − p1)

c12
c22

∂2 log c11 + (p2 − p1)c
1
2
11∂2

[c12
c22

c
− 1

2
11

]
− 1

2

[
(p2 − p1)

c12
c22

c23
c33

+ (p1 − p3)
c13
c33

]
∂3 log c11
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+ (p3 − p2)
c23
c33

c
1
2
11∂3

[c12
c22

c
− 1

2
11

]
− (p3 − p1)c

1
2
11∂3

[
c
− 1

2
11 (

c12
c22

c23
c33

− c13
c33

)
]]

Multiplying the identities (4.23), (4.24) by f−1
11 and adding them together gives:

0 = ∂1p1 −
1

2
(p2 − p1)∂1 log c22 −

1

2
(p3 − p1)∂1 log c33

− c12
c22

[
∂2p1 −

1

2
(p2 − p1)∂2 log c22 −

1

2
(p3 − p1)∂2 log c33

]
+ (p2 − p1)∂2(

c12
c22

)

+ (
c12
c22

c23
c33

− c13
c33

)

[
∂3p1 −

1

2
(p2 − p1)∂3 log c22 −

1

2
(p3 − p1)∂3 log c33 (4.25)

+
1

2
(p3 − p1)∂3 log c11

]
− 1

2

[
(p2 − p1)

c12
c22

c23
c33

+ (p1 − p3)
c13
c33

]
∂3 log c11

− 1

2
(p3 − p2)

c23
c33

c12
c22

∂3 log c11 + (p3 − p2)
c23
c33

∂3(
c12
c22

)− (p3 − p1)∂3(
c12
c22

c23
c33

− c13
c33

)

From (4.20), (4.22), we have

1

2
(p3 − p1)∂3 log c11 =− ∂3p3 +

1

2
(p2 − p3)∂3 log c22 (4.26)

1

2
(p2 − p3)∂2 log c33 =− ∂2p2 +

1

2
(p1 − p2)∂2 log c11 − ∂3

[
(p3 − p2)

c23
c33

]
(4.27)

+
1

2
(p2 − p3)

c23
c33

∂3 log(c11c22c33)

Plugging (4.26)-(4.27) into (4.25) we obtain:

0 = ∂1p1 −
1

2
(p2 − p1)∂1 log c22 −

1

2
(p3 − p1)∂1 log c33

− c12
c22

[
∂2(p1 − p2)−

1

2
(p2 − p1)∂2 log c22 +

1

2
(p1 − p2)∂2 log c33

+
1

2
(p1 − p2)∂2 log c11 − ∂3

[
(p3 − p2)

c23
c33

]
+

1

2
(p2 − p3)

c23
c33

∂3 log(c11c22c33)

]
+ (p2 − p1)∂2(

c12
c22

) + (
c12
c22

c23
c33

− c13
c33

)

[
∂3(p1 − p3)−

1

2
(p3 − p1)∂3 log c22

− 1

2
(p3 − p1)∂3 log c33

]
− 1

2

[
(p2 − p1)

c12
c22

c23
c33

+ (p1 − p3)
c13
c33

]
∂3 log c11

− 1

2
(p3 − p2)

c23
c33

c12
c22

∂3 log c11 + (p3 − p2)
c23
c33

∂3(
c12
c22

)− (p3 − p1)∂3(
c12
c22

c23
c33

− c13
c33

)

= ∂1p1 −
1

2
(p2 − p1)∂1 log c22 −

1

2
(p3 − p1)∂1 log c33 − ∂2

[
(p1 − p2)

c12
c22

]
(4.28)
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− 1

2
(p1 − p2)

c12
c22

∂2 log(c11c22c33)−
1

2
(p2 − p3)

c12
c22

c23
c33

∂3 log(c11c22c33)

+
1

2
(
c12
c22

c23
c33

− c13
c33

)(p1 − p3)∂3 log(c22c33)−
1

2

[
(p3 − p1)

c12
c22

c23
c33

+ (p1 − p3)
c13
c33

]
∂3 log c11

+ ∂3
[
(p3 − p2)

c12
c22

c23
c33

]
+ ∂3

[
(p1 − p3)(

c12
c22

c23
c33

− c13
c33

)
]

= ∂1p1 −
1

2
(p2 − p1)∂1 log c22 −

1

2
(p3 − p1)∂1 log c33 − ∂2

[
(p1 − p2)

c12
c22

]
− 1

2
(p1 − p2)

c12
c22

∂2 log(c11c22c33)−
1

2

[
(p2 − p1)

c12
c22

c23
c33

+ (p1 − p3)
c13
c33

]
∂3 log(c11c22c33)

− ∂3
[
(p2 − p1)

c12
c22

c23
c33

+ (p1 − p3)
c13
c33

]
,

which is (1.6) written explicitly for i = 1, after plugging in κ1
2 = (p1 − p2)

c12
c22

, κ2
3 =

(p2 − p3)
c23
c33

, κ1
3 = (p2 − p1)

c12c23
c22c33

+ (p1 − p3)
c13
c33

.

4.2 The leading order behavior of the iterates

In this subsection, we derive the necessary bounds to prove 1 in Theorem 4.1.

Lemma 4.3. Let n ∈ N. Assume that for every I, a, every multi-index α, and for all
(t, x) ∈ (0, tn]× [0, δ]3 there holds:

|∂α
x (e

[n]
Ia − e

[0]
Ia )| ≤

{
Cα,nt

−pI+ε I ≤ a,
Cα,nt

pI−2pa+ε I > a,
(4.29)

Then, the following bound holds as well:

|∂α
x (ω

[n]
bC − ω

[0]
bC)| ≤

{
Cα,nt

pC+ε b ≤ C,
Cα,nt

2pb−pC+ε b > C.
(4.30)

for all (t, x) ∈ (0, tn]× [0, δ]3, every multi-index α, and all indices b, C.

Proof. By definition, e
[n]
Iaω

[n]
aC = δIC . Hence, by Cramer’s rule, we have

(ω
[n]
bC ) =

1

det(e
[n]
Ia )

(Ω
[n]
bC), (4.31)

where (−1)b+CΩ
[n]
bC is the determinant of the matrix produced by deleting the b-column and

C-row of (e
[n]
Cb). From our assumption (4.29) and definition (4.4), it holds

|∂α
x [det(e

[n]
Ia )− det(e

[0]
Ia )]| ≤Cα,nt

−1+ε,

|∂α
x [(Ω

[n]
bC)− (Ω

[0]
bC)]| ≤

{
Cα,nt

−1+pb+ε b ≤ C
Cα,nt

−1+2pb−pC+ε b > C
,

(4.32)
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where

det(e
[0]
Ia ) = f11f22f33t

−1, (Ω
[0]
bC) =

{
(f ⋆ f)bCt

−1+pb b ≤ C
0 b > C

. (4.33)

Next, we compute

(ω
[n]
bC )− (ω

[0]
bC) =

1

det(e
[n]
Ia )

[(Ω
[n]
bC)− (Ω

[0]
bC)]−

det(e
[n]
Ia )− det(e

[0]
Ia )

det(e
[n]
Ia )det(e

[0]
Ia )

(Ω
[0]
bC). (4.34)

Combining (4.31)-(4.34), we arrive at the desired conclusion (4.30).

Lemma 4.4. Let n ∈ N. Assume that for every I, C, a, b, every multi-index α, and for all
(t, x) ∈ (0, tn]× [0, δ]3 there holds:

|∂α
x (e

[n]
Ia − e

[0]
Ia )| ≤

{
Cα,nt

−pI+ε I ≤ a,
Cα,nt

pI−2pa+ε I > a,

|∂α
x (ω

[n]
bC − ω

[0]
bC)| ≤

{
Cα,nt

pC+ε b ≤ C,
Cα,nt

2pb−pC+ε b > C.

Then, shrinking tn if necessary, the following basic estimate is valid:

|∂α1
x ω

[n]
aD∂

α2
x e

[n]
Ia | ≤Cα,nt

|pD−pI ||log t||α|,

|∂α1
x ω

[n]
bC∂

α2
x e

[n]
Ca| ≤Cα,nt

|pb−pa||log t||α|,
(4.35)

for all (t, x) ∈ (0, tn]× [0, δ]3, all indices a, b, I,D, and |α1|+ |α2| = |α|.

Proof. The argument for the two bounds is similar, so we only discuss the first one. If
D = I, then it is clear that the least decaying term corresponds to a = I. Adding and
subtracting the zeroth iterates we have

|∂α1
x ω

[n]
aD∂

α2
x e

[n]
Ia | ≤ Cα,nt

ε + |∂α1
x ω

[0]
aD∂

α2
x e

[0]
Ia | ≤ Cα,n(t

ε + | log t||α|), (4.36)

where each logarithm comes from when ∂x hits tpI(x), t−pI(x) in (4.4). Since tε ≤ | log t||α|,
provided tn is sufficiently small, the desired bound follows.

Let us assume now D < I. Then we have three cases, depending on the value of a. For
a ≥ I, we have

|∂α2
x e

[n]
Ia | ≤ Cα,nt

−pI | log t||α2|, |∂α1
x ω

[n]
aD| = |∂α1

x (ω
[n]
aD − ω

[0]
aD)| ≤ Cα,nt

2pa−pD+ε, (4.37)

which leads to the desired bound after noticing that 2pa − pD − pI ≥ pI − pD = |pI − pD|.
For a ≤ D, we instead have

|∂α1
x ω

[n]
aD| ≤ Cα,nt

pD | log t||α1|, |∂α2
x e

[n]
Ia | = |∂α2

x (e
[n]
Ia − e

[0]
Ia )| ≤ Cα,nt

pI−2pa+ε, (4.38)
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which again agrees with the claimed bound, since pI + pD − 2pa ≥ pI − pD = |pI − pD|.
Lastly, for D < a < I, it holds

|∂α1
x ω

[n]
aD| = |∂α1

x (ω
[n]
aD − ω

[0]
aD)| ≤Cα,nt

2pa−pD+ε,

|∂α2
x e

[n]
Ia | = |∂α2

x (e
[n]
Ia − e

[0]
Ia )| ≤Cα,nt

pI−2pa+ε,
(4.39)

which actually gives a tε better bound than the one in (4.35).
The case I > D is treated similarly.

We now proceed to the circular estimates which imply 1, 2 of Theorem 4.1 by an
induction argument.

Lemma 4.5. Let n ∈ N. Assume that, for all indices I, C, a, b, multi-indices α, (t, x) ∈
(0, tn]× [0, δ]3 there holds

|∂α
x (e

[n]
Ia − e

[0]
Ia )| ≤

{
Cα,nt

−pI+ε I ≤ a,
Cα,nt

pI−2pa+ε I > a,

|∂α
x (ω

[n]
bC − ω

[0]
bC)| ≤

{
Cα,nt

pC+ε b ≤ C,
Cα,nt

2pb−pC+ε b > C.

Then, the spatial Ricci curvature satisfies

|∂α
xR

[n]
IJ | ≤ Cα,nt

−2+ε+|pI−pJ |, (4.40)

for all multi-indices α, indices I, J , and (t, x) ∈ (0, tn]× [0, δ]3.

Proof. We will prove the stronger statement, namely that for all multi-indices α and for
all I, J there holds

|∂α
xR

[n]
IJ | ≤ Cα,nt

−2+2ε+|pI−pJ || log t|2+|α|. (4.41)

Then, the desired estimate follows by shrinking tn if necessary, to absorb | log t|2+|α| into
tε.

Expanding R
[n]
IJ using the formulas (3.5), (3.6), we notice that

R
[n]
IJ = L

(
e
[n]
ℓ1i

∂i(ω
[n]
aℓ2

e
[n]
ℓ3j

∂je
[n]
ℓ4a

), ω
[n]
aℓ1

(e
[n]
ℓ2i

∂ie
[n]
ℓ3a

)ω
[n]
ℓ4b

(e
[n]
ℓ5i

∂ie
[n]
ℓ6b

)
)
, (4.42)

where L(·, ·) is a linear expression in its arguments. Here, ℓm are pairwise contracting or
equal to I, J (one for each term). Employing Lemma 4.4 we deduce that

|∂α
x [e

[n]
ℓ1i

∂i(ω
[n]
aℓ2

e
[n]
ℓ3j

∂je
[n]
ℓ4a

)]| ≤Cα,nt
−pℓ1−pℓ3+|pℓ4−pℓ2 || log t|2+|α|

≤Cα,n(t
−pI−pJ + t−2max pi+|pI−pJ |)| log t|2+|α| (4.43)
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≤Cα,nt
−2+2ε+|pI−pJ || log t|2+|α|

and

|∂α
x [ω

[n]
aℓ1

(e
[n]
ℓ2i

∂ie
[n]
ℓ3a

)ω
[n]
ℓ4b

(e
[n]
ℓ5i

∂ie
[n]
ℓ6b

)]| ≤Cα,nt
−pℓ2+|pℓ3−pℓ1 |t−pℓ5+|pℓ6−pℓ4 || log t|2+|α|

≤Cα,n(t
−pI−pJ + t−2max pi+|pI−pJ |)| log t|2+|α| (4.44)

≤Cα,nt
−2+2ε+|pI−pJ || log t|2+|α|

Applying the bounds (4.43)-(4.44) to (4.42) gives the claimed bound (4.41).

Lemma 4.6. Let n ≥ 1 and suppose there exists tn > 0 such that for every multi-index α
and indices I, J the inequalities

|∂α
x (k

[n−1]
IJ − k

[0]
IJ )| ≤Cα,nt

−1+ε+|pI−pJ |,

|∂α
xR

[n−1]
IJ | ≤Cα,nt

−2+ε+|pI−pJ |,

hold true, for all (t, x) ∈ (0, tn−1] × [0, δ]3. Then, there exists tn ∈ (0, tn−1) such that the
following bound holds:

|∂α
x (k

[n]
IJ − k

[0]
IJ )| ≤ Cα,nt

−1+ε+|pI−pJ |

for all (t, x) ∈ (0, tn−1]× [0, δ]3.

Proof. We notice that (4.2) can be rewritten as

∂t(tk
[n]
IJ − tk

[0]
IJ )− (k

[n−1]
CC +

1

t
)(tk

[n]
IJ − tk

[0]
IJ ) = tR

[n−1]
IJ + (k

[n−1]
CC +

1

t
)tk

[0]
IJ . (4.45)

By the assumed bounds on k
[n−1]
IJ , however, we conclude that

sup
x∈[0,δ]3

|∂α
x (k

[n−1]
CC +

1

t
)| = sup

x∈[0,δ]3
|∂α

x (k
[n−1]
CC − k

[0]
CC)| ≤ Cα,nt

−1+ε, (4.46)

while the bounds on R
[n−1]
IJ imply that

|t∂α
xR

[n−1]
IJ | ≤ Cα,nt

−1+ε+|pI−pJ |, ∀(t, x) ∈ (0, tn−1]× [0, δ]3. (4.47)

Also, given definition (4.4), we notice that the asymptotic initial conditions (4.5) are equiv-

alent to the differences tk
[n]
IJ − tk

[0]
IJ having trivial initial conditions at t = 0. Hence, we may

solve (4.45) via integrating factors to obtain

t(k
[n]
IJ − k

[0]
IJ ) = e

∫ t
0 w[n−1]dτ

∫ t

0
e−

∫ τ
0 w[n−1]dτ

{
τR

[n−1]
IJ + (k

[n−1]
CC − k

[0]
CC)τk

[0]
IJ

}
dτ (4.48)
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where w[n−1](t, x) = (k
[n−1]
CC − k

[0]
CC)(t, x). Note that

sup
x∈[0,δ]3

∣∣∣∣∂α
x

∫ t

0
w[n−1]dτ

∣∣∣∣ ≤ Cα,nt
ε

by virtue of (4.46). Differentiating now (4.48) with ∂α
x and using the bounds (4.46), (4.47)

yields the desired result.

Lemma 4.7. Let N ≥ 1 and suppose there exists tN > 0 such that for every 1 ≤ n ≤ N

and every multi-index α, k
[n]
IJ satisfies the following estimate:

|∂α
x (k

[n]
IJ − k

[0]
IJ )| ≤ Cα,nt

−1+ε+|pI−pJ |,

for all (t, x) ∈ (0, tN−1]× [0, δ]3. Then, after choosing tN smaller if necessary, there holds

|∂α
x (e

[n]
Ia − e

[0]
Ia )| ≤

{
Cα,nt

−pI+ε I ≤ a,
Cα,nt

pI−2pa+ε I > a,

for all (t, x) ∈ (0, tN ]× [0, δ]3 and all indices I, a.

Proof. Rewrite (4.1) in the form

∂t
[
tpI (e

[n]
Ia − e

[0]
Ia )

]
− (k

[n]
II − k

[0]
II )

[
tpI (e

[n]
Ia − e

[0]
Ia )

]
= tpIe

[0]
Ia (k

[n]
II − k

[0]
II ) +

∑
C ̸=I

k
[n−1]
IC

[
tpI (e

[n−1]
Ca − e

[0]
Ca)

]
+

∑
C ̸=I

tpIe
[0]
Ca(k

[n−1]
IC − k

[0]
IC).

(4.49)

Let us denote by Ω
[n]
Ia the preceding RHS and let w

[n]
I = k

[n]
II −k

[0]
II . By our assumption and

finite induction in n, we have that the following bounds hold:

|∂α
xw

[n]
I | ≤ Cα,nt

−1+ε, |∂α
xΩ

[n]
Ia | ≤

{
Cα,nt

−1+ε I ≤ a,
Cα,nt

−1+2pI−2pa+ε I > a.
(4.50)

Notice that tpI (e
[n]
Ia − e

[0]
Ia ) has trivial data at t = 0, due to the asymptotic initial condition

(4.5). Solving (4.49) via integrating factors gives

tpI (e
[n]
Ia − e

[0]
Ia ) = e

∫ t
0 w

[n]
I dτ

∫ t

0
e−

∫ τ
0 w

[n]
I dτΩ

[n]
Ia dτ (4.51)

Differentiating (4.51) with ∂α
x and using (4.50), we conclude the desired result.

A straightforward induction argument now implies that:

Proposition 4.1. Points 1, 2 of Theorem 4.1 hold true.
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Proof. Lemma 4.5 implies that the assumption of Lemma 4.6 is satisfied for n = 1. Hence,
points 1, 2 of Theorem 4.1 are valid for n = 0. Assume that they are satisfied for all iterates
with superscript n − 1. Then Lemma 4.5 implies that (4.13) is satisfied. By Lemma 4.6
we also obtain (4.11). Lemma 4.3 implies that (4.12) holds true. Finally, Lemma 4.5 gives
(4.14). This completes the induction argument and the proof of points 1, 2 of Theorem
4.1.

4.3 Comparing successive iterates

In the next lemmas we derive circular estimates for k[n] − k[n−1], e[n] − e[n−1].

Lemma 4.8. Let N ≥ 2 and suppose there exists tN−1 > 0, such that for every 1 ≤
n ≤ N − 1, every multi-index α, and indices I, C, b, a the following holds for all (t, x) ∈
(0, tN−1]× [0, δ]3:

|∂α
x (e

[n]
Ia − e

[n−1]
Ia )| ≤

{
Cα,nt

−pI+nε I ≤ a
Cα,nt

pI−2pa+nε I > a

|∂α
x (ω

[n]
bC − ω

[n−1]
bC )| ≤

{
Cα,nt

pC+nε b ≤ C
Cα,nt

2pb−pC+nε b > C

Then, taking tN ∈ (0, tN−1) smaller if necessary, the following bound holds:

|∂α
x (k

[n]
IJ − k

[n−1]
IJ )| ≤ C ′

α,nt
−1+|pI−pJ |+nε,

for every 2 ≤ n ≤ N , every multi-index α, indices I, J , and for all (t, x) ∈ (0, tN )× [0, δ]3.

Proof. Step 1. First, we estimate the difference of successive Ricci curvature components

R
[n]
IJ − R

[n−1]
IJ . Going back to the expression (4.42), we notice that the previous difference

has the form

R
[n]
IJ −R

[n−1]
IJ =L

(
(e

[n]
ℓ1i

− e
[n−1]
ℓ1i

)∂i(ω
[n]
aℓ2

e
[n]
ℓ3j

∂je
[n]
ℓ4a

), . . . ,

e
[n−1]
ℓ1i

∂i[ω
[n−1]
aℓ2

e
[n−1]
ℓ3j

∂j(e
[n]
ℓ4a

− e
[n−1]
ℓ4a

)], (4.52)

(ω
[n]
aℓ1

− ω
[n−1]
aℓ1

)(e
[n]
ℓ2i

∂ie
[n]
ℓ3a

)ω
[n]
ℓ4b

(e
[n]
ℓ5i

∂ie
[n]
ℓ6b

), . . . ,

ω
[n−1]
aℓ1

(e
[n−1]
ℓ2i

∂ie
[n−1]
ℓ3a

)ω
[n−1]
ℓ4b

[e
[n−1]
ℓ5i

(∂ie
[n]
ℓ6b

− ∂ie
[n−1]
ℓ6b

)]
)

Every term in the last linear expression can be estimated exactly as in (4.43), (4.44), only
now each factor which is a difference of successive iterates, e[n] − e[n−1] or ω[n] − ω[n−1],
contributes an extra tnε, resulting in the bound

|∂α
x (R

[n]
IJ −R

[n−1]
IJ )| ≤ Cα,nt

−2+(n+2)ε+|pI−pJ || log t|2+|α|, (4.53)
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for every 1 ≤ n ≤ N − 1.

Step 2. For 2 ≤ n ≤ N , (4.2) implies the following equation for k[n] − k[n−1]:

∂t
(
t(k

[n]
IJ − k

[n-1]
IJ )

)
− (k

[n-1]
CC +

1

t
)t(k

[n]
IJ − k

[n-1]
IJ )

= tk
[n-1]
IJ (k

[n-1]
CC − k

[n-2]
CC ) + t(R

[n-1]
IJ −R

[n-2]
IJ ).

(4.54)

Solving (4.54) via integrating factors, we obtain the formula:

t(k
[n]
IJ − k

[n-1]
IJ )(t, x)

= e
∫ t
0 w[n−1]dτ

∫ t

0
e−

∫ τ
0 w[n−1]dτ

{
τk

[n-1]
IJ (k

[n-1]
CC − k

[n-2]
CC ) + τ(R

[n-1]
IJ −R

[n-2]
IJ )

}
dτ,

(4.55)

where w[n−1] = k
[n−1
CC + t−1 = k

[n−1]
CC −k

[0]
CC , satisfying |∂α

xw
[n−1]| ≤ Cα,nt

−1+ε. The desired
bound on k[n] − k[n−1] follows by finite induction, after differentiating (4.55) with ∂α

x , and
using the already derived estimate (4.53).

Lemma 4.9. Let N ≥ 1 and suppose there exists tN > 0 such that for every 1 ≤ n ≤ N ,
every multi-index α and indices I, J , the following holds:

|∂α
x (k

[n]
IJ − k

[n−1]
IJ )| ≤ Cα,nt

−1+nε+|pI−pJ |,

for all (t, x) ∈ (0, tN ]× [0, δ]3. Then, after choosing tN > 0 smaller if necessary, for every
multi-index α and 1 ≤ n ≤ N , the following bounds hold:

|∂α
x (e

[n]
Ia − e

[n−1]
Ia )| ≤

{
Cα,nt

−pI+nε I ≤ a
Cα,nt

pI−2pa+nε I > a

|∂α
x (ω

[n]
bC − ω

[n−1]
bC )| ≤

{
Cα,nt

pC+nε b ≤ C
Cα,nt

2pb−pC+nε b > C

for all (t, x) ∈ (0, tN ]× [0, δ]3 and 1 ≤ n ≤ N .

Proof. We begin by writing the equation satisfied by e
[n]
Ia−e

[n-1]
Ia , using (4.1), in the following

form:

∂t
[
tpI (e

[n]
Ia − e

[n-1]
Ia )

]
− (k

[n]
II − k

[0]
II )t

pI (e
[n]
Ia − e

[n-1]
Ia ) (4.56)

= tpIe
[n-1]
Ia (k

[n]
II − k

[n-1]
II ) +

∑
C ̸=I

[
k
[n-1]
IC (tpI (e

[n-1]
Ca − e

[n-2]
Ca )) + tpIe

[n-2]
Ca (k

[n-1]
IC − k

[n-2]
IC )

]
.
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Then we proceed by solving the latter equation using integrating factors, as we did in the
proof of Lemma 4.7, and argue by finite induction as in the proof of the previous lemma
to infer the bound

|∂α
x (e

[n]
Ia − e

[n−1]
Ia )| ≤

{
Cα,nt

−pI+nε I ≤ a
Cα,nt

pI−2pa+nε I > a
(4.57)

for all (t, x) ∈ (0, tN ]× [0, δ]3 and 1 ≤ n ≤ N .
Once we have controlled the difference of successive iterates for the frame, we employ

the formula (4.31) to obtain an expression for the difference ω[n] − ω[n−1] analogous to
(4.34):

(ω
[n]
bC )− (ω

[n−1]
bC ) =

1

det(e
[n]
Ia )

[(Ω
[n]
bC)− (Ω

[n−1]
bC )]−

det(e
[n]
Ia )− det(e

[n−1]
Ia )

det(e
[n]
Ia )det(e

[n−1]
Ia )

(Ω
[n−1]
bC ) (4.58)

Then, we notice that the differences of determinants and co-factor matrices of the frame
iterates satisfy bounds analogous to (4.32), only tnε by virtue of (4.57):

|∂α
x [det(e

[n]
Ia )− det(e

[n−1]
Ia )]| ≤Cα,nt

−1+nε,

|∂α
x [(Ω

[n]
bC)− (Ω

[n−1]
bC )]| ≤

{
Cα,nt

−1+pb+nε b ≤ C
Cα,nt

−1+2pb−pC+nε b > C

Applying the latter to the differentiated version of (4.58) gives the desired bound for the
difference of successive co-frame iterates, which completes the proof of the lemma.

Proposition 4.2. For any N ≥ 1, there exists tN > 0, such that for every 1 ≤ n ≤ N ,
every multi-index α, and indices I, C, a, b, the following estimates hold:

|∂α
x (e

[n]
Ia − e

[n−1]
Ia )| ≤

{
Cα,nt

−pI+nε I ≤ a
Cα,nt

pI−2pa+nε I > a

|∂α
x (ω

[n]
bC − ω

[n−1]
bC )| ≤

{
Cα,nt

pC+nε b ≤ C
Cα,nt

2pb−pC+nε b > C

|∂α
x (k

[n]
IJ − k

[n−1]
IJ )| ≤Cα,nt

−1+nε+|pI−pJ |

|∂α
x (R

[n]
IJ −R

[n−1]
IJ )| ≤Cα,nt

−2+(n+1)ε+|pI−pJ |

for all (t, x) ∈ (0, tN ]× [0, δ]3.

Proof. For N = 1, the conclusion is satisfied by virtue of points 1, 2 of Theorem 4.1.
Assuming the conclusion holds for N − 1, Lemmas 4.8, 4.9 imply that the above estimates

regarding e
[n]
Ia , ω

[n]
bC , k

[n]
IJ are valid for every 1 ≤ n ≤ N . By (4.53), we also have the desired

estimate for the differences of the spatial Ricci components up to n = N . This completes
the proof by induction.
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4.4 Approximate solution to the evolution equations

In the next lemma we prove that k[n] approximately satisfies the evolution equation (3.4)
in vacuum.

Lemma 4.10. For every n ≥ 1 and every multi-index α, there exists a tn > 0 such that
the following estimates hold for all (t, x) ∈ (0, tn]× [0, δ]3 and I, J :

|∂α
x

(
∂tk

[n]
IJ − k

[n]
CCk

[n]
IJ −R

[n]
IJ

)
| ≤ Cα,nt

−2+nε. (4.59)

Proof. Plugging in (4.2) we have

∂tk
[n]
IJ − k

[n]
CCk

[n]
IJ −R

[n]
IJ = (R

[n-1]
IJ −R

[n]
IJ ) + (k

[n-1]
CC − k

[n]
CC)k

[n]
IJ .

The desired bound follows by using Proposition 4.2 to control the previous RHS and its
spatial derivatives.

We will also need to compare k[n] with the actual second fundamental form k̃[n] of the
t slices relative to g[n].

Lemma 4.11. For every n ≥ 1 and every multi-index α, there exists a tn > 0 such that
the following estimate holds:

|∂r
t ∂

α
x (k

[n]
IJ − k̃

[n]
IJ )| ≤ Cα,nt

−1−r+nε+|pI−pJ |, r = 0, 1, (4.60)

for all (t, x) ∈ (0, tn]× [0, δ]3 and indices I, J .

Proof. We note that k̃[n] satisfies

∂te
[n]
Ia = k̃

[n]
ICe

[n]
Ca ⇒ k̃

[n]
IJ = ω

[n]
aJ ∂te

[n]
Ia .

Plugging in (4.1), we compute

k̃
[n]
IJ = k

[n]
II δIJ +

∑
C ̸=I

k
[n−1]
IC e

[n−1]
Ca ω

[n]
aJ

= k
[n]
II δIJ +

∑
C ̸=I

k
[n−1]
IC (e

[n−1]
Ca − e

[n]
Ca)ω

[n]
aJ +

∑
C ̸=I

(k
[n−1]
IC − k

[n]
IC)δCJ +

∑
C ̸=I

k
[n]
ICδCJ

= k
[n]
IJ +

∑
C ̸=I

k
[n−1]
IC (e

[n−1]
Ca − e

[n]
Ca)ω

[n]
aJ +

∑
C ̸=I

(k
[n−1]
IC − k

[n]
IC)δCJ

or equivalently

k̃
[n]
IJ − k

[n]
IJ =

∑
C ̸=I

k
[n−1]
IC (e

[n−1]
Ca − e

[n]
Ca)ω

[n]
aJ +

∑
C ̸=I

(k
[n−1]
IC − k

[n]
IC)δCJ (4.61)
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The desired bound for r = 0 follows by employing Proposition 4.2 and point 1 of Theorem
4.1 to estimate the preceding RHS. For the case r = 1, we take the time derivative of
(4.61) and plug in the equations (4.2), (4.7), (4.54), (4.56) to replace all time derivatives
in the RHS with terms that have already been controlled in Proposition 4.2, and point 1
of Theorem 4.1. We omit the details.

With the previous lemmas at our disposal, we are now ready to complete the proof of
point 3 of Theorem 4.1 for µ, ν = I, J .

Proposition 4.3. For every n ≥ 1 and every multi-index α, there exists a tn > 0 such
that the following estimate hold:

|∂α
xR

[n]
IJ | ≤ Cα,nt

−2+nε, (4.62)

for all (t, x) ∈ (0, tn]× [0, δ]3 and indices I, J .

Proof. The evolution equation (3.4) holds true for any Lorentzian metric, hence, also for
g[n]. We thus have

R
[n]
IJ =R

[n]
IJ − ∂tk̃

[n]
IJ + k̃

[n]
CC k̃

[n]
IJ

=R
[n]
IJ − ∂tk

[n]
IJ + k

[n]
CCk

[n]
IJ

− ∂t(k̃
[n]
IJ − k

[n]
IJ ) + (k̃

[n]
CC − k

[n]
CC)k̃

[n]
IJ + k

[n]
CC(k̃

[n]
IJ − k

[n]
IJ )

The desired bound follows by using Lemmas 4.10, 4.11.

4.5 Approximate solution to the constraints

The sequence of iterates g[n] we have constructed so far is an approximate solution to the
evolutionary part of the Einstein vacuum equations, ie. (4.62). We will now proceed to
show that for asymptotic data satisfying Definition 1.1, g[n] is also an approximate solution
to the constraint equations. Let us denote by ∇[n], D[n] the connections intrinsic to g[n],g[n]

respectively and let

γ
[n]
IJB = g[n](D

[n]

e
[n]
I

e
[n]
J , e

[n]
B ) = g[n](∇[n]

e
[n]
I

e
[n]
J , e

[n]
B ). (4.63)

Lemma 4.12. For every multi-index and indices I, J,B, the n-th spatial connection coef-
ficients satisfy

|∂α
x γ

[n]
IJB| ≤Cα,n(t

−pI+|pB−pJ | + t−pJ+|pB−pI | + t−pB+|pI−pJ |)| log t|1+|α|, I ̸= J,B
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and ∣∣∂α
x

[
γ
[n]
IJI + t−pJEJ log(fIIt

−pI )−
∑

J≤a≤I

haIEI(t
−pJfJa)

]∣∣ ≤Cα,nt
−pJ+ε,

for all (t, x) ∈ (0, tn]× [0, δ]3, where EJ =
∑

b≥J fJb∂b and the last sum is not present when
J > I.

Proof. The first bound readily follows using the formula (3.6) and Proposition 4.1. For the
second bound, employing (3.6) and Proposition 4.1 once more we have

γ
[n]
IJI =− ω

[n]
II e

[n]
J e

[n]
II + ω

[n]
aI e

[n]
I e

[n]
Ja

=− t−pJEJ log(fIIt
−pI ) +

∑
J≤a≤I

t−pIω
[0]
aIEI(t

−pJfJa) + (γ
[n]
IJI)error

=− t−pJEJ log(fIIt
−pI ) +

∑
J≤a≤I

haIEI(t
−pJfJa) + (γ

[n]
IJI)error,

where |∂α
x (γ

[n]
IJI)error| ≤ Cα,nt

−pJ+ε. This completes the proof of the lemma.

Next, we show that the constraints are satisfied to leading order.

Lemma 4.13. Let pI , fIa satisfy the algebraic Kasner conditions and the asymptotic dif-
ferential conditions (4.9). Then, for every n ∈ N and every multi-index α, there exists a
tn > 0 such that the following estimates hold:∣∣∂α

x

[
R[n] − |k[n]|2 + (trk[n])2

]∣∣ ≤Cα,nt
−2+ε,∣∣∂α

x

[
∇[n]

J k
[n]
IJ − e

[n]
I trk[n]

]∣∣ ≤Cα,nt
−1−pI+ε.

(4.64)

for all (t, x) ∈ (0, tn]× [0, δ]3 and index I.

Proof. From point 2 of Theorem 4.1, it follows that

|∂α
xR

[n]| ≤ Cα,nt
−2+ε.

We also have

|k[n]|2 − (trk[n])2 =(k[n] − k[0])IJ(k
[n] − k[0])IJ − (trk[n] − trk[0])2

+ 2(k[n] − k[0])IJk
[0]
JI − 2(k[0])ℓ

ℓ
(k[n] − k[0])ℓ

ℓ

+
1

t2

∑
i

p2i −
1

t2

(∑
i

pi

)2
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The last line cancels, by virtue of the Kasner algebraic conditions. From point 1 of Theorem
4.1, the remaining terms and their spatial derivatives are bounded by Cα,nt

−2+ε. This gives
the first bound in (4.64).

For the second bound in (4.64), we expand the momentum constraint:

∇[n]
J k

[n]
IJ − e

[n]
I trk[n]

= e
[n]
Ja∂ak

[n]
IJ − e

[n]
Ia ∂a(trk

[n])− γ
[n]
JICk

[n]
CJ − γ

[n]
JJCk

[n]
IC

= e
[n]
Ja∂a(k

[n]
IJ − k

[0]
IJ )− e

[n]
Ia ∂a(trk

[n] − trk[0])

− γ
[n]
JIC(k

[n]
CJ − k

[0]
CJ) + γ

[n]
JCJ(k

[n]
IC − k

[0]
IC)− (e

[n]
Ia − e

[0]
Ia )

∂apI
t

(4.65)

+
∑
J

([
γ
[n]
JIJ + t−pIEI log(fJJ t

−pJ )−
∑

I≤a≤J

t−pJω
[0]
aJEJ(t

−pIfIa)
]pJ − pI

t

)
− t−1−pIEIpI −

∑
J

t−1−pI (pJ − pI)

[
EI log(fJJ t

−pJ )−
∑

I≤a≤J

tpI−pJω
[0]
aJEJ(t

−pIfIa)

]
From point 1 of Theorem 4.1 and Lemma 4.12, we have∣∣∂α

x

[
e
[n]
Ja∂a(k

[n]
IJ − k

[0]
IJ )− e

[n]
Ia ∂a(trk

[n] − trk[0])
]∣∣

≤Cα,n(t
−pJ t−1+ε+|pI−pJ | + t−pI t−1+ε) (4.66)

≤Cα,nt
−1−pI+ε,

∣∣∂α
x

[
(e

[n]
Ia − e

[0]
Ia )

∂apI
t

−
∑
J

(γ
[n]
JIJ + t−pIEI log(fJJ t

−pJ )
pJ − pI

t

]∣∣ ≤ Cα,nt
−1−pI+ε, (4.67)

and ∣∣∂α
x

[
γ
[n]
JIC(k

[n]
CJ − k

[0]
CJ) + γ

[n]
JJC(k

[n]
IC − k

[0]
IC)

]∣∣
≤Cα,nt

−1+ε+|pC−pJ |(t−pI+|pC−pJ | + t−pJ+|pC−pI | + t−pC+|pI−pJ |)| log t|1+|α|) (4.68)

+ Cα,nt
−1+ε+|pI−pC |t−pC

≤Cα,nt
−1−pI+ε

Finally, we observe that

t−1−pIEIpI +
∑
J

t−1−pI (pJ − pI)

[
EI log(fJJ t

−pJ )−
∑

I≤a≤J

tpI−pJω
[0]
aJEJ(t

−pIfIa)

]
= t−1−pI

[
EIpI +

∑
J

(pJ − pI)EI log(fJJ)− log t
∑
J

(pJ − pI)EIpJ (4.69)
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−
∑
J

∑
I≤a≤J

(pJ − pI)haJEJfIa + log t
∑
J

(pJ − pI)δIJEJpI

]
= t−1−pI

[
EIpI +

∑
J

(pJ − pI)EI log(fJJ)−
∑
J

∑
I≤a≤J

(pJ − pI)haJEJfIa

]
where in the last equality, we used the algebraic Kasner conditions. The last line vanishes
by assumption (4.9), see also Lemma 4.2. Combining (4.65)-(4.69), we deduce the second
inequality in (4.64). The proof of the lemma is complete.

Proposition 4.4. Assume that the conclusion of Lemma 4.13 holds true. Then for every
n ≥ 1 the spacetime Ricci components of g[n] satisfy:

|∂α
xR

[n]
0ν | ≤ Cα,nt

−2+nε, (4.70)

for every multi-index α and ν = 0, I.

Proof. First, we recall the Gauss and Codazzi equations for the metric g[n]:

R(g[n])− |k̃[n]|2 + (trk̃[n])2 =R[n] + 2R
[n]
00 (4.71)

∇[n]
J k̃

[n]
IJ − e

[n]
I trk̃[n] =R

[n]
0I (4.72)

By Lemma 4.13 and Proposition 4.3 we deduce that

|∂α
xR

[n]
0I | ≤ Cα,nt

−1+pI+ε |∂α
xR

[n]
00 | ≤ Cα,nt

−2+ε. (4.73)

The twice contracted second Bianchi identity reads:

D
[n]
0 R

[n]
0I = D

[n]
C R

[n]
CI −

1

2
D

[n]
I R[n], D

[n]
0 R

[n]
00 = D

[n]
C R

[n]
C0 −

1

2
D

[n]
0 R[n]. (4.74)

Expanding the covariant derivatives and subtracting the background variables, we rewrite
(4.74) in the form

∂tR
[n]
0I − (trk̃[n] + k̃

[n]
II )R

[n]
0I =

1

2
e
[n]
I R

[n]
00 + e

[n]
C R

[n]
CI −

1

2
e
[n]
I R

[n]
CC (4.75)

+ γ
[n]
CJCR

[n]
CI − γ

[n]
CIDR

[n]
CD +

∑
C ̸=I

k̃
[n]
CIR

[n]
0C

∂tR
[n]
00 − 2trk̃[n]R

[n]
00 =2e

[n]
C R

[n]
0C − ∂tR

[n]
CC + γ

[n]
CJCR

[n]
0J − k̃

[n]
CDR

[n]
CD (4.76)

Subtracting the iterates k[n], k[0], we are left with the system

∂tR
[n]
0I +

1 + pI
t

R
[n]
0I =

1

2
e
[n]
I R

[n]
00 +

∑
C ̸=I

k̃
[n]
CIR

[n]
0C + F

[n]
I (4.77)
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+ (trk̃[n] − trk[n] + trk[n] − trk[0] + k̃
[n]
II − k

[n]
II + k

[n]
II − k

[0]
II )R

[n]
0I

∂tR
[n]
00 +

2

t
R

[n]
00 =2e

[n]
C R

[n]
0C + γ

[n]
CJCR

[n]
0J + F

[n]
0 (4.78)

+ 2(trk̃[n] − trk[n] + trk[n] − trk[0])R
[n]
00

where

F
[n]
I = e

[n]
C R

[n]
CI −

1

2
e
[n]
I R

[n]
CC + γ

[n]
CJCR

[n]
CI − γ

[n]
CIDR

[n]
CD (4.79)

F
[n]
0 =− ∂tR

[n]
CC − k̃

[n]
CDR

[n]
CD (4.80)

Using integrating factors and (4.73), we obtain the formulas

R
[n]
0I = t−1−pI

∫ t

0
τ1+pI

[
1

2
e
[n]
I R

[n]
00 +

∑
C ̸=I

k̃
[n]
CIR

[n]
0C + F

[n]
I (4.81)

+ (trk̃[n] − trk[n] + trk[n] − trk[0] + k̃
[n]
II − k

[n]
II + k

[n]
II − k̃

[0]
II )R

[n]
0I

]
dτ

R
[n]
00 = t−2

∫ t

0
τ2
[
2e

[n]
C R

[n]
0C + γ

[n]
CJCR

[n]
0J + F

[n]
0 (4.82)

+ 2(trk̃[n] − trk[n] + trk[n] − trk[0])R
[n]
00

]
dτ

By Lemma 4.11, Proposition 4.3 and Lemma 4.12, we deduce the estimates∣∣∣∣∂α
x

(
t−1−pI

∫ t

0
τ1+pIF

[n]
I dτ

)∣∣∣∣ ≤Cα,nt
−2+(n+1)ε| log t||α| (4.83)

≤Cα,nt
−2+nε∣∣∣∣∂α

x

(
t−2

∫ t

0
τ2F

[n]
0 dτ

)∣∣∣∣ = ∣∣∣∣∂α
x

(
t−2

∫ t

0
(2τR

[n]
CC − τ2k̃

[n]
CDR

[n]
CD)dτ −R

[n]
CC

)∣∣∣∣ (4.84)

≤Cα,nt
−2+nε

Applying (4.73), (4.83), (4.84) to (4.82) gives the bound

|∂α
xR

[n]
00 | ≤ Cα,nt

−2+2ε + Cα,nt
−2+nε. (4.85)

Using the latter, along with (4.73), (4.83), (4.84), and Lemma 4.60, we obtain

|∂α
xR

[n]
0I | ≤ Cα,nt

−2+2ε + Cα,nt
−2+nε. (4.86)

Note that for n > 1, the bounds (4.85), (4.86) are an improvement by tε over (4.73).
Repeating the above argument n − 2 times, using (4.85), (4.86), instead of (4.73) and so
on and so forth, yields the desired (4.70).
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5 Construction of an actual solution to the modified evolu-
tion equations

In this section, we carry out a localized construction of a singular solution eIa, kIJ , γIJB
to the set of equations (5.12), (5.13), (5.14), whose behavior matches that of the iterates

e
[n]
Ia , k

[n]
IJ , γ

[n]
IJB to a sufficiently large polynomial order, as t → 0.

5.1 Domain of definition

The domain on which the actual solution will be living is defined using the metric g[n],
for some sufficiently large n which is fixed in the end. Let Σt denote the level sets of t in
[0, T ] × [0, δ]3. Denote the boundary of the initial slice by S0 = ∂Σ0 = ∪3

a=1S
±
0,a, where

S+
0,a = {xa = 0}, S−

0,a = {xa = δ}. We then define H = ∪3
a=1H±

a , where H±
a are the ingoing

hypersurfaces obtained by flowing each side S±
0,a of the cube S0 through the corresponding

vector field

X±
a = ∂t ± σ

∇[n]xa

|∇[n]xa|g[n]

, ∇[n]xa = e
[n]
Ia e

[n]
I = (g[n])ia∂i, σ > 0. (5.1)

For simplicity, we suppress the index n in the notation for the domain and its geometry.
Let Ut ⊂ Σt denote the slices whose boundary St = ∪3

a=1S
±
t,a = ∂Ut is in turn the slicing of

H induced by the above flow, t ∈ [0, T ].

Remark 5.1. The constant σ is chosen such that X±
a is spacelike and sufficiently ingoing.

It will be fixed below in order to absorb any energy flux terms in the estimates coming from
H, see the proof of Proposition 5.3 and (5.51).

Lemma 5.1. The flow of X±
a is well defined in [0, T ] and the hypersurface H is spacelike.

The coordinate functions xb, b ̸= a, induce coordinate vector fields /∂b on TS±
t,a that satisfy

/∂b = fa,±
bc ∂c, |∂α

x (f
a,±
bc − δbc)| ≤ Cα,nt

1+pa−2pmin{a,c} | log t||α|+1 (5.2)

In these coordinates, the induced metric g
[n]
/b/c

= g[n](/∂b, /∂c) on S±
t,a satisfies

|∂α
x (g

[n]
/b/c

− g
[n]
bc )| ≤ Cα,nt

2pmax{b,c}+ε, |∂α
x [(g

[n])/b/c − (g[n])bc]| ≤ Cα,nt
−2pmin{b,c}+ε (5.3)

Moreover, the inward unit normal to S±
t,a in Ut is a perturbation of ± ∇[n]xa

|∇[n]xa|
g[n]

= ± e
[n]
Ia e

[n]
I√

e
[n]
Cae

[n]
Ca

:

nS±
t,a

= nI
S±
t,a
e
[n]
I ,

∣∣∂α
x

[
nI
S±
t,a

∓
e
[n]
Ia√

e
[n]
Cae

[n]
Ca

]∣∣ ≤ Cα,nt
|pa−pI |+ε. (5.4)
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The future unit normal to S±
t,a within H is a perturbation of

X±
a = (σ2 − 1)−

1
2

[
∂t ± σ(e

[n]
Cae

[n]
Ca)

− 1
2 e

[n]
Ia e

[n]
I

]
:

nH
S±
t,a

= (nH
S±
t,a
)0∂t + (nH

S±
t,a
)Ie

[n]
I , |∂α

x [(n
H
S±
t,a
)0 − (σ2 − 1)−

1
2 ]| ≤ Cα,nt

ε,∣∣∂α
x

[
(nH

S±
t,a
)I ∓ (σ2 − 1)−

1
2σ(e

[n]
Cae

[n]
Ca)

− 1
2 e

[n]
Ia

]∣∣ ≤ Cα,nt
|pa−pI |+ε.

(5.5)

The future unit normal to H±
a is a perturbation of (σ2 − 1)−

1
2

[
σ∂t ± (e

[n]
Cae

[n]
Ca)

− 1
2 e

[n]
Ia e

[n]
I

]
:

nH±
a

= n0
H±

a
∂t + nI

H±
a
e
[n]
I , |∂α

x [n
0
H±

a
− σ(σ2 − 1)−

1
2 ]| ≤ Cα,nt

ε,∣∣∂α
x

[
nI
H±

a
∓ (σ2 − 1)−

1
2 (e

[n]
Cae

[n]
Ca)

− 1
2 e

[n]
Ia

]∣∣ ≤ Cα,nt
|pa−pI |+ε.

(5.6)

The induced volume forms on S±
t,a,H±

a satisfy:

∣∣∂α
x

[ volS±
t,a

/dxb/dxc
−
√
cbbccct

pb+pc
]∣∣ ≤ Cα,nt

ε,
∣∣∂α

x

[ volH±
a

dtvolS±
t,a

− (σ2 − 1)−
1
2
]∣∣ ≤ Cα,nt

ε, (5.7)

where /dxb, /dxc are the 1-forms dual to /∂b, /∂c, b, c ̸= a.

Proof. The tangential vector fields to S±
0,a are {∂b}b ̸=a. Lie propagating them along X±

a

gives /∂b ∈ TS±
t,a, b ̸= a:

[X±
a , fa,±

bc ∂c] = 0 ⇒
(
∂t ± σ

e
[n]
Ia e

[n]
Ii√

e
[n]
Ia e

[n]
Ia

∂i

)
fa,±
bc ∓ σfa,±

bi ∂i

(
e
[n]
Ia e

[n]
Ic√

e
[n]
Ia e

[n]
Ia

)
= 0. (5.8)

From point 1 of Theorem 4.1, we observe that the coefficients in the previous equation and
their ∂α

x derivatives satisfy the bound:∣∣∣∣∂α
x

(
e
[n]
Ia e

[n]
Ic√

e
[n]
Ia e

[n]
Ia

)∣∣∣∣ ≤ Cα,nt
pa−2min{pa,pc}| log t||α| (5.9)

In particular, the coefficients are bounded by Ct−1+ε, that is to say, they are uniformly
integrable in [0, t]. Since (5.8) is a transport equation in X±

a , for fa,±
bc with initial data δbc

at t = 0, the flow is well-defined in [0, T ] and fa,±
bc satisfy (5.2).

The estimate (5.3) for the induced metric components on S±
t,a follows from (5.2) and

(4.17).
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For the inward unit normal nS±
t,a

to S±
t,a in Ut, we first subtract from ± ∇[n]xa

|∇[n]xa|
g[n]

its

projections to /∂b, b ̸= a, to obtain (without summing in a)

VS±
t,a

=± ∇[n]xa

|∇[n]xa|g[n]

∓
∑
b̸=a

g[n](∇[n]xa, /∂b)

|∇[n]xa|g[n]g
[n]
/b/b

/∂b

=± [(gn])aa]−
1
2 (g[n])ia∂i ∓

∑
b ̸=a

[(gn])aa]−
1
2 (g

[n]
/b/b

)−1fa,±
ba fa,±

bi ∂i (5.10)

From the estimates (5.2)-(5.3) we have that

|∂α
x {[(gn])aa]−

1
2 (g

[n]
/b/b

)−1fa,±
ba fa,±

bi }|

≤Cα,nt
pa−2pb+1+pa−2pmin{a,b}+1tpa−2pmin{a,i} | log t||α|+1 (5.11)

≤Cα,nt
pa−2pmin{a,i}+ε,

since 2− 2pb +2pa − 2pmin{a,b} ≥ 2ε. Recall that [(gn])aa]−
1
2 (g[n])ia ∼ tpa−2pmin{a,i} . Hence,

the first term in the RHS of (5.10) is of leading order. Rewrite

[(gn])aa]−
1
2 (g[n])ia∂i =

e
[n]
Ia e

[n]
Ii√

e
[n]
Cae

[n]
Ca

ω
[n]
iDe

[n]
D =

e
[n]
Ia√

e
[n]
Cae

[n]
Ca

e
[n]
I ,

e
[n]
Ia√

e
[n]
Cae

[n]
Ca

∼ t|pa−pI |

To conclude the desired estimate (5.4), we observe that nS±
t,a

= VS±
t,a
/|VS±

t,a
|g[n] and that

VS±
t,a

is unit to leading order as t → 0.

The estimate (5.5) for nH
S±
t,a

is obtained similarly, by subtracting from X±
a its projections

to /∂b, b ̸= a, and normalizing the resulting vector field. In turn, (5.6) is immediate from
(5.5). Finally, the bounds for volume forms are implied by (5.3) and the form of the normal
nH
S±
t,a

.

5.2 The modified system of equations for the remainder terms

We now consider the system of equations (3.2), (3.8), (3.9), dropping all R
(4)
µν terms, since

we are working in vacuum:

∂teIa = kICeCa, (5.12)

∂tkIJ − trk kIJ =
1

2

[
eCγIJC − eIγCJC + eCγJIC − eJγCIC (5.13)

− γCIDγDJC − γCCDγIJD − γCJDγDIC − γCCDγJID

]
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+
1

2
δIJ

[
2eDγCDC + γCEDγDEC + γCCDγEED + kCDkCD − (kCC)

2

]
,

∂tγIJB − kICγCJB = eBkJI − eJkBI (5.14)

+ γJBCkCI + γJICkBC − γBJCkCI − γBICkJC

− δIB

[
eCkCJ − γCCDkDJ − γCJDkCD − eJtrk

]
+ δIJ

[
eCkCB − γCCDkDB − γCBDkCD − eBtrk

]
.

We would like to produce a solution eIa, kIJ , γIJB, each component of which is equal to the

corresponding e
[n]
Ia , k

[n]
IJ , γ

[n]
IJB plus a sufficiently decaying term, as t → 0.

For this purpose, define the remainder terms

e
(d)
Ii = eIi − e

[n]
Ii , γ

(d)
IJB = γIJB − γ

[n]
IJB, k

(d)
IJ = kIJ − k

[n]
IJ . (5.15)

Next, we plug (5.15) into (5.12)-(5.13) to obtain the system of equations satisfied by the

differences e
(d)
Ii , γ

(d)
IJB, k

(d)
IJ . We use in the process the version of the equations (3.8), (3.9)

for k̃
[n]
IJ , γ

[n]
IJB and (4.1) to replace the terms which only contain iterates. A tedious, but

straightforward, computation gives the equations:

∂te
(d)
Ia +

pI
t
e
(d)
Ia =(k

[n]
IC − k

[0]
IC)e

(d)
Ca + k

(d)
ICe

[n]
Ca + k

(d)
ICe

(d)
Ca + (I [n]

e )Ia, (5.16)

∂tk
(d)
IJ +

1

t
k
(d)
IJ =

1

2

{
eCγ

(d)
IJC − eIγ

(d)
CJC + eCγ

(d)
JIC − eJγ

(d)
CIC + 2δIJeDγ

(d)
CDC

}
(5.17)

− δIJ
pI
t
k
(d)
CC + δIJ

1

t
k
(d)
CC − δIJ

∑
C

pC
t
k
(d)
CC + K

(d)
IJ + (I [n]

k )IJ ,

∂tγ
(d)
IJB +

pI
t
γ
(d)
IJB = eBk

(d)
JI − eJk

(d)
BI − δIB

[
eCk

(d)
CJ − eJk

(d)
CC

]
+ δIJ

[
eCk

(d)
CB − eBk

(d)
CC

]
(5.18)

−
pI
t
γ
(d)
JBI −

pB
t
γ
(d)
JIB +

pI
t
γ
(d)
BJI +

pJ
t
γ
(d)
BIJ

− δIB

[
pJ
t
γ
(d)
CCJ +

∑
C

pC
t
γ
(d)
CJC

]
+ δIJ

[
pB
t
γ
(d)
CCB +

∑
C

pC
t
γ
(d)
CBC

]
− δIJ

∂apI
t

e
(d)
Ba + δIB

∂apI
t

e
(d)
Ja + δIB

∂apJ
t

e
(d)
Ja − δIJ

∂apB
t

e
(d)
Ba

+G
(d)
IJB + (I [n]

γ )IJB,

where

K
(d)
IJ =

1

2

[
e
(d)
Ca∂aγ

[n]
IJC − e

(d)
Ia ∂aγ

[n]
CJC + e

(d)
Ca∂aγ

[n]
JIC − e

(d)
Ja∂aγ

[n]
CIC + 2δIJe

(d)
Da∂aγ

[n]
CDC

]
(5.19)
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− 1

2

[
γ
[n]
CIDγ

(d)
DJC + γ

[n]
CCDγ

(d)
IJD + γ

[n]
CJDγ

(d)
DIC + γ

[n]
CCDγ

(d)
JID

+ γ
(d)
CIDγ

[n]
DJC + γ

(d)
CCDγ

[n]
IJD + γ

(d)
CJDγ

[n]
DIC + γ

(d)
CCDγ

[n]
JID

+ γ
(d)
CIDγ

(d)
DJC + γ

(d)
CCDγ

(d)
IJD + γ

(d)
CJDγ

(d)
DIC + γ

(d)
CCDγ

(d)
JID

]
+ δIJ

[
(k

[n]
CD − k

[0]
CD)k

(d)
CD − (k

n]
CC − k

[0]
CC)k

(d)
DD +

1

2
k
(d)
CDk

(d)
CD − 1

2
(k

(d)
CC)

2

]
+

1

2
δIJ

[
γ
[n]
CEDγ

(d)
DEC + γ

[n]
CCDγ

(d)
EED + γ

(d)
CEDγ

[n]
DEC + γ

(d)
CCDγ

[n]
EED + γ

(d)
CEDγ

(d)
DEC

+ γ
(d)
CCDγ

(d)
EED

]
+ (trk[n] − trk[0])k

(d)
IJ + trk(d)(k

[n]
IJ − k

[0]
IJ ) + trk(d)k

(d)
IJ ,

G
(d)
IJB =(k

[n]
IC − k

[0]
IC)γ

(d)
CJB + k

(d)
ICγ

[n]
CJB + k

(d)
ICγ

(d)
CJB + γ

[n]
JBCk

(d)
CI + γ

[n]
JICk

(d)
BC (5.20)

− γ
[n]
BJCk

(d)
CI − γ

[n]
BICk

(d)
JC + γ

(d)
JBC(k

[n]
CI − k

[0]
CI) + γ

(d)
JIC(k

[n]
BC − k

[0]
BC)

− γ
(d)
BJC(k

[n]
CI − k

[0]
CI)− γ

(d)
BIC(k

[n]
JC − k

[0]
JC) + γ

(d)
JBCk

(d)
CI + γ

(d)
JICk

(d)
BC

− γ
(d)
BJCk

(d)
CI − γ

(d)
BICk

(d)
JC + δIB

[
γ
[n]
CCDk

(d)
DJ + γ

[n]
CJDk

(d)
CD + γ

(d)
CCD(k

[n]
DJ − k

[0]
DJ)

+ γ
(d)
CJD(k

[n]
CD − k

[0]
CD) + γ

(d)
CCDk

(d)
DJ + γ

(d)
CJDk

(d)
CD

]
− δIJ

[
γ
[n]
CCDk

(d)
DB + γ

[n]
CBDk

(d)
CD

+ γ
(d)
CCD(k

[n]
DB − k

[0]
DB) + γ

(d)
CBD(k

[n]
CD − k

[0]
CD) + γ

(d)
CCDk

(d)
DB + γ

(d)
CBDk

(d)
CD

]
+ e

(d)
Ba∂a(k

[n]
JI − k

[0]
JI )− e

(d)
Ja∂a(k

[n]
BI − k

[0]
BI)− δIB

{
e
(d)
Ca∂a(k

[n]
CJ − k

[0]
CJ)

− e
(d)
Ja∂a(k

[n]
CC − k

[0]
CC)

}
+ δIJ

{
e
(d)
Ca∂a(k

[n]
CB − k

[0]
CB)− e

(d)
Ba∂a(k

[n]
CC − k

[0]
CC)

}
and

(I [n]
e )Ia =

∑
C ̸=I

(k
[n]
ICe

[n]
Ca − k

[n−1]
IC e

[n−1]
Ca ) (5.21)

(I [n]
k )IJ =

1

2
(R

[n]
IJ +R

[n]
JI ) + δIJ(R

[n]
00 +

1

2
R[n]) (5.22)

− ∂t(k
[n]
IJ − k̃

[n]
IJ ) + trk[n]k

[n]
IJ − trk̃[n]k̃

[n]
IJ

+
1

2
δIJ

[
k
[n]
CDk

[n]
CD − (k

[n]
CC)

2
]
− 1

2
δIJ

[
k̃
[n]
CDk̃

[n]
CD − (k̃

[n]
CC)

2
]

(I [n]
γ )IJB = δIBR

[n]
0J − δIJR

[n]
0B (5.23)

+ (k
[n]
IC − k̃

[n]
IC)γ

[n]
CJB + e

[n]
B (k

[n]
JI − k̃

[n]
JI )− e

[n]
J (k

[n]
BI − k̃

[n]
BI)

+ γ
[n]
JBC(k

[n]
CI − k̃

[n]
CI) + γ

[n]
JIC(k

[n]
BC − k̃

[n]
BC)− γ

[n]
BJC(k

[n]
CI − k̃

[n]
CI)
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− γ
[n]
BIC(k

[n]
JC − k̃

[n]
JC)− δIB

[
e
[n]
C (k

[n]
CJ − k̃

[n]
CJ)− γ

[n]
CCD(k

[n]
DJ − k̃

[n]
DJ)

− γ
[n]
CJD(k

[n]
CD − k̃

[n]
CD)− e

[n]
J (trk[n] − trk̃[n])

]
+ δIJ

[
e
[n]
C (k

[n]
CB − k̃

[n]
CB)

− γ
[n]
CCD(k

[n]
DB − k̃

[n]
DB)− γ

[n]
CBD(k

[n]
CD − k̃

[n]
CD)− e

[n]
B (trk[n] − trk̃[n])

]
The terms in (5.19), (5.20) should be viewed as error terms in the energy estimates below.
On the other hand, the terms explicitly written in the equations (5.16)-(5.17) with t−1

coefficients need more careful handling. They will be absorbed by considering appropriately

large t-weights in our norms. To this end, we will need (I [n]
e )Ia, (I [n]

k )IJ , (I [n]
γ )IJB to decay

at a sufficiently fast polynomial rate in t. It is immediate from Theorem 4.1 and Lemma
4.11 that

Lemma 5.2. For every multi-index α and all indices I, J,B, a, the expressions (5.21)-
(5.23) satisfy the following bounds:

|∂α
x (I [n]

e )Ia|, |∂α
x (I

[n]
k )IJ |, |∂α

x (I [n]
γ )IJB| ≤ Cα,nt

M , (5.24)

for all (t, x) ∈ (0, tn]× [0, δ]3, where M = M(n) → +∞, as n → +∞.

The following lemma makes evident the hyperbolic structure of the system (5.16)-(5.18).

Lemma 5.3. The iterates satisfy k
[n]
IJ = k

[n]
JI , γ

[n]
IJB = −γ

[n]
IBJ , for all (t, x) ∈ (0, T ]× [0, δ]3.

Moreover, the variables k
(d)
IJ , γ

(d)
IJB enjoy the same symmetry/antisymmetry properties

k
(d)
IJ = k

(d)
JI , γ

(d)
IJB = −γ

(d)
IBJ (5.25)

for all (t, x) ∈ {Ut}t∈[η,T ], provided that they are valid on Uη, η > 0. The same symmetries
hold for kIJ , γIJB.

Remark 5.2. Equations (5.17), (5.18) form a first order symmetric hyperbolic system

for k
(d)
IJ , γ

(d)
IJB, provided (5.25) holds true. Indeed, multiplying (5.17) with k

(d)
IJ , (5.18) with

1
2γ

(d)
IJB, and adding the resulting identities we notice that the first derivatives in the resulting

RHS combine to give only whole derivatives of products k(d) ⋆ γ(d).

Proof. First, notice that the corresponding properties hold for k
[n]
IJ , γ

[n]
IJB in [0, tn]× [0, δ]3 ⊃

{Ut}t∈[0,T ]. Indeed, for γ
[n]
IJB this is clear by definition (4.63). For k

[n]
IJ , equation (4.2) implies

that

∂t(k
[n]
IJ − k

[n]
JI )− k

[n−1]
CC (k

[n]
IJ − k

[n]
JI ) = 0.
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Rewrite

∂t[t(k
[n]
IJ − k

[n]
JI )]− k

[n−1]
CC (k

[n]
IJ − k

[n]
JI )− (k

[n−1]
CC − k

[0]
CC)t(k

[n]
IJ − k

[n]
JI ) = 0

By point 1 in Theorem 4.1, |k[n−1]
CC − k

[0]
CC | ≤ Cnt

−1+ε. Also, from (4.5) it follows that

lim
t→0

t(k
[n]
IJ − k

[n]
JI ) = 0

Hence, solving the above ODE via integrating factors for t(k
[n]
IJ − k

[n]
JI ), we conclude that

t(k
[n]
IJ − k

[n]
JI ) = 0 everywhere.

Now, if k
(d)
IJ , γ

(d)
IJB satisfy (5.25) on UT , so do kIJ , γIJB. Returning to equations (5.13),

(5.14), we have that

∂t(kIJ − kJI)− trk(kIJ − kJI) = 0, ∂t(γIJB + γIBJ)− kIC(γCJB + γCBJ) = 0

The conclusion follows by observing that the initial data of kIJ−kJI , γIJB+γIBJ are trivial
on Uδ and that the integral curves of ∂t emanating from all points in Uδ rule the entire
domain {Ut}t∈[δ,T ].

5.3 Local existence

Our goal in this section is to prove the following.

Theorem 5.1. For every s ≥ 4 and N0 ∈ N, there exists nN0,s ∈ N sufficiently large, such
that for every n ≥ nN0,s, there exists T = TN0,s,n > 0 sufficiently small and a solution
eIa, kIJ , γIJB to (5.12)-(5.14), in the domain {Ut}t∈(0,TN0,s,n

] (see Section 5.1), such that
the following estimate holds:

∥e(d)∥2Hs(Ut)
+ ∥k(d)∥2Hs(Ut)

+ ∥γ(d)∥2Hs(Ut)
≤ t2N0 , (5.26)

for all t ∈ (0, TN0,s,n], where the remainder terms e
(d)
Ia , k

(d)
IJ , γ

(d)
IJB are as in (5.15).

Proof. It is split in Propositions 5.1, 5.2.

We first begin with a solution defined in the future of a non-singular time, furnished by
standard local existence.

Lemma 5.4. For every η > 0 sufficiently small and n ∈ N, there exists T = T (η, n) and a
unique smooth solution eIa, kIJ , γIJB to (5.12), (5.13), (5.14) in {Ut}t∈[η,T ], such that

eIa(η, x) = e
[n]
Ia (η, x), kIJ(η, x) = k

[n]
IJ (η, x), γIJB(η, x) = γ

[n]
IJB(η, x),

for all x ∈ Uη. Moreover kIJ = kJI , γIJB = −γIBJ .
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Proof. By standard local existence for first order symmetric hyperbolic systems, we have
that a solution to (5.12)-(5.14) exists in the future domain of dependence of Uη, denoted
by D(Uη). However, given that we have modified the original equations (3.4), (3.7), the
latter domain might not a priori be the same as the domain of dependence for the Einstein
vacuum equations. D(Uη) is the largest domain for which the energy associated to the
linearized version of (5.13)-(5.14), on a future time slice, can be bounded from the initial
one. Moreover, D(Uη) is determined from the principal terms in the equations. Hence, it
is the same for the system (5.16)-(5.18). As we will show in Section 5.4, by deriving such

energy estimates for the variables e
(d)
Ia , k

(d)
IJ , γ

(d)
IJB in {Ut}t∈[η,T ], we can choose the constant

σ in (5.1) sufficiently large and T sufficiently small (independently of η) to guarantee
that D(Uη) necessarily contains {Ut}t∈[η,T ]. From Lemma 5.3, we also have the desired
symmetry/antisymmetry relations.

Let

∥e(d)∥2Hs(Ut)
=
∑
I,a

∥e(d)Ia ∥
2
Hs(Ut)

, ∥e(d)∥W s(Ut) =
∑
I,a

∥e(d)Ia ∥W s(Ut),

∥k(d)∥2Hs(Ut)
=
∑
I,J

∥k(d)IJ ∥
2
Hs(Ut)

, ∥k(d)∥W s(Ut) =
∑
I,J

∥k(d)IJ ∥W s(Ut), (5.27)

∥γ(d)∥2Hs(Ut)
=

∑
I,J,B

∥γ(d)IJB∥
2
Hs(Ut)

, ∥γ(d)∥W s(Ut) =
∑
I,J,B

∥γ(d)IJB∥W s(Ut),

where for a function f : {Ut}t∈[0,T ] → R with the appropriate regularity, theHs(Ut),W
s(Ut)

norms are defined as follows:

∥f∥2Hs(Ut)
=

∑
|α|≤s

∫
Ut

[∂α
x f(t, x)]

2volg[n] , volg[n] =
√

|g[n]|dx1dx2dx3,

∥f∥W s(Ut) =
∑
|α|≤s

esssupx∈Ut
|∂α

x f(t, x)|.
(5.28)

We will bootstrap energy estimates with suitably large weights, which will guarantee that
the time of existence in Lemma 5.4 is independent of η > 0 and that the differences (5.15)
decay to sufficiently large polynomial order.

Proposition 5.1. Let eIa, kIJ , γIJB be as in Lemma 5.4. For every s ≥ 4 and N0 ∈ N,
there exists nN0,s ∈ N sufficiently large, such that for every n ≥ nN0,s, there exists T =
TN0,s,n > 0 sufficiently small such that the following estimate holds:

∥e(d)∥2Hs(Ut)
+ ∥k(d)∥2Hs(Ut)

+ ∥γ(d)∥2Hs(Ut)
≤ t2N0 , (5.29)

for all t ∈ [η, TN0,s,n]. In particular, the time of existence T (η, n) given by Lemma 5.4 can
be fixed to be TN0,s,n, independent of η > 0.
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Proof. It is given in the end of Section 5.4, after deriving the main weighted energy esti-
mates, see Proposition 5.3.

Since the estimate (5.26) is independent of η > 0, it is clear now that we can a extract
a subsequence which will satisfy Theorem 5.1.

Proposition 5.2. Let s,N0, n be as in Proposition 5.1. Then there exists a sequence of
initial times ηm → 0 such that

1. The corresponding sequence of solutions (eIa,m, kIJ,m, γIJB,m) furnished by Lemma 5.4
converges in C1, as η → 0, to a limit (eIa, kIJ , γIJB).

2. The limit solves the system (5.12)-(5.14) in {Ut}t∈(0,TN0,s,n
].

3. Moreover, the corresponding differences e
(d)
Ia , k

(d)
IJ , γ

(d)
IJB satisfy the estimate (5.26), for

all t ∈ (0, TN0,s,n].

Proof. Using the uniform estimate (5.29), Arzelà-Ascoli, and a standard diagonal argument,
we infer that the sequence (eIa,m, kIJ,m, γIJB,m) has a subsequence converging in C1 to a
limit (eIa, kIJ , γIJB) for every fixed t ∈ (0, TN0,s,n]. Also, the class C1 is enough to ensure
that the limit satisfies the system (5.12)-(5.14). Moreover, for every t ∈ (0, TN0,s,n], the
former subsequence has a subsequence converging weakly in Hs(Ut) and the limit satisfies
(5.29). By uniqueness of limits, we conclude that the limit (eIa, kIJ , γIJB) satisfies (5.29)
for all t ∈ (0, TN0,s,n].

5.4 Weighted energy estimates for the remainder terms

In this subsection we derive the main energy estimates for the variables e
(d)
Ia , k

(d)
IJ , γ

(d)
IJB, see

Proposition 5.3, that complete the proof Proposition 5.1 in Section 5.4.3.

5.4.1 Bootstrap assumptions and basic implications

Consider the solution furnished by Lemma 5.4 and fix s ≥ 4. We make the bootstrap
assumptions

∥e(d)∥2Hs(Ut)
+ ∥k(d)∥2Hs(Ut)

+ ∥γ(d)∥2Hs(Ut)
≤ t11, (5.30)

for all t ∈ [η, TBoot), where TBoot < T (η, n). Notice that such a bootstrap time exists by

continuity, since the variables e
(d)
Ia , k

(d)
IJ , γ

(d)
IJB vanish on Uη.

Remark 5.3. Deriving the estimate (5.29) for N0 > 5 clearly improves the bootstrap
assumptions. A standard continuity argument then implies that the time of existence can
be pushed to some T = TN0,s,n, independent of η.
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By (4.17) and point 1 of Theorem 4.1, we have that∣∣√|g[n]| −
√
c11c22c33t

∣∣ ≤ Cnt
1+ε (5.31)

Hence, the bootstrap assumptions and classical Sobolev embedding imply the bound

∥e(d)∥W s−2(Ut) + ∥k(d)∥W s−2(Ut) + ∥γ(d)∥W s−2(Ut) ≤ Ct5. (5.32)

Lemma 5.5. Given a function f : {Ut}t∈[η,TBoot) → R, the following inequalities hold true:∫
Ut

fvolg[n] +
∑
a,±

∫
H±

a

n0
H±

a
fvolH±

a
≤
∫
Uη

fvolg[n] +

∫ t

η

∫
Uτ

∂τfvolg[n]dτ (5.33)

+

∫ t

η

∫
Uτ

(τ−1 + Cτ−1+ε)|f |volg[n]dτ,∫ t

η

∫
Uτ

eIfvolg[n]dτ ≤
∫ t

η

∫
Uτ

τ−1+ε|f |volg[n]dτ (5.34)

+
∑
a,±

∫
H±

a

nI
H±

a
f + Ct4|f |volH±

a
.

Proof. Applying the Stokes theorem to the divergences div[n](f∂t), div[n](feI), in the
region {Uτ}τ∈[η,t], for t ∈ [η, TBoot), gives the identities:∫ t

η

∫
Uτ

div[n](f∂t)volg[n]dτ =

∫
Uη

g[n](∂t, ∂t)fvolg[n] (5.35)

−
∫
Ut

g[n](∂t, ∂t)fvolg[n] −
∑
a,±

∫
H±

a

g[n](∂t, nH±
a
)fvolH±

a
,

∫ t

η

∫
Uτ

div[n](feI)volg[n]dτ =

∫
Uη

g[n](eI , ∂t)fvolg[n] (5.36)

−
∫
Ut

g[n](eI , ∂t)fvolg[n] −
∑
a,±

∫
H±

a

g[n](eI , nH±
a
)fvolH±

a
.

On the other hand, by (5.32) we have

g
[n]
tt = −1, g[n](∂t, nH±

a
) = −n0

H±
a
,g[n](eI , ∂t) = 0,∣∣g[n](eI , nH±

a
)− nI

H±
a

∣∣ = |e(d)Ib ω
[n]
bDn

D
H±

a
| ≤ Ct4

(5.37)

and

div[n](f∂t) = ∂tf − k̃
[n]
CCf, |k̃[n]CC + t−1| ≤ Ct−1+ε,

div[n](feI) = eIf + g[n](∇[n]

e
[n]
D

eI , e
[n]
D ),

(5.38)
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where

g[n](∇[n]

e
[n]
D

eI , e
[n]
D ) = γ

[n]
DID + g[n](∇[n]

e
[n]
D

(e
(d)
Ib ∂b), e

[n]
D )

= γ
[n]
DID + g[n](∇[n]

e
[n]
D

(e
(d)
Ib ω

[n]
bCe

[n]
C ), e

[n]
D ) (5.39)

= γ
[n]
DID + e

(d)
Ib ω

[n]
bCγ

[n]
DCD + e

[n]
C (e

(d)
Ib ω

[n]
bC ).

By Lemma 4.12, point 1 of Theorem 4.1, and (5.32), we have that

|g[n](∇[n]

e
[n]
D

eI , e
[n]
D )| ≤ Ct−1+ε (5.40)

Combining (5.35)-(5.40), we conclude the desired inequalities.

5.4.2 Main estimates

The overall weighted energy estimate that we derive in this section is stated in the following
proposition.

Proposition 5.3. Assume that the bootstrap assumptions (5.30) are valid for some s ≥ 4.
Then, there exists σ > 0 sufficiently large in (5.1), depending only on the principal symbol
of (5.17)-(5.18), such that the following energy inequality holds:

1

2
t−2N0

{
∥e(d)∥2Hs(Ut)

+ ∥k(d)∥2Hs(Ut)
+

1

2
∥γ(d)∥2Hs(Ut)

}
+

∫ t

η

N0 − C∗
τ

τ−2N0
{
∥e(d)∥2Hs(Uτ )

+ ∥k(d)∥2Hs(Uτ )
+

1

2
∥γ(d)∥2Hs(Uτ )

}
dτ (5.41)

≤
∫ t

η
Cτ−1+ετ−2N0

{
∥e(d)∥2Hs(Uτ )

+ ∥k(d)∥2Hs(Uτ )
+ ∥γ(d)∥2Hs(Uτ )

}
dτ + Ct2M−2N0+2−ε,

for all t ∈ [η, TBoot), where M is as in Lemma 5.2. The constant C∗ > 0 depends only on
the Kasner exponents pI , their s spatial derivatives, and it is independent of n, while the
constant C is allowed to also depend on n.

To derive the Hs(Ut) estimate (5.41), we first differentiate the system (5.16)-(5.18) with
∂α
x , for |α| ≤ s, to obtain:

∂t∂
α
x e

(d)
Ia + ∂α

x (
pI
t
e
(d)
Ia ) = ∂α

x

{
(k

[n]
IC − k

[0]
IC)e

(d)
Ca + k

(d)
ICe

[n]
Ca + k

(d)
ICe

(d)
Ca

}
+ ∂α

x (I [n]
e )Ia (5.42)

and

∂t∂
α
x k

(d)
IJ +

1

t
∂α
x k

(d)
IJ
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=
1

2

{
eC∂

α
x γ

(d)
IJC − eI∂

α
x γ

(d)
CJC + eC∂

α
x γ

(d)
JIC − eJ∂

α
x γ

(d)
CIC + 2δIJeD∂

α
x γ

(d)
CDC

}
(5.43)

− ∂α
x

{
δIJ

pI
t
k
(d)
CC − δIJ

1

t
k
(d)
CC + δIJ

∑
C

pC
t
k
(d)
CC

}
+ K

(d),α
IJ + ∂α

x (I
[n]
k )IJ ,

∂t∂
α
x γ

(d)
IJB + ∂α

x (
pI
t
γ
(d)
IJB)

= eB∂
α
x k

(d)
JI − eJ∂

α
x k

(d)
BI − δIB

[
eC∂

α
x k

(d)
CJ − eJ∂

α
x k

(d)
CC

]
+ δIJ

[
eC∂

α
x k

(d)
CB − eB∂

α
x k

(d)
CC

]
(5.44)

− ∂α
x

(
pI
t
γ
(d)
JBI −

pB
t
γ
(d)
JIB +

pI
t
γ
(d)
BJI +

pJ
t
γ
(d)
BIJ

)
− δIB∂

α
x

[
pJ
t
γ
(d)
CCJ +

∑
C

pC
t
γ
(d)
CJC

]
+ δIJ∂

α
x

[
pB
t
γ
(d)
CCB +

∑
C

pC
t
γ
(d)
CBC

]
− ∂α

x

[
δIJ

∂apI
t

e
(d)
Ba + δIB

∂apI
t

e
(d)
Ja + δIB

∂apJ
t

e
(d)
Ja − δIJ

∂apB
t

e
(d)
Ba

]
+G

(d),α
IJB + ∂α

x (I [n]
γ )IJB,

where

K
(d),α
IJ =

∑
|α1|+|α2|=|α|

|α2|<|α|

1

2

[
∂α1
x eCb∂

α2
x ∂bγ

(d)
IJC − ∂α1

x eIb∂
α2
x ∂bγ

(d)
CJC + ∂α1

x eCb∂
α2
x ∂bγ

(d)
JIC (5.45)

− ∂α1
x eJb∂

α2
x ∂bγ

(d)
CIC + 2δIJ∂

α1
x eDb∂

α2
x ∂bγ

(d)
CDC

]
+ ∂α

xK
(d)
IJ ,

G
(d),α
IJB =

∑
|α1|+|α2|=|α|

|α2|<|α|

[
∂α1
x eBa∂

α2∂ak
(d)
JI − ∂α1

x eJa∂
α2∂ak

(d)
BI (5.46)

− δIB
[
∂α1
x eCa∂

α2∂ak
(d)
CJ − ∂α1

x eJa∂
α2∂ak

(d)
CC

]
+ δIJ

[
∂α1
x eCa∂

α2∂ak
(d)
CB − ∂α1

x eBa∂
α2∂ak

(d)
CC

]]
+ ∂α

xG
(d)
IJB.

Next, we write the overall differential inequality for the (5.42)-(5.44).

Lemma 5.6. There exists a constant C∗, depending only on the Kasner exponents and
their s spatial derivatives, such that the following differential inequality holds true:

∂t

( ∑
|α|≤s

1

2
t−2N0

{
∂α
x e

(d)
Ia ∂

α
x e

(d)
Ia + ∂α

x k
(d)
IJ ∂

α
x k

(d)
IJ +

1

2
∂α
x γ

(d)
IJB∂

α
x γ

(d)
IJB

})
+

∑
|α|≤s

N0 − C∗
t

t−2N0
{
∂α
x e

(d)
Ia ∂

α
x e

(d)
Ia + ∂α

x k
(d)
IJ ∂

α
x k

(d)
IJ +

1

2
∂α
x γ

(d)
IJB∂

α
x γ

(d)
IJB

}
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≤
∑
|α|≤s

[
t−2N0

{
eC

[
∂α
x k

(d)
IJ ∂

α
x γ

(d)
IJC

]
− eI

[
∂α
x k

(d)
IJ ∂

α
x γ

(d)
CJC

]
+ eD

[
∂α
x k

(d)
II ∂

α
x γ

(d)
CDC

]}
(5.47)

+ t−2N0∂α
x e

(d)
Ia ∂

α
x

{
(k

[n]
IC − k

[0]
IC)e

(d)
Ca + k

(d)
ICe

[n]
Ca + k

(d)
ICe

(d)
Ca

}
+ t−2N0∂α

x e
(d)
Ia ∂

α
x (I [n]

e )Ia

+ t−2N0∂α
x k

(d)
IJ

[
K
(d),α
IJ + ∂α

x (I
[n]
k )IJ

]
+

1

2
t−2N0∂α

x γ
(d)
IJB

[
G

(d),α
IJB + ∂α

x (I [n]
γ )IJB

]]
,

for all t ∈ [η, TBoot).

Proof. Consider the algebraic combination of equations∑
|α|≤s

{
t−2N0∂α

x e
(d)
Ia × (5.42) + t−2N0∂α

x k
(d)
IJ × (5.43) +

1

2
t−2N0∂α

x γ
(d)
IJB × (5.44)

}
,

differentiate by parts in the top order terms and use Lemma 5.3 to write them as whole
derivatives. The lower order terms with t−1 coefficients are grouped together using Young’s
inequality to give the brackets in the LHS having the C∗ constant coefficient.

We will make use of the following error estimates.

Lemma 5.7. Assume that the bootstrap assumptions are valid for some s ≥ 4. The fol-
lowing expressions satisfy∫

Ut

t−2N0

[
∂α
x e

(d)
Ia ∂

α
x

{
(k

[n]
IC − k

[0]
IC)e

(d)
Ca + k

(d)
ICe

[n]
Ca + k

(d)
ICe

(d)
Ca

}
+ ∂α

x e
(d)
Ia ∂

α
x (I [n]

e )Ia

+ ∂α
x k

(d)
IJ

[
K
(d),α
IJ + ∂α

x (I
[n]
k )IJ

]
+

1

2
∂α
x γ

(d)
IJB

[
K
(d),α
IJB + ∂α

x (I [n]
γ )IJB

]]
volg[n] (5.48)

≤Ct−1+εt−2N0
{
∥e(d)∥2Hs(Ut)

+ ∥k(d)∥2Hs(Ut)
+ ∥γ(d)∥2Hs(Ut)

}
+ Ct1−εt2M−2N0 ,

for all t ∈ [η, TBoot) and |α| ≤ s, where M is as in Lemma 5.2.

Proof. The last term in the RHS of (5.48) comes from Young’s inequality, using Lemma 5.2.

Similarly, all quadratic terms in e
(d)
Ia , k

(d)
Ia , γ

(d)
IJB are treated by Young’s inequality, observing

that their coefficients are bounded by Cα,nt
−1+ε, by virtue of point 1 in Theorem 4.1. For

the cubic terms in the differences, we recall (5.19)-(5.20) and notice that at least one factor
has at most s− 2 spatial derivatives, since s ≥ 4. We estimate that factor in W s−2,∞(Ut)
using (5.32) and apply Young’s inequality once more. These terms are actually much better
behaved, thanks to our bootstrap assumptions (5.30), which are used whenever the terms

e
(d)
Ia , k

(d)
IJ , γ

(d)
IJB are encountered. This accounts for all terms in the LHS of (5.48).

Now we can proceed to the
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Proof of Proposition 5.3. Integrate (5.47) in the domain {Uτ}τ∈[η,t] and employ Lemma 5.7
to obtain the inequality∫ t

η

∫
Uτ

∂τ
∑
|α|≤s

1

2
τ−2N0

{
∂α
x e

(d)
Ia ∂

α
x e

(d)
Ia + ∂α

x k
(d)
IJ ∂

α
x k

(d)
IJ +

1

2
∂α
x γ

(d)
IJB∂

α
x γ

(d)
IJB

}
volg[n]dτ

+

∫ t

η

N0 − C∗
τ

τ−2N0
{
∥e(d)∥2Hs(Uτ )

+ ∥k(d)∥2Hs(Uτ )
+

1

2
∥γ(d)∥2Hs(Uτ )

}
volg[n]dτ

≤
∑
|α|≤s

∫ t

η

∫
Uτ

τ−2N0
{
eC

[
∂α
x k

(d)
IJ ∂

α
x γ

(d)
IJC

]
− eI

[
∂α
x k

(d)
IJ ∂

α
x γ

(d)
CJC

]
(5.49)

+ eD
[
∂α
x k

(d)
II ∂

α
x γ

(d)
CDC

]}
volg[n]dτ +

∫ t

η
Cτ−1+ετ−2N0

{
∥e(d)∥2Hs(Uτ )

+ ∥k(d)∥2Hs(Uτ )
+ ∥γ(d)∥2Hs(Uτ )

}
volg[n]dτ + Ct2−εt2M−2N0

Next, we use Lemma 5.5 to integrate by parts in ∂t, eC , eI , eD, recalling that e(d), k(d), γ(d)

vanish on Uη:

1

2
t−2N0

{
∥e(d)∥2Hs(Ut)

+ ∥k(d)∥2Hs(Ut)
+

1

2
∥γ(d)∥2Hs(Ut)

}
+

∑
|α|≤s

∑
b,±

∫
H±

b

1

2
τ−2N0n0

H±
b

{
∂α
x e

(d)
Ia ∂

α
x e

(d)
Ia + ∂α

x k
(d)
IJ ∂

α
x k

(d)
IJ +

1

2
∂α
x γ

(d)
IJB∂

α
x γ

(d)
IJB

}
volH±

b

+

∫ t

η

N0 − C∗ − 1

τ
τ−2N0

{
∥e(d)∥2Hs(Uτ )

+ ∥k(d)∥2Hs(Uτ )
+

1

2
∥γ(d)∥2Hs(Uτ )

}
dτ (5.50)

≤
∑
|α|≤s

∑
b,±

∫
H±

b

τ−2N0nD
H±

b

[
∂α
x k

(d)
IJ ∂

α
x γ

(d)
IJD − ∂α

x k
(d)
DJ∂

α
x γ

(d)
IJI + ∂α

x k
(d)
II ∂

α
x γ

(d)
CDC

]
volH±

b

+
∑
|α|≤s

∑
b,±

∫
H±

b

Cτ4τ−2N0
{
∂α
x e

(d)
Ia ∂

α
x e

(d)
Ia + ∂α

x k
(d)
IJ ∂

α
x k

(d)
IJ +

1

2
∂α
x γ

(d)
IJB∂

α
x γ

(d)
IJB

}
volH±

b

+

∫ t

η
Cτ−1+ετ−2N0

{
∥e(d)∥2Hs(Uτ )

+ ∥k(d)∥2Hs(Uτ )
+ ∥γ(d)∥2Hs(Uτ )

}
dτ + Ct2−εt2M−2N0

To conclude the estimate (5.41), we need to show that theH-boundary terms in the previous
LHS can absorb the ones in the RHS. This is clearly possible by shrinking the interval of
existence in a manner that depends on n, but it is independent of η, and by taking σ
sufficiently large such that

Cτ4 + 10
√

nD
H±

b

nD
H±

b

<
1

4
n0
H±

b

(5.51)
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The latter is possible since nD
H±

b

∼ σ−1, n0
H±

b

∼ 1, for σ sufficiently large. Replacing C∗ + 1

by another constant labeled again C∗, still independent of n, completes the proof of the
proposition.

5.4.3 Proof of Proposition 5.1

With the energy inequality (5.41) at our disposal, we choose N0 ∈ N such that N0 > C∗.
The latter number depends only on the pI ’s and their s coordinate derivatives, for some
s ≥ 4, which are all fixed to begin with. By Lemma 5.2, we then choose n = n(N0)
sufficiently large, such that 2M − 2N0 + 2− ε > 0. For these choices of parameters, (5.41)
implies that

t−2N0
{
∥e(d)∥2Hs(Ut)

+ ∥k(d)∥2Hs(Ut)
+ ∥γ(d)∥2Hs(Ut)

}
(5.52)

≤
∫ t

η
Cτ−1+ετ−2N0

{
∥e(d)∥2Hs(Uτ )

+ ∥k(d)∥2Hs(Uτ )
+ ∥γ(d)∥2Hs(Uτ )

}
dτ + Ct2M−2N0+2−ε.

Applying Grönwall’s inequality in [η, t] yields the energy estimate

t−2N0
{
∥e(d)∥2Hs(Ut)

+ ∥k(d)∥2Hs(Ut)
+ ∥γ(d)∥2Hs(Ut)

}
≤ Ct2M−2N0+2−εe

∫ t
η Cτ−1+ε

. (5.53)

In particular, shrinking the original interval of existence [η, T (η, n)] if necessary, in a way
that only depends on n, we have that

∥e(d)∥2Hs(Ut)
+ ∥k(d)∥2Hs(Ut)

+ ∥γ(d)∥2Hs(Ut)
≤ t2N0 , (5.54)

for all t ∈ [η, TBoot). For N0 > 5, the latter estimate is an improvement of our bootstrap
assumptions (5.30). A standard continuation argument implies that the time interval on
which (5.54) holds true can be enlarged up to some [η, T ], where T = TN0,s,n depends only
on the parameters chosen above and not on η.

6 Recovery of the Einstein vacuum equations

In Section 5 we constructed a singular solution eIa, kIJ , γIJB to the modified system of
equations (5.12)-(5.14). Now we need to show that it actually corresponds to a metric that
satisfies the Einstein vacuum equations.

Consider the metric g of the form (1.12), for which eI = eIa∂a is a g-orthonormal frame.
This completely determines the metric. The variables kIJ , γIJB that we have solved for,
using (5.13)-(5.14) are not a priori the connection coefficients of e0 = ∂t, eI , since the
equations (3.4), (3.7) have been modified using the constraints. Nevertheless, they define
a connection D̃ as follows:

D̃e0eµ = 0, D̃eIe0 = −kIJeJ , D̃eIeJ = −kIJe0 + γIJBeB. (6.1)
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By Lemma 5.3, we have that D̃ is compatible with g. However, it is not necessarily torsion-
free. Define

Cαµν = g([eα, eµ]− D̃eαeµ + D̃eµeα, eν) = −Cµαν (6.2)

and the curvatures

R̃αβµν =g
(
(D̃eαD̃eβ − D̃eαD̃eβ − D̃

D̃eαeβ−D̃eβ
eα
)eµ, eν

)
,

R̃βµ =− R̃0βµ0 + R̃IβµI , (6.3)

R̃ =− R̃00 + R̃II .

It turns out that proving D̃ is the actual Levi-Civita connection D of g and kIJ , γIJB
the expected connection coefficients, must be done at the same time as showing that g
is a solution to the Einstein vacuum equations. The following lemma is contained in [20,
Section 4].

Lemma 6.1. The variables Cαµν , R̃βµ satisfy:

Cαβ0 = C0αβ = 0, R̃IJ + R̃JI = −δIJR̃00, R̃0I = −R̃I0 (6.4)

and

∂tCIJB =(k ⋆ C)IJB − δIBR̃J0 + δJBR̃I0,

∂tR̃I0 = eIR̃00 +
1

2
eJ(R̃IJ − R̃JI) + (k ⋆ R̃+ γ ⋆ R̃)I + (C ⋆ Q)I , (6.5)

∂tR̃00 = eIR̃I0 + k ⋆ R̃+ γ ⋆ R̃+ C ⋆ Q,

∂t(R̃IJ − R̃JI) = eJR̃I0 − eIR̃J0 + (k ⋆ R̃+ γ ⋆ R̃)IJ + (C ⋆ Q)IJ ,

where the indices in the ⋆ product terms do not matter, the factors R̃ in these terms are
R̃βµ components, and Q is a linear expression in C, γ ⋆ γ, γ ⋆ k, k ⋆ k, ek, eγ (different in
each equation).

Remark 6.1. The equations in (6.5) constitute a first order symmetric hyperbolic system
for CIJB, R̃I0, R̃00, R̃IJ − R̃JI .

Next, we argue that the corresponding variables for the approximate solution given by
Theorem 4.1 are increasingly decaying for n sufficiently large, as t → 0.

Lemma 6.2. Consider D̃[n], R̃
[n]
βµ, C

[n]
αβµ to have exactly analogous definitions to (6.2),

(6.3), but with g, eI , kIJ , γIJB replaced by the iterates g[n], e
[n]
I , k

[n]
IJ , γ

[n]
IJB. Then we have

the following bounds:

|C [n]
αβµ| ≤ Ct−1+nε, |R̃[n]

βµ| ≤ Ct−2+nε, (6.6)

for all indices α, β, µ, and for all t ∈ (0, TN0,s,n].
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Proof. By (4.63), we notice that C
[n]
IJB. For the rest of the indices we have

C
[n]
IJ0 =− k̃

[n]
IJ + k̃

[n]
JI = 0,

C
[n]
0IJ =g[n]([e0, e

[n]
I ], e

[n]
J ) + g[n](D̃

[n]

e
[n]
I

e0, e
[n]
J ) = (∂te

[n]
Ia )ω

[n]
aJ − k

[n]
IJ

=

(
k
[n]
II e

[n]
Ia +

∑
C ̸=I

k
[n−1]
IC e

[n−1]
Ca

)
ω
[n]
aJ − k

[n]
IJ (by (4.1))

= k
[n]
II δIJ − k

[n]
IJ +

∑
C ̸=I

k
[n−1]
IC δCJ +

∑
C ̸=I

k
[n−1]
IC e

[n−1]
Ca (ω

[n]
aJ − ω

[n−1]
aJ )

Taking cases I = J and I ̸= J , the first three terms in the last RHS amount to 0 and

k
[n−1]
IJ −k

[n]
IJ respectively. Hence, the bound (6.6) for C

[n]
αβµ follows from point 1 of Theorem

4.1 and Proposition 4.2.

Given the definition of curvature R̃
[n]
αβµν , analogous to (6.3), we have the schematic

relations

R̃
[n]
αβµν = R

[n]
αβµν + e[n](k[n] − k̃[n]) + γ[n] ⋆ (k[n] − k̃[n]) +Q(k[n])−Q(k̃[n])

where e[n] = ∂t, e
[n]
I and Q a homogeneous quadratic expression. Contracting α, ν, we

obtain the bound (6.6) for R
[n]
βµ by using Theorem 4.1 and Lemma 4.11.

We can now proceed to show that D̃ = D and the vanishing of the Ricci tensor of g.

Proposition 6.1. Let g, D̃ be the metric and connection constructed from the solution
furnished by Theorem 5.1, for some N0, nN0,s sufficiently large, as discussed in the beginning

of this section. Then D̃ = D is the Levi-Civita connection of g and moreover, g is a solution
to the Einstein vacuum equations, ie. Rβµ = 0 for all indices.

Proof. Define the energy

E(t) := t−2N1−2
∑
I,J,B

∥CIJB∥2L2(Ut)
+ t−2N1

∑
I

∥R̃I0∥2L2(Ut)

+ t−2N1∥R̃00∥2L2(Ut)
+

1

2
t−2N1

∑
IJ

∥R̃IJ − R̃JI∥2L2(Ut)

(6.7)

By virtue of the bounds (6.6) and the energy estimate (5.26), we notice for any N1 ∈ N,
there exists N0, n sufficiently large, such that E(t) → 0, as t → 0.

For this choice of parameters N0, n, a similar energy argument to the one in the proof
of Proposition 5.3 gives the energy inequality

1

2
E(t) ≤

∫ t

0
(
N1 − C∗

τ
+ Cτ−1+ε)E(τ)dτ, (6.8)
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for all t ∈ (0, TN0,s,n]. The terms that contribute to the constant C∗ are k ⋆ C, δIBR̃J0,

δJBR̃I0 in the RHS of the equation for CIJB in (6.5), k ⋆ R̃ and C ⋆ (k ⋆ k), C ⋆ ∂tk in
the RHSs of the equations for R̃I0, R̃00, R̃IJ − R̃JI . More precisely, only the leading order
part of the factors k = k[0] + O(t−1+ε), ∂tk = ∂tk

[0] + O(t−2+ε) gives rise to terms that
contribute to C∗. Hence, C∗ depends only on the pI ’s and is independent of n. Taking
N1 ≥ C∗ to begin with (possibly increasing N0, n), we conclude that

E(t) ≤
∫ t

0
Cτ−1+εE(τ)dτ, t ∈ (0, TN0,s,n]. (6.9)

Grönwall’s inequality implies that E(t) ≡ 0.
Thus, CIJB, R̃I0, R̃00, R̃IJ−R̃JI vanish everywhere. By (6.4), we have that Cαβµ, R̃βµ =

0 everywhere for all indices. Hence, D̃ = D and R̃βµ = Rβµ = 0.

7 Gauge uniqueness and smoothness of solutions: Proof of
Theorems 1.2, 1.3

First, we prove the uniqueness statement (i) in Theorem 1.3. This will in fact be used to
prove Theorem 1.2. Then we prove that point (ii) in Theorem 1.3 implies point (i).

7.1 Gauge uniqueness

Point (i) in Theorem 1.3. Let g, g̃ be two solutions to (1.3) of the form (1.12), satisfying
(1.19)-(1.20). We first note that they have the same asymptotic data pi, cij , hence, they
admit the same approximate metric g[n]. Define

êIa = eIa − ẽIa = (eIa − e
[n]
Ia )− (ẽIa − e

[n]
Ia ) = e

(d)
Ia − ẽ

(d)
Ia

k̂IJ = kIJ − k̃IJ = (kIJ − k
[n]
IJ )− (k̃IJ − k

[n]
IJ ) = k

(d)
IJ − k̃

(d)
IJ (7.1)

γ̂IJB = γIJB − γ̃IJB = (γIJB − γ
[n]
IJB)− (γ̃IJB − γ

[n]
IJB) = γ

(d)
IJB − γ̃

(d)
IJB

The variables êIa, k̂IJ , γ̂IJB satisfy a system similar to (5.16)-(5.18), only without the terms

(I [n]
e )Ia, (I [n]

k )IJ , (I [n]
γ )IJB in the corresponding RHSs. By taking M0 > N0 in (1.20), we

have that

lim
t→0

t−2N0
{
∥ê∥2L2(Ut)

+ ∥k̂∥2L2(Ut)
+ ∥γ̂∥2L2(Ut)

}
= 0, (7.2)

where N0 ≥ C∗ depends only on the L∞(U0) norms of the pi’s. Next, we observe that
thanks to (1.19), we may derive an L2(Ut) estimate for the variables êIa, k̂IJ , γ̂IJB, similar
to (5.41) for s = 0, in all of (0, T ], since we control the pointwise leading order behavior
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of the original two sets variables and their first derivatives (for γ, γ̃, we use the formula
(3.6) and the behavior of ω, ω̃, inferred by the assumed bounds on the frame coefficients,
cf. Lemma 4.3). Thus, for N0 ≥ C∗, we have

t−2N0
{
∥ê(d)∥2L2(Ut)

+ ∥k̂(d)∥2L2(Ut)
+

1

2
∥γ̂(d)∥2L2(Ut)

}
≤
∫ t

0
Cτ−1+ετ−2N0

{
∥ê(d)∥2L2(Uτ )

+ ∥k̂(d)∥2L2(Uτ )
+ ∥γ̂(d)∥2L2(Uτ )

}
dτ,

where we note that there is no term in the previous RHS analogous to Ct2M−2N0+2−ε in
(5.41), since there are no inhomogeneous terms depending purely on the iterates. Gron-
wall’s inequality yields that the differences êIa, k̂IJ , γ̂IJB vanish everywhere. Thus, the two
solutions g, g̃ coincide.

Point (ii) in Theorem 1.3. Condition (1.21) clearly contains (1.19). We will show
that (1.20) in point (i) also holds, hence, implying that the two solutions are equal. Let

e
(d)
Ia , k

(d)
IJ , γ

(d)
IJB be as in (5.15). By point 1 in Theorem 4.1 and the triangle inequality we

have that

|∂α
x e

(d)
Ia | ≤ Cα,nt

pI−2min{pI ,pa}+ε, |∂α
x k

(d)
IJ | ≤ Cα,nt

−1+|pI−pJ |+ε, (7.3)

for every (t, x) ∈ {Ut}(0,TN0,s,n0
] and |α| ≤ M1. Similarly to Lemma 4.3, from the bound

(7.3) on the frame components e
(d)
Ia , we deduce the corresponding bound on the co-frame

components ω
(d)
bC = ωbC − ω

[n]
bC :

|∂α
xω

(d)
bC | ≤ Cα,nt

−pC+2max{pb,pC}+ε (7.4)

for every (t, x) ∈ {Ut}(0,TN0,s,n
] and |α| ≤ M1.

Multiplying (5.16) with tpI , integrating in (0, TN0,s,n], differentiating in ∂α
x , and using

the bounds (7.3), (5.24) for (I [n]
e )Ia, we obtain the estimate:

|∂α
x e

(d)
Ia | ≤ Cα,n(t

pI−2min{pI ,pa}+2ε + tM ), (7.5)

for all |α| ≤ M1, which is tε better than (7.3). Recall that in Lemma 5.2,M = M(n) → +∞,
as n → +∞, so we can take n sufficiently large to begin with, such that M ≥ M0. The
latter also implies the corresponding improved bound for the co-frame components:

|∂α
xω

(d)
bC | ≤ Cα,n(t

−pC+2max{pb,pC}+2ε + tM ), (7.6)

Next, we recall equations (3.4), (4.2) to compute

∂tk
(d)
IJ +

1

t
k
(d)
IJ + δIJ

pI
t
k
(d)
CC =RIJ −R

[n]
IJ
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+ k
(d)
CC(k

[n]
IJ − k

[0]
IJ ) + (k

[n]
CC − k

[0]
CC)k

(d)
IJ + k

(d)
CCk

(d)
IJ (7.7)

+R
[n]
IJ −R

[n−1]
IJ + (k

[n]
CC − k

[n−1]
CC )k

[n]
IJ

By Proposition 4.2, we have that∣∣∂α
x

[
R

[n]
IJ −R

[n−1]
IJ + (k

[n]
CC − k

[n−1]
CC )k

[n]
IJ

]∣∣ ≤ Cα,nt
−1+|pI−pJ |+nε (7.8)

Moreover, as in Lemma 4.5, expressing RIJ−R
[n]
IJ in terms of e

(d)
Ia , ω

(d)
bC and using the bounds

(7.5), (7.6), we deduce the estimate

|∂α
x (RIJ −R

[n]
IJ )| ≤ Cα,n(t

−2+|pI−pJ |+2ε + tM ) (7.9)

Also, from (7.3) and point 1 in Theorem 4.1, it holds∣∣∂α
x

[
k
(d)
CC(k

[n]
IJ − k

[0]
IJ ) + (k

[n]
CC − k

[0]
CC)k

(d)
IJ + k

(d)
CCk

(d)
IJ

]∣∣ ≤ Cα,nt
−1+|pI−pJ |+2ε. (7.10)

Combining (7.8)-(7.10), we improve the bound (7.3) for k
(d)
IJ as follows: First, trace (7.7)

in (I; J), multiply with t2, differentiate in ∂α
x , and integrate in (0, TN0,s,n0 ] to obtain the

bound

|∂α
x k

(d)
CC | ≤ Cα,nt

−1+2ε. (7.11)

Then, we take the term δIJpIt
−1k

(d)
CC to the RHS in (7.7), multiply with t, integrate in

(0, TN0,s,n0 ], differentiate in ∂α
x , and apply the bounds (7.8)-(7.11) to conclude that

|∂α
x k

(d)
IJ | ≤ Cα,nt

−1+|pI−pJ |+2ε, (7.12)

for all (t, x) ∈ {Ut}(0,TN0,s,n
] and |α| ≤ M1 − 2. We may continue iteratively improving the

bounds on e
(d)
Ia , ω

(d)
bC , k

(d)
IJ by tε each time, as long as nε ≤ M−1, hence, deriving the bounds

|∂α
x e

(d)
Ia | ≤ Cα,nt

M−2, |∂α
xω

(d)
bC | ≤ Cα,nt

M−2, |∂α
x k

(d)
IJ | ≤ Cα,nt

M−2 (7.13)

Of course, for each tε improvement we sacrifice two spatial derivatives, which is possible
provided M1 ∼ M/ε. This in turn implies that

|∂α
x γ

(d)
IJB| ≤ Cα,nt

M−4, (7.14)

Thus, taking into account the volume form and shrinking TN0,s,n0 if necessary, the following
energy estimate is valid:

∥e(d)∥2H4(Ut)
+ ∥k(d)∥2H4(Ut)

+ ∥γ(d)∥2H4(Ut)
≤ t2M−7. (7.15)
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Obviously, given condition (1.21), the above argument applies also to the reduced variables

ẽIa, k̃IJ , γ̃IJB of the solution g̃. Hence, the corresponding differences ẽ
(d)
Ia , k̃

(d)
IJ , γ̃

(d)
IJB satisfy

the analogous energy estimate for the same n:

∥ẽ(d)∥2H4(Ut)
+ ∥k̃(d)∥2H4(Ut)

+ ∥γ̃(d)∥2H4(Ut)
≤ t2M−7. (7.16)

Condition (1.20) now follows from (7.15), (7.16) and the triangle inequality, by taking n
sufficiently large such that 2M − 7 ≥ 2M0. Hence, point (i) can be employed to conclude
that the two solutions g, g̃ are equal.

7.2 Smoothness

Let g be the solution furnished by Theorem 5.1, for some s0 ≥ 4, defined in the domain
{Ut}t∈(0,TN0,s0,n0

], which is in turn defined relative to g[n0]. The corresponding variables

e
(d)
Ia , k

(d)
IJ , γ

(d)
IJB satisfy the estimate (5.26), for all t ∈ (0, TN0,s0,n0 ].

Consider an s1 > s0 and the corresponding solution g̃ furnished by Theorem 5.1. Let
N1, n1, TN1,s1,n1 be the parameters and existence time associated with g̃. It is evident from
Proposition 5.3 that the constant C∗ in (5.41), for an Hs1(Ut) energy estimate, will be
larger from the corresponding constant required for Hs0(Ut), since C∗ depends on the pi’s
and their s1 derivatives. Therefore, n1, N1 will possibly be larger than n0, N0. Nevertheless,
we observe that defining the domain {Ut}t∈(0,TN1,s1,n1

] in Section 5.1 relative to g[n0] does
not affect the existence proof. Hence, we may assume that the slicing for the two solutions
g, g̃ is the same, albeit the times of existence differ, TN1,s1,n1 < TN0,s0,n0 .

Next, we observe that the assumptions (1.19)-(1.20) in point (i) of Theorem 1.3 are
satisfied by both sets of reduced variables eIa, kIJ , γIJB and ẽIa, k̃IJ , γ̃IJB corresponding
to g, g̃ respectively. Indeed, this is immediate provided N0, N1 > M0. Since M0 de-
pends only on the L∞(U0) norms of the pi’s and not their derivatives, we conclude that
the two solutions must coincide in their common domain of the definition. Thus, g is
Hs1(Ut) regular, for every t ∈ (0, TN1,s1,n1)]. Also, it is H

s0(Ut) regular in the time interval
[TN1,s1,n1 , TN0,s0,n0 ], satisfying the uniform bound (1.18) for s = s0. By standard continu-
ation criteria for first order symmetric hyperbolic systems, the variables eIa, kIJ , γIJB are
in fact Hs1(Ut) regular, for every t ∈ [TN1,s1,n1 , TN0,s0,n0 ]. Since s1 > s0 is arbitrary, we
conclude that eIa, kIJ , γIJB, and hence g, are smooth in x. Using the equations (3.2), (3.4),
(3.7), iteratively differentiating in t, we infer that eIa, kIJ , γIJB and g are also smooth in
(t, x) ∈ {Ut}t∈(0,TN0,s0,n0

]. This completes the proof of Theorem 1.2.
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