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We introduce certain spherically symmetric singular Ricci solitons and study their
stability under the Ricci flow from a dynamical PDE point of view. The solitons
in question exist for all dimensions n + 1 ≥ 3, and all have a point singularity
where the curvature blows up; their evolution under the Ricci flow is in sharp
contrast to the evolution of their smooth counterparts. In particular, the family of
diffeomorphisms associated with the Ricci flow “pushes away” from the singularity
causing the evolving soliton to open up immediately becoming an incomplete (but
non-singular) metric. The main objective of this paper is to study the local-in time
stability of this dynamical evolution, under spherically symmetric perturbations of
the singular initial metric. We prove a local well-posedness result for the Ricci flow
in suitably weighted Sobolev spaces, which in particular implies that the “opening
up” of the singularity persists for the perturbations as well.

Keywords Ricci flow; Ricci solitons; Singular initial data; Stability.
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1. Introduction

The question of defining solutions of geometric evolution equations with singular
initial data is an interesting challenge and has been studied in recent years for a
variety of parabolic geometric PDE. For the Ricci flow, a number of solutions
have been proposed in various settings. Many such results produce solutions that
smooth out the initial singularity: Simon [19] obtained solutions for the Ricci flow
for �0 initial metrics that can be uniformly approximated by smooth metrics with
bounded sectional curvature. Koch and Lamm [17] showed existence and uniqueness
for the Ricci-DeTurck flow for initial data that are L�-close to the Euclidean metric.
Angenent, et al. [1] considered initial data of neck-pinch type. (In particular these
initial data can form in the evolution of a smooth spherically symmetric initial
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metric, as demonstrated in [2, 3]). They constructed a solution to the flow starting
from this singular initial metric, for which the singularity is immediately smoothed
out. This can be thought of as a (very weak) notion of surgery in that the method
of proof relies on a gluing construction to show the existence of such a solution,
but not uniqueness. Cabezas-Rivas and Wilking [4] have obtained solutions of
the Ricci flow on open manifolds with non-negative (and possibly unbounded)
complex sectional curvature, using the Cheeger-Gromoll convex exhaustion of such
manifolds.

More results have been obtained in the Kähler case and in dimension 2, where
the Ricci flow equation reduces to a scalar heat equation; we list a few examples:
In the Kähler case Chen, et al. [6] consider the Kähler-Ricci flow for initial data
with �1�1 potentials and construct solutions to the Ricci flow which also immediately
smooth out. The argument is based on an approximation of the initial potential
by smoother ones. The case of dimension 2 has received much attention (see [15]
for a survey): Giesen and Topping [13] (building on earlier work by Topping [20])
have given a construction of Ricci flows on surfaces starting from any (incomplete)
initial metric whose curvature is unbounded; these solutions become instantaneously
complete and are unique in the maximally stretched class that they introduce. More
recently yet [14], they constructed examples of immortal solutions of the flow (on
surfaces) which start out with a smooth initial metric, then the supremum of the
Gauss curvature becomes infinite for some finite amount of time before becoming
finite again.

Further results have been obtained in various settings where the initial metric
is singular, and these initial singularities are preserved, rather than smoothed out.
We note in particular [7, 16, 18, 22, 23], where the Ricci flow is complemented by
a Dirichlet boundary condition at the evolving singularity. In this latter regard of
imposing a boundary condition to ensure uniqueness these results are similar to the
one we present here. However in our case the initial singularity is in some regard
more “severe”, and the evolution forces it to “open up” yielding an incomplete, non-
singular metric at later times:

This paper considers a special class of singular initial metrics and produces
examples of Ricci flow whose behaviour is different from those listed above. Our
initial metrics are close to certain singular gradient Ricci solitons, that we introduce
separately in the first part of this paper. The solitons exist in all dimensions n +
1 ≥ 3. Our main result is that for small enough perturbations of the singular Ricci
solitons, the Ricci flow admits a unique solution, up to some time T > 0, within a
natural class of evolving metrics which stay close (as measured in a certain weighted
Sobolev space) to the evolving Ricci solitons. In other words, we obtain a local well-
posedness result for the Ricci flow for initial data with the same singularity profile as
our Ricci solitons. The well-posedness is derived in some naturally adapted energy
spaces, with a suitable Dirichlet boundary condition.

The solitons that we introduce (and, in fact, the perturbations that we consider)
all have SO�n + 1���-symmetry. In particular, the soliton metric at the initial time
t = 0 can be written in the form:

gsol = dx2 + ��x�2g�n � x ∈ �0� B�� B > 0 or B = +��

where g�n denotes the canonical metric of the unit n-sphere. The function ��x� is
a positive smooth function and moreover ��x� → 0 as x → 0+, with leading order
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behaviour � ∼ x
1√
n . In particular, the (incomplete) metric above can be extended to

a complete �0 (in fact �
1√
n ) metric at x = 0, but the extended metric will not be

of class �1. At the other end x = B, in the case B < +�, the metric is smoothly
extendible and trivially incomplete. In the case B = +� the singular solitons we
consider are complete Riemannian manifolds towards +�, with an asymptotic
profile there that matches the Bryant soliton. For the rest of this introduction we
discuss only the case B = +�.

Our first observation is that the evolution of the singular solitons themselves
under the Ricci flow is in sharp contrast with the behavior of their smooth
counterparts. As for smooth solitons, there exists an evolution of gsol under the Ricci
flow given by a 1-parameter family of radial diffeomorphisms �t � �0�+�� × �n →
�0�+�� × �n, t ≥ 0, where �0 = Id. (“Radial” here and further down means that
the diffeomorphism, for each t ≥ 0, depends only on the parameter x ∈ �0���.) The
diffeomorphisms �t are such that the pullback g�t� = �∗

t �gsol� solves the Ricci flow

�tg�t� = −2Ric
(
g�t�
)
� g�0� �= gsol	

However, the map �t is not surjective in this case. In fact, for each t > 0,
�t�0�+�� = �m�t��+�� where m�t� > 0 is non-decreasing in t. In other words the
flow �t pushes away from the singular point x = 0. Thus, for each t > 0 �M� g�t��
can be extended to a smooth manifold with boundary, where the induced metric on
the boundary is that of a round sphere of radius limx→0+ ���t�x�� > 0. One can then
visualize the evolving soliton metric g�t� backwards in time: starting at time t = 1
it contains the portion of the original soliton corresponding to x > m�t�, and its
boundary at x = m�t� shrinks down, as t → 0+, to a point which yields the singular
metric gsol.

The perturbation problem that we consider is still within the spherically
symmetric category. In particular, the initial metrics we consider are in the form

g̃ = dx2 + �̃2�x�g�n

A loose version of our main result can be written in the following form; the precise
statement can be found in Theorem 3.1.

Theorem 1.1. Let


 = �̃

�
− 1	

There exists a large enough constant � > 0, such that if

∫ min�1�B


0


2

x2�
+ 
2

x

x2�−2
dx +

∫ B

min�1�B


2 + 
2

xdx 	 1�

then there exists a unique evolving spherically symmetric metric g̃�t�, t ∈ �0� T�, solving
the Ricci flow equation

�tg̃�t� = −2Ric
(
g̃�t�

)
� g̃0 �= g̃�
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subject to the Dirichlet boundary condition


�0� t� = 
�B� t� = 0�

and which stays close, measured in a suitable weighted H1-space, to the evolving soliton
metric exhibiting the same “opening up” behavior of the initial singularity.

We remark briefly here on the choice of the weight function x−2�: the definition
of 
 and the assumption that 
 belongs to the weighted Sobolev space above can be
interpreted geometrically as requiring the initial metric g̃ (encoded in the function �̃)
and the initial soliton metric g (encoded in the function �) to agree asymptotically
to high order � at x = 0. We expand more on this below.

1.1. Applications

It should be stressed at this point that our work here does not have direct bearing
on the issue of “flowing through singularities” that form in finite time under the
Ricci flow, (as studied, for example, in [1]), at least for closed manifolds. Indeed,
it is well known that for such manifolds the minimum of the scalar curvature is a
non-decreasing function under the Ricci flow; however the scalar curvature of the
solitons we consider (and of their perturbations) converges to −� at the singular
point (x = 0).

Nonetheless, there are many important instances in PDEs of a geometric nature
for which one has initially singular solutions for which one would like to know
whether the evolution is stable under perturbations of the (singular) initial data. One
specific example that we wish to mention is that of the Einstein equations in the
general theory of relativity: We recall that the maximally extended Schwarzschild
solution contains a space-like singular hypersurface in the black hole region; this
corresponds to �T 2 − X2 = 1
 in the Kruskal coordinates, Chapter 6 in [21]. It is
in fact not known whether for the vacuum Einstein equations this singularity is
stable under any perturbations at all of the initial data that lead to its formation.
(For the purposes of this discussion let us say that the initial data is prescribed on
a hypersurface that corresponds to T = 0 in the maximally extended Schwarzschild
space-time (in the Kruskal coordinates).) One possible approach to produce such
perturbations of the data at T = 0 that lead to a space-like singularity formation
is to solve the vacuum Einstein equations backwards in time, starting from singular
initial data which would correspond to perturbations of the Schwarzschild metric on
a singular hypersurface that contains at least part of the space-like singularity. (We
recall that hyperbolic equations can be solved either forwards or backwards-in time,
as opposed to parabolic ones.) Producing a solution that exists (backwards) until the
hypersurface T = 0 will then yield perturbations of the Schwarzschild initial data
that still develop singularities in the future. The resulting (hyperbolic) PDE that one
obtains for this problem has some key resemblances to the (parabolic) PDE that
we deal with here; the key common feature is the behaviour of the level sets of the
time function T ; the initial such level set has a rotationally symmetric cylindrical
metric, which is singular at one (collapsed) sphere. The subsequent level sets of T
then smooth out immediately; the rate of this smoothing seems to match the one
observed here. We also note that the method we follow here is based on robust
energy estimates, for suitably weighted energies. All the above suggest that some of
the methods developed here will have a wider applicability.
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While the above solitons have been constructed over the manifolds � ×
�n, it would perhaps be natural to seek similar examples in the more general
cohomogeneity-1 category, studied by Dancer and Wang [10–12].

1.2. Outline of the Ideas

Now, we briefly outline the sections of the paper and the challenges that each
addresses. In Section 2 we introduce the (singular) spherically symmetric Ricci
solitons that we consider. The study of these solitons follows the method presented
in [8, Chapter 1], originally developed by R. Bryant. In the class of spherically
symmetric metrics, the gradient Ricci soliton equation reduces to a second order
ODE system, which can be transformed into a more tractable first order system in
parameters �W�X� Y� via a transformation that we review in (A.4). Knowledge of
the variables W�X� Y in the parameter y allows us to recover the metric component
� and the gradient �x of the potential function � of (A.3) in the parameter x.
In the case of steady solitons, the system (A.6) in fact reduces to a 2 × 2 system;
see Section A.2. We provide a description of the trajectories in the X� Y -plane that
correspond to our singular solitons and compare them to the Bryant soliton. In
particular, we show there exists a 1-parameter family of singular gradient steady
Ricci solitons; they are all singular at x = 0 with the leading order asymptotics

��x� ∼ x
1√
n �x�x� ∼

√
n − 1
x

� n > 1

and they are complete towards x = +�, with the same asymptotic profile as the
Bryant soliton.

In Section 3 we introduce the perturbation problem we will be studying in the
rest of the paper. We consider spherically symmetric initial metrics of the form

g̃ = �̃2�x�dx2 + �̃2�x�g�n

For such initial data, the Ricci flow equation can be written (after a change of
variables) in the equivalent form (3.4) of a PDE coupled to an ODE. The evolving
Ricci soliton metric (defined via the diffeomorphisms �t) remains spherically
symmetric and is represented by coordinate components ��x� t�� ��x� t�, while the
stipulated Ricci flow that we wish to solve for corresponds to two functions
�̃�x� t�� �̃�x� t�. Since the singular nature of the initial data do not allow the system
(3.4) to be attacked directly, we introduce new variables which measure the closeness
of �̃� �̃ to �� �.

More precisely, we define

� = �̃

�
− 1 
 = �̃

�
− 1	

Then the system reduces to (3.10), for which the Ricci soliton corresponds to the
solution � = 0� 
 = 0. The coefficients of this system refer to the variable � of the
background evolving soliton, expressed with respect to its arc-length parameter s.
What is critical here is that the coefficients are singular at �x� t� = �0� 0�; the precise
nature of this singularity is essential in our further analysis.
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A first challenge appears at this point, which in fact is independent of the
singularities of the coefficients. Indeed, it is related to the presence of the second
order term 
ss on the RHS of the first equation in (3.10). To explain the difficulty
let us note that the system (3.10) can be concisely expressed as

�t = F��� �s� 
s� 
ss� �a transport equation in �� depending also on 
s� 
ss�


t = G�
� 
s� 
ss� �� �s� �heat type equation in 
� depends also in �� �s�	

We note that in general, such a system may fail to be well-posed in any Hk. Indeed,
one may not be able to control the functions �� 
 in the spaces Hk in which they
lie initially: Suppose � ∈ Hk. Then from the second equation by parabolic regularity
one expects 
 ∈ Hk+1 (due to the inhomogeneity �s). Plugging that in the transport
equation for � (for which on has no gain of regularity) one retrieves � ∈ Hk−1 (due
to the inhomogeneity 
ss). Thus, one cannot bound the functions in the spaces in
which they belong initially.

We therefore introduce a new variable defined by

� = �� + 1�2

�
 + 1�2n
− 1	

The new system (3.14) for � and 
 involves only first derivatives of 
 in the evolution
equation of � and therefore can (in principle) be approached via energy estimates.
It is not clear whether there is any geometric significance underlying this change of
variables. It is in fact not a priori obvious that such a simplification of the system
should have been possible via a change of variables. It is at this point that the
spherical symmetry of both the background soliton and of the perturbations that
we study is used in an essential way.

Thus, matters are reduced to proving well-posedness of (3.14), in the
appropriate spaces. We follow the usual approach of performing an iteration (in
reality a contraction mapping argument, although we find it more convenient to
phrase our proof in terms of the standard Picard iteration), by solving a sequence
of linear equations for the unknowns ��m+1� 
m+1� in terms of the known functions
��m� 
m� solved for in the previous step, and proving that the sequence ��m� 
m��m ∈
� converges to a solution ��� 
� of our original system.

We note that the usual approach would be to replace only the highest order
terms in the RHSs of (3.14) by the unknown function 
m+1 and replace all the lower-
order ones by the previously-solved-for �m� 
m. However in the case at hand this
approach would fail for any function space, due to the nature of the singularities in
the coefficients. For example, as we will see the coefficient �2

s

�2 in the potential terms
contains a factor of 1

s2 , where s�x� t� is the arc-length parameter of the background
evolving soliton. It turns out that the leading order in the asymptotic expansion of
s2 near x = 0� t = 0 is of the form

s2 ∼ x2 + 2�
√
n − 1�t	

Consequently, the best L�
x bound for 1

s2 would be 1
s2 ≤ C

t
; this would result in

an energy estimate of the form �t� ≤ Ct−1� which does not yield a uniform
in-time bound on the energy. The remedy for this problem is to modify the
iteration procedure according to (4.2). In this linear iteration the unknown functions
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m+1� �m+1 at the �m + 1�-step also appear in certain lower-order terms associated to
the most singular coefficients.

Finally, we solve the system (4.2) and prove that it defines a contraction
mapping in certain (time-dependent) weighted Sobolev spaces H1

� �s� containing all
functions

u ∈ H1��+�
∫ 1

0

u2

�s2 + �t��
+ u2

s

�s2 + �t��−1
ds < +��

where we note that the weights depend on both the spatial and time variables x� t.
(We note here that we use the length element ds which corresponds to the arc-length
parameter of the background evolving Ricci soliton. In particular s�x� t� �= �t�x�;
thus for all t > 0 s�x� t� > s�0� t� > 0� ∀x > 0.)

The rather involved estimates in Section 4 aim precisely to show that the
parameters � and � > 0 can be chosen in a way that enables us to derive a bound
in the space H1

� ; as we will see, this mostly amounts to controlling the terms in the
energy estimate that arise from the most singular coefficients in (3.14). We note here
that choosing � to be large forces both the initial data and the evolution of the
solution to stay close to the evolving soliton. Choosing � large allows the evolving
solution to ‘depart’ from the evolving soliton. Thus the challenge is to balance
these competing parameters in such a way that the solution can be bounded in the
weighted space H1

� . We note that it is essential for this ‘balancing’ to work that we
can first bound the L2 norms, and after this has been done we can estimate the H1

norms.
Finally, in Section 5 we provide a proof of the existence of solutions to (4.2) in

the appropriate spaces, using a modification of the Galerkin iteration to this singular
PDE-ODE system. This part is included for the sake of completeness, since coupled
systems of this singular nature do not appear to have been treated in the literature.

2. Singular Spherically Symmetric Ricci Solitons

We will be considering metrics over Mn+1 = �0� B� × �n (where B ∈ �+ or B = +�),
in the form

g = dx2 + �2�x�g�n � (2.1)

where � is a positive smooth function and g�n denotes the canonical metric on the
unit sphere. Our first aim for this section is to obtain such metrics which satisfy the
(gradient) Ricci soliton equation

Ric�g� + �2� + �g = 0 � ∈ �� (2.2)

for a smooth radial potential function � � M → �, and which are singular as
x → 0+. In particular we wish to construct a soliton metric which will extend
continuously to x = 0 with ��x� → 0, as x → 0+, but will not close smoothly there.

Following known work on the complete case, an approach originally initiated
in (unpublished) work of R. Bryant (see Appendix A and [8]), we construct the
following singular solutions of the equation (2.2).
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Proposition 2.1 (Existence of singular Ricci solitons). For all � ∈ �� n > 1 there
exists a class of spherically symmetric solutions to the gradient Ricci soliton equation
(2.2) with profile

��x� ∼ ax
1√
n � a > 0 �x�x� ∼

√
n − 1
x

as x → 0+	 (2.3)

These solutions are a priori defined for B = � < +�, for some � > 0 small, such that
���x have a smooth limit, as x → �− < +�.

In the steady case � = 0, the preceding solutions exist up to B = +� and their
behavior at infinity reads

cx
1
2 ≤ ��x� ≤ Cx

1
2 − C

(
1 − 1

x

)
≤ �x�x� ≤ −c

(
1 − 1

x

)
c� C > 0� x � 1	 (2.4)

Further, the behaviors of the derivatives of the above variables are in each case the
derivatives of the corresponding bounds and asymptotics, e.g.,

�x�x� ∼ a√
n
x

1√
n
−1

� as x → 0+ − C

x2
≤ �xx�x� ≤ − c

x2
� x � 1

Proof. See Propositions A.1, A.2 in Appendix A. �

Remark 2.1. It is worth noting that for � = 0 in dimension five, (i.e., n = 4) the
soliton metrics and associated diffeomorphisms can in fact be written out explicitly:

��x� = a
√
x �x�x� = 1

x
− 6

a2
� x ∈ �0�+��� a > 0	 (2.5)

Remark 2.2. In view of the asymptotics, we conclude that the above Ricci solitons
metrics are �0 extendible at x = 0, but singular in C1 norm for all dimensions
n + 1 ≥ 3. In particular, one can readily check that the most singular curvature
components blow up like 1/x2, as x → 0+.

2.1. The Evolving Soliton Metric g�t�: The Action of the Diffeomorphisms

Since the metric g (2.1) satisfies the gradient Ricci soliton equation (2.2), it admits
a Ricci flow

�tg�t� = −2Ric
(
g�t�
)

g�0� = g� (2.6)

evolving via diffeomorphisms

g�t� = ��t��∗
t �g�

up to some time T > 0, where ��t� �= 1 + 2�t > 0, t ∈ �0� T�, and

�t�x� p� = �t�x� �0 = idM
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is the flow generated by the (time dependent) vector field

1
��t�

�g�	

Thus, by definition of the pullback

g�t� = ��t�
[
d��t�x��

2 + �2��t�x��g�n

]
(2.7)

We note that since our manifold �Mn+1� g� is not complete at x = 0, �t�x� is not
necessarily defined for all time, but nevertheless it exists locally t ∈ �−�x� �x�� x > 0.
However, it easily follows from the asymptotics below that for the steady (� = 0)
solitons the flow exists for all t ≥ 0.

Suppressing the sphere coordinates corresponding to different points �x� p�,
�x� q� in Mn+1, we may consider �t to be a real function in x

�t � �0� B� → �0�+��

and further we identify the time derivative of �t with the (single) component of �g�
in the �x direction, that is,

�t�t�x� = 1
��t�

���/�x���t�x�
= 1

��t�
�x��t�x��	 (2.8)

According to the asymptotics (2.3),

�t�t�x� ∼ 1
��t�

√
n − 1
�t�x�

(2.9)

which after integrating yields the leading behavior

�2
t �x� ∼ x2 + 2�

√
n − 1�t� as x� t → 0+	 (2.10)

Remark 2.3. From the preceding asymptotics it follows that

�t

(
�0� B�

) ⊆ ��t�0��+���

�t�0� > 0� t > 0 non-decreasing, and in particular �t is not surjective. A geometric
interpretation of the latter is that the flow �t “pushes” the domain away from the
singularity at x = 0, smoothing out the incomplete metric.

Restricting now on the singular steady solitons, we integrate (2.8) once more to
arrive at the following estimate at infinity for the flow

x − Ct ≤ �t�x� ≤ x − ct x � 1 � t ≥ 0	 (2.11)

In fact, in the steady case � = 0 we can give a complete description of the
evolution of the singular soliton metrics. Indeed, in this case we show that there



2132 Alexakis et al.

exists a critical slice �xcrit
 × �n of the manifold Mn+1 = �0�+�� × �n, which is fixed
by �t�·� and moreover it is an attractor of the flow:

�x�x� > 0� x ∈ �0� xcrit� �x�xcrit� = 0 �x�x� < 0� �xcrit�+�� (2.12)

Hence, for any point x ∈ �0�+��, the integral curve �t�x� will ‘reach’ xcrit as time
tends to infinity

lim
t→+� �t�x� = xcrit lim

t→+� �t

(
�0�+��

) = �xcrit�+��	

We remark also that the scalar curvature R achieves its maximum at xcrit, which
means that the manifold is deformed in this sense towards higher level sets of scalar
curvature.

In order to prove the above picture, it suffices to show that (2.12) is valid. From
the profiles (2.3), (2.4) we confirm that �x has a positive sign close to x = 0 and is
negative near +�. Hence there exists a point xcrit where �x�xcrit� = 0. It remains to
show that this is the only zero of �x. We recall at this point a general identity for
solutions to the gradient Ricci soliton equation (2.2) (see for instance [8, Proposition
1.15]).

Proposition 2.2. Let �Mm� g� ��� be a gradient Ricci soliton, i.e., a solution of the
equation (2.2). Then the following quantities are constant:

�i� R + �g� + m� = 0 (tracing)

�ii� R + ��g��2 + 2�� = C0�

where R is the scalar curvature of �Mm� g�.

The fact that the scalar curvature R attains its maximum �C0� at xcrit is an
immediate consequence of identity �ii� for � = 0.

Subtracting the two identities of the preceding proposition we obtain

�g� − ��g��2 − 2�� + m� = −C0	

Whence, in our context for � = 0, the previous equation amounts to

�xx + �x

�
�x − �2

x = −C0� (2.13)

Claim: C0 > 0. From the asymptotics of �x (2.3), (2.4), we easily deduce that �

tends to −� at both ends of the manifold x = 0�+�. This implies that � has a
global maximum M , realized at some point x̃. By (2.13) we get C0 ≥ 0. However,
the constant C0 cannot be zero, otherwise we would have � ≡ M (by uniqueness of
ODEs), which of course is not possible. Our claim follows.

Thus, every critical point of � is a strict local maximum. Therefore, � can only
have one critical point, xcrit = x̃. �
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3. The Stability Problem

Our main goal in this paper is to prove (local in time) well-posedness of the Ricci
flow for spherically symmetric metrics which start out close enough (in certain
spaces we construct in Section 3.4) to the soliton metrics (Propositions 2.1) we
constructed in the previous section. We recall below in Section 3.1 a useful form
of the Ricci flow equation for spherically symmetric metrics and then proceed to
introduce a transformation of our system into new variables �� 
 (3.9). These are
designed to capture the closeness of the (putative) evolving solution under the Ricci
flow to the evolution of the background Ricci soliton. The resulting system involves
a second order parabolic equation in 
 coupled with a transport equation in �, both
of them having certain singular coefficients. This forces us to study well-posedness
of the system in certain weighted Sobolev spaces. Our main result in these variables
is stated in Theorem 3.1.

However, this is not the system we derive energy estimates with, because of
the fact that the transport equation in � contains a second order term in 
, which
makes it impossible to control the Hk norms of the functions �� 
 from their initial
configurations. After a further crucial change of variables (Section 3.3), replacing
� with a new variable �, the resulting PDE in �� 
 (3.14) for which we derive an
estimate is of similar nature, except now this problem has been eliminated; the
equation of � containing only first derivatives of 
.

The singularities in the coefficients of the system are determined fully by the
background evolving soliton metric. The precise asymptotics of these coefficients are
essential to our further pursuits, so we begin by studying those right after writing
down the final system (3.14). Next, in Section 3.4 we set up formally the function
spaces in which we will be proving our well-posedness result for the system of �� 


and state the final version of our main result very precisely in Theorem 3.2. The
proof of Theorem 3.2 is carried out in the next section Section 4.

One final convention: We will be considering the stability question for all the
singular Ricci solitons (see Proposition 2.1). Since for � �= 0 we only know that they
exist on a bounded (rather than an infinite) interval �0� ��, we will treat two versions
of the resulting PDE problem. One will concern a bounded domain and the other,
for the steady case � = 0, will regard the whole half-line; i.e., initial domain x ∈
�0� B�, B = � < +� or B = +�.

3.1. Ricci Flow in Spherical Symmetry

Let g̃�t�, t ∈ �0� T�, be a 1-parameter family of smooth spherically symmetric metrics
on Mn+1 = �0� B� × �n (B = � < +� or B = +�)

g̃�t� = �̃2�x� t�dx2 + �̃2�x� t�g�n � (3.1)

where �̃� �̃ are positive smooth functions, and assume it satisfies the Ricci flow
equation

�tg̃�t� = −2Ric
(
g̃�t�

)
t ∈ �0� T�	 (3.2)
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We now let s̃�x� t� be the radial arc-length parameter for the above metric at any
given time t, i.e.,

ds̃ = �̃�x� t�dx	 (3.3)

Expressing �̃�·� t� relative to the parameter s̃ (and slightly abusing notation), g̃�t�

becomes

g̃�t� = ds̃2 + �̃2�s̃� t�g�n 	

For this type of warped product metrics the Ricci tensor is given by (e.g., [8,
Section 1.3.2])

Ric
(
g̃�t�

) = −n
�̃s̃s̃

�̃
ds̃2 + �n − 1 − �̃�̃s̃s̃ − �n − 1��̃2

s̃ �g�n 	

Plugging into (3.2) we get

⎧⎪⎨⎪⎩2�̃�̃t = −2

(
−n

�̃s̃s̃

�̃

)
ds̃2��x� �x� = 2n

�̃s̃s̃

�̃
�̃2

2�̃�̃t = −2�n − 1 − �̃�̃s̃s̃ − �n − 1��̃2
s̃ �

Thus, the Ricci flow equation (3.2) reduces to the coupled system⎧⎪⎪⎪⎨⎪⎪⎪⎩
�̃t = n

�̃s̃s̃

�̃
�̃

�̃t = �̃s̃s̃ − �n − 1�
1 − �̃2

s̃

�̃

t ∈ �0� T�	 (3.4)

Observe that the first equation involves the evolution of the radial distance function,
while the second involves the evolution of the radii of the spheres, at a given radial
distance.

Of course, the singular Ricci soliton metrics we studied in the previous section
fall in the same framework. Indeed, returning to (2.7) we may write

g�t� = ds2 + �2�s� t�� g�n = �2�x� t�dx2 + �2�x� t�g�n � (3.5)

where we have set

s�x� t� = √��t� �t�x�� s�x� 0� = x ds = √��t� �x�t�x�dx (3.6)

and

��x� t� �= √��t� �x�t�x� ��x� t� �= √��t� ���t�x��	 (3.7)
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Note that ��x� 0� = ��x� corresponds to the component of the metric g (2.1).
Arguing similarly to the case of g̃�t�, it follows that the (2.6) is equivalent to⎧⎪⎪⎨⎪⎪⎩

�t = n
�ss

�
�

�t = �ss − �n − 1�
1 − �2

s

�

��x� 0� = 1� ��x� 0� = ��x�	 (3.8)

3.2. The Main Stability Result: A Transformed System for the Ricci Flow of the
Perturbed Metric

The goal is to construct a spherically symmetric Ricci flow (3.1), (3.2) for the
appropriate spherically symmetric perturbed metric g̃ �= g̃�0�. We now take a first
step towards transforming our system of equations by introducing new variables.
Let

� = �̃

�
− 1 
 = �̃

�
− 1	 (3.9)

The above formulas are defined for all x ∈ �0� B�� t ∈ �0� T�. In particular, these
variables measure (in a refined way) the difference between the unknown functions
�̃� �̃ and the background variables �� �. Note in addition that requiring 
 = 0 at the
endpoint x = 0� t = 0 forces �̃ to have the same leading order asymptotics at x = 0
as the background component �.

We next wish to convert (3.4) into a system of equations for �� 
, expressing the
evolution equations in terms of t and the arc-length parameter s of the background
evolving Ricci soliton. We are then forced to deal with the discrepancy between s̃� s.
We calculate:

�s̃

�3	3�= 1
�̃
�x = �

�̃

1
�
�x

�3	6���3	7�= 1
� + 1

�s

�s̃�s̃ = 1
� + 1

�s

(
1

� + 1
�s

)
= 1

�� + 1�2
�s�s − �s

�� + 1�3
�s�

and hence we write

�̃s̃ = 1
� + 1

(
��
 + 1�

)
s

�̃s̃s̃ = 1
�� + 1�2

(
��
 + 1�

)
ss

− �s
�� + 1�3

(
��
 + 1�

)
s
	

Taking time derivatives in (3.9) and combining (3.4), (3.8), we derive the following
coupled system in the new variables �� 
.

�t = n
�ss

�

[ 1
� + 1

− �� + 1�
]

+ 2n
�s

�


s

�� + 1��
 + 1�
+ n


ss

�� + 1��
 + 1�
− n

�s

�

�s
�� + 1�2

− n
�s
s

�� + 1�2�
 + 1�
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t =
(
�ss

�
+ �n − 1�

�2
s

�2

)[ 
 + 1
�� + 1�2

− 
 − 1
]

+ n − 1
�2

(

 + 1 − 1


 + 1

)
+ 2n

�s

�


s

�� + 1�2
+ 
ss

�� + 1�2
+ �n − 1�


2
s

�� + 1�2�
 + 1�

− �s

�

�s�
 + 1�
�� + 1�3

− �s
s

�� + 1�3
(3.10)

Notice that the coefficients of the preceding system are expressed in terms of the
components (metric, curvature etc.) of the background soliton, which are of course
singular at x = t = 0. We will elaborate more on the nature of the singularities in
the next subsection. We simply mention that this is basically the reason that forces
us to study (3.10) in non-standard modified spaces. The following version of our
main theorem regards the local existence of the system in the variables �� 
 (3.9).

Theorem 3.1. There exist constants �� � > 0 appropriately large, such that the system
(3.10) is locally well-posed in the (time-dependent) weighted Sobolev space

E�t� �=
∫ x=�

x=0

u2

�s2 + �t��
+ u2

s

�s2 + �t��−1
ds +

∫ x=B

x=�
u2 + u2

s ds < +�� (3.11)

(B = � < +�� � �= 0 or B = +�� � = 0) assuming E�0� sufficiently small and the
Dirichlet boundary condition


�x� t� = 0� �x = 0� B
 × �0� T� (3.12)

We remark that the smallness assumption on E�0� is required to control the
smallness in L� of �� 
 which appear in the denominators in (3.10) by E�t�. It could
possibly be removed if the initial data lied in a suitably weighted H2 space, combined
with an assumption of smallness in L� of �� 
.

3.3. A Crucial Change of Variables: The Features of the Resulting PDE

Unfortunately, due to the term n 
ss
��+1��
+1� in the first equation of (3.10) we cannot

derive energy estimates in L2 for �� 
. We remedy this problem by replacing the
variable � with

� �= �� + 1�2

�
 + 1�2n
− 1	 (3.13)

The new system of �� 
 reads

�t = −2n�n − 1�
(
�2

s

�2

[
1

�
 + 1�2n
− 1
]

+ 2
�s

�


s

�
 + 1�2n+1

+ 1 − �
 + 1�−2

�2
+ 
2

s

�
 + 1�2n+2

)
− 2n�n − 1�

1 − �
 + 1�−2

�2
� + 2n�n − 1�

�2
s

�2
�
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t =
(
�ss

�
+ �n − 1�

�2
s

�2

)[
1

�� + 1��
 + 1�2n−1
− �
 + 1�

]
+ n − 1

�2

(

 + 1 − 1


 + 1

)
+ n

�s

�


s

�� + 1��
 + 1�2n
+ 
ss

�� + 1��
 + 1�2n
− 
2

s

�� + 1��
 + 1�2n+1

− 1
2
�s

�

�s

�� + 1�2�
 + 1�2n−1
− 1

2
�s
s

�� + 1�2�
 + 1�2n
(3.14)

It is important that we know the exact leading asymptotics of the coefficients
in (3.14), as x� t → 0+. Recall the formulas (3.6), (3.7)

s�x� t� = √��t��t�x� ��s� t� = √��t� �

(
s√
��t�

)

and the profile of the background singular soliton at the two ends x = 0� B
(Proposition 2.1) to deduce the following estimates:

�s

�
= O

(
1
s

)
�2

s

�2
= O

(
1
s2

)
�ss

�
= O

(
1
s2

)
x ∈ �0� B�� t ∈ �0� T� (3.15)

and separately for

1
�2

= O

(
1

s
2√
n

)
� x 	 1

1
�2

= O

(
1
s

)
� x � 1 t ∈ �0� T�� n > 1 (3.16)

for small T > 0. Using the above we also derive

�s�
�s

�
� = O

(
1
s2

)
�s�

�2
s

�2
� = O

(
1
s3

)
x ∈ �0� B�� t ∈ �0� T�	 (3.17)

Also, directly from the asymptotics of the flow �2
t �x� (2.10), (2.11) the arc-length

parameter s of the background soliton shows to behave like

s2�x� t� �= ��t��2
t �x� ∼ x2 + 2�

√
n − 1�t as x� t → 0+ (3.18)

and

x − Ct ≤ s ≤ x − ct x � 1� B = +�� t ∈ �0� T� (3.19)

with an evolution estimated employing (2.8):

�ts = �

��t�
s + O

(
1
s

)
� x 	 1 − C ≤ �ts ≤ −c� x � 1� B = +� t ∈ �0� T�

(3.20)

Remark 3.1. Evidently from the above asymptotics, the best L�
x estimate that one

could hope for the ratio 1/s2 is of the form∥∥∥∥ 1
s2

∥∥∥∥
L��x�

≤ C

t
� (3.21)
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which of course fails to be integrable in �0� T�, T > 0. Note that 1/s2 is the leading
behavior, suggested from the above estimates, of the most singular coefficients of
the potential terms in (3.14). This is precisely the reason why the standard Gronwall
argument would fail to yield an energy estimate in the usual Hk spaces for the
system in question.

It will be useful further down to write the less singular coefficients in (3.14), namely,
1
�2 as

1
�2

=�
A�s� t�

s
� �s

(
A�s� t�

s

)
= −2

1
�2

�s

�
= A�s� t�

s
O

(
1
s

)
� (3.22)

where setting

A�t� �= �A�s� t��L��s��
∫ t

0
A2���d� = o�

√
t�� as t → 0+	 (3.23)

As stated in Theorem 3.1, the spaces we will be dealing with involve the
coordinate vector field �s and the volume form ds of the background soliton metric.
The first issue we stress here is the fact that the vector fields �s� �t (the latter is
defined so that �tx = 0) do not commute. In fact, we find the commutator to be
singular:

�

�t

�

�s
= �

�t

(
1√

��t� �x�t�x�

�

�x

)
�by definition of s �3	6��

= − �

��t�
3
2

1
�x�t�x�

�

�x
− 1√

��t�

�t��x�t�x��

��x�t�x��
2

�

�x
+ 1√

��t� �x�t�x�

�

�t

�

�x

= − �

��t�

�

�s
− �x�t�t�x�

�x�t�x�

�

�s
+ 1√

��t� �x�t�x�

�

�x

�

�t

= − �

��t�

�

�s
− �x

[
1

��t�
�x��t�x��

]
�x�t�x�

�

�s
+ �

�s

�

�t
�plugging in �2	8��

= −� + �xx�s�

��t�

�

�s
+ �

�s

�

�t

Consulting the asymptotics of the second derivative potential function (deduced
from Proposition 2.1) we conclude that

��t� �s� = O

(
1
s2

)
�s x ∈ �0� B�� t ∈ �0� T�	 (3.24)

We must also calculate the evolution of the volume form ds. The derivation is
similar:

�tds = �t�
√
��t� �x�t�x�dx� = �√

��t�
�x�t�x�dx +√��t� �t�x�t�x�dx

= �

��t�
ds +√��t� �x

[
1

��t�
�x��t�x��

]
dx = � + �xx�s�

��t�
ds�
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which as above gives

�tds = O

(
1
s2

)
ds	 (3.25)

3.4. The Weighted Sobolev Spaces and the Final Version of the Main Theorem

As explained the singularities in the coefficients of the system (3.14), along with the
asymptotic behaviors we have derived force us to study well-posedness in weighted
Sobolev spaces. The weights will be adapted to the singularity at x = 0� t = 0.

Definition 3.1. Let � > 0 (to be determined later). We define the weight

�2�x� t� =
⎧⎨⎩

s2 + �t� �x� t� ∈ �0� �� × �0� T�� � ∈ �
��s� t�� �x� t� ∈ ��� � + 1� × �0� T�� � = 0� B = +�
1� �x� t� ∈ �� + 1�+�� × �0� T�� " "

(3.26)

where ��·� t� is a cut off function interpolating between �2��� t� and 1, for each t ∈
�0� T�.

When we derive the main energy estimates in the next section we will need
the following key properties of the weight �. First, we estimate immediately by
Definition 3.1 and (3.20) how � changes along the directions �s� �t:

�s� = O�1� �t� =
[
O�1�
�

+ �

�

]
1�0��� + O�1�1���B�	 (3.27)

Also, from the asymptotics of s2 (3.18), (3.19) we obtain the following comparison
estimate of the functions s� �.

0 < c ≤ �2

s2
=
{

1 + 2�t
s2

O�1�
s2

≤
{

1 + C√
n−1�� x ∈ �0� ��

C� x ∈ ���+��� B = +� n > 1	 (3.28)

Now we may proceed to the formal definition of the modified Hk spaces.

Definition 3.2. For any given t ∈ �0� T� and � ≥ 1, we define the weighted space

Hk
� �t� � u ∈ Hk

(
�0� B�

)
� �u�2

Hk
� �t�

=
∫ x=B

x=0

u2

�2�
+ · · · + ��k

su�
2

�2�−2k
ds < +�	 (3.29)

In the case k = 0, we denote H0
� �t� by L2

��t�. When it is clear, we will suppress t in
the notation.

In this spirit, we define the energy

��u� v� T� = �u�2
C�0�T�H1

� �
+ �u�2

L2�0�T�H1
�+1�

+ �v�2
C�0�T�H1

� �
+ �v�2

L2�0�T�H2
�+1�

(3.30)

and for brevity let

�0 = ��0�2
H1

�
+ �
0�2

H1
�
� (3.31)
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where �0 �= ��x� 0�, 
0 �= 
�x� 0�. We can formulate now a more precise version of
our main result regarding the system (3.14).

Theorem 3.2. There exist � > 0� � �= ���� > 0 sufficiently large such that if �0 is
sufficiently small, then the system (3.14), subject to the Dirichlet boundary condition


�x� t� = 0 �x = 0� B
 × �0� T�� (3.32)

admits a unique solution up to some time T �= T��0� �� �� > 0 in the spaces

� ∈ C�0� T�H1
� � ∩ L2�0� T�H1

�+1� 
 ∈ C�0� T�H1
� � ∩ L2�0� T�H2

�+1� (3.33)

�t ∈ C�0� T� L2
�−2� ∩ L2�0� T�H1

�−1� 
t ∈ L2�0� T� L2
�−1�

with initial data �0� 
0.

We remark here the fact that once we have such a solution to (3.14), then we
straightforwardly derive that this solution ��� 
� corresponds to a solution of (3.4),
which in fact will be smooth over Mn+1 × �0� T�, given the parabolicity of the Ricci
flow.

4. The Contraction Mapping

We will prove Theorem 3.2 via an iteration scheme, which is essentially a
contraction mapping argument. We note that throughout the subsequent estimates
we will use the symbol C to denote a positive constant depending only on n. Further,
the endpoints of any integration in the spatial variable, unless otherwise indicated,
will be the two ends x = 0� B.

4.1. The Iteration Scheme and the Contraction Mapping

In order to derive energy estimates, it is very important how we define the Picard
iteration for the system (3.14). We choose to keep in the unknowns at each step
the linear lower order terms in the RHSs which are associated to the most singular
coefficients in the system. We construct a sequence

{
�m� 
m

}�
m=0

in the spaces

�m ∈ C�0� T�H1
� � ∩ L2�0� T�H1

�+1� 
m ∈ C�0� T�H1
� � ∩ L2�0� T�H2

�+1� (4.1)

�m
t ∈ C�0� T� L2

�−2� ∩ L2�0� T�H1
�−1� 
m

t ∈ L2�0� T� L2
�−1��

satisfying

�m+1
t = 2n�n − 1�

(
�2

s

�2

2n
m+1 +∑2n
j=2

(
2n
j

) �
m�j
�
m + 1�2n

− 2
�s

�


m+1
s

�
m + 1�2n+1

− A�s� t�

s

m 
m + 2

�
m + 1�2
�1 + �m� − �
m

s �2
�
m + 1�2n+2

+ �2
s

�2
�m+1

)
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m+1
t =

(
�ss

�
+ �n − 1�

�2
s

�2

)[−�m+1 − 2n��m + 1�
m+1

��m + 1��
m + 1�2n−1
−
∑2n

j=2

(
2n
j

) �
m�j
�
m + 1�2n−1

]
(4.2)

+ �n − 1�
A�s� t�

s

m 
m + 2


m + 1
+ n

�s

�


m+1
s

��m + 1��
m + 1�2n
+ 
m+1

ss

��m + 1��
m + 1�2n

− �
m
s �2

��m + 1��
m + 1�2n+1
− 1

2
�s

�

�m+1
s

��m + 1�2�
m + 1�2n−1

− 1
2

�m
s 


m
s

��m + 1�2�
m + 1�2n
�

where we set �0 = 
0 = 0 and initially

�m+1

∣∣∣∣
t=0

= �0 
m+1

∣∣∣∣
t=0

= 
0 m = 0� 1� 	 	 	 (4.3)

Further, 
m+1 is required to verify the Dirichlet boundary condition


m+1�x� t� = 0 �x = 0� B
 × �0� T�	 (4.4)

Under the assumptions of Theorem 3.2, we show inductively that for sufficiently
small T > 0 (uniform in m), the sequence also satisfies the energy estimate

���m� 
m� T� ≤ 2�0 m = 0� 1� 	 	 	 (4.5)

We prove this in Section 5.
The main task that we undertake here is to prove Theorem 3.2 by showing

that the sequence ��m� 
m�m∈� is actually Cauchy in the energy spaces we have
introduced.

Proposition 4.1. Let

where �m� 
m are the functions constructed above. Then under the assumptions in
Theorem 3.2 on �� ���0� T the following contraction estimate holds:

The previous proposition readily implies Theorem 3.2; the iterates (�m� 
m)
converge to a solution of the system (3.14) satisfying the assertions of the theorem.

Proof. It is carried out in Section 4.2. �

Some standard pointwise estimates adapted to our weighted norms are needed
to proceed.



2142 Alexakis et al.

Lemma 4.1. Given functions �m� 
m, m ∈ �, in the spaces (4.1), the following
pointwise bounds are valid:∥∥∥∥�m

�k

∥∥∥∥2

L��x�

≤ C�k + 1��0

∥∥∥∥
m

�k

∥∥∥∥2

L��x�

≤ C�k + 1��0� (4.8)

∥∥∥∥
m
s

�k

∥∥∥∥2

L��x�

≤ C
√
�0

(∥∥∥∥ 
m
ss

��−1

∥∥∥∥
L2

+ k

∥∥∥∥
m
s

��

∥∥∥∥
L2

)
�
∫ t

0

∥∥∥∥
m
s

�k

∥∥∥∥2

L�
d� ≤ C�k + 1�

√
T�0�

(4.9)

for all k = 0� 	 	 	 � − 1, � ≥ 1, t ∈ �0� T�. If in addition �0 is small enough, the following
estimates also hold:

sup
x∈�0�B�

���m� + �
m�� <
1
2

inf
x∈�0�B�

�
m + 1�−2n ≥ 1
2
� (4.10)

We note that (4.10) is the first main reason we consider small �0, which in particular
guarantees the parabolicity of the second equation of (4.2).

Proof. We treat the estimate of � 
m
�k

�. The rest follow easily from the same argument.
By the fundamental theorem of calculus we have∣∣∣∣∣
m ��s�x� t�� t�2

�2k
− 
m �s�0� t�� t�2

�2k

∣∣∣∣∣ �4	4�=
∣∣∣∣∫ s�x�t�

s�0�t�
2

m

�k

(

m
s

�k
− k


m

�k+1
�s

)
ds

∣∣∣∣
≤ 2

∥∥∥∥ 
m

�k+ 1
2

∥∥∥∥
L2

(∥∥∥∥ 
m
s

�k− 1
2

∥∥∥∥2

L2

+ Ck

∥∥∥∥ 
m

�k+ 1
2

∥∥∥∥2

L2

)
�4	5�≤ C�k + 1��0 �s = O�1��3	27�

In the case of � �m
�k

�, instead of x = 0, we choose a reference point x ∈ �0�+��
realizing its infimum, which is controlled by the L2 norm and argue similarly as
before. The estimate (4.10) follows from (4.8) for k = 0, provided the initial weighted
energy is small enough.

As for (4.9), the second part obviously follows from the first by integrating in
time and applying C-S, along with the energy estimate (4.5). An easy derivation of
the first part is obtained by noticing that there exists a reference point x0 �= x0�t�
for which 
m

s �x0� t� = 0. Indeed, this is implied by the vanishing of 
m�x� t� at the
endpoints x = 0� B (4.4). The above argument applies directly. �

To write our system for concisely, we introduce generic notation

B�D

to denote rational functions in �m� 
m, m = 0� 1� 	 	 	 , satisfying the following
conditions:

• The denominators of B�D have non-zero constant terms.
• The constant term in the numerator of B is non-zero, whereas the one in the

numerator of D vanishes.
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The next lemma is an immediate consequence of the pointwise estimates (4.8) and
the energy estimate (4.5).

Lemma 4.2. If B�D are functions as above and �0 is sufficiently small, then the
following estimates hold:

�B�s� t��L��x� < C

∥∥∥∥D�k

∥∥∥∥2

L��x�

≤ C�k + 1��0� (4.11)

where k = 0� 	 	 	 � � − 1 and ∥∥∥∥ Bs

��−1

∥∥∥∥2

L2

+
∥∥∥∥ Ds

��−1

∥∥∥∥2

L2

≤ C�0� (4.12)

for 0 ≤ t ≤ T and C a positive constant depending on the coefficients of the rational
functions B�D.

Consider now the two systems (4.2) corresponding to the steps m + 1 and m.

We derive a new system for (4.6) by subtracting these two systems.
Doing so, it is straightforward to check that we arrive at the following system:

where

and

We note that the terms and are of the most
problematic and an additional reason we need to consider small initial energy �0 in
order to prove the contraction mapping argument in H1

� .
Similarly to Lemma 4.1, we have the following L� estimates for the differences.
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Lemma 4.3. For every m ∈ � and t ∈ �0� T� the following estimates hold:

and

k = 0� 	 	 	 � � − 1.

4.2. Proof of Proposition 4.1: The Contraction Estimate (4.7)

In this subsection we show that the desired contraction estimate (4.7) follows from
the next proposition, whose proof in turn we divide in three parts occupying the
subsequent subsections Section 4.3–4.5.

Proposition 4.2. The following estimates are valid in the time interval �0� T�. First, for

in L2
� we have

and second for the first derivatives in L2
�−1
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We take a moment to discuss here the purpose of the above estimates and the
intuition behind the arguments that follow. We wish to derive H1 weighted energy
estimates for the differences , which would yield the contraction
estimate (4.7) and prove Theorem 3.2. Apart from the general constant C, the
‘best’ energy estimates that one can obtain for the weighted norms we introduced
are summarized in the previous proposition. However, these bounds do not imply
directly the desired H1

a bound for . There is a crucial choice of
parameters to be made here and a hierarchy one must follow in order for Gronwall
to be applicable.

We wish to employ the standard Gronwall lemma in order to obtain uniform
bounds in time �0� T� for the quantities

Unfortunately, this is not possible due to the terms

which have larger exponents in the weights (by one) than the ones in the norms of
the first terms in the LHS. We call these terms ‘critical’, they arise inevitably in the
energy estimating process due to the singular coefficients of the system (4.13), see
(3.15). One failed attempt to deal with the critical terms would be to ‘pull out’ of the
integrals the ‘extra weight’ in L��x�. This would however, as noted in Remark 3.21,
generate a constant C/t, which is non-integrable in �0� T� and therefore Gronwall’s
inequality fails to yield any bound. Thus, the only way to deal with these terms is
to absorb them into the corresponding critical terms in the LHSs (whose presence
is in our favour)

This is where the role of the parameters �� � comes into play:
We choose these parameters such that �� > C��2 + �� in order to absorb in the

LHS the critical terms in the RHS of (4.18). Doing that we face a problem with
the critical terms in the RHS of (4.19), since C��2 + �� + C�2 dominates �� (C is
large in our setting). These joint requirements seem mutually conflicting. However,
note that the critical term in the RHS of (4.19) with coefficient C�2 involves only
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zeroth order terms. What saves the day here is that the zeroth order terms can
be treated first, separately from the first derivatives. Therefore, it is essential that
we do not estimate the H1

� norm of directly, i.e., do not sum (4.18),
(4.19) and afterwards try to find suitable parameters �� �, but instead first bound
the lower order terms . In particular, we choose �� � such
that they verify �� > C��2 + �� and apply Gronwall to (4.18). In this way, when we

seek to estimate the first derivatives and encounter the
zeroth order critical term (∗) we do not run into trouble since it has already been
bounded. At that point the rest critical of the terms can be absorbed in the LHS by
the same choice of parameters �� � as above. This enables us to derive an estimate
also for the first order terms and hence the full H1

a norm of , which in
turn yields the desired contraction estimate (4.7) for small T��0, see below.

We will use below in the proof the following simple modified version of
Gronwall’s inequality.

Lemma 4.4. Let f � �a� b� → � be a continuous function which satisfies:

1
2
f 2�t� ≤ 1

2
f 2

0 +
∫ t

a
����f���d�� t ∈ �a� b��

where f0 ∈ � and � nonnegative continuous in �a� b�. Then the estimate

1
2
�f�t�� ≤ 1

2
�f0� +

∫ t

a
����d�� t ∈ �a� b�

holds.

Proposition 4.2 implies the contraction (4.7):. Choosing �� � appropriately large
such that

�� > C��2 + �� + 1�

the critical terms on the RHS of (4.18), line three, can be absorbed in the LHS.
Hence, we may employ the standard (integral form of) Gronwall’s inequality,
applying the estimate (4.9), to obtain a bound on the zeroth order terms

:

We proceed to the estimate of the first derivatives (4.19). For the same choice
of �� � as above (uniform C), we absorb the critical terms in the RHS, line

five, involving the first order terms . Also, utilizing the preceding
estimate (4.20) we estimate the zeroth order terms on the RHS of (4.19), line six;
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including the critical terms with a bad sign coefficient of magnitude �2. Thus, we
have

Employing Lemma 4.4 for

we obtain

Finally, applying C-S and (4.5), (4.17) we have

and hence for T > 0 small we absorb the first term in (4.23) to the LHS of (4.22).
From the above estimates we deduce the contraction estimate (4.7), provided

T��0 are sufficiently small. �

4.3. Proof of Proposition 4.2 I: Estimates for the Non-Linear Terms

We establish some estimates for the functions Fm
1 � Fm

2 (4.14), (4.15) that we will use
in proving the estimates in Proposition 4.2.
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Proposition 4.3. For any function u ∈ L2�0� T� L2
�� and t ∈ �0� T� the following

estimates hold:

and

We remark that the only part that ‘does not belong’ in the above estimates, is
the last summand in (4.25) from which we do not gain any smallness in T . This term
comes from estimating in Fm

2 (4.15) below.

Proof. Recall the leading behavior of the coefficients (3.15), (3.22). Plugging (4.14)
in the norm below we estimate:

Employing the comparison estimate �2/s2 ≤ C� (3.28) for the first three terms in the
RHS of the second inequality above and the L� estimate of (4.16) for the last
term we obtain

After integrating in time and applying (3.23), (4.9) we arrive at (4.24).
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Similarly, for the case of Fm
2 plugging in (4.15) we derive:

We employ once more the comparison estimate (3.28), the energy estimate of the

iterates (4.5) and the L� estimates for to get

Integrating from 0 ≤ � ≤ t, applying C-S to the last term above and utilizing (4.9)

we achieve the estimate (4.25). (The second last term in the RHS of (4.30) is the

first problematic term that forces us to assume further smallness of the initial

energy �0)

We proceed to the relevant estimates of �s�F
m
1 �. This time, to be comprehensive,

we plug in each term in the RHS of (4.14) at the time and estimate it separately.

Recall again the singular orders of the coefficients (3.15), (3.22) and the ones of their
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spatial derivatives (3.17). Applying C-S to each arising term we have:

Similarly, utilizing the estimates on B (4.11), (4.12) we obtain

and
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The last term to be estimated is a bit more involved. We follow the same plan
employing the estimates on B (4.11), (4.12) and the L� estimates of (4.16),
(4.17).

We remark here that the control of the term in the above
estimate, which results to the second term on the RHS of the last inequality, is one
of the most delicate that we have to perform (in fact, if this term in the equation
had been slightly more nonlinear, the overall scheme would break down); essentially
due to the fact that our energies depend on just one derivative in �. This term also
forces us to consider small initial energy �0 to prove the contraction mapping; cf.
the last term in (4.23).

Combining (4.31)–(4.33) we obtain
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Thus, integrating on �0� t� and employing once more the estimates (3.23), (4.9) we

conclude the desired estimate (4.26). This completes the proof Proposition 4.3. �

4.4. Proof of Proposition 4.2 II: L2
� Estimates of ��m+1� ��m+1

We prove (4.18). Let us commence with the L2
� estimates of . Taking the time

derivative of the L2
� norm of and using (3.27), (3.25) we derive

As usual, we estimate the last term employing (3.28)

Recall (3.15), (3.22) and the pointwise bound of B (4.11) to derive

We proceed to the case of slightly differently. We control the L2
� norm of

the term instead. Of course, it is evident from (4.10) that it is the
same thing as estimating . We should note that it is not needed to go through

this procedure if �0 is small enough, but we wish to provide a more general plan.

Similarly to (4.36), keeping in mind the pointwise estimate on �m (4.10), we deduce
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The second last term is controlled via (3.28), as in (4.37). We estimate the last term

from the equation satisfied by �m
t , analogous of the first equation in (4.2), using the

pointwise estimate on the iterates (4.8) and the comparison estimate (3.28), replacing

the singular orders of the coefficients (3.15), (3.22) with the weights �k, k = 1� 2.

Moving on to the main term, plugging in the RHS of (4.13), we have
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We treat the last two terms separately integrating by parts. At this point the role of
the Dirichlet boundary condition (4.4) comes into play.

Similarly, by (3.15), (4.11), (4.12) we obtain

(The possibility to control this next term using an integration by parts to offload
the derivative from is essential in order to bound the L2

� norms of ,
without recourse to the higher derivatives.)

Putting the above estimates (4.36)–(4.43) all together we conclude that
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Choosing � small enough, the first term in the RHS of the preceding estimate has

a negative sign and hence it can be dropped. Integrating on �0� t� and taking into

account the integrated estimates of Fm
1 � Fm

2 in Proposition 4.3, we obtain the desired

estimate (4.18) in Proposition 4.2.

4.5. Proof of Proposition 4.2 III: L2
�−1 Estimates of ��m+1

s � ��m+1
s

In this subsection we prove (4.19). Recall the bounds on the derivatives of the weight

� (3.27), the volume form ds (3.25) and the commutator ��s� �t� (3.24) to obtain

As usual, from (3.28)

In order to estimate the first term in the RHS of the inequality (4.45) we plug in

from the first equation of (4.13) and treat each generated term separately. For

all three of the subsequent bounds we apply C-S at each term, using the estimates

on the coefficients (3.15) and the relevant function B (4.11), (4.12):
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Similarly, we obtain

and

We proceed to the case of . Similarly to (4.45), using in addition the
boundary condition (4.4) upon integrating by parts we have

There are two main terms we must estimate here. In both estimates we plug in
from (4.13), distributing the singularities in the coefficients (3.15) by applying C-S
and the usual pointwise estimates. We start first with the term
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and analogously for
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Summary: Combining (4.45)–(4.51) we deduce

Let � > 0 be small such that

4� + C��0 <
1
6
	

Integrating on �0� t� and invoking the integrated estimates (4.25), (4.26) for
, we finally arrive at the estimate (4.19) in Proposition 4.2.

5. The Linear Step in the Iteration

In the beginning of Section 4.1 we took for granted that at each step m + 1, m =
0� 1� 	 	 	 , the linear system (4.2) possessed a solution with prescribed regularity and
energy bounds. We prove these assertions here.

Definition 5.1. For this section, we will let f� g� F1� F2 stand for generic functions in
the spaces

f� g ∈ L��0� T�H1� F1 ∈ L2�0� T�H1�� F2 ∈ L2�0� T� L2� (5.1)

satisfying the bounds

g�x� t� ≥ 1
2
� �f�L�

x
+ g�x� t� < C� �gs�2

L��0�T�L2� < �� (5.2)

for appropriate positive constants c� C, � small, and

∫ T

0

∥∥∥∥ Fi

��−1

∥∥∥∥2

L2

dt < +�� i = 1� 2 (5.3)

∫ u · �sF1

�2�−2
ds ≤ C�

∥∥∥ u

��

∥∥∥2

L2�0���
+ G1�t�

∥∥∥ u

��−1

∥∥∥2

L2
+ G2�t��

for a.e. 0 ≤ t ≤ T and the general function u ∈ L2�0� T� L2
��, where G1�t��G2�t� are

positive �0� T�-integrable functions.
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Motivated by (4.2), we consider the following linear system:

�t = �2
s

�2
f
 + �s

�
f
s + 2n�n − 1�

�2
s

�2
� + F1


t =
(
�ss

�
+ �n − 1�

�2
s

�2

)
f · �� + 
� + �s

�
f
s + g
ss + �s

�
f�s + F2 (5.4)

�

∣∣∣∣
t=0

= �0 


∣∣∣∣
t=0

= 
0� 
 = 0� on �x = 0� B
 × �0� T�

We prove:

Theorem 5.1. There exist �� � sufficiently large such that (5.4) has a unique solution
up to time T > 0 in the spaces

� ∈ L��0� T�H1
� � ∩ L2�0� T�H1

�+1� 
 ∈ L��0� T�H1
� � ∩ L2�0� T�H2

�+1� (5.5)

�t ∈ L��0� T� L2
�−2� ∩ L2�0� T�H1

�−1� 
t ∈ L2�0� T� L2
�−1�

Further, the solution satisfies the energy estimate

���� 
� T� ≤ C̃

[
�0 +∑∫ T

0

∥∥∥∥ Fi

��−1

∥∥∥∥2

L2

dt +
∫ T

0
G2�t�dt

]
=� C̃C0�T�� (5.6)

for some positive constant C̃.

It is easy to see that the linear system (4.2) is of the type (5.4), if the energy
���m� 
m� T� is small enough. Taking the latter as an induction hypothesis, Theorem
5.1 then implies the existence of �m+1� 
m+1 satisfying the same assertions, provided
T��0 > 0 are sufficiently small (uniformly in m).

5.1. Plan of the Proof of Theorem 5.1

We perform a new iteration for (5.4), first solving the first equation (ODE) for �
(using a previously-solved-for 
̃) and then plugging � into the second (and main)
equation of (5.4) to solved for the new 
. (This way we avoid some additional
problems having to do with the fact that the level of regularity of � is lower, by one
derivative, than the one we have for 
). Let


̃ ∈ L��0� T�H1
� � ∩ L2�0� T�H2

�+1� (5.7)

be a function satisfying

�
̃�2
L��0�T�H1

� �
+ �
̃�2

L2�0�T�H2
�+1�

≤ C̃C0�T�� (5.8)

with improved bounds for

∫ T

0

∥∥∥∥∥ 
̃

��+1

∥∥∥∥∥
2

L2�0���

dt ≤ C̃

�2
C0�T�

∫ T

0

∥∥∥∥∥ 
̃s

��

∥∥∥∥∥
2

L2�0���

dt ≤ C̃

�
C0�T�� (5.9)
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C̃ is some positive constant to be determined later. We consider the system

�t = �2
s

�2
f 
̃ + �s

�
f 
̃s + 2n�n − 1�

�2
s

�2
� + F1


t =
(
�ss

�
+ �n − 1�

�2
s

�2

)
f · �� + 
� + f

�2

 + �s

�
f
s + g
ss + �s

�
f�s + F2 (5.10)

�

∣∣∣∣
t=0

= �0 


∣∣∣∣
t=0

= 
0� 
 = 0� on �x = 0� B
 × �0� T�

Claim: For suitably large �� � the preceding system has a unique solution

� ∈ L��0� T�H1
� � ∩ L2�0� T�H1

�+1� 
 ∈ L��0� T�H1
� � ∩ L2�0� T�H2

�+1� (5.11)

�t ∈ L��0� T� L2
�−2� ∩ L2�0� T�H1

�−1� 
t ∈ L2�0� T� L2
�−1��

which satisfies the energy estimates

���� 
� T� ≤ C̃C0�T� (5.12)

and

∫ T

0

∥∥∥∥ 


��+1

∥∥∥∥2

L2�0���

dt ≤ C̃

�2
C0�T�

∫ T

0

∥∥∥∥
s

��

∥∥∥∥2

L2�0���

dt ≤ C̃

�
C0�T�	 (5.13)

Observe that if we can prove this, a standard iteration argument (passing to a
subsequence, weak limits etc.) yields a solution �� 
 of the original linear problem
(5.4) in the same space (5.11) and satisfying the same estimates as above. This
reduces the proof of Theorem 5.1 to proving our claim above.

5.2. A Priori Estimates for �

The function � given by the (ODE) first equation of (5.10) satisfies the following
energy estimates for �� �� C̃ large, T > 0 small:

���2
L��0�T�H1

� �
+ ���2

L��0�T�H1
�+1�

≤ C̃

10
C0�T� (5.14)

and

∫ T

0

∥∥∥ �

��+1

∥∥∥2

L2�0���
d� ≤ C

�

C̃

�2
C0�T�

∫ T

0

∥∥∥�s

��

∥∥∥2

L2�0���
d� ≤ C

�

C̃

�
C0�T�	 (5.15)

Sketch of the argument. The relevant derivations are the same (and in fact a lot less
involved) with the ones in the non-linear case Section 4 (see Proposition 4.2). There
is a slight difference in the very last argument before closing the estimates, which
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we present separately here. For example, following Section 4.4, we derive

1
2
�t���2

L2
�
+ ��

∥∥∥ �

��+1

∥∥∥2

L2�0���

≤ C�� + ��
∥∥∥ �

��+1

∥∥∥2

L2�0���
+ C����2

L2
�
+ C�

∥∥∥∥∥ 
̃

��+1

∥∥∥∥∥
2

L2�0���

+ C

∥∥∥∥∥ 
̃

��

∥∥∥∥∥
2

L2

+ C

∥∥∥∥∥ 
̃s

��

∥∥∥∥∥
2

L2

+
∥∥∥∥F1

��

∥∥∥∥2

L2

	 (5.16)

Choosing �� � such that

1
2
�� > C�� + ��

and integrating in time and utilizing (5.8), (5.9) we have

1
2
���2

L2
��t�

+ ��

2

∫ t

0

∥∥∥ �

��+1

∥∥∥2

L2�0���
d�

≤ 1
2
��0�2

L2
�
+ C�

∫ t

0
���2

L2
����

d� + C

(
1
�

+ T

)
C̃C0�T� +

∫ T

0

∥∥∥∥F1

��

∥∥∥∥2

L2

d�	 (5.17)

The part of (5.14), (5.15) involving the zeroth order terms follows from (5.17) by
Gronwall’s inequality. �

5.3. The Weak Solution �: A Galerkin-type Argument

Now that we have solved the first equation of (5.10) for � and obtained the required
energy estimates, we plug it into the second equation of the system (5.10) and solve
for 
 via a modified Galerkin method. We initially seek a weak solution


 ∈ L��0� T� L2
�� ∩ L2�0� T�H1

�+1�0� �2
t ∈ L2�0� T�H−1
�+1� (5.18)

satisfying

∫ T

0

(

t� v

)
L2
�
dt =

∫ T

0

[((
�ss

�
+ �n − 1�

�2
s

�2

)
f · �� + 
�� v

)
L2
�

+
(
�s

�
f
s� v

)
L2
�

−
(
gs
s� v

)
L2
�

−
(
g
s� vs

)
L2
�

+ 2�
(
g
s� v

�s

�

)
L2
�

+
(
�s

�
f�s� v

)
L2
�

+ (F2� v
)
L2
�

]
dt� 


∣∣∣∣
t=0

= 
0 (5.19)

for all

v ∈ L��0� T�H1
��0�s�� ∩ L2�0� T�H1

�+1�s��� (5.20)
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where by
(·� ·)

L2
�

we denote the inner product in L2
�

(
v1� v2

)
L2
�
�=
∫ v1v2

�2�
ds	 (5.21)

and by H1
��0 the closure of compactly supported functions in H1

� �0� B�; H−1
�+1 being

the dual of H1
�+1�0. In view of the regularity (5.18), 
 is actually continuous in time

and hence the initial condition in (5.19) makes sense.
Let �uk�x�


�
k=1 be an orthonormal basis of L2�0� B�, which is also a basis

of H1
0

(
�0� B�

)
; consisting of smooth, bounded functions. Then for each t ∈ �0� T�

(abusing slightly the notation of the endpoints of integration)

wk�s� t� �= ��uk�s� k = 1� 2� 	 	 	 (5.22)

is an orthonormal basis of L2
� and a basis of H1

��0. We note that

∫ T

0

∫ B

0

1
�2

dsdt
�3	28�≤ C

∫ T

0

∫ B

0

1
s2

ds ≤ C
∫ T

0

1
s�0� t�

ds

�3	18�≤ C
∫ T

0

1√
t
dt ≤ C

√
T < +�� (5.23)

from which it follows that the set

span
{
dk�t�wk�s� t�

∣∣ t ∈ �0� T�� k = 1� 2 	 	 	
}
� (5.24)

dk�t� smooth, is also dense in L2�0� T�H1
�+1�0�s��. Similarly to (5.23), by definition

(5.22) and (3.27), we verify the asymptotics

∫ wk1
wk2

s2�2�
ds = O

(
1√
t

) ∫ �swk1
wk2

s�2�
ds = O

(
1√
t

)
(5.25)

∫ �swk1
�swk2

�2�
ds = O

(
1√
t

) ∫ �twk1
wk2

�2�
ds = O

(
1√
t

)
�

without assuming of course any uniformity in the RHSs with respect to the indices
k1� k2 ∈ �1� 2� 	 	 	 
.

Given  ∈ �1� 2� 	 	 	 
, we construct Galerkin approximations of the solution of
(5.19), which lie in the span of the first  basis elements:


 �=
 ∑

k=1

ak�t�wk ak�0� �=
∫ 
0wk�x� 0�

x2�
dx (5.26)
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solving

(

 
t � wk

)
L2
�
=
((

�ss

�
+ �n − 1�

�2
s

�2

)
f · �� + 
 �� wk

)
L2
�

+
(
�s

�
f
 

s� wk

)
L2
�

−
(
gs


 
s� wk

)
L2
�

− (g
 
s� �swk

)
L2
�
+ 2�

(
g
 

s� wk

�s

�

)
L2
�

+
(
�s

�
f�s� wk

)
L2
�

+ (F2� wk

)
L2
�
� (5.27)

for t ∈ �0� T� and every k = 1� 	 	 	 �  .

Proposition 5.1 (Galerkin approximations). For each  = 1� 2� 	 	 	 there exists a
unique function 
 of the form (5.26) satisfying (5.27).

Proof. Employing (5.25) we see that

(

 
t � wk

)
L2
�
= a′

k�t� +
 ∑

j=1

aj�t�O�
1√
t
�

and also utilizing (3.15), (5.2)((
�ss

�
+ �n − 1�

�2
s

�2

)
f · 
 � wk

)
L2
�

+
(
�s

�
f
 

s� wk

)
L2
�

=
 ∑

j=1

aj�t�O

(
1√
t

)
	

Further, by our assumption on g (5.1) and (5.25) it holds

− (gs

 
s� wk

)
L2
�
− (g
 

s� �swk

)
L2
�
+ 2�

(
g
 

s� wk

�s

�

)
L2
�

��s = O�1��3	27��

=
 ∑

j=1

ak�t�O�1� +
 ∑

j=1

ak�t�O

(
1√
t

)
	

Lastly, setting

dk�t� �=
((

�ss

�
+ �n − 1�

�2
s

�2

)
f · ��wk

)
L2
�

+
(
�s

�
f�s� wk

)
L2
�

+ (F2� wk

)
L2
�

≤ C
∥∥∥ �

s��

∥∥∥2

L2
+
∫ 1

s2
ds + C

∥∥∥�s

��

∥∥∥2

L2
+
∫ 1

s2
ds + C

∥∥∥∥ F2

��−1

∥∥∥∥2

L2

+
∫ 1

�2
ds

we observe that (5.27) reduces to a linear first order ODE system of the form

a′
k�t� =

 ∑
j=1

ak�t�O

(
1√
t

)
+

 ∑
j=1

ak�t�O�1� + dk�t� k = 1� 	 	 	 �  

having coefficients which are singular at t = 0, but luckily they are all integrable on
�0� T�. This implies local existence and uniqueness of the system and hence of 
 at
each step  ∈ �1� 2� 	 	 	 
. �
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Proposition 5.2 (Energy estimates). For �� �� C̃ appropriately large and T > 0 small
the following estimates hold:

�
 �2
L��0�T�L2

��s��
+ �
 

s�2
L2�0�T�H1

�+1�0�
≤ C̃

10
C0�T�� (5.28)

∫ T

0

∥∥∥∥ 
 

��+1

∥∥∥∥2

L2�0���

dt ≤ C

�

C̃

�2
C0�T� (5.29)

and ( ∫ T

0

(

 
t � v
)
L2
�
dt

)2

≤ C̃

10
C0�T�

∫ T

0
�v�2

H1
�+1�0

dt� (5.30)

for every  = 1� 2� 	 	 	 , v =∑ 
k=1 dk�t�wk.

Proof. Multiplying the equation (5.27) with ak�t� and summing over k = 1� 	 	 	 �  ,
we can then follow the argument in Section 5.2 to prove (5.28), (5.29). Next, we
readily compute using the equation (5.27):

(

 
t � v
)
L2
�
≤ C

(∥∥∥ v

��+1

∥∥∥
L2

+
∥∥∥ vs

��

∥∥∥
L2

)[∥∥∥ �

s2��−1

∥∥∥
L2

+
∥∥∥∥ 
 

s2��−1

∥∥∥∥
L2

+
∥∥∥∥ 
 

s

s��−1

∥∥∥∥
L2

+ �2

∥∥∥∥
 
s

��

∥∥∥∥
L2

+
∥∥∥ �s

s��−1

∥∥∥
L2

+
∥∥∥∥ F2

��−1

∥∥∥∥
L2

]
Employing the comparison (3.28) and (5.14), (5.15) along with the already derived
(5.28), (5.29) we arrive at (5.30). �

The estimates in Proposition 5.2 suffice to pass to a subsequence (applying a
diagonal argument due to (5.30)), yielding in the limit a weak solution 
 (5.18),
(5.19) verifying the energy bounds

�
�2
L��0�T�L2

��s��
+
∫ T

0

∥∥∥∥
s

��

∥∥∥∥2

L2

dt ≤ C̃

10
C0�T� (5.31)

and ∫ T

0

∥∥∥∥ 


��+1

∥∥∥∥2

L2�0���

dt ≤ C

�

C̃

�2
C0�T�	 (5.32)

Uniqueness follows by the linearity of (5.19), since the difference of any two
weak solutions satisfies the corresponding estimates with zero initial data and zero
inhomogeneous terms.

5.4. Improved Regularity and Energy Estimates for �

We now show that 
 is in fact a strong solution of (5.10). Let 0 < t0 < T be a fixed
positive time. Looking at the second equation of (5.10) for t ∈ �t0� T�, we observe
that the coefficients involving � and its derivatives are smooth and bounded, while
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f� g ∈ L��0� T�H1� (5.1). Moreover, from Section 5.2 we have � ∈ L��0� T�H1� and
by assumption Fi ∈ L2�0� T� L2�, i = 1� 2. Hence, by standard theory of parabolic
equations the weak solution 
 (5.18) of (5.10) that we established in Section 5.3,
having “initial data” 
�s� t0� ∈ H1 (for a.e. 0 < t0 < T ), attains interior regularity


 ∈ L��t0� T�H
1
0 � ∩ L2�t0� T�H

2� 
t ∈ L2�t0� T� L
2�

Since t0 ∈ �0� T� is arbitrary, we can improve the regularity of the preceding solution


 ∈ L��0� T�H1
��0� ∩ L2�0� T�H2

�+1� 
t ∈ L2�0� T� L2
�−1� (5.33)

by straightforwardly using the second equation in (5.10) to derive the desired
energy estimates for the higher order terms. Recall that for fixed t > 0, the weight
�2 is bounded above and below (Definition 3.1). Thus, it makes sense to (time)
differentiate the L2

�−1 of 
 and plug in directly the equation (5.10) to obtain (as in
the non-linear case for Section 4.5):

1
2

d

dt
�
s�2

L2
�−1

+ ��

∥∥∥∥
s

��

∥∥∥∥2

L2�0���

+ 1
4

∥∥∥∥ 
ss

��−1

∥∥∥∥2

L2

≤ C��2 + ��

∥∥∥∥
s

��

∥∥∥∥2

L2�0���

+ C�2�
s�2
L2
�−1

+ C�2

(∥∥∥ �

��+1

∥∥∥2

L2�0���
+
∥∥∥∥ 


��+1

∥∥∥∥2

L2�0���

)
+ C�

(∥∥∥�s

��

∥∥∥2

L2�0���
+
∥∥∥∥
s

��

∥∥∥∥2

L2�0���

)

+ C
(���2

L2
�
+ �
�2

L2
�
+ ��s�2

L2
�−1

)+ C

∥∥∥∥ F2

��−1

∥∥∥∥2

L2

(5.34)

Let �� � large such that 1
2�� > C��2 + ��. Invoking (5.8), (5.9), (5.14), (5.15), (5.31),

(5.32) upon integrating on �0� T� we deduce

1
2
�
s�2

L2
�−1�t�

+ 1
2
�� − 1��

∫ t

0

∥∥∥∥
s

��

∥∥∥∥2

L2

d� + 1
4

∫ t

0

∥∥∥∥ 
ss

��−1

∥∥∥∥2

L2

d�

≤ 1
2
��x
0�2

L2
�−1

+ C�2
∫ t

0
�
s�2

L2
�−1���

d� + C

(
1
�

+ T

)
C̃C0�T� + C

∫ T

0

∥∥∥∥ F2

��−1

∥∥∥∥2

L2

d�

(5.35)

Employing Gronwall’s inequality, t ∈ �0� T�, we finally conclude (T > 0 small, �
large)

�
s�2
L��0�T�L2

�−1�s��
+
∫ T

0

∥∥∥∥ 
ss

��−1

∥∥∥∥2

L2

d� ≤ C̃

10
C0�T� (5.36)

and ∫ T

0

∥∥∥∥
s

��

∥∥∥∥2

L2�0���

d� ≤ C̃

�
C0�T� (5.37)
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This completes the proof of the claim in the outline of the plan Section 5.1 and
consequently of Theorem 5.1 and the realization of the linear step in the iteration
of the non-linear PDE (4.2).

A. Analysis of the Singular Ricci Solitons

Generally, for metrics of the form (2.1) [8, Section 1.3.2] the Ricci tensor is given
by

Ric�g� = −n
�xx

�
dx2 + �n − 1 − ��xx − �n − 1���x�

2�g�n (A.1)

and the Hessian of a radial function � by

��� = �xxdx
2 + ��x�xg�n 	 (A.2)

Therefore, equation (2.2) reduces to a coupled ODE system of the form{
n�xx − ��xx = ��
��xx + �n − 1��2

x − �n − 1� − ��x�x = ��2	
(A.3)

Following [8, Chapter 1, Section 5.2], we introduce the transformation

W = 1

−�x + n�x

�

� X = √
nW

�x

�
� Y =

√
n�n − 1�W

�
� (A.4)

along with a new independent variable y defined via

dy = dx

W
	 (A.5)

For the above set of variables, the ODE system (A.3) becomes

(
′ = d

dy

)⎧⎪⎨⎪⎩
W ′ = W�X2 − �W 2�

X′ = X3 − X + Y 2√
n

+ ��
√
n − X�W 2

Y ′ = Y�X2 − X√
n

− �W 2�

(A.6)

We readily check (see also [8, Section 1.5.2]) that the equilibrium points of the above
system are

�0� 0� 0� �0�±1� 0�

(
0�

1√
n
�±
√

1 − 1
n

)
	

and also �± 1√
�n
� 1√

n
� 0�, when � > 0.

In the present article we are concerned with the trajectories emanating from the
equilibrium point �0� 1� 0�, for all � ∈ � (in our primary analysis). The linearization
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of (A.6) at �0� 1� 0� takes the diagonal form⎛⎝ W
X − 1

Y

⎞⎠′

=
⎛⎝ 1 0 0

0 2 0
0 0 1 − 1√

n

⎞⎠⎛⎝ W
X − 1

Y

⎞⎠ (A.7)

Note that for n > 1, all eigenvalues (diagonal entries) are positive, which implies
that �0� 1� 0� is a source of the system. Whence, if a trajectory of (A.6) is initially
�y = 0� close to �0� 1� 0�, i.e.,

��W�0�� X�0� − 1� Y�0��� < ��

for � > 0 sufficiently small (indicated by the RHS of (A.6)), then standard ODE
theory (e.g., see [9]) yields the estimate

��W�y�� X�y� − 1� Y�y��� ≤ √
3�e!y y ≤ 0� (A.8)

for some 0 < ! < 1 − 1√
n
. We will show that these trajectories correspond to an

essential singularity of the original metric (2.1) at x = 0.

A.1 Asymptotics at x = 0

We will be considering solutions of the system (A.6), with �W�0�� X�0�� Y�0��
sufficiently close to the equilibrium point �0� 1� 0� and with Y�0��W�0� > 0. (The
reflection-symmetric trajectories over �Y = 0
 and �W = 0
 are easily seen to
correspond to the same metric, while the trajectories with Y�0� = 0 do not to
correspond to Riemannian metrics.)

We proceed to derive the asymptotic behavior, as y → −�, of the variables
W�X� Y . Changing back to x, using (A.5), we determine the desired asymptotic
behavior of the unknown functions in the original system (A.3), as x → 0+. The
final estimates will confirm that x = 0 is actually a singular point of the metric g,
where in fact the curvature blows up.

Proposition A.1. The above initial conditions for the system (A.6) furnish trajectories
�W�X� Y�, y ∈ �−�� 0�, which correspond to solutions ��� �x� of the system (A.3)
defined locally for x ∈ �0� ��, � > 0, verifying the asymptotics:

W = x + O�x2!+1�� X = 1 + O�x!�� Y =
√
n�n − 1�

a
x

1− 1√
n + O�x

2!+1− 1√
n ��

� = ax
1√
n + O�x

2!+1√
n �� a > 0

�x

�
= 1√

n

1
x

+ O�x!−1�� (A.9)

�x =
√
n − 1
x

+ O�x!−1��
�xx

�
= −

√
n − 1
n

1
x2

+ O�x!−2��

�xx = −
√
n − 1
x2

+ O�x!−2�
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Proof. Let X�y� = 1 + g�y�. Plugging into the equation of W ′ in (A.6) we obtain

W�y� = W�0� exp
{
y +

∫ y

0
W�z�g�z��2 + g�z��dz − �

∫ y

0
W 3�z�dz

}
�

where according to (A.8), for y ≤ 0,∣∣∣∫ y

0
W�z�g�z��2 + g�z��dz

∣∣∣ ≤ 3�2�2 + √
3��

1 − e2!y

2!

and ∣∣∣−�
∫ y

0
W 3�z�dz

∣∣∣ ≤ ��� · 3
√

3�3 1 − e3!y

3!
	

Thus,

W�y� = C1e
y + W�0�ey

[
exp

{ ∫ y

0
W�z�g�z��2 + g�z��dz − �

∫ y

0
W 3�z�dz

}
− exp

{
−
∫ 0

−�
W�z�g�z��2 + g�z��dz + �

∫ 0

−�
W 3�z�dz

}]
�

where C1 = W�0� exp
{− ∫ 0

−� W�z�g�z��2 + g�z��dz + �
∫ 0

−� W 3�z�dz
}
> 0. Using

(A.8) again, we readily estimate the second term as above

W�y� = C1e
y + O�e�2!+1�y� y ≤ 0	

Similarly, from the equation of Y ′ (A.6) we obtain

Y�y� = C2e
�1− 1√

n
�y + O�e

(
2!+1− 1√

n

)
y
� y ≤ 0	

for an appropriate positive (Y�0� > 0) constant C2. As for X, directly from (A.8) we
have the bound

X = 1 + g�y� = 1 + O�e!y� y ≤ 0�

which we can retrieve from the equation of X′ by integrating on �−�� y� and using
(A.8), along with the previously derived estimates for W�Y .

Recall the transformation (A.4) to derive asymptotics for the variables in (A.3):
(y ≤ −M , M > 0 large)

� =
√
n�n − 1�W

Y
=
√
n�n − 1��C1e

y + O�e�2!+1�y��

C2e
�1− 1√

n
�y + O�e

�2!+1− 1√
n
�y
�

=
√
n�n − 1�C1

C2

e
1√
n
y + O�e

�2!+ 1√
n
�y
�

�x

�
= X√

nW
= 1 + O�e!y�√

n�C1e
y + O�e�2!+1�y��

= 1√
nC1

e−y + O�e�!−1�y�
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�x = n
�x

�
− 1

W
=

√
n

C1

e−y + nO�e�!−1�y� − 1
C1e

y + O�e�2!+1�y�

=
√
n − 1
C1

e−y + O�e�!−1�y�	

Also, going back to the second equation of (A.3) and dividing both sides by �2

yields

�xx

�
= −�n − 1�

�2
x

�2
+ n − 1

�2
+ �x

�
�x + �

= −�n − 1�
[

1√
nC1

e−y + O�e�!−1�y�

]2

+ n − 1[√
n�n−1�C1

C2
e

1√
n
y + O�e

�2!+ 1√
n
�y
�

]2

+
[

1√
nC1

e−y + O�e�!−1�y�

][√
n − 1
C1

e−y + O�e�!−1�y�

]
+ �

= −
√
n − 1
n

e−2y

C2
1

+ O�e�!−2�y�	

Furthermore, the first equation of (A.3) gives

�xx = n
�xx

�
− � = −�

√
n − 1�

e−2y

C2
1

+ nO�e�!−2�y� + � = −�
√
n − 1�

e−2y

C2
1

+ O�e�!−2�y�	

Having derived asymptotics, as y → −�, for all the unknown functions appearing
in the problem, we would like to derive corresponding asymptotics in the
independent variable x that we started with. For that we recall (A.5) and normalize
so that x → 0+ as y → −� to deduce

x =
∫

Wdy =
∫

C1e
y + O�e�2!+1�y�dy = C1e

y + O�e�2!+1�y� �y ≤ 0�	

Hence, it follows

C1e
y = x + O�x2!+1��

for y ≤ −M , M > 0 large. Going back to each of the above estimates, we confirm

the rest of the asymptotics in Proposition A.1 for a =
√

n�n−1�C
1− 1√

n
1

C2
> 0. �

Remark A.1. One could also consider the trajectories which emanate from the
other equilibrium �0�−1� 0� of (A.6) (also a source). These can be seen to
correspond to solitons with profile

��x� ∼ x
− 1√

n �x�x� = −1 + √
n

x
� as x → 0+	
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They are in fact defined for all dimensions n + 1 ≥ 2, and in the steady case �� = 0�,
dim n + 1 = 2, can be explicitly written out as:

��x� = 1
x

�x�x� = −2
x
� x ∈ �0�+��	

Notice that these metrics are also singular at x = 0, but their evolution under the
Ricci flow (through diffeomorphisms) is almost the opposite from the metrics we
obtain near the equilibrium at �0� 1� 0�; see Section 2.1. In particular, they remain
singular for all time. However, these solitons are beyond the scope of this paper.

A.2 The Steady Singular Solitons; Asymptotics at x = +�
In the steady case, � = 0, we can push the domain of the solutions considered in
Proposition A.1 all the way up to +�. A very useful tool in the analysis of the
trajectories of (A.6) is the Lyapunov function [8, Section 1.4.3]

L = X2 + Y 2� �L − 1�′ = X2�L − 1�� (A.10)

which implies that the unit disk is a stable region of the critical point �0� 0�. Further,
it follows from (A.10) that the equation of W ′ in (A.6) is actually redundant,
reducing the system to ⎧⎪⎪⎨⎪⎪⎩

X′ = X3 − X + Y 2

√
n

Y ′ = Y�X2 − X√
n
�

	 (A.11)

We remark that the unique trajectory emanating from the equilibrium point

� 1√
n
�
√

1 − 1
n
� and converging (as y → +�) to the origin �0� 0� corresponds to the

well-known Bryant soliton (see [8]).
The source considered in (A.7) corresponds to the point �1� 0�. Thus, if we

consider solutions of (A.6) with initial point �X�0�� Y�0�� satisfying X2�0� + Y 2�0� <

1, Y�0� > 0 and lying close enough to �1� 0�, we easily conclude that the trajectory
�X�y�� Y�y�� approaches the origin �0� 0�, as y → +� (at an exponential rate).
Whence it exists for all y ∈ �−��+��. In fact, these trajectories emanating from
�1� 0� translate back to Ricci soliton metrics of the form (2.1), which exist (and are
smooth) for all x ∈ �0�+�� and have the leading behavior described in Proposition
A.1 at x = 0.

One can easily see that the set of all such trajectories fills up the domain
in the unit disc bounded by the Bryant soliton trajectory

(
which emanates from

� 1√
n
�
√

1 − 1
n
�
)

and the positive X-axis. The asymptotics of these trajectories at +�
are easily seen to matching those of the one corresponding of the Bryant soliton.
This has to do with the Lyapunov function (A.10) and the uniform convergence of
the trajectories at the origin �0� 0�, as y → +�. Following [8, Chapter 1, Section 4]
we arrive at the next proposition.
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Proposition A.2. The soliton metrics corresponding to the �X� Y�-orbits above are
complete towards x = +� and satisfy the asymptotics

cx
1
2 ≤ � ≤ Cx

1
2 cx− 1

2 ≤ �x ≤ Cx− 1
2 − Cx− 3

2 ≤ �xx ≤ −cx− 3
2 � (A.11)

for x > M large, retrieving from (A.3) the asymptotics of the derivatives of �

−C < �x < −c − Cx−2 ≤ �xx ≤ −cx−2	 (A.13)
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