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Abstract: We study the backwards-in-time stability of the Schwarzschild singularity
from a dynamical PDE point of view. More precisely, considering a spacelike hyper-
surface �0 in the interior of the black hole region, tangent to the singular hypersurface
{r = 0} at a single sphere, we study the problem of perturbing the Schwarzschild
data on �0 and solving the Einstein vacuum equations backwards in time. We obtain a
local backwards well-posedness result for small perturbations lying in certain weighted
Sobolev spaces. No symmetry assumptions are imposed. The perturbed spacetimes all
have a singularity at a “collapsed” sphere on �0, where the leading asymptotics of the
curvature and the metric match those of their Schwarzschild counterparts to a suitably
high order. As in the Schwarzschild backward evolution, the pinched initial hypersurface
�0 ‘opens up’ instantly, becoming a regular spacelike (cylindrical) hypersurface. This
result thus yields classes of examples of non-symmetric vacuum spacetimes, evolving
forward-in-time from regular initial data, which form a Schwarzschild type singularity
at a collapsed sphere. We rely on a precise asymptotic analysis of the Schwarzschild
geometry near the singularity which turns out to be at the threshold that our energy
methods can handle.
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1. Introduction

It is well-known (cf. Birkhoff’s theorem [10]) that the only spherically symmetric solu-
tion (M1+3, g) to the Einstein vacuum equations (EVE)

Ricab(g) = 0, (1.1)

is the celebrated Schwarzschild spacetime. It was in fact the first non-trivial solution to
the Einstein field equations to be discovered [10]. In Kruskal (null) u, v coordinates the
maximally extended metric reads

Sg = −�2dudv + r2(dθ2 + sin2 θdφ2), (1.2)

where �2 = 32M3

r e− r
2M , M > 0, and the radius function r is given implicitly by

uv = (1 − r

2M
)e

r
2M . (1.3)

Here the underlying manifold SM1+3 is endowed with the differential structure of
U × S

2, where U is the open subset {uv < 1} in the uv plane; see Fig. 1. The spacetime
has an essential curvature singularity at r = 0, (the future component of) which is
contained in the interior of the black hole region, the quadrant u > 0, v > 0. In fact, a
short computation shows that the Gauss curvature of the uv-plane equals

SK = 2M

r3
(1.4)

and hence the manifold is C2 inextendible past r = 0. An interesting feature of this
singularity is its spacelike character, that is, it can be viewed as a spacelike hypersurface.

Yet another interesting feature of the Schwarzschild singularity is its unstable nature
from the evolutionary dynamical point of view. To illustrate this, consider a global
spacelike Cauchy hypersurface �3 in Schwarzschild (Fig. 2). An initial data set for the
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Fig. 1. The Kruskal plane
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Fig. 2. The future development of � in Schwarzschild

EVE consists of a Riemannian metric g on � and a symmetric two tensor K verifying
the constraint equations

{
∇ j

Ki j − ∇ i trgK = 0
R − |K |2 + (trgK )2 = 0

, (1.5)

where ∇,R are the covariant derivative and scalar curvature intrinsic to g.
The instability of the Schwarzschild singularity (w.r.t. the forward Cauchy problem)

can already be seen by examining the maximal developments of initial data sets on �

arising from the celebratedKerr [9] (explicit) 2-parameterK(a, M) family of solutions—
of which Schwarzschild is a subfamily (a = 0). For a �= 0 the singularity completely
disappears and the corresponding (maximal) developments extend smoothly up to (and
including) the Cauchy horizons. Moreover, taking |a| � 1, the ‘difference’ of the
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corresponding initial data sets from the Schwarzschild one (with the same M > 0),
measured in standard Sobolev norms,1 can be made arbitrarily small.

In fact, the Schwarzschild singularity is conjecturally unstable under generic pertur-
bations on �. According to a scenario proposed by Belinskiı̌ et al. [3] originally formu-
lated for cosmological singularities, in general, one should expect solutions to exhibit
oscillatory behaviour towards the singularity. To our knowledge such behaviour has been
rigorously studied only in the spatially homogeneous case for the Euler-Einstein system
with Bianchi IX symmetry by Ringström [29]. Nonetheless, the heuristic work of [3] has
received a lot of attention over the years, see [16,28] and the references therein (and [12]
for related numerics). On the other hand, there is a growing expectation that, at least in
a neighbourhood of subextremal Kerr, the dominant scenario inside the black hole is the
formation of Cauchy horizons and (weak) null singularities. This has been supported by
rigorous studies on spherically symmetric charged matter models, see works by Poisson
and Israel [26], Ori [25] and recently by Dafermos [9].

However, it is not inferred from the existing literature whether the non-oscillatory
type of singularity observed in Scwarzschild is an isolated phenomenon for the EVE in
some neighbourhood of the Schwarzschild initial data on � or part of a larger family. A
priori it is not clear what to expect, since one might argue that such a special singularity
is a mathematical artefact due to spherical symmetry. Therefore, we pose the following
question:

Is there a class of non-spherically symmetric Einstein vacuum spacetimes which
develop a first singularity of Schwarzschild type?

The goal of the present paper is to answer the preceding question in the affirmative.
A Schwarzschild type singularity here has the meaning of a first singularity in the
vacuum development which has the same geometric blow up profile with Schwarzschild
and which can be seen by a foliation of uniformly spacelike hypersurfaces; hence, not
contained in a Cauchy horizon. We confine the question to the formation of one singular
sphere in the vacuum development in the same manner as in Schwarzschild, where each
point on the sphere can be understood as a distinct ideal singular point of the spacetime
in the language of TIPs [13]. Ideally, one would like to study the forward problem and
identify initial data for the EVE on � (Fig. 2) that lead to such singularities. Although
this is a very interesting problem, we find it far beyond reach at the moment. Instead,
we study the existence problem backwards-in-time.

More precisely, we adopt the following plan: Let �3
0 be a spacelike hypersurface

in Schwarzschild, tangent2 at a single sphere of the singular hyperbola r = 0 inside
the black hole; Fig. 3. We assume, without loss of generality,3 that the tangent sphere
is (u = 1, v = 1) in Kruskal coordinates (1.2). Consider now initial data sets (g, K )

on �0 for the EVE (1.1), which have the same singular behaviour to leading order at
(u = 1, v = 1) with the induced Schwarzschild initial data set (Sg, SK ) on �0 and
solve the EVE backwards, as depicted in the 2-dim Fig. 3, without symmetries.

Realizing the above plan we thus prove the existence of a class of non-spherically
symmetric vacuum spacetimes for which (1) the leading asymptotics of the blow up of

1 The difference can be defined, for example, component wise for the two pairs of 2-tensors with respect
to a common coordinate system and measured in Ws,p Sobolev spaces used in the literature [5].

2 The tangency here should be understood with respect to the differential structure of the Kruskal maximal
extension induced by the standard u, v, θ, φ coordinates (1.2).

3 Recall that the vector field tangent to the r = const. hypersurfaces (Fig. 1) is Killing and we may hence
utilize it to shift �0 and (u = 1, v = 1) to whichever point on {uv = 1} we wish; Fig. 3.
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Fig. 4. The foliation {�τ } in 3d

curvature and in general of all the geometric quantities (metric, second fundamental form,
etc.) coincide with their Schwarzschild counterparts, as one approaches the singularity,
and (2) the singularity is realized as the limit of uniformly spacelike hypersurfaces,
which in the forward direction “pinch off” in finite time at one sphere. Conversely,
we visualise the backward evolution of (�0, g, K ) in the following manner: At ‘time’
τ = 0 the initial slice �0 is a two ended spacelike (3-dim) hypersurface with a sphere
singularity at (u = 1, v = 1). Once�0 evolves through (1.1), it becomes instantaneously
a regular spacelike hypersurface �τ , τ > 0 and the singular pinch opens up; Fig. 4.

The main difficulty to overcome in the backward local existence problem is the
singularity on �0, which of course renders it beyond the scope of the classical local
existence theorem for the Einstein equations [4], even its latest state of the art improve-
ment by Klainerman et al. [18], which requires at the very least the curvature of the
initial hypersurface to be in L2. For the Schwarzschild initial data set (Sg, SK ) on �0,
and hence for perturbed initial data sets (g, K ) with the same leading order geometry at
(u = 1, v = 1), it is not hard to check (Sect. 3) that the initial curvature is at the singular
level

R �∈ L p(�0), ∇K �∈ L p(�0) p ≥ 5

4
. (1.6)

Thus, wemust rely heavily on the background Schwarzschild geometry to control the
putative backward evolution. A very useful fact for analysis is the opening up (smoothing
out) of the singularity (Fig. 4) in the backward direction.

To our knowledge, general local existence results, without symmetry assumptions,
for the EVE (1.1) with singular initial curvature not in L2 have been achieved only fairly
recently by Luk-Rodnianski [20,21] and Luk [19] for the characteristic initial value
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problem, where they consider delta curvature singularities and weak null singularities
respectively. However, their context is much different from ours and the results do not
seem applicable to singularities of Schwarzschild type.

We proceed now to formulate a first version of our main results; for more precise
statements, in terms of weighted Sobolev spaces, see Theorems 4.6, 4.8, 6.7.

Theorem 1.1. There exists α > 0 sufficiently large, such that for every triplet (�0, g, K )

verifying:

(i) the constraints (1.5),
(i i) g = Sg + rαO, K = SK + rα− 3

2 u, where O, u are 2-tensors on �0 bounded in
H4, H3 respectively,

(i i i) ‖g − Sg‖L∞(�0) � 1, there exists a H4 local solution g to the Einstein vacuum
equations (1.1) with initial data (g, K ), unique up to isometry, in the backward
region to�0, foliated by {�τ }τ∈[0,T ] (Fig. 3); the time of existence T > 0 depends
continuously on the norms of O, u and the exponent α > 0.

The fact that non-trivial initial data sets in compliance with Theorem 1.1 exist is not
at all obvious nor standard. We need to show essentially that for any large parameter
α > 0, there exist non-spherically symmetric solutions to the constraint equations (1.5),
having the asymptotics (i i). We construct such solutions using the conformal method,
which we set up in Sect. 6.

Theorem 1.2. Let α > 0 be sufficiently large, consistent with Theorem 1.1. Then for
every choice of the transverse, traceless part of the second fundamental form on �0,
compatible with the assumptions in Theorem 1.1, there exists a solution to the constraints
(1.5) localized near the singular sphere and verifying the asymptotics (ii) above.

Let us emphasize the fact that the above spacetimes are very special in that they agree
with Schwarzschild at the singularity to a high (but finite) order—this is captured by
the large exponent α > 0 in Theorem 1.1—and therefore are non-generic. The need to
choose α large may be seen however natural to some extent in view of the instability of
the Schwarzschild singularity, from the point of view of the forwards-in-time problem.
Indeed, the stable perturbations of the Schwarzschild singularity must form a strict
subclass of all perturbed vacuum developments.

1.1. Method of proof and outline. The largest part of the paper is concerned with the
evolutionary part of the problem, i.e., proving Theorem 1.1. Due to the singular nature of
the backward existence problem described above, Fig. 3, the choice of framework must
be carefully considered. The standard wave coordinates approach [4] does not seem to
be feasible in our situation; one expects that coordinates would be highly degenerate
at the singularity. Also, the widely used CMC gauge condition is not applicable, since
the mean curvature of the initial hypersurface �0 blows up (Sect. 3). Instead, we find
it more suitable to use orthonormal frames and rewrite the EVE one order higher as a
quasilinear Yang-Mills hyperbolic system of equations [18,24], under a Lorenz gauge
condition,4 for the corresponding connection 1-forms. We recall briefly this framework
in Sect. 2.

4 The analogue of a wave gauge for orthonormal frames.
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However, even after expressing the EVE in the above framework, the singular level
of initial configurations does not permit a direct energy estimate approach. In addition
to (1.6), one can see (Sect. 3) that neither is the second fundamental form in L2

K �∈ L2(�0). (1.7)

Note that the latter is at the level of onederivative in themetric.Hence, near the singularity
the perturbed spacetimes we wish to construct do not even make sense as weak solutions
of the EVE (1.1). Therefore, it is crucial that we use the background Schwarzschild
spacetime to recast the evolution equations in a new form having more regular initial
data. We do this in Sect. 4 by considering a new system of equations for the ‘difference’
between the putative perturbed spacetime and Schwarzschild. The resulting equations
now have regular initial data and they are eligible for an energy method, but there is
a price to pay. The coefficients of the new system will depend on the Schwarzschild
geometry and will necessarily be highly singular at r = 0. We compute in Sect. 3
the precise blow up orders of the Schwarzschild connection coefficients, curvature, etc.
Nevertheless, the issue of evolving singular initial data has become the more tractable
problem of finding appropriate weighted solution spaces for the final singular equations.

In Sect. 4.2 we introduce the weighted Sobolev spaces which yield the desired flexi-
bility in proving energy estimates. The right weights are given naturally by the singular-
ities in the coefficients of the resulting equations, namely, powers of the Schwarzschild
radius function r with a certain analogy corresponding to the order of each term. After
stating the general local existence theorems in Sect. 4.3 and a more precise version of
Theorem 1.1, we proceed to its proof via a contraction mapping argument which occu-
pies Sect. 5. Therein, we derive the main weighted energy estimates by exploiting the
asymptotic analysis at r = 0 of the Schwarzschild components (Sect. 3). It is necessary
in our result that the power of r , α > 0, in the weighted norms is sufficiently large;
cf. assumption (i i) in Theorem 1.1. In the estimating process certain critical terms are
inevitably generated, because of the singularities in the coefficients of the system we
are working with; these terms are critical in that they appear with larger weights than
the ones in the energy we are trying to control and thus prevent the estimates from clos-
ing. The exponent α > 0 is then picked sufficiently large such that these critical terms
have an overall favourable sign; this allows us to drop the critical terms and close the
estimates.

The largeness of α forces the perturbed spacetime to agree asymptotically with
Schwarzschild to a high order at the singularity. Although the latter may seem restric-
tive, it is quite surprising to us that there even exists a suitable choice of α which makes
the argument work in the first place. A closer inspection of our method reveals that it
is very sensitive with respect to certain asymptotics of the coefficients in the equations
that happen to be just borderline to allow an energy-based argument to close. The most
important of these are the blow up order of the sectional curvature (1.4) and the rate
of growth of the Schwarzschild radius function r backwards in time. The latter corre-
sponds to the ‘opening up’ rate of the neck pinch of the singular initial hypersurface �0,
Fig. 4. In this sense the Schwarzschild singularity is exactly at the threshold that our
energy-based method can tolerate.

In the last section, Sect. 6, we study the constraint equations (1.5) in a perturbative
manner about the Schwarzschild singular initial data set (Sg, SK ) on �0, following the
conformal approach.We prove Theorem 1.2 by employing the inverse function theorem.
More precisely, we prove that the linearized conformal constraint map (about Schwarz-
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schild) is Fredholm in suitable weighted Sobolev spaces,5 capturing the asymptotics
needed for Theorem 1.1 to be applied, see Proposition 6.6, which we prove in Sect. 6.2.
In the case where �0 is localized in a small neighborhood of its singularity, the ellip-
tic estimates we derive can be improved to yield that the linearized conformal map is
actually an isomorphism. It is worth noting that the solutions to the constraints that we
produce have unbounded mean curvature. Given the highly singular nature of the prob-
lem, we must exploit the features of the Schwarzschild background in order to obtain
the special initial data sets needed in Theorem 1.1. These include good signs of certain
dangerous terms appearing in the resulting elliptic system and a delicate decoupling of
specific parts of the unknown variables.

1.2. Final comments; possible applications. To our surprise the present evolution bears
some resemblance at an analytical levelwith a priorwork on the stability of singularRicci
solitons [1]. Although of different nature, hyperbolic/parabolic (respectively), they share
a couple of key features such as the opening up rate of the singularity and the “borderline”
singularities in the coefficients involved.

The understanding of the question of stability of singularities in Einstein’s equations
and the behaviour of solutions near them is of great significance in the field. However, in
general very little is known. In terms of rigorous results, substantial progress has been
made in spherical symmetry in the presence of matter [6,7,9,29]. Moreover, certain
matter models enjoy the presence of a monotonic quantity, which has been employed
to study the stability of singularity formation in the general non-symmetric regime,
cf. recent work of Rodnianski-Speck [31] on the FLRW big bang singularity. This is
in contrast with the vacuum case of black hole interior and the unstable nature of the
Schwarzschild singularity.We emphasize again the fact that themethod developed herein
does not impose any symmetry assumptions nor does it rely on any monotonicity. It
should be noted as well that it does not depend on whether the particular singularity
type is generic or not. On the contrary, we hope that the method developed herein can be
employed to produce classes of examples of other singular solutions to the Einstein field
equations, which until now are only known to exist under special symmetry assumptions
and for which the general stability question may be out of reach.

The idea of constructing singular spacetimes by prescribing a specific singular behav-
iour and solving for a spacetime ‘starting from the singularity’ is not new. There exists
an extensive literature regarding the construction of cosmological spacetimes exhibiting
Kasner type singularities at each point of their ‘big bang’ hypersurface6 using Fuch-
sian techniques [16,17,28]. However, the results in this category rely on the undesirable
assumption of analyticity [2] and or on various symmetry assumptions, see relevant work
on Gowdy spacetimes [27,30]. Yet, we believe that the usual Fuchsian algorithm cannot
be applied to Schwarzschild type singularities due to their more singular nature.7

After our treatment of singular initial data containing a single sphere of {uv = 1},
a reasonable next step would be to study whether the construction of non-spherically

5 We note that the spaces we use for the constraint equations differ from those we use for the evolutionary
part of the problem.

6 At each point of the usual singular spacelike hypersurface the spacetimemetric approaches asymptotically
the metric of a Kasner spacetime, with the Kasner parameters generally varying from point to point, what is
called AVTD behaviour [16].

7 The reason should be understood in an effort to reduce the Einstein equations to Fuchsian type equations
for a Schwarzschild type singularity. In this case the singularities in the coefficients of the reduced evolution
equations would be stronger than the ones encountered in the literature.



On the Backward Stability of the Schwarzschild Black Hole Singularity 931

symmetric vacuum spacetimes containing an arc of the singular hyperbola (Fig. 3) is
possible or even the whole singularity r = 0. Certainly this is a more restrictive question
and at first glance not so obvious how to formulate it as a backward initial value problem
for the EVE. However, we hope that the method developed herein could help approach
this direction.

Lastly, one could try to perform a global instead of a local construction by considering
a Cauchy hypersurface�0 extending to spacelike infinity.We expect this follows readily
from the work here, but we do not pursue it further. Perhaps a gluing construction could
also be achieved.

2. The Einstein Equations as a Quasilinear Yang–Mills System

The Einstein vacuum equations (1.1), by virtue of the second Bianchi identity, imply the
vanishing of the divergence of the Riemann curvature tensor. Decomposing the latter
with respect to an orthonormal frame,which satisfies a suitable gauge condition, it results
to a quasilinear second order hyperbolic system of equations for the connection 1-forms
corresponding to that frame, which bears resemblance to the semilinear Yang–Mills
[24]. Recently this formulation of the EVE played a key role in the resolution of the
bounded L2 curvature conjecture [18]. In this section we express the EVE (1.1) in the
above setting, which we are going to use to directly solve the Cauchy problem. This
necessitates some technical details which are carried out in Appendix A. Also, to avoid
additional computations we write all equations directly in scalar non-tensorial form.8

All indices below range from 0 to 3 unless otherwise stated.

2.1. Cartan formalism. Let (M1+3, g) be a Lorenzian manifold and let {e0, e1, e2, e3}
be an orthonormal frame; gab := mab = diag(−1, 1, 1, 1). Assume also that M1+3

has the differential structure of � × [0, T ], where each leaf � × {τ } =: �τ is a 3-dim
spacelike hypersurface. We denote the connection 1-forms associated to the preceding
frame by

(AX )i j := g(∇Xei , e j ) = −(AX ) j i , (2.1)

where ∇ is the g-compatible connection ofM1+3. Recall the definition of the Riemann
curvature tensor

Rμνi j := g(∇eμ∇eν ei − ∇eν ∇eμei , e j ). (2.2)

By the former definition of connection 1-forms, using mab to raise and lower indices,
we write

∇ea eb = (Aa)b
kek .

Hence, we have

∇eμ∇eν ei = ∇eμ(∇eν ei ) − ∇∇eμeν ei = ∇eμ

(
(Aν)i

kek
) − (Aμ)ν

k(Ak)i
cec

= eμ(Aν)i
kek + (Aν)i

k(Aμ)k
ded − (Aμ)ν

k(Ak)i
cec

8 It will be clear though which are the covariant expressions; see also [18].
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Therefore, we get the following expression for the components of the Riemann curvature

Rμνi j = eμ(Aν)i j − eν(Aμ)i j + (Aν)i
k(Aμ)k j − (Aμ)i

k(Aν)k j

− (Aμ)ν
k(Ak)i j + (Aν)μ

k(Ak)i j (2.3)

or setting

([Aμ, Aν])i j = (Aμ)i
k(Aν)k j − (Aν)i

k(Aμ)k j (2.4)

we rewrite

(Fμν)i j := Rμνi j = eμ(Aν)i j − eν(Aμ)i j − ([Aμ, Aν])i j − (A[μ)ν]k(Ak)i j , (2.5)

where by standard convention

(A[μ)ν]k(Ak)i j := (Aμ)ν
k(Ak)i j − (Aν)μ

k(Ak)i j .

In the same manner we compute the covariant derivative of the Riemann tensor:

∇σ Rμνi j = eσ (Fμν)i j − (Aσ )μ
k(Fkν)i j − (Aσ )ν

k(Fμk)i j

−(Aσ )i
k(Fμν)k j − (Aσ ) j

k(Fμν)ik

= eσ (Fμν)i j − (Aσ )k [μ(Fν]k)i j − ([Aσ , Fμν])i j (2.6)

Recall the transformation law of the above quantities under change of frames: Let {ẽi }30
be an orthonormal frame on M1+3 such that

ẽa = Ok
aek (2.7)

and let ( ÃX )i j := g(∇X ẽi , ẽ j ) be the corresponding connection 1-forms. Then

( ÃX )i j = Ob
i O

c
j (AX )bc + X (Ob

i )Oc
jmbc. (2.8)

In addition, from (2.7) we have

∇X ẽa = X (Ok
a )ek + Ok

a∇Xek

( ÃX )a
d
ẽd = X (Ok

a )ek + Ok
a (AX )k

ded

or

X (Ol
a) = ( ÃX )a

d
Ol
d − Ok

a (AX )k
l . (2.9)

2.2. ∇ ×Ric = 0. Now we proceed by assuming that the curl of the Ricci tensor of the
metric g vanishes:

∇i Rν j − ∇ j Rνi = 0, (2.10)
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where Rab := Rμab
μ. A direct implication of the (contracted) second Bianchi identity

is that the divergence of the Riemann curvature tensor satisfies

∇μRi jνμ = ∇i Rν j − ∇ j Rνi = 0. (2.11)

Thus, it follows from (2.6) that

eμ(Fμν)i j − (Aμ)k [μ(Fν]k)i j − ([Aμ, Fμν])i j = 0 (2.12)

or by (2.5)

� (Aν)i j − eμeν(Aμ)i j − eμ([Aμ, Aν])i j − eμ
(
(A[μ)ν]k(Ak)i j

)
= (Aμ)k [μ(Fν]k)i j + ([Aμ, Fμν])i j , (2.13)

where � := −e20 + e21 + e22 + e23 is the non-covariant box with respect to the frame ei .
Since

[eμ, eν] = ∇eμeν − ∇eν eμ = (A[μ)ν]kek,

(2.13) takes the equivalent form

�(Aν)i j − eνe
μ(Aμ)i j = (A[μ)ν]

k
ek(Aμ)i j + eμ([Aμ, Aν])i j + eμ

(
(A[μ)ν]k(Ak)i j

)
+ (Aμ)k [μ(Fν]k)i j + ([Aμ, Fμν])i j , (2.14)

ν, i, j = 0, 1, 2, 3. We remark that (2.14) is an equation of scalar functions.

2.3. Choice of gauge. Note that the preceding equation is not of hyperbolic type. We
convert (2.14) into a quasilinear hyperbolic system of equations by imposing a Lorenz
gauge condition on the orthonormal frame {ei }30:9

A2 = (divA)i j := ∇μ(Aμ)i j − (A∇eμeμ)i j = eμ(Aμ)i j − (Aμ)μ
k
(Ak)i j , (2.15)

where by A2 we denote some quadratic expression in the connection coefficients (Aν)i j
varying in i j . This a freedom one has in choosing the frame ei ; see Lemma A.1. Under
(2.15), the Eq. (2.14) becomes the quasilinear second order

� (Aν)i j = (A[μ)ν]
k
ek(Aμ)i j + eμ([Aμ, Aν])i j + eμ

(
(A[μ)ν]k(Ak)i j

)
+(Aμ)k [μ(Fν]k)i j + ([Aμ, Fμν])i j + eν(A

2) + eν

(
(Aμ)μ

k
(Ak)i j

)
(2.16)

9 A wave type gauge essentially for ei . The Coulomb gauge is another alternative which is used in [18].
We do not employ it here.
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2.4. The reduced equations; initial data for EVE. Following (2.11)–(2.16) we actually
see that the equation

∇iRν j − ∇ jRνi+eν

(
divA − A2)

i j

=: Hνi j = (LHS of (2.16)) − (RHS of (2.16)), (2.17)

holds true for every Lorentzian metric g and orthonormal frame {ei }30, without any
additional assumptions or gauge condition. We call Hνi j = 0, i.e., the system (2.16),
the reduced equations. We note that even after the gauge fixing, the reduced equations
are not equivalent to the EVE (1.1), but only imply the vanishing of the curl of the Ricci
tensor (2.10). However, one may suitably prescribe initial data for (2.16) such that they
lead to solutions of the EVE and which are consistent with the Lorenz gauge condition
(2.15).

Now we address the initial value problem for the reduced equations Hνi j = 0 aiming
to the EVE. To solve the Eq. (2.16) one needs an equation relating the evolution of
the orthonormal frame {ei }30 to that of the connection 1-forms. Let ∂0, ∂1, ∂2, ∂3 be a
reference frame10 in � × [0, T ] (∂0 transversal direction). We express ei in terms of ∂a :

ei = Oa
i ∂a (2.18)

By virtue of the diffeomorphism invariance of the EVE, wemay assume that the timelike
unit vector of the orthonormal frame {ei }30 of the spacetime we solve for is e0 = ∂0.
Doing so we deduce

∂0(O
a
i ) = Le0

(
∂̂a(ei )

) = L∂0(∂̂a)ei + ∂̂a([∂0, ei ]) = Ob
i L∂0(∂̂a)∂b + ∂̂a([e0, ei ]),

where L denotes the Lie derivative and ∂̂a is the 1-form dual to ∂a . Setting [∂0, ∂b] =:
�c

[0b]∂c we rewrite

∂0(O
a
i ) = −Ob

i �a
[0b] + (A[0)i]kOa

k . (2.19)

Nowweproceed to formulate the necessary and sufficient conditions on the initial data set
of the reduced equations (2.16), coupled to (2.19), such that the corresponding solution
yields a solution to the EVE. The following proposition is proved in Appendix A.1.

Proposition 2.1. Let (Aν)i j , Oa
i be a solution of (2.16),(2.19), arising from initial con-

figurations subject to

(Aν)i j (τ = 0) = −(Aν) j i (τ = 0) ∂0(Aν)i j (τ = 0) = −∂0(Aν) j i (τ = 0)

Oa
0 (τ = 0) = I0

a (2.20)

and

(divA)i j − A2 = 0 ⇐⇒ eμ(Aμ)i j − (Aμ)μ
k
(Ak)i j − A2 = 0

Ricab(g) = 0 ⇐⇒ eμ(Aν)iμ − eν(A
μ)iμ − ([Aμ, Aν])iμ − (A[μ)ν]

k
(Ak)iμ = 0

(2.21)

on�0. Then the latter solution corresponds to an Einstein vacuum spacetime (M1+3, g)
and furthermore the frame {ei }30 (2.18) is g-orthonormal, e0 = ∂0, and satisfies the
Lorenz gauge condition (2.15).

10 Not orthonormal or coordinates, simply a basis frame.
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Σ0

Στ

ΣT

vu

∂τ

{r = 0} = {uv = 1}

∂x

(1,1)

Fig. 5. The foliation (3.1) in the interior of the black hole

Remark 2.2. Note that the second part of (2.21) includes the constraints (1.5); R0b =
R00 − 1

2R = 0, b = 1, 2, 3, on �0. The condition (2.21) is necessary and sufficient
(as we show in A.1) to yield the propagation of the gauge and the EVE themselves.
Once we have chosen the orthonormal frame initially and the initial data components
(A0)i j (τ = 0), which correspond to the ∂0 derivative of {ei }30, then the rest of the initial
data set of (2.16) is fixed by the condition (2.21), i.e., the Lorenz gauge and the EVE on
the initial hypersurface �0, see Remark A.2.

3. The Schwarzschild Components

We fix an explicit Schwarzschild orthonormal reference frame and compute the corre-
sponding connection coefficients, which we then use to find the leading asymptotics of
the second fundamental form and curvature of the initial singular hypersurface �0 in
Schwarzschild. Knowing the precise leading blow up behaviour of these quantities is
crucial for the study of the backwards well-posedness in the next section. For distinction,
we denote Schwarzschild components with an upper left script S .

Let us consider a specific foliation of spacelike hypersurfaces �τ , τ ∈ [0, T ], for the
backward problem in a neighbourhood of (u = 1, v = 1); Fig. 3. For convenience11 let

�τ : −1

2
(u + v) + 1 = τ (u, v) ∈ (1 − ε, 1 + ε)2, τ ∈ [0, T ]. (3.1)

In temporal and spatial coordinates τ, x

∂τ := −∂u − ∂v, ∂x := ∂u − ∂v

x = 1

2
(u − v), (3.2)

the metric (1.2) takes the form

Sg = −�2dτ 2 + �2dx2 + r2(dθ2 + sin2 θdφ2), �2 = 32M3

r
e− r

2M . (3.3)

11 It is easy to see that the following leading asymptotics we derive are independent of the particular choice
of foliation.
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By (1.3), (3.2) r is related to τ, x via

(1 − τ)2 − x2 = (1 − r

2M
)e

r
2M , (3.4)

from which one can derive the following formulas:

∂τ r = �2

4M
(1 − τ), ∂xr = �2

4M
x

∂τ�
2 = − �4

4M
(
1

r
+

1

2M
)(1 − τ), ∂x�

2 = − �4

4M
(
1

r
+

1

2M
)x (3.5)

Remark 3.1. The above first two identities yield the leading asymptotics:

r2 ∼ 16M2(
x2

2
+ τ), as τ, x → 0. (3.6)

Directly from the form of the induced metric on �τ ,

Sg = �2dx2 + r2(dθ2 + sin2 θdφ2), (3.7)

we compute the corresponding induced volume form

dμSg = �r2 sin θdxdθdφ = [
4
√
2M

3
2 r

3
2 + O(r2)

]
sin θdxdθdφ (3.8)

and its rate of change along ∂τ using (3.5):

∂τdμSg = [12M2

r2
(1 − τ) + O(

1

r
)
]
dμSg. (3.9)

Normalizing, we define the Schwarzschild orthonormal frame

∂0 = 1

�

∂

∂τ
∂1 = 1

�

∂

∂x
∂2 = 1

r

∂

∂θ
∂3 = 1

r sin θ

∂

∂φ
(3.10)

and the relative connection coefficients S(Aμ)i j = Sg(S∇∂μ∂i , ∂ j ) associated to it.
A tedious computation12 shows that the non-zero components read

S(A0)01 = − �

8M
(
1

r
+

1

2M
)x

S(A1)01 = − �

8M
(
1

r
+

1

2M
)(1 − τ)

S(A2)02 = S(A3)03 = �

4M

1 − τ

r
(3.11)

S(A2)12 = S(A3)13 = �

4M

x

r
S(A3)23 = cot θ

r
12 One may calculate the connection coefficients using the Koszul formula

S(Aμ)i j = 1

2

[
Sg([∂μ, ∂i ], ∂ j ) − Sg([∂i , ∂ j ], ∂μ) + Sg([∂ j , ∂μ], ∂i )

]
.
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Recall the (spacetime) divergence formula of the connection 1-forms X → S(AX )i j

S(divA)i j := ∂μS(Aμ)i j − S(A∇∂μ∂μ)i j = ∂μS(Aμ)i j − S(Aμ)μ
bS(Ab)i j (3.12)

Utilizing (3.5) and (3.11), we check that the first order term in the RHS of (3.12) vanishes

∂μS(Aμ)i j = 0, (3.13)

leaving

S(divA)i j = S(A3)23
S(A2)i j . (3.14)

Remark 3.2. Thus, the orthonormal frame (3.10) satisfies a Lorenz gauge type condition
(2.15).

Remark 3.3. Summarizing the above identities and formulas we obtain the following
leading asymptotics at r = 0:

∂0 ∼ 1

4
√
2M

3
2

r
1
2 ∂τ ∂1 ∼ 1

4
√
2M

3
2

r
1
2 ∂x (3.15)

|S A| ≤ C

r
3
2

|∂(k)S A| ≤ C

r (k+1) 32
, (3.16)

where C depends on M > 0 and k. Notice that the latter asymptotics are sharp for k = 0
and when ∂(k) = ∂

(k)
0 . In fact, the components of the second fundamental form of the

slices SK ii = S(Ai )0i , i = 1, 2, 3, are exactly at this level. In more geometric terms we
have (up to constants)

|SK | ∼ 1

r
3
2

|trSg SK | ∼ 1

r
3
2

|SR| ∼ 1

r2
. (3.17)

Thus, employing (3.8), (3.6) for τ = 0, we see that both the scalar curvature and the
second fundamental of the initial singular hypersurface �0 are far from being square
integrable ∫

�0

|SK |2dμSg ∼
∫ ε

0

1

x3
x

3
2 dx =

∫ ε

0

1

x
3
2

dx = +∞∫
�0

|SR|2dμSg ∼
∫ ε

0

1

x4
x

3
2 dx =

∫ ε

0

1

x
5
2

dx = +∞
(3.18)

The same holds for the mean curvature of �0. In fact, a similar calculation shows
trSg

SK �∈ L p, p ≥ 5
3 .

Remark 3.4. The precise leading asymptotics of all computed quantities in this section
play a crucial role in the analysis of the backward existence problem and the proofs
of the main theorems in the next section. However, exact formulas, like (3.11), are not
really needed. We could have chosen as well a foliation of the form �τ : τ = f (x),
instead of (3.1), i.e., τ = const., for some smooth function f (x), f ′(0) = 0. It is easy
to see by computing the induced metric and second fundamental form that the leading
asymptotics of all relevant quantities of interest remain the same.
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4. The Local-in Time Backwards Well-posedness

4.1. Perturbed spacetime; a transformed system. Let (g, K ) be a perturbation of the
Schwarzschild initial data set (Sg, SK ) on �0, verifying the constraints (1.5), and let
{ei }31 be an orthonormal frame of (�0, g). We fix a reference frame {∂i }30 in M1+3 =
{�τ }τ∈[0,T ], namely, the Schwarzschild orthonormal frame (3.10); Fig. 5. Let {ei }30,
e0 = ∂0, be a frame extension in M1+3 expressed in terms of ∂d via

ec = Od
c ∂d . (4.1)

Consider now the (unique) metric g for which ei is orthonormal, gab := mab =
diag(−1, 1, 1, 1), and the corresponding connection coefficients (Aν)i j = g(∇eν ei , e j ).
Then Proposition 2.1 asserts that the EVE (1.1) for g, under the Lorenz gauge condition13

(divA)i j = (A3)23(A2)i j , (4.2)

reduce to the system of scalar equations

�(Aν)i j = (A[μ)ν]
k
ek(Aμ)i j + eμ([Aμ, Aν])i j + eμ

(
(A[μ)ν]k(Ak)i j

)
+ (Aμ)k [μ(Fν]k)i j + ([Aμ, Fμν])i j + eν

(
(A3)23(A2)i j

)
+ eν

(
(Aμ)μ

k
(Ak)i j

)
∂0(O

d
c ) = − Ob

c
S(A[0)b]d + (A[0)c]kOd

k , ν, i, j, c, d ∈ {0, 1, 2, 3} (4.3)

where � := −e20 + e21 + e22 + e23 and
S(A[0)b]d = [∂0, ∂b]d .

However, the system (4.3) has singular initial data in the Schwarzschild background
which do not permit an energy approach directly. For this reason we recast the equations
in a way that captures the closeness to the Schwarzschild spacetime. Let

(uν)i j := (Aν)i j − S(Aν)i j : {�τ }τ∈[0,T ] → R ν, i, j ∈ {0, 1, 2, 3}, (4.4)

where the components S(Aν)i j are the Schwarzschild connection coefficients corre-
sponding to the frame {∂i }30 (3.10) and they are given by (3.11). We are going to use
these new functions to control the evolution of the perturbed spacetime.

Consider now the analogous system to (4.3) satisfied by the Schwarzschild com-
ponents S(Aν)i j , ∂c. In view of the asymptotics (3.15), we define �q to be a smooth
function satisfying the bound

|�q | ≤ Cq

rq
|∂(k)�q | ≤ Cq,k

rq+
3
2 k

, (4.5)

for constants Cq ,Cq,k depending on M > 0. Taking the difference of the two analogous
systems we obtain a new system for the functions (uν)i j , Od

c − Icd written schematically
in the form:

hab∂a∂b(uν)i j = O� 3
2
∂u + O�3u + O� 9

2
(O − I ) + O�3∂(O − I )

+�3u
2 + Ou∂u + u3 + O∂(O − I )∂u

∂0(O
d
c − Ic

d) = � 3
2
(O − I ) + (O − I )u + u, (4.6)

13 We choose now a specific type based on the one satisfied by the Schwarzschild reference frame (3.14).
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where

hab := mcdOa
c O

b
d = gab (4.7)

and each term in the RHS denotes some algebraic combination of finite number of terms
of the depicted type (varying in ν, i, j) where the particular indices do not matter.

Remark 4.1. Evidently, the systems (4.3) and (4.6) are equivalent. The benefit is that
the assumption on the perturbed spacetime, being close to Schwarzschild, implies that
the functions (uν)i j , Od

c − Icd are now small and regular. Thus, we have reduced the
evolutionary problem to solving the PDE-ODE system of equations (4.6). However, the
issue of singular initial data in (4.3) has become an issue of singularities in the coefficients
of the resulting equations (4.6), at τ = x = 0, which do not make it possible to apply the
energy procedure in standard spaces; see also (3.18). These singularities, in large part,
are due to the intrinsic curvature blow up and cannot be gauged away; in particular the
coefficients �3 of the potential terms in (4.6) correspond to the Schwarzschild curvature
(1.4). Some of the functions�q that appear in (4.6), expressed in terms of Schwarzschild
connection coefficients (3.11) and their derivatives, are less singular than (4.5), but
representatives of the exact bound do appear in all the terms.

Remark 4.2. Another crucial asymptotic behaviour that our method heavily depends on
is that of the radius function r . According to (3.6), we observe that the best L∞

�τ
bound

one could hope for the ratio 1/r2 is of the form

‖ 1

r2
‖L∞(�τ ) ≤ C

τ
, (4.8)

which obviously fails to be integrable in time τ ∈ [0, T ], for any T > 0. This fact lies
at the heart of the difficulty of closing a Gronwall type estimate.

4.2. The weighted Hs spaces. In order to study thewell-posedness of (4.6) we introduce
certain weighted norms. It turns out that the weights which yield the desired flexibility
in obtaining energy estimates are the following.

Definition 4.3. Given α > 0 and τ ∈ [0, T ], we define the (time dependent) weighted
Sobolev space Hs,α[τ ], as a subspace of the standard Hs space on�τ with the Schwarz-
schild induced volume form satisfying:

Hs,α[τ ] : u ∈ Hs(�τ ), ‖u‖2Hs,α[τ ] :=
∑
k≤s

∫
�τ

[∂(k)u]2
r2α−3(k−1)

dμSg < +∞, (4.9)

where by ∂(k) we denote any order k combination of directional derivatives with respect
to the components ∂1, ∂2, ∂3 of the Schwarzschild frame (3.10). For convenience, we
drop τ from the notation whenever the context is clear.

Remark 4.4. Observe that the weights in the norm ‖ · ‖Hs,α in (4.9) blow up only at
τ = 0, x = 0. For τ > 0 fixed, the weights are uniformly bounded above by some
positive constant Cτ , which becomes infinite as τ → 0+. The dependence of the power
2α − 3(k − 1) on the number k of derivatives corresponds to the singularities in the
coefficients of the equation (4.6).
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Lemma 4.5. The weighted Hs,α spaces satisfy the properties:

Hs1,α ⊂ Hs2,α s1 < s2

r− 3
2 lu ∈ Hs,α− 3

2 l , whenever u ∈ Hs,α

∂(k)u ∈ Hs−k,α− 3
2 k k ≤ s, u ∈ Hs,α (4.10)

Proof. They are immediate consequences of Definition 4.3 and the fact that

|∂1(r− 3
2 l)| ≤ Clr− 3

2 l− 1
2 |∂2(r− 3

2 l)| = |∂3(r− 3
2 l)| = 0,

cf. (3.5), (3.10). ��

4.3. Local existence theorems. Let

E(u, O;α, T ) :=
3∑

ν,i, j=0

[
sup

τ∈[0,T ]
(‖(uν)i j‖2H3,α + ‖∂0(uν)i j‖2

H2,α− 3
2

)

+
∫ T

0

(‖(uν)i j‖2H3,α+1 + ‖∂0(uν)i j‖2
H2,α− 1

2

)
dτ

]

+
3∑

c,d=0

[
sup

τ∈[0,T ]
‖Od

c − Ic
d‖2

H3,α+ 3
2
+

∫ T

0
‖Od

c − Ic
d‖2

H3,α+ 5
2
dτ

]

(4.11)

be the total weighted energy of the functions (uν)i j , Od
c − Icd defined in {�τ }τ∈[0,T ]

(3.1), Fig. 3.1, the backward domain of dependence of �0 with respect to the metric g
we are solving for. Since the actual domain depends on the unknown solution, it will be
fully determined in the end; see Sect. 5. For brevity we denote by

E0 :=
∑

ν,i, j∈{0,1,2,3}

[
‖(uν)i j (τ = 0)‖2H3,α + ‖∂0(uν)i j (τ = 0)‖2

H2,α− 3
2

]

+
∑

c,d∈{0,1,2,3}
‖Od

c − Ic
d‖2

H3,α+ 3
2 (�0)

(4.12)

the energy at the initial singular slice �0.
The following theorem is our first main local well-posedness result for the system

(4.6), whose proof occupies Sect. 5.

Theorem 4.6. There exist α > 0 sufficiently large and ε > 0 small such that if

E0 < +∞ ‖Od
c − Ic

d‖L∞(�0) < ε, c, d = 0, 1, 2, 3, (4.13)

then the system (4.6) admits a unique solution, up to some small time T = T (E0, α) > 0,
in the spaces

(uν)i j ∈ C([0, T ]; H3,α) ∩ L2([0, T ]; H3,α+1) ν, i, j ∈ {0, 1, 2, 3}
∂0(uν)i j ∈ C([0, T ]; H2,α− 3

2 ) ∩ L2([0, T ]; H2,α− 1
2 )

Od
c − Ic

d ∈ C([0, T ]; H3,α+ 3
2 ) ∩ L2([0, T ]; H3,α+ 5

2 ) c, d ∈ {0, 1, 2, 3}
(4.14)
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Remark 4.7. (i) The second part of condition (4.13), ε > 0 small, is necessary for the
equation (4.6) to be hyperbolic, yielding sufficient pointwise control on the hab’s (4.7)

|hbb − mbb| <
1

2
|hbc| ≤ Cε2, b, c = 0, 1, 2, 3, b �= c. (4.15)

It could be obviously replaced by the stronger assumption that E0 < ε, since the energy
E(u, O;α, T ) controls the L∞ norm of u, O by standard Sobolev embedding.

(i i) How large the exponent α has to be depends on the coefficients of the system
(4.6). In the final inequalities in Sect. 5 α > 0 is picked large enough so that certain
‘critical’ terms can be absorbed in the LHS and the estimates can close.

The above theorem is a local existence result for the system (4.6). Imposing now the
proper conditions on the initial data set of (4.6), the solution (4.14) yields a solution of
(4.3) which in turn corresponds to an Einstein vacuum spacetime (1.1).

Theorem 4.8. Let α, ε be such as in Theorem 4.6 and let (�0, g, K ) be an initial data
set for the Einstein vacuum equations (1.1) satisfying the constraints (1.5), such that the
components

(uν)i j ∈ H3,α(�0) ν, i, j = 1, 2, 3, (4.16)

Od
c − Ic

d ∈ H3,α+ 3
2 (�0) ‖Od

c − Ic
d‖L∞(�0) < ε c, d = 1, 2, 3, (4.17)

computed with respect to an orthonormal frame {ei }31 on (�0, g), and

(ui )0 j (τ = 0) := Ki j − SKi j ∈ H3,α(�0) i, j = 1, 2, 3. (4.18)

Then, there exists a solution g to the EVE (1.1) in the backward region to �0, foliated
by {�τ }t∈[0,T ], with induced initial data set (g, K ) on �0 and an orthonormal frame
extension {ei }30 for which the corresponding (spacetime) functions (uν)i j , Od

c − I dc (4.4),
(4.1) lie in the spaces (4.14).

If in addition Od
c − Icd ∈ C([0, T ]; H4,α+ 3

2 ), c, d = 1, 2, 3, then the Einsteinian
vacuum development is unique up to isometry.

The fact that such (non-spherically symmetric) initial data sets (�0, g, K ) exist, in
compliance with Theorem 4.8, is shown in Sect. 6.

Proof of Theorem 4.8. We want to invoke Theorem 4.6. For this purpose, we prescribe
initial data for the system (4.6):

(i) The components (4.16), (4.17), (4.18) are given.
(i i) Since in the beginning of Sect. 4.1 we assumed e0 = ∂0 and since {ei }31 is initially

tangent to �0, we set

Ob
0 (τ = 0) = I0

b O0
a (τ = 0) = Ia

0 a, b = 0, 1, 2, 3. (4.19)

(i i i) We (freely) assign14

(u0)ab(τ = 0) := (A0)ab − S(A0)ab ∈ H3,α(�0), a, b = 0, 1, 2, 3. (4.20)

14 The functions (u0)ab(τ = 0) or equivalently (A0)ab(τ = 0) fix the ∂0 derivative of the frame {ei }30 on
�0; see Lemma A.1 and Remark A.2.
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Once we have prescribed the above, the components ∂0(uν)i j (τ = 0) are fixed by the
assumption (2.21) on the initial data of the original system (4.3); seeRemarkA.2. Indeed,
subtracting the corresponding Schwarzschild components from (A.15), (A.16), which
obvisouly satisfy the same initial relations, cf. (3.14), we obtain schematically:

∂0(uν)i j = O∂au + � 3
2
u + �3(O − I ) + u2 on �0, a = 1, 2, 3. (4.21)

By (4.10) and standard Sobolev embedding we conclude that

∂0(uν)i j (τ = 0) ∈ H2,α− 3
2 ν, i, j = 0, 1, 2, 3. (4.22)

Thus, the assumption (4.13) is verified and Theorem 4.6 can be invoked. From Propo-
sition 2.1 it follows that the solution (4.14) of (4.6) and hence of (4.3) yields indeed an
Einstein vacuum spacetime ({�τ }∈[0,T ], g).

To prove uniqueness (up to isometry) we rely on the uniqueness statement in The-
orem 4.6. Suppose there is another Einsteinian vacuum development (M̃1+3, g̃) of the
initial data set (�0, g, K ), diffeomorphic to {�τ }τ∈[0,T ], satisfying the hypothesis (4.16),
(4.17), (4.18); defined by pulling back the relevant quantities through the preceding dif-
feomorphism, taking differences etc. In order to use the uniqueness statement in Theo-
rem 4.6, we need the two spacetimes to have the same initial data for the system (4.6).
The part of the initial data set given by the assumptions in the statement of Theorem 4.8
is of course identical for both spacetimes. The remaining components that we want to
agree, other than the (ũ0)ab(τ = 0)’s, as noted in the previous paragraph, can be fixed
by condition (2.21). Therefore, we get identical initial data components for the system
(4.6) by constructing a Lorenz gauge frame (4.2) {ẽi }30 for g̃, which is initially equal to
{ei }30 on �0 and such that (ũ0)ab(τ = 0) = (u0)ab(τ = 0) as well; see Lemma A.1. The
only assumption to be verified is the well-posedness of the system (A.1) for functions in
the solution spaces (4.14), after taking differences with the equation for the frame {ei }30.
However, this falls in the category of the system (4.6) [in fact simpler, being semilinear]
to which Theorem 4.6 can be applied. The extra derivative that we have to assume in

order to close, Õd
c − Icd ∈ H4,α+ 3

2 , is due to the divA term in the RHS of (A.1). ��

5. Proof of Theorem 4.6

Throughout this section we will use the notation X � Y to denote an inequality between
the quantities X,Y of the form X ≤ CY , where C is an absolute positive constant
depending only on the Schwarzschild mass M > 0. The same for the standard notation
O(X), for a quantity bounded by |O(X)| ≤ CX , X > 0. Furthermore, all the estimates
regard only the Schwarzschild region foliated by {�τ }τ∈[0,T ]; Fig. 3.

5.1. Proof outline. We prove Theorem 4.6 via a contraction mapping argument. First
we establish an energy estimate in the relevant weighted H3 spaces in Sect. 5.3. Then
we obtain a contraction, in Sect. 5.4, in the corresponding spaces of one derivative less,
see (5.48), which together with the energy estimate yield the desired solution (4.14).

Toderive these estimateswehave to eliminate some critical termswhich are generated
due to the singularities in the coefficients of the equations, having larger weights than
the ones in the norm (4.9), and which prevent us from closing (see Propositions 5.3,
5.6). This is where the role of the weights (4.9) comes in. The parameter α > 0 helps
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generate critical terms with a favourable sign. Being large enough, but finite, α provides
an overall negative sign for the critical terms, hence, rendering them removable from the
RHS of the final inequalities. This enables us to close the estimates and complete the
proof. The precise asymptotics of the singularities in the coefficients of the equations
(4.6), at τ = x = 0, and the opening up rate of the radius function r in τ > 0 play a
crucial role here.15

5.2. Basic estimates. Let v be a scalar function defined on �τ , represented by

v ◦ ψτ : Uτ → R, (5.1)

whereψτ : Uτ → �τ is the (x, θ, φ) coordinate chart. We recall some standard inequal-
ities: the classical Sobolev embedding of H2(U ) in L∞(U )

‖v‖L∞(U ) � ‖v‖H2(U ) (5.2)

and the interpolation inequality

‖v‖L4(U ) ≤ C‖v‖
1
4
L2(U )

‖∇v‖
3
4
L2(U )

v ∈ C∞
c (U ), (5.3)

for a bounded domain U ⊂ R
3 with (piecewise) C2 boundary. In the following propo-

sition v is assumed to be regular enough such that the RHSs make sense.

Proposition 5.1. For a general function v : �τ → R, τ ∈ [0, T ], with the appropriate
regularity, the following inequalities hold:

The L∞ bound

‖ v

rk
‖L∞(�τ ) � (k + 1)2‖v‖

H2,k+3+ 1
4 (�τ )

(5.4)

and the L4 estimate

‖ v

rk
‖L4(�τ ) � (k + 1)

3
4 ‖v‖

H1,k+1+ 1
4 (�τ )

. (5.5)

Proof. From (5.2) we have

‖ v

rk
‖L∞(�τ )

(5.1)= ‖ v

rk
◦ ψτ‖L∞(Uτ ) � ‖ v

rk
◦ ψτ‖H2(Uτ )

substituting (3.8) and the frame (3.10)

� (k + 1)2‖v‖
H2,k+3+ 1

4 (�τ )
.

We argue similarly in the case of (5.5). ��
15 If we were to tweak the leading orders just by ε > 0, the previous procedure would fail no matter how

large α > 0 is to begin with.
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5.3. Energy estimate in H3,α . Weset up now the iteration schemewe are going to follow.

Let {u, O} := {(uν)i j , O
d
c : ν, i, j, c, d = 0, 1, 2, 3} be a set of spacetime functions in

the solution spaces (4.14), verifying |Od
c − Icd | < ε initially on �0. We assume without

loss of generality16

E(u, O;α, T ) ≤ 2E0. (5.6)

We also assume

‖∂0(Od
c )‖2H2,α[τ ] � E2

0 + E0 ∀τ ∈ [0, T ], c, d = 0, 1, 2, 3. (5.7)

Iteration step: Consider the following linear version of the system (4.6),wherewe replace
the functions u, O in the following specific terms by the corresponding ones from the
set {u, O}:

h
ab

∂a∂b(uν)i j = O� 3
2
∂u + O�3u + O� 9

2
(O − I ) + O�3∂(O − I )

+�3u
2 + Ou∂u + u3 + O∂(O − I )∂u

∂0(O
d
c − Ic

d) = � 3
2
(O − I ) + (O − I )u + u, (5.8)

where h
ab = mcdO

a
c O

b
d . Observe that we kept in the RHS of (5.8) the functions u, O

attached to the most singular coefficients of the system. This is actually very important
to our strategy in order to avoid further complications.

We assume now there exists a solution (uν)i j , Od
c − Icd of (5.8) lying in the solution

space (4.14). The existence of such a solution is based mainly on the energy estimate
we will derive below and a standard duality argument which we omit.

Claim For a chosen large enough α > 0 and T > 0 sufficiently small (depending on
E0, α) the following estimate holds

E(u, O;α, T ) ≤ 2E0. (5.9)

The preceding H3-weighted energy estimate, cf. (4.11), will be used in the next subsec-
tion to close the contraction argument that yields the existence and uniqueness of the
solution (4.14) to (4.6). Now we begin the proof of (5.9):

First note that by the fundamental theorem of calculus, following a ∂0 integral curve
and employing (5.4), we readily obtain from our initial assumptions and (5.7) the point-
wise bound

sup
τ∈[0,T ]

‖O − I |‖L∞(�τ ) ≤ ε + CTE0 < 2ε, (5.10)

provided α ≥ 1
2 + 3 + 1

4 and T < ε
CE0 .

All the more, directly from the ODE in (5.8) we deduce the estimate: [applying the
bounds (5.4), (5.6) to (O − I )u and employing the asymptotics (4.5)]

‖∂0(Od
c )‖2H2,α[τ ] � E2

0 + ‖O − I‖2
H2,α+ 3

2 [τ ]
+ ‖u‖2H2,α[τ ], (5.11)

for all τ ∈ [0, T ], c, d = 0, 1, 2, 3.17

16 Any assumptions that we make on the functions u, O , we must derive for the next set of functions u, f
below.
17 This estimate, together with (5.9) in the end, imply the analogue of (5.7) for the functions ∂0(O

d
c ).
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Σ0

Σu
τ

Σu
T

N u N u

∂0

Cu
τ

Bτ

x = 0

Fig. 6. The backward domain of dependence of �0

We derive (5.9) in the backward domain of dependence of �0 w.r.t. the metric

(gab)u := gu(∂a, ∂b), a, b = 0, 1, 2, 3, whose inverse is given by gabu := h
ab
; compare

to (4.7). The boundary of the domain is the backward incoming gu-null hypersurfaceN u

emanating from ∂�0 (Fig. 6). We foliate the domain by the τ = const. hypersurfaces
�u

τ inside N u . Let ρ be the scalar function defined near N u via

ρ(Cuτ ) := T − τ, (5.12)

where Cuτ is the cylinder obtained from the flow of ∂�u
τ backwards along the integral

curves of ∂0. Using ρ we may write each leaf of the foliation as

�u
τ =

⋃
t∗∈[τ,T ]

{ρτ = T − t∗}
⋃

Bτ τ ∈ [0, T ], (5.13)

where ρτ := ρ
∣∣
�u

τ
and Bτ is simply the projection of �u

T onto �u
τ through the integral

curves of ∂0.
Since by definition ρ+τ −T is zero onN u , it follows that the gū-gradient of ρ+τ −T ,

on N u , lies on the hypersurface itself and furthermore it is gū-null, i.e., ρ satisfies the
eikonal equation

∣∣∇gu (ρ + τ − T )
∣∣2
gu

= h
AB

∂A(ρ)∂B(ρ) + �−2h
00

+ 2�−1h
A0

∂A(ρ)

= 0 on N u, (5.14)

where A, B = 1, 2, 3.

Remark 5.2. The backward domain of definition of the variables u, O − I depends on
u, O − I . For the iteration scheme and the contraction mapping argument in Sect . 5.4
to be well-defined, all functions involved in the process must have a common domain
of definition. To solve this issue is to begin with a slightly ‘larger’ initial hypersurface
�̃0 ⊃ �0 extending �0 at both ends and to solve at each iteration step for the new
variables in a ‘smaller’ domain contained in the interior of the domain of the previous
iterate by shrinking the initial hypersurface �̃0. Since we are also proving a contraction
mapping at the same time (see Sect. 5.4) we can make sure that the shrinking of �̃0 stops
at �0 giving the final backward domain in the limit.
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We define the following adapted energy, which controls the part of the total energy (4.11)
that refers to u:

Es+1,α[u](τ ) := 1

2

∑
ν,i, j

∑
|J |≤s

∫
�u

τ

[
− h

00
[
∂0(uν)i j,J

]2
r2α−3|J |

+ h
AB ∂A(uν)i j,J

rα− 3
2 |J |

∂B(uν)i j,J

rα− 3
2 |J | +

(uν)
2
i j,J

r2α−3(|J |−1)

]
dμSg, (5.15)

where (uν)i j,J := ∂(J )(uν)i j and J is a spatial multi-index (containing only directions

∂1, ∂2, ∂3). It is evident from (5.10), h
ab = mcdO

a
c O

b
d , that E3,α is equivalent to the

weighted H3,α × H2,α− 3
2 norm of u on �u

τ .
We summarize in the following proposition the main energy estimates derived below.

Proposition 5.3. The following two energy estimates hold:

∂τ E3,α[u] + 8M2e−1(1 − τ)αE3,α+1[u]
� (E

1
2
0 + E0 + α2 + α3E0)E3,α[u] + E3,α+1[u] + E0‖O − I‖2

H3,α+ 3
2

+ ‖O − I‖2
H3,α+ 5

2
+ α3E2

0 + E3
0 (5.16)

1

2
∂τ

∑
c,d

‖Od
c − Ic

d‖2
H3,α+ 3

2
+ 4M2e−1(1 − τ)α

∑
c,d

‖Od
c − Ic

d‖2
H3,α+ 5

2

� ‖O − I‖2
H3,α+ 5

2
+ E3,α+1[u] + E2

0 , (5.17)

for all τ ∈ (0, T ).

The overall energy estimate (5.9) follows from Proposition 5.3: adding (5.16), (5.17)
we wish to close the estimate by employing the standard Gronwall lemma. However,
this is not possible in general, because of the critical energies in the RHS, having larger
weights than the ones differentiated in the LHS, namely, E3,α+1[u], ‖O − I‖2

H3,α+ 5
2

instead of E3,α[u], ‖O − I‖2
H3,α+ 3

2
. It is precisely at this point that the role of the weights

we introduced is revealed. Choosing α > 0 large enough to begin with, how large
depending on the constants in the above inequalities, we absorb the critical terms

E3,α+1[u], ‖O − I‖2
H3,α+ 5

2

in the LHS and then the standard Gronwall lemma applies to give (5.9).

Proof of (5.16). Let

PJ,α := 1

2

[
− h

00
[
∂0(uν)i j,J

]2
r2α−3|J | + h

AB ∂A(uν)i j,J

rα− 3
2 |J |

∂B(uν)i j,J

rα− 3
2 |J | +

(uν)
2
i j,J

r2α+3−3|J |

]
, (5.18)

for any spatial multi-index J with |J | ≤ 2; recall (uν)i j,J := ∂(J )(uν)i j .
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It follows from (5.13) and the coarea formula that

∂τ

∫
�u

τ

PJ,αdμSg = −
∫

∂�u
τ

PJ,α

|S∇ρ|dS +
∫

�u
τ

∂τ PJ,αdμSg

+
∫

�u
τ

PJ,α∂τdμSg, (5.19)

where S∇ρ stands for the gradient of ρ with respect to the intrinsic connection on
(�τ ,

Sg) and dS is the Schwarzschild induced volume form on ∂�u
τ . Note that the

boundary term in (5.19) has a favourable sign. Since N u is gu-incoming null, the sum
of all arising boundary terms should have a good sign and therefore can be dropped in
the end. Indeed, this is the case and it can be easily seen by keeping track of the few
boundary terms that appear below. To analyse the last two terms in (5.19), we recall the
∂τ differentiation formulas of the radius function r (3.5), the estimate on volume form

dμSg (3.9) and the commutator relation [∂0, ∂B] = S(A[0)B]
c
∂c

(3.15)= � 3
2
∂:∫

�u
τ

∂τ PJ,αdμSg +
∫

�u
τ

PJ,α∂τdμSg

= −8M2(1 − τ)α

∫
�u

τ

e− r
2M PJ,α+1dμSg +

∫
�u

τ

PJ,αO(
1

r2
)dμSg

+
1

2

∫
�u

τ

�

[
− ∂0(h

00
)

[
∂0(uν)i j,J

]2
r2α−3|J | + ∂0(h

AB
)
∂A(uν)i j,J

rα− 3
2 |J |

∂B(uν)i j,J

rα− 3
2 |J |

]
dμSg

+
∫

�u
τ

�

[
− h

00 ∂0(uν)i j,J ∂
2
0 (uν)i j,J

r2α−3|J | + h
AB ∂A(uν)i j,J

rα− 3
2 |J |

∂B∂0(uν)i j,J

rα− 3
2 |J |

]
dμSg

+
∫

�u
τ

�h
AB ∂A(uν)i j,J

rα− 3
2 |J |

� 3
2
∂(uν)i j,J

rα− 3
2 |J | dμSg +

∫
�u

τ

�
(uν)i j,J ∂0(uν)i j,J

r2α+3−|J | dμSg

(5.20)

The first term on the LHS of (5.20) is critical having a favourable sign of magnitude
α. We use this term alone to absorb all arising critical terms in the process. Recall

|h| = |O2| ≤ 1, cf. (5.10), and the asymptotics (4.5). Also, applying (5.4) to ∂0h and
(5.7) we derive

|�∂0(h)| � E(u, O;α, T )
1
2 , � � 1

r
1
2

, |� 3
2
| � 1

r
3
2

.

Hence, by Cauchy’s inequality and (5.6) we have

1

2

∫
�u

τ

�

[
− ∂0(h

00
)

[
∂0(uν)i j,J

]2
r2α−3|J | + ∂0(h

AB
)
∂A(uν)i j,J

rα− 3
2 |J |

∂B(uν)i j,J

rα− 3
2 |J |

]
dμSg

+
∫

�u
τ

�h
AB ∂A(uν)i j,J

rα− 3
2 |J |

� 3
2
∂(uν)i j,J

rα− 3
2 |J | dμSg +

∫
�u

τ

�
(uν)i j,J ∂0(uν)i j,J

r2α+3−|J | dμSg

� E(u, O;α, T )
1
2 E3,α[u] + E3,α+1[u]

� E
1
2
0 E3,α[u] + E3,α+1[u] (5.21)
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For the next term we proceed by integrating by parts18 (IBP), denoting by N :=
gBBNB∂B the outward unit normal on ∂�u

τ w.r.t. Schwarzschild metric g on �u
τ :∫

�u
τ

�

[
− h

00 ∂0(uν)i j,J ∂
2
0 (uν)i j,J

r2α−3|J | + h
AB ∂A(uν)i j,J

rα− 3
2 |J |

∂B∂0(uν)i j,J

rα− 3
2 |J |

]
dμSg

= −
∫

�u
τ

�
∂0(uν)i j,J

rα− 3
2 |J |

[
h
00 ∂20 (uν)i j,J

rα− 3
2 |J | + h

AB ∂B∂A(uν)i j,J

rα− 3
2 |J |

]
dμSg

+
∫

∂�u
τ

�h
AB ∂A(uν)i j,J

rα− 3
2 |J |

∂0(uν)i j,J

rα− 3
2 |J | NBdS

−
∫

�u
τ

[
∂B

( �h
AB

r2α−3|J |
)
∂A(uν)i j,J + �h

� 3
2
∂(uν)i j,J

r2α−3|J |

]
∂0(uν)i j,J dμSg (5.22)

It is immediate from the definition of the frame (3.10) and (3.5) that

∣∣∂1( �

r2α−3 )
∣∣ � α

r2α−2 ∂2(
�

rα− 3
2

) = ∂3(
�

rα− 3
2

) = 0.

Hence, similarly to (5.21)

−
∫

�u
τ

[
∂B

( �h
AB

r2α−3|J |
)
∂A(uν)i j,J + �h

� 3
2
∂(uν)i j,J

r2α−3|J |

]
∂0(uν)i j,J dμSg (5.23)

� (E
1
2
0 + α2)E3,α[u] + E3,α+1[u]. (|J | ≤ 2)

��
Remark. The term in theRHSof the preceding estimatewith coefficientα2 is not critical.
This is very important otherwise the overall estimates would not close, since the critical
term with favourable sign in (5.20) is only of magnitude α.

Weproceed to the boundary term in theRHSof (5.22).Recall thatρ is constant on ∂�u
τ

(5.12), and decreasing in the interior direction of �u
τ . Hence, the outward unit normal N

is the Schwarzschild normalized gradient of ρ on �u
τ , N = S∇ρ

|S∇ρ| . Since (h
AB

)A,B=1,2,3

is a symmetric positive definite matrix, the following standard inequality holds:

∣∣∣∣hAB ∂A(uν)i j,J

rα− 3
2 |J | �NB

∣∣∣∣
2

≤
(
h
AB ∂A(uν)i j,J

rα− 3
2 |J |

∂B(uν)i j,J

rα− 3
2 |J |

)(
�2h

AB
NANB

)

=
(
h
AB ∂A(uν)i j,J

rα− 3
2 |J |

∂B(uν)i j,J

rα− 3
2 |J |

)
�2h

AB
∂A(ρ)∂B(ρ)

|S∇ρ|2

=
(
h
AB ∂A(uν)i j,J

rα− 3
2 |J |

∂B(uν)i j,J

rα− 3
2 |J |

)−h
00 − 2�h

A0
∂A(ρ)

|S∇ρ|2
(by (5.14))

18 We integrate by parts using the spatial part of the Schwarzschild frame ∂1, ∂2, ∂3. Doing so we pick up
connection coefficients, since it is not covariant IBP.
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Therefore, we have the bound

∫
∂�u

τ

�h
AB ∂A(uν)i j,J

rα− 3
2 |J |

∂0(uν)i j,J

rα− 3
2 |J | NBdS

≤
∫

∂�u
τ

∣∣∂0(uν)i j,J

rα− 3
2 |J |

∣∣
√√√√−h

00 − 2�h
A0

∂A(ρ)

|S∇ρ|

√√√√ h
AB

|S∇ρ|
∂A(uν)i j,J

rα− 3
2 |J |

∂B(uν)i j,J

rα− 3
2 |J | dS

≤ 1

2

∫
∂�u

τ

− h
00

|S∇ρτ |

[
∂0(uν)i j,J

]2
r2α−3|J | − 2�h

A0
∂A(ρ)

|S∇ρτ |

[
∂0(uν)i j,J

]2
r2α−3|J | dS

+
1

2

∫
∂�u

τ

h
AB

|S∇ρ|
∂A(uν)i j,J

rα− 3
2 |J |

∂B(uν)i j,J

rα− 3
2 |J | dS (5.24)

The remaining term to be estimated is the one on first line in the RHS of (5.22), which
we rewrite

−
∫

�u
τ

�

[
h
00 ∂20 (uν)i j,J

rα− 3
2 |J | + h

AB ∂B∂A(uν)i j,J

rα− 3
2 |J |

]
∂0(uν)i j,J

rα− 3
2 |J | dμSg

= −
∫

�u
τ

(
h
ab

∂a∂b(uν)i j,J
)
�

∂0(uν)i j,J

r2α−3|J | dμSg

+
∫

�u
τ

2�h
A0 ∂A∂0(uν)i j,J ∂0(uν)i j,J

r2α−3|J | + �h
� 3

2
∂(uν)i j,J ∂0(uν)i j,J

r2α−3|J | dμSg (5.25)

By taking the ∂(J ) derivative (J spatial multi-index |J | ≤ 2) of the first equation in (5.8)
and commuting the differentiation in the LHS we obtain the equation

h
ab

∂a∂b(uν)i j,J

= ∂(J )

[
O� 3

2
∂u + O�3u + O� 9

2
(O − I ) + O�3∂(O − I )

+ �3u
2 + Ou∂u + u3 + O∂(O − I )∂u

]
+ [hab∂a∂b, ∂(J )](uν)i j , (5.26)

where the commutator can in turn be written schematically as: [recall (3.15),(4.5)]

[hab∂a∂b, ∂(J )](uν)i j = ∂2(h)∂2(uν)i j +
[
� 3

2
∂(h) + �3h

]
∂2(uν)i j

+ ∂(h)∂3(uν)i j + h� 3
2
∂3(uν)i j

+
[
∂(h)�3 + h� 9

2

]
∂(uν)i j if |J | = 2

[hab∂a∂b, ∂(J )](uν)i j = ∂(h)∂2(uν)i j + h� 3
2
∂2(uν)i j if |J | = 1

+ h�3∂(uν)i j (5.27)
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We integrate by parts in the second term on the RHS of (5.25) and argue similarly to
(5.23) to get

∫
�u

τ

2�h
A0 ∂A∂0(uν)i j,J ∂0(uν)i j,J

r2α−3|J | + �h
� 3

2
∂(uν)i j,J ∂0(uν)i j,J

r2α−3|J | dμSg

=
∫

∂�u
τ

�h
A0

[
∂0(uν)i j,J

]2
r2α−3|J | NadS −

∫
�u

τ

�∂A(h
A0

)

[
∂0(uν)i j,J

]2
r2α−3|J | dμSg

−
∫

�u
τ

h
A0

∂A(
�

r2α−3|J | )
[
∂0(uν)i j,J

]2
dμSg +

∫
�u

τ

�h� 3
2

[
∂0(uν)i j,J

]2
r2α−3|J | dμSg

+
∫

�u
τ

�h
� 3

2
∂(uν)i j,J ∂0(uν)i j,J

r2α−3|J | dμSg

≤
∫

∂�u
τ

�h
A0

[
∂0(uν)i j,J

]2
r2α−3|J | NAdS + C(E

1
2
0 + α2)E3,α[u] + CE3,α+1[u] (5.28)

Finally, for the last and main term in the first line of the RHS of (5.25) we recall that
|�| � 1

r
1
2
to obtain directly from Cauchy’s inequality

−
∫

�u
τ

(
h
ab

∂a∂b(uν)i j,J
)
�

∂0(uν)i j,J

r2α−3|J | dμSg

�
∥∥hab∂a∂b(uν)i j,J

rα− 3
2 |J |− 1

2

∥∥2
L2 +

∥∥∂0(uν)i j,J

rα− 3
2 |J |+1

∥∥2
L2

�
∥∥hab∂a∂b(uν)i j,J

rα− 3
2 |J |− 1

2

∥∥2
L2 + ‖∂0(uν)i j‖2

H2,α− 1
2

(5.29)

We proceed by plugging the RHS of (5.26) into the first term in the last inequality (5.29)
above and treat each arising group of terms separately. Employing the basic inequalities
in Proposition 5.1 along with the bounds of O, ∂(O), u (5.6), (5.7) and (5.10) we derive:

∥∥∂(J )
[
O� 3

2
∂u + O�3u

]
rα− 3

2 |J |− 1
2

∥∥2
L2

� ‖O‖2L∞E3,α+1[u] + ‖∂(O)‖2L∞E2,α[u] + ‖u‖2H2,α+1

+ ‖
∂(J )(O)� 3

2
∂u

rα− 3
2 |J |− 1

2

‖2L2 + ‖∂(J )(O)�3u

rα− 3
2 |J |− 1

2

‖2L2 (5.30)

(the last two terms appear only in the case |J | = 2)

� E(u, O;α, T )E3,α[u] + E3,α+1[u] + (‖u‖2L∞ + ‖∂u‖2L∞
)‖∂(J )(O)

rα− 1
2

‖2L2

� E0E3,α[u] + E3,α+1[u]
∥∥∂(J )

[
O� 9

2
(O − I ) + O�3∂(O − I )

]
rα− 3

2 |J |− 1
2

∥∥2
L2
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� ‖O − I‖2
H3,α+ 5

2
+ ‖∂O‖2L∞‖O − I‖2

H2,α+ 3
2

+
(‖O − I

r
3
2

‖2L∞ + ‖∂(O − I )‖2L∞
)‖∂(J )(O)

rα− 1
2

‖2L2

(we include the last term only when |J | = 2 and utilize (5.7),(5.11))

� ‖O − I‖2
H3,α+ 5

2
+ (E2

0 + E0)‖O − I‖2
H2,α+ 3

2
+ E0‖O − I‖2

H3,α+ 3
2

+ E3
0 + E0‖u‖2H2,α (5.31)

∥∥∂(J )
[
�3u2 + Ou∂u + u3 + O∂(O − I )∂u

]
rα− 3

2 |J |− 1
2

∥∥2
L2

�
[
‖ u

r
3
2

‖2L∞ + ‖∂u

r
3
2

‖2L∞ + ‖∂O‖2L∞
(‖u‖2L∞ + ‖∂u‖2L∞

)]
E3,α[u]

+ ‖u‖2L∞‖∂u‖2L∞‖O − I‖2
H2,α+ 3

2
+

(‖u‖4L∞ + ‖u‖2L∞‖∂u‖2L∞
)‖u‖2H2,α

+ ‖∂O‖2L∞E3,α[u] + ‖∂2(O − I )∂2u

rα−3− 1
2

‖2L2 + ‖∂u‖2L∞‖O − I‖2
H3,α+ 3

2

+
(‖∂O‖4L∞ + ‖∂O‖2L∞‖∂u‖2L∞

)(‖O − I‖2
H2,α+ 3

2
+ E2,α[u])

� E(u, O;α, T )2 + E(u, O;α, T )3 + ‖ ∂2(O)

r
α
2 − 3

2− 1
4

‖2L4‖ ∂2(u)

r
α
2 − 3

2− 1
4

‖2L4

(employing the L4 estimate (5.5)) � E2
0 + E3

0 + α3E2
0 (5.32)

By (5.30)–(5.32) we have the following lemma.

Lemma 5.4. ∂20 (uν)i j ∈ C([0, T ]; H1,α−3) ∩ L2([0, T ]; H1,α−2) and moreover the
following estimate holds:

∥∥∂(J )∂20 (uν)i j

rα− 3
2 |J |− 1

2

∥∥2
L2[τ ]

� E0
(
E3,α[u] + ‖O − I‖2

H3,α+ 3
2

)
+ E3,α+1[u] + ‖O − I‖2

H3,α+ 5
2

+ α3E2
0 + E3

0 , (5.33)

for |J | ≤ 1, J ⊂ {1, 2, 3}, τ ∈ (0, T ).

Proof. The proof follows by solving for ∂20 (uν)i j in the Eq. (5.8) and summing up the
above estimates (5.30)–(5.32). ��

To bound the commutator (5.27) we treat the cases |J | = 2, |J | = 1 separately. For
|J | = 1:



952 G. Fournodavlos

∥∥ [hab∂a∂b, ∂(J )](uν)i j

rα− 3
2− 1

2

∥∥2
L2

= ∥∥∂(h)∂2(uν)i j + h� 3
2
∂2(uν)i j + h�3∂(uν)i j

rα− 3
2− 1

2

∥∥2
L2

� ‖∂h‖2L∞‖∂2(uν)i j

rα− 3
2− 1

2

‖2L2 + ‖h‖2L∞‖∂2(uν)i j

rα− 1
2

‖2L2 + ‖h‖2L∞‖∂(uν)i j

rα+1 ‖2L2

(employing (5.33) in the case ∂2(uν)i j = ∂20 (uν)i j )

� E0
(
E3,α[u] + ‖O − I‖2

H3,α+ 3
2

)
+ E3,α+1[u] + ‖O − I‖2

H3,α+ 5
2

+ α3E2
0 + E3

0 (5.34)

When |J | = 2 we have

∥∥ [hab∂a∂b, ∂(J )](uν)i j

rα−3− 1
2

∥∥2
L2

�
∥∥∂2(h)∂2(uν)i j +

[
� 3

2
∂(h) + �3h

]
∂2(uν)i j

rα−3− 1
2

∥∥2
L2

+
∥∥∂(h)∂3(uν)i j + h� 3

2
∂3(uν)i j +

[
∂(h)�3 + h� 9

2

]
∂(uν)i j

rα−3− 1
2

∥∥2
L2

(note that term ∂3(uν)i j contains at most two ∂0 derivatives)

� ‖ ∂2h

r
α
2 − 3

2− 1
4

‖2L4‖∂2(uν)i j

r
α
2 − 3

2− 1
4

‖2L4 + ‖∂h‖2L2

(
E3,α[u] + ‖∂20 (uν)i j

∥∥2
H1,α−3

)
+ ‖h‖2L∞

(
E3,α+1[u] + ∥∥∂20 (uν)i j‖2H1,α−2

)
(employing the L4 estimate (5.5) and (5.33))

� α3E0E3,α[u] + E0E3,α[u] + E3,α+1[u] + E0‖O − I‖2
H3,α+ 3

2
+ ‖O − I‖2

H3,α+ 5
2

+ α3E2
0 + E3

0 (5.35)

Summary Incorporating (5.20)–(5.35) in (5.19) we conclude that

∂τ

∫
�u

τ

PJ,αdμSg + 8M2e−1(1 − τ)α

∫
�u

τ

PJ,α+1dμSg

� (E
1
2
0 + E0 + α2 + α3E0)E3,α[u] + E3,α+1[u] + ‖O − I‖2

H3,α+ 5
2

+ E0‖O − I‖2
H3,α+ 3

2
+ α3E2

0 + E3
0 (5.36)

Summing over the indices ν, i, j and J , |J | ≤ 2, we arrive at the desired estimate (5.16).

Proof of (5.17). Let J , |J | ≤ 3, be a spatial multi-index. Like in the case of (5.19), it
follows from the coarea formula and the asymptotics (3.5), (3.9) that
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1

2
∂τ‖

Od
c,J − Icd ,J

rα+3− 3
2 |J | ‖2L2(�u

τ )

= −1

2

∫
∂�u

τ

(Od
c,J − Icd ,J )

2

|S∇ρ|r2α+6−3|J | dS

−(α + 3 − 3|J |
2

)

∫
�u

τ

(Od
c,J − Icd ,J )

2

r2α+7−3|J | ∂τ rdμSg

+
∫

�u
τ

�
(Od

c,J − Icd ,J )∂0(O
d
c,J )

r2α+6−3|J | dμSg +
1

2

∫
�u

τ

(Od
c,J − Icd ,J )

2

r2α+6−3|J | ∂τdμSg

≤ −4M2e−1α(1 − τ)‖O
d
c,J − Icd ,J

rα+4− 3
2 |J | ‖2L2(�u

τ )

+
∫

�u
τ

�
(Od

c,J − Icd ,J )∂0(O
d
c,J )

r2α+6−3|J | dμSg + C‖O
d
c,J − Icd ,J

rα+4− 3
2 |J | ‖2L2(�u

τ )
, (5.37)

where Od
c,J − Icd ,J := ∂(J )(Od

c − Icd). By Cauchy’s inequality we have (� � 1

r
1
2
)

∫
�u

τ

�
(Od

c,J − Icd ,J )∂0(O
d
c,J )

r2α+6−3|J | dμSg � ‖O
d
c,J − Icd ,J

rα+4− 3
2 |J | ‖2L2 + ‖ ∂0(Od

c,J )

rα+ 5
2− 3

2 |J | ‖
2
L2 (5.38)

Taking the ∂(J ) derivative of the ODE in (5.8) we obtain

∂0(O
d
c,J − Ic

d
,J ) = ∂(J )

[
� 3

2
(O − I ) + (O − I )u + u

]
+ [∂0, ∂(J )](Od

c − Ic
d)

(5.39)

The commutator in the RHS of (5.39) schematically reads

[∂0, ∂(J )](Od
c − Ic

d) = � 3
2
∂(Od

c − Ic
d) if |J | = 1

= �3∂(Od
c − Ic

d) + � 3
2
∂2(Od

c − Ic
d) if |J | = 2

= � 9
2
∂(Od

c − Ic
d) + �3∂

2(Od
c − Ic

d) if |J | = 3

+ � 3
2
∂3(Od

c − Ic
d), (5.40)

where we note that at most one ∂0 derivative of Od
c − Icd appears in the preceding

expressions. Hence, we deduce directly from (5.39):

‖∂0(Od
c,J − Icd ,J )

rα+ 5
2− 3

2 |J | ‖2L2

� ‖� 3
2
(O − I )‖2H3,α+1 + ‖(O − I )u‖2H3,α+1 + +‖u‖2H3,α+1

+ ‖[∂0, ∂(J )](Od
c − Icd)

rα+ 5
2− 3

2 |J | ‖2L2

(exmploying Lemma 4.5 and applying the L∞ bound on (O − I )u)
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� ‖O − I‖2
H3,α+ 5

2
+ E3,α+1[u] + ‖O − I‖2

H3,α+ 3
2
‖u‖2H3,α

+ ‖
� 3

2
∂(Od

c − Icd)

rα+ 5
2− 3

2

‖2L2 + ‖
�3∂(Od

c − Icd) + � 3
2
∂2(Od

c − Icd)

rα+ 5
2−3

‖2L2

+ ‖
� 9

2
∂(Od

c − Icd) + �3∂
2(Od

c − Icd) + � 3
2
∂3(Od

c − Icd)

rα+ 5
2− 9

2

‖2L2

� ‖O − I‖2
H3,α+ 5

2
+ E(u, O;α, T )2 + E3,α+1[u] (5.41)

Combining (5.37)–(5.41) we derive

1

2
∂τ‖

Od
c,J − Icd ,J

rα+3− 3
2 |J | ‖2L2(�u

τ )
+ 4M2e−1α(1 − τ)‖O

d
c,J − Icd ,J

rα+4− 3
2 |J | ‖2L2(�u

τ )

� ‖O − I‖2
H3,α+ 5

2
+ E3,α+1[u] + E2

0 (5.42)

Taking into account the set of indices c, d and J , |J | ≤ 3, we complete the proof of
(5.17) and hence of Proposition 5.3. ��

5.4. Contraction mapping in H2,α . We proceed to show that the mapping defined via
(5.8) in the beginningof Sect. 5.3 is a contraction. Let us consider another set of spacetime

functions (ũν)i j , Õd
c , ũ, Õ solving the coupled system analogous to (5.8). Setting

(duν)i j = (uν)i j − (ũν)i j , du = u − ũ, dOd
c = Od

c − Õd
c , dO = O − Õ (5.43)

we obtain schematically the new system of equations (depicting only the types of terms
in the RHS suppressing the particular indices)

h
ab

∂a∂b(duν)i j

= O� 3
2
∂(du) + O�3du + O� 9

2
dO

+ dO
[
� 3

2
∂ ũ + �3ũ + � 9

2
(Õ − I ) + �3∂ Õ

]
+ O�3∂(d f ) + (O + Õ)dO∂2(ũν)i j + G(du, dO), (5.44)

where

G(du, dO) = � 3
2
du(u + ũ + u2 + ũ

2
+ uũ) + Ou∂(du)

+ Odu∂ ũ + dOũ∂ ũ + O∂(O)∂(du)

+ O∂(dO)∂ ũ + dO∂(Õ)∂ ũ (5.45)

and

∂0(dO
d
c ) = � 3

2
dO + (O − I )du + ũdO + du (5.46)

Further, we assume that both sets of variables we have introduced are consistent with
the energy estimate (5.9) we have established in the previous subsection:

E(u, O;α, T ), E(u, O;α, T ), E(ũ, Õ;α, T ), E(ũ, Õ;α, T ) ≤ 2E0. (5.47)



On the Backward Stability of the Schwarzschild Black Hole Singularity 955

Claim For large enough α > 0 and T > 0 is sufficiently small the following contraction
holds:

E2,α[du] +
∑
c,d

‖dOd
c ‖2

H2,α+ 3
2

≤ κ
(
E2,α[du] +

∑
‖dO‖2

H2,α+ 3
2

)
, (5.48)

for some 0 < κ < 1.

Remark 5.5. We are forced to close the contraction mapping argument in H2,α , having
one derivative less than the space of the energy estimate (5.47), see Sect. 5.3, as it is
common in 2nd-order quasilinear hyperbolic PDE [5], because of the problematic term

(O + Õ)dO∂2(ũν)i j in (5.44), which is generated from the difference of the top order
terms in the LHS.

Proposition 5.6. Under the above considerations, the following estimates hold:

∂τ E2,α[du] + 8M2e−1(1 − τ)αE2,α+1[du]
� (E

1
2
0 + E0 + α2)E2,α[du] + E2,α+1[du] + ‖dO‖2

H2,α+ 5
2

+ (E0 + E2
0 + α3E0)

(
E2,α[du] + ‖dO‖2

H2,α+ 3
2

)
(5.49)

1

2
∂τ

∑
c,d

‖dOd
c ‖2

H2,α+ 3
2
+ 4M2e−1(1 − τ)α

∑
c,d

‖dOd
c ‖2

H2,α+ 5
2

� ‖dO‖2
H2,α+ 5

2
+ E2,α+1[du] + E0

(
E2,α[du] + ‖dO‖2

H2,α+ 3
2

)
, (5.50)

for all τ ∈ (0, T ).

Assuming Proposition 5.6we prove the above claim (5.48). After summing (5.49),(5.50),
we absorb into the LHS the critical terms

E2,α+1[du], ‖dO‖2
H2,α+ 5

2
,

which appear in the RHS of the above inequalities. This is done by picking the para-
meter α sufficiently large (but finite). The contraction estimate (5.48) then follows from
Gronwall’s inequality for T > 0 suitably small.

Proof of Proposition 5.6. The proof follows exactly the lines of the proof of Proposi-
tion 5.3. The only notable difference lies in the estimation of the analogous term to
(5.29), derived in (5.30)–(5.35). We sketch the argument in the present situation:

Let J denote at most one spatial index, |J | ≤ 1, either 1, 2 or 3. The main term to be
estimated is

−
∫

�u
τ

∂(J )

[
RHS of (5.44)

]
�

∂0(duν)i j,J

r2α−3 dμSg

(recall � � 1

r
1
2
) � ‖∂0(duν)i j,J

rα− 1
2

‖2L2 +
∥∥∂(J )

[
RHS of (5.44)

]
rα−2

∥∥2
L2 , (5.51)
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where (duν)i j,J := ∂(J )(duν)i j . Plugging in (5.44) and using the basic estimates in
Proposition 5.1, along with the assumption (5.47) we obtain

∥∥∂(J )
[
RHS of (5.44)

]
rα−2

∥∥2
L2

�
∥∥∂(J )

(
O� 3

2
∂(du) + O�3du + O� 9

2
dO

)
rα−2

∥∥2
L2

+
∥∥∂(J )

(
dO

[
� 3

2
∂ ũ + �3ũ + � 9

2
(Õ − I ) + �3∂ Õ

])
rα−2

∥∥2
L2

+
∥∥∂(J )

(
O�3∂(dO)

)
rα−2

∥∥2
L2 +

∥∥∂(J )
[
(O + Õ)dO∂2(ũν)i j

]
rα−2

∥∥2
L2

+ ‖∂(J )G(du, dO)

rα−2 ‖2L2

(recall the asymptotics (4.5))

� ‖∂(J )∂(du)

rα− 1
2

‖2L2 + ‖∂(du)

rα+1 ‖2L2 + ‖ du

rα+ 5
2

‖2L2 + E0
(‖∂(du)

rα− 1
2

‖2L2 + ‖ du

rα+1 ‖2L2

)

+ ‖∂(J )(dO)

rα+ 5
2

‖2L2 + ‖ dO

rα+4 ‖2L2 + E0‖ dO

rα+ 5
2

‖2L2

+ E0‖∂(J )(dO)

rα+ 3
2

‖2L2 + ‖dO
r

3
2

‖2L∞
(‖ũ‖2H2,α + ‖Õ − I‖2

H2,α+ 3
2

)

+ ‖∂(J )∂(dO)

rα+1 ‖2L2 + ‖∂(dO)

rα+ 5
2

‖2L2 + E0‖∂(dO)

rα+1 ‖2L2

+
∥∥∂(J )

[
(O + Õ)dO∂2(ũν)i j

]
rα−2

∥∥2
L2 + ‖∂(J )G(du, dO)

rα−2 ‖2L2

� E2,α+1[du] + E0E2,α[du] + ‖dO‖2
H2,α+ 5

2
+ E0‖dO‖2

H2,α+ 3
2

+ E0‖dO‖2
H2,α+ 3

2
+

∥∥∂(J )
[
(O + Õ)dO∂2(ũν)i j

]
rα−2

∥∥2
L2 + ‖∂(J )G(du, dO)

rα−2 ‖2L2

(5.52)

We proceed to the problematic term (O + Õ)dO∂2(ũν)i j which can be controlled only
in H1:

∥∥∂(J )
[
(O + Õ)dO∂2(ũν)i j

]
rα−2

∥∥2
L2

� ‖∂(J )(O + Õ)‖2L∞‖dO‖2L∞‖∂2(ũν)i j

rα−2 ‖2L2 + ‖O + Õ‖2L∞‖∂(J )(dO)

r
α
2 −1

‖2L4

· ‖∂2(ũν)i j

r
α
2 −1

‖2L4 + ‖O + Õ‖2L∞‖dO
r

‖2L∞‖∂(J )∂2(ũν)i j

rα−2 ‖2L2

(employing the L4 estimate (5.5))

� (E2
0 + α3E2

0 )‖dO‖2
H2,α+ 3

2
(5.53)
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Finally, plugging in the nonlinearity (5.45), we have the bound

∥∥∂(J )G(du, dO)

rα−2

∥∥2
L2

�
∥∥∂(J )

(
� 3

2
du(u + ũ + u2 + ũ

2
+ uũ)

)
rα−2

∥∥2
L2 +

∥∥∂(J )
(
Ou∂(du)

)
rα−2

∥∥2
L2

+
∥∥∂(J )

(
Odu∂ ũ + dOũ∂ ũ + O∂(O)∂(du)

)
rα−2

∥∥2
L2

+
∥∥∂(J )

(
O∂(dO)∂ ũ + dO∂(Õ)∂ ũ

)
rα−2

∥∥2
L2

� (E0 + E2
0 )E2,α[du] + (E0 + 1)‖du‖2L∞‖∂(J )∂ ũ

rα−2 ‖2L2 + ‖∂2(O)∂(du)

rα−2 ‖2L2

+ (E0 + E2
0 )‖dO‖2

H2,α+ 3
2
+ ‖∂(dO)∂2ũ

rα−2 ‖2L2 + ‖dO‖2L∞E2
0

� (E0 + E2
0 )

(
E2,α[du] + ‖dO‖2

H2,α+ 3
2

)
+ ‖ ∂2O

r
α
2 −1

‖2L4‖∂(du)

r
α
2 −1

‖2L4

+ ‖∂(dO)

r
α
2 −1

‖2L4‖ ∂2ũ

r
α
2 −1

‖2L4

(by the L4 estimate (5.5))

� (E0 + E2
0 + α3E0)

(
E2,α[du] + ‖dO‖2

H2,α+ 3
2

)
(5.54)

��

6. The Constraint Equations in a Singular Background of Unbounded Mean
Curvature

In this sectionweproveTheorem1.2, ourmain stability result for the constraint equations
(1.5) about the Schwarzschild singular initial data. We use the conformal method to
construct the desired initial data sets for the EVE. The proof is an application of the
inverse function theorem.Although similar results have been achieved in the smooth case
and some rough backgrounds (see [8] for a general exposition), to our knowledge, the
singular Schwarzschild background (Sect. 3) eludes any past references in the literature.

In order to employ the inverse function theorem we derive suitable weighted, elliptic
estimates for the linearized conformal constraint map. We show that it is in general
Fredholm between the weighted Hs spaces that we work with and an isomorphism in the
casewhere the initial hypersurface�0 is contained in sufficiently small neighbourhoodof
its singularity at x = 0. To define the appropriate spaces of our maps and derive coercive
estimates we exploit heavily the features of the background Schwarzschild spacetime,
including a delicate decoupling of the momentum constraint for the divergence free part
of the projected unknown vector field onto the rotationally symmetric spheres of the
Schwarzschild initial data set.

The weighted norms that we use to derive our estimates differ slightly from the ones
we use for the hyperbolic part of the problem Sects. 4.2, 5. This is due to the fact that
different singular terms in the resulting system have different leading orders. We are
forced to take this into account to obtain useful elliptic estimates.
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One of the main aspects of the problem that make it non-standard is the unbound-
edness of the mean curvature trgK of the perturbation. In fact, one can check (Sect. 3)
that

trgK �∈ L p(�0), p ≥ 5

3
.

The blow up orders of the second fundamental form of �0 and the mean curvature in
particular happen to be the most singular of the curvature terms in the equations. A very
useful fact that we exploit is that in certain crucial terms they appear with a favourable
sign.

The results in the literature of the constraints using the conformal method are mostly
restricted to the constant mean curvature (CMC) or ‘near CMC’ regime [5]. Recently,
there have been a number of advances to the case of large mean curvature, ‘far from
CMC’, [11,15,22].However, due to a smallness assumption on one of the variables, these
results can be thought of in a sense as ‘near CMC’ [14,23]. All the more, they contain
certain regularity assumptionswhich in particular imply that themean curvature is in L∞
and therefore do not directly apply to our case. Although our theorem generates initial
data sets for the EVE which have unbounded mean curvature, they are also perturbative
in the sense that they are close to the corresponding Schwarzschild induced initial data,
measured in suitable norms.

6.1. The conformal approach; linearization and stability. We wish to construct initial
data sets (g, K ) on �0 = (−ε, ε)x × r2S2 for the EVE, i.e., solutions to the con-
straints (1.5), which are close to the Schwarzschild induced initial data and asymptote
to Schwarzschild at a high order towards the singularity r = 0, see Theorem 1.1. Recall
that the Schwarzschild induced metric on �0 and its second fundamental form are given
by

Sg = �2dx2 + r2gS2 , �2 = 32M3

r
e− r

2M , r2 ∼ 8M2x2

SK 11 = −1

2

�

4Mr
+ l.o.t., SK 22 = SK 33 = �

4Mr
, (6.1)

where

∂1 = 1

�
∂x ∂2 = 1

r
∂θ , ∂3 = 1

r sin θ
∂φ. (6.2)

All derivations below involving spatial indices are carried out using the Schwarzschild
frame (6.2). We will look for solutions of (1.5) of the form

g = ϕ4Sg Ki j = ϕ−2(σi j + LWi j ) +
1

3
ϕ4Sgi j trSg

SK , (6.3)

where

LWi j := S∇ iW j +
S∇ jWi − 2

3
Sgi j

S∇k
Wk (6.4)

In this set-up we have the freedom to choose the symmetric, traceless and transverse
(TT) 2-tensor σ . Then the constraint equations reduce to an elliptic system of equations
([5]) for the conformal factor ϕ and the vector field W :
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S∇ j
LWi j − 2

3
φ6S∇ i (trSg

SK ) = 0

−S�φ +
1

8
SRφ − 1

8
|σ + LW |2φ−7 +

1

12
(trSg

SK )2φ5 = 0
(6.5)

We prefer to analyse the top order term in the first equation of (6.5) after commuting
derivatives

S∇ j
LWi j = (S�W )i +

1

3
S∇ i (

S∇k
Wk) +

SRici
j
W j (6.6)

It is easy to see that the Schwarzschild induced initial data on �0 can be parametrized
in this fashion by choosing

Sϕ = 1, σ = 0, SW = gradSg f (x), f (x) ∼ a√|x | , (6.7)

where f is a spherically symmetric function on �0 solving the ODE19

4

3
∂31 f +

8

3

�

4Mr
x · ∂21 f +

3

2

�2

16M2r2
x +

1

2

�2

32M3r
x = 0, ∂1 ∼ √|x |∂x . (6.8)

Setting σ = 0, Y = W − SW , η = φ − 1, the linearization of the system (6.5) about
Y = 0, η = 0 with inhomogeneous terms Z , h reads

(S�Y )1 +
1

3
S∇1(

S∇k
Yk) +

SR11Y1 − 4(S∇1trSg
SK )η = Z1

(S�Y )i +
1

3
S∇ i (

S∇k
Yk) +

SRi i Yi = Zi , i = 2, 3

−S�η +
1

8
SRη +

7

8
|SLW |2η +

5

12
(trSg

SK )2η − 1

2
SLW

i j S∇ j Yi = h (6.9)

Recall (3.11) to compute the leading asymptotics, as x → 0, of the (singular Schwarz-
schild) coefficients of (6.9):

SR11 = − 1

4Mr
+ O(1), SR22 = SR33 = 1

r2
+ O(

1

r
), (S∇1trSg

SK ) ∼ c

r2

SR = 2

r2
+ O(

1

r
), (trSg

SK )2 = 9

4

�2

16M2r2
, �2 = 32M3

r
e− r

2M

r2 ∼ 8M2x2, SLW 11 = − �

4Mr
, SLW 22 = SLW 33 = 1

2

�

4Mr
.

(6.10)

Remark 6.1. Observe that the most singular coefficients in (6.9) are of order r−3 and
they correspond to the zeroth order terms of the third equation. Fortunately they come
with a good sign. This fact plays a crucial role in the analysis below.

19 The first equation in (6.5) for i = 1 reduces to (6.8) in spherical symmetry, whereas the i = 2, 3 parts of
the vector equation for W are automatically satisfied.
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We exploit the fact that the Schwarzschild background is spherically symmetric and split
the variables φ, η,W1,Y1, Z1 into

φ = φ0 + φ1 W1 = W10 +W11

η = η0 + η1 Y1 = Y10 + Y11
h = h0 + h1 Z1 = Z10 + Z11, (6.11)

where φ0, η0,W10,Y10, Z10 are the spherically symmetric parts of the corresponding
functions.

Let W�,Y�, Z� denote the projections of the vector fields W,Y, Z onto the rota-
tionally symmetric spheres r2S2. There is a difficulty in obtaining coercive estimates
for the part of these vector fields lying in the first eigenspace of the vector Laplacian
on the spheres. The former space corresponds to the spherical conformal Killing vector
fields. It turns out that the “genuinely” conformal Killing fields (which are not Killing)
do not obstruct our analysis, by taking advantage of the divergence term in the second
equation of (6.9). However, we must exclude the projections of W�,Y�, Z� on the
Killing vector fields of the round spheres r2S2, r > 0. We achieve that by imposing first
that W�,Y� are orthogonal to the space of the spherical Killing vector fields:

W�,Y� ∈ K⊥, K := {X ∈ T (r2S2), r > 0 : /∇ i X j + /∇ j Xi = 0}, (6.12)

where /∇ denotes the covariant differentiation on r2S2. The next lemma is the useful
observation that the orthogonality assumption (6.12) holds automatically for Z� as
well.

Lemma 6.2. If W�,Y� ∈ K⊥, then Z� ∈ K⊥. In other words the orthogonality con-
dition (6.12) is preserved by the linearized operator corresponding to (6.9) and in fact
by the actual non-linear conformal map (6.5) as well.

Proof. Notice that the i = 2, 3 part of the vector equation in (6.5),

0 = S∇ j
LWi j = (S�W )i +

1

3
S∇ i (

S∇k
Wk) +

SRi iWi

is equivalent to the second equation in (6.9) by just setting Y� = W�. Hence, the last
assertion follows once we show Z� ∈ K⊥.
Let X be a Killing vector field of S2 and A(x) a test function, compactly supported in
(−ε, 0) ∪ (0, ε). We then have∫

�0

Sg
(
A(x)X, Z�)

dμSg =
∫

�0

A(x)Sg
(
X, S�Y +

1

3
/∇(S∇k

Yk) +
1

r2
Y�)

dμSg

(IBP and using (6.12)) =
∫

�0

A(x)Sg(X, S�Y ) − 1

3
(S∇k

Yk) /∇ i Xi dμSg

(X is divergence free) =
∫

�0

A(x)Sg(X, S�Y )dμSg

(S� = S∇11 + S(Ai )1i
S∇1 + /�)

=
∫

�0

A(x)Sg(X, S∇11Y + S(Ai )1i
S∇1Y )dμSg

+
∫

�0

A(x)Sg( /�X,Y )dμSg
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( /�X + 1
r2
X = 0) =

∫
�0

A(x)Sg(X, S∇11Y + S(Ai )1i
S∇1Y )dμSg

(IBP) =
∫ ε

−ε

(function of x)
∫
S2

Sg(X,Y )dμS2dx

= 0

Since A(x) is arbitrary, it follows that Z� ⊥ X for all X ∈ T (r2S2), X ∈ K, for any
sphere r2S2. Thus Z� ∈ K⊥. ��

We make use of (6.12) below by employing the following lemma.

Lemma 6.3. Let X be a vector field on r2S2 satisfying the orthogonality assumption
(6.12). Then ∫

r2S2
| /∇X |2 + 1

3
| /∇ i Xi |2dμr2S2 ≥ 4

3

∫
r2S2

|X |2
r2

dμr2S2 . (6.13)

Proof. The inequality ∫
r2S2

| /∇X |2dμr2S2 ≥
∫
r2S2

|X |2
r2

dμr2S2 (6.14)

is standard and valid for all spherical vector fields. Moreover, equality in (6.14) is
achieved if and only if X lies in the first eigenspace of the vector sphere Laplacian,
i.e., if X is a conformal Killing vector field. For the part of X orthogonal to the space
of conformal Killing vector fields, denoted by X>1, we deduce using vector spherical
harmonics that ∫

r2S2
| /∇X>1|2dμr2S2 ≥ (λ2 − 1)

∫
r2S2

|X>1|2
r2

dμr2S2 (6.15)

where λ2 = 6 is the second eigenvalue of −�S2 . If now X is conformal Killing, but not
Killing, X ∈ K⊥, then we have∫

r2S2
| /∇ i Xi |2dμr2S2 =

∫
r2S2

|X |2
r2

dμr2S2 (6.16)

Combining thus all above cases we derive (6.13). ��
We proceed now to define the weighted Hs spaces we are going to work with:

Hs,α
vf-0 : v ∈ Hs &

∑
| j |≤s

∫
�0

(S∇( j)
1 v)2

|x |2α−| j |+1 dμSg < +∞

Hs,α
vf-1 : v ∈ Hs &

∑
| j |+|k|≤s

∫
�0

(S∇( j)
1 /∇(k)

l v)2

|x |2α−2(| j |+|k|−1)
dμSg < +∞

Hs,α
sc : v ∈ Hs &

∑
| j |+|k|≤s

∫
�0

(S∇( j)
1 /∇(k)

v)2

|x |2α−3(| j |+|k|−1)
dμSg < +∞, (6.17)

where v is either a scalar or a vector field.
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Remark 6.4. The precise ordering of the above derivatives does not matter since the

Schwarzschild connection coefficients S(Aμ) jk = O(|x |− 1
2 ), 1 ∈ {μjk}, see (3.11).

Also, note that we can use either covariant or non-covariant differentiation since
S(Aμ) jk = O(|x |−1) for all indices, S(A1) jk = 0, and thus the extra terms arising
from the various S(Aμ) jk’s can be incorporated in the norms.

Define the operator

�(W10 − SW 10,W11,W
�, φ − 1, σ ) : H4,α

vf-0 × H4,α
vf-1 × (

H4,α
vf-1 ∩ K⊥) × H4,α

sc × Bσ

→ H2,α−1
vf-0 × H2,α−2

vf-1 × (
H2,α−2
vf-1 ∩ K⊥) × H2,α−3

sc ,

� = (LHS of the system (6.5)),
(6.18)

where Bσ can be any of the above spaces of sufficiently high regularity with similar
weights.20

Lemma 6.5. � is well-defined, bounded and C1 (Fréchet).

Proof. We realize � is well-defined by matching the singular orders of the coefficients
(6.5) with the analogies in the weights of the norms (6.17) and by recalling Lemma 6.2.

Express � as differences of the variables φ − 1,W − SW . The boundedness of �

then follows by applying Sobolev embedding to the arising non-linear terms, see (5.4),
and by controlling the linear terms, which can be read from the linearized system (6.9),
in the weighted Hs norms (6.17) that where carefully defined to for this exact purpose.
The same argument actually implies that � is C1. ��

By definition we have

D�(W10−SW 10,W11,W�,φ−1)(0)(Y10,Y11,Y
�, η) =: D�(Y10,Y11,Y

�, η) :
H4,α
vf-0 × H4,α

vf-1 × (
H4,α
vf-1 ∩ K⊥) × H4,α

sc

→ H2,α−1
vf-0 × H2,α−2

vf-1 × (
H2,α−2 ∩ K⊥) × H2,α−3

sc ,

D� = (LHS of (6.9)) (6.19)

Proposition 6.6. The bounded operator

D� :
[
H4,α
vf-0 × H4,α

vf-1 × (
H4,α
vf-1 ∩ K⊥) × H4,α

sc

]
∩ H1

0

→ H2,α−1
vf-0 × H2,α−2

vf-1 × (
H2,α−2
vf-1 ∩ K⊥) × H2,α−3

sc (6.20)

is Fredholm, i.e., it has finite dim kernel and cokernel, for any α sufficiently large,
consistent with Theorem 4.8. In the case that �0 is contained in a sufficiently small
neighbourhood of x = 0, D� is in fact an isomorphism.

Wepostpone the proof Proposition 6.6 for Sect. 6.2 and proceed to formulate our stability
result for the constraints.

20 Owing to Sect. 4, σ ∈ H3,α would be fine.
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Theorem 6.7. Let α be sufficiently large, given by Theorem 4.8. Also, let �0 =
(−ε, ε)x × r2S2 be an initial singular hypersurface for ε sufficiently small such that the
second part of Proposition 6.6 is valid. Then for any σ ∈ H3,α with sufficiently small
norm, there exists a solution to the conformal constraint equations (6.5) in the spaces

(W10 − SW 10,W11,W
�, φ − 1) ∈ H4,α

vf-0 × H4,α
vf-1 × (

H4,α
vf-1 ∩ K⊥) × H4,α

sc

W − SW , φ − 1 ∈ H1
0 (6.21)

In particular, the pairs (g, K ) given by (6.3) verify the constraints (1.5) and the assump-
tions of Theorem 4.8.

Proof. The main assertion regarding the solution to the conformal constraint equations
follows from the inverse function theorem, since D� (6.20) is an isomorphism, the level
set �−1({0}) is the set of solutions to (6.5) and �(0) = 0. Although the domain of �

is slightly different from the space of initial data sets in Theorem 4.8, picking α larger
than required, we can ensure that the pairs (g, K ) we construct in this section, given by
(6.3), satisfy the initial conditions in Theorem 4.8. ��

6.2. Proof of Proposition 6.6. We derive elliptic estimates for D� in the spaces (6.17)
defined earlier. The system

D�(η,Y ) = (h, Z). (6.22)

is by definition (6.9). Recall briefly the notation (6.11), Y�, Z�, and let

Ỹ = Y11∂1 + Y� Z̃ = Z11∂1 + Z� (6.23)

Then it is easy to see that (6.22) reduces to two systems, one for Ỹ , η1, Z̃ , h1: [which
we write by replacing the singular coefficients (6.10) with their leading orders, recall
r2 ∼ 8M2x2]

(S�Ỹ )1 +
1

3
S∇1(

S∇k
Ỹk) − 1

4Mr
Ỹ1 + O(

1

|x |2 )η1 = Z̃1

(S�Ỹ )i +
1

3
/∇(S∇k

Ỹk) +
1

r2
Ỹi = Z̃i , i = 2, 3

−S�η1 +
b

|x |3 η1 + O(
1

|x | 32
)S∇k Ỹ j = h1, b > 0 (6.24)

and one for the spherically symmetric parts of the variables, η0,Y10, h0, Z10:

∂21Y10 + O(
1

|x | 12
)∂1Y10 − 1

4Mr
Y10 + O(

1

|x |2 )η0 = Z10

−∂21η0 + O(
1

|x | 12
)∂1η0 +

b

|x |3 η0 + O(
1

|x | 32
)∂1Y10 + O(

1

|x |2 )Y10 = h0, b > 0,

(6.25)

where O(|x |a) denotes a smooth function, x �= 0, satisfying ∂
( j)
1 O(|x |a) = O(|x |a− | j |

2 ).
Recall that ∂1 ∼ √|x |∂x .
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The potential terms 1
r2
Ỹi , i = 2, 3 in (6.24) are troublesome, because they come with

a bad sign and it is precisely the reason we need (6.12) and Lemma (6.3) to handle them.
Note that the zeroth order term− 1

4Mr Y10 in thefirst equation of (6.25) has a favourable
sign, but it is one order weaker than the favourable term coming from the sphere Lapla-
cian in the equations, see also (6.29) below. This fact forces us to treat the spherically
symmetric part of Y separately.

Proposition 6.8 (A priori elliptic estimate I). Assume h1 ∈ H2,α−3
sc , Z̃ ∈ H2,α−2

vf-1 , Z� ∈
K⊥, and η1 ∈ H4,α

sc ∩H1
0 , Ỹ ∈ H4,α

vf-1 ∩H1
0 ,Y� ∈ K⊥ solving (6.24). Then the following

estimate holds:

‖η1‖2H4,α
sc

+ ‖Ỹ‖2
H4,α
vf-1

� ‖h1‖2H2,α−3
sc

+ ‖Z̃‖2
H2,α−2
vf-1

+ ‖η1‖2L2 + ‖Ỹ‖2L2 (6.26)

If in addition x ∈ (−ε, ε), ε > 0 sufficiently small (how small depending on the
coefficients of the system (6.24) and α), then (6.26) can be improved to

‖η1‖2H4,α
sc

+ ‖Ỹ‖2
H4,α
vf-1

� ‖h1‖2H2,α−3
sc

+ ‖Z̃‖2
H2,α−2
vf-1

(6.27)

Proof. We will employ the inequality for Y� given by Lemma 6.3:∫
r2S2

| /∇Y�|2
|x |2α +

1

3

| /∇ i Y�
i |2

|x |2α dμr2S2 ≥ 4

3

∫
r2S2

|Y�|2
r2|x |2α dμr2S2 . (6.28)

and the standard one for Ỹ1∫
�0

| /∇Ỹ1|2
|x |2α dμSg ≥ 2

∫
�0

Ỹ 2
1

r2|x |2α dμSg ≥ c
∫

�0

Ỹ 2
1

|x |2α+2 dμSg, (6.29)

which is immediate by definition (6.11), (6.23). Multiplying (6.24) with 1
ε

Ỹi
x2α

,
η1
x2α

respectively, subtracting the first two equations from the last, integrating on �0 and
integrating by parts we arrive at the inequality∫

�0

|S∇η1|2
|x |2α +

1

ε

|S∇Ỹ |2
|x |2α +

1

3ε

|S∇ i
Ỹi |2

|x |2α +
1

ε

Ỹ 2
1

4Mr |x |2α +
η21

|x |2α+3 dμSg

(∂1 ∼ √|x |∂x )

≤
∫

�0

Cα
|η1∂1η1|
|x |2α+ 1

2

+
1

ε
Cα

|Ỹ S∇1Ỹ |
|x |2α+ 1

2

+
1

ε
C

|η1Ỹ1|
|x |2α+2 +

1

ε

|Y�|2
r2|x |2α

+ C
|η1S∇ j Ỹi |
|x |2α+ 3

2

+
h1η1
|x |2α − 1

ε

Z̃i Ỹ i

|x |2α dμSg

≤
∫

�0

1

2

(∂1η1)
2

|x |2α + Cα2 η21

|x |2α+1 +
|S∇1Ỹ |2

|x |2α +
C

ε2
α2 |Ỹ |2

|x |2α+1 +
C

ε2

η21

|x |2α+2

+
Ỹ 2
1

|x |2α+2 +
1

ε

|Y�|2
r2|x |2α +

1

2

η21

|x |2α+3 + C
|S∇ j Ỹi |2

|x |2α

+
1

4

η21

|x |2α+3 + C
h21

|x |2α−3 +
|Ỹ |2

|x |2α+2 +
C

ε2

|Z̃ |2
|x |2α−2 dμSg (6.30)
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Now the desired estimate at the level of H1 (i.e., the parts of the relevant norms that
depend on up to one derivative of η1, Ỹ ) follows by comparing the powers in the denom-
inators on both sides, taking ε > 0 sufficiently small utilizing the inequalities (6.28),
(6.29). If |x | � 1, then it is easy to see that all weighted η1, Ỹ terms can be absorbed in
the LHS. The full H4,α estimate is obtained by using (6.24), differentiating the system in
the spatial directions and applying a similar procedure. We only derive the second order

estimate: Multiply the system (6.24) with 1
ε

S∇22Ỹ
|x |2α−2 ,

S∇22η1
|x |2α−3 , integrate over �0, subtract

the first two equations from the third one and integrate by parts twice to deduce

∫
�0

|S∇S∇2η1|2
|x |2α−3 +

1

ε

3∑
i=1

|S∇S∇2Ỹ |2
|x |2α−2 +

1

ε

|S∇2Ỹ1|2
4Mr |x |2α−2 +

|S∇2η1|2
|x |2α dμSg

≤
∫

�0

Cα
|S∇21η1

S∇2η1|
|x |2α−3+ 1

2

+
|SRicS∇η1

S∇2η1|
|x |2α−3 +

C

ε
α

|S∇21Ỹ S∇2Ỹ |
|x |2α−2+ 1

2

+
1

ε

|SRicS∇Ỹ S∇2Ỹ |
|x |2α−2 +

1

ε

1

3

/∇(S∇k
Ỹk)S∇22Ỹ

|x |2α−2

+
1

ε

1

3

S∇1( /∇k Ỹk)S∇22Ỹ

|x |2α−2 +
C

ε

|η1S∇22Ỹ1|
|x |2α + C

|S∇ j Ỹi S∇22η1|
|x |2α− 3

2

− h1S∇22η1

|x |2α−3 +
1

ε

Z̃i
S∇22Ỹ i

|x |2α−2 dμSg

(|SRic| ∼ r−2)

≤
∫

�0

1

2

|S∇21η1|2
|x |2α−3 + Cα2 |S∇2η1|2

|x |2α−2 + C
|S∇η1|2
|x |2α−1 +

1

2ε

|S∇21Ỹ |2
|x |2α−2

+
C

ε
α2 |S∇2Ỹ |2

|x |2α−1 +
C

ε

|S∇Ỹ |2
|x |2α +

1

4ε

|S∇22Ỹ |2
|x |2α−2 +

1

9ε

| /∇S∇Ỹ |2
|x |2α−2

+
1

4ε

|S∇22Ỹ |2
|x |2α−2 +

1

9ε

|S∇1 /∇Ỹ |2
|x |2α−2 + C

η21

|x |2α+2 +
1

20ε

|S∇22Ỹ |2
|x |2α−2

+ C
|S∇ j Ỹi |2

|x |2α +
1

2

|S∇22η1|2
|x |2α−3 + C

h21
|x |2α−3 +

1

20ε

|S∇2 j Ỹi |2
|x |2α−2

+
C

ε

|Z̃ |2
|x |2α−2 dμSg (6.31)

We obtain a bound for the weighted norms of the second derivatives of the vari-
ables, including only one ∂1 derivative, by adding to (6.31) its analogue for the terms
S∇S∇3η1,

S∇S∇3Ỹi , absorbing the second order terms of the RHS in the LHS and by
applying the H1 estimate we derived above to the lower order terms. Finally, in order to
bound the corresponding norms of S∇11Ỹi , S∇11η1 as well, we use directly the system
(6.24) to move the derivatives we have already controlled to the RHS. Then we first take
the ‖ ·

|x |α−1 ‖L2 norm of the first two equations in (6.24):



966 G. Fournodavlos

3∑
i=1

‖
S∇11Ỹ

|x |α−1 ‖L2 � ‖ /∇2Ỹ

|x |α−1 ‖L2 + ‖
S∇1 /∇Ỹ

|x |α−1 ‖L2 + ‖
S∇Ỹ

|x |α ‖L2

+ ‖ Ỹ

|x |α+1 ‖L2 + ‖ η1

|x |α+1 ‖L2 + ‖ Z̃

|x |α−1 ‖L2 (6.32)

and the ‖ ·
|x |α− 3

2
‖L2 norm of the third equation of (6.24) to infer that

‖
S∇11η1

|x |α− 3
2

‖L2 ≤ ‖ /∇2
η1

|x |α− 3
2

‖L2 + ‖
S∇1 /∇η1

|x |α− 3
2

‖L2 + ‖
S∇η1

|x |α ‖L2

+‖ η1

|x |α+ 3
2

‖L2 + ‖
S∇ j Ỹi
|x |α ‖L2 + ‖ h1

|x |α− 3
2

‖L2 (6.33)

��

For the spherically symmetric parts of η, Y (6.11) we prove the following:

Proposition 6.9 (A priori elliptic estimate II). Let h0 ∈ H2,α−3
sc , Z10 ∈ H2,α−1

vf-0 and

η0 ∈ H4,α
sc ∩ H1

0 ,Y10 ∈ H4,α
vf-0 ∩ H1

0 , all x variable functions solving (6.25). Then for α

sufficiently large the following estimate holds:

‖η0‖2H4,α
sc

+ ‖Y10‖2H4,α
vf-0

� ‖h0‖2H2,α−3
sc

+ ‖Z10‖2H2,α−1
vf-0

+ ‖η0‖2L2 + ‖Y10‖2L2 (6.34)

If in addition x ∈ (−ε, ε), ε > 0 sufficiently small, how small depending on the coeffi-
cients of the system (6.9) and α, then in fact

‖η0‖2H4,α
sc

+ ‖Y10‖2H4,α
vf-0

� ‖h0‖2H2,α−3
sc

+ ‖Z10‖2H2,α−1
vf-0

(6.35)

Proof. Wemultiply the first equation above with ∂1Y10

|x |2α− 1
2
, integrate over�0 and integrate

by parts: [note that the boundary terms are either zero or have a good sign]

∫
�0

α
(∂1Y10)2

|x |2α dμSg ≤
∫

�0

C
(∂1Y10)2

|x |2α + C
|Y10∂1Y10|
|x |2α+ 1

2

+ C
|η0∂1Y10|
|x |2α+ 3

2

+
Z10∂1Y10

|x |2α− 1
2

dμSg

≤
∫

�0

C
Y 2
10

|x |2α+1 + C
(∂1Y10)2

|x |2α +
1

4

η20

|x |2α+3

+
Z2
10

|x |2α−1 dμSg (6.36)
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On the other hand, multiplying the second equation in (6.25) with η0
|x |2α , integrating over

�0 and integrating by parts we have

(b > 0)
∫

�0

(∂1η)2

|x |2α + b
η20

|x |2α+3 dμSg

≤
∫

�0

Cα
|η0∂1η0|
|x |2α+ 1

2

+ C
|η0∂1Y10|
|x |2α+ 3

2

+ C
η0Yi0
|x |2α+2 +

η0h0
|x |2α dμSg

≤
∫

�0

1

2

(∂1η0)
2

|x |2α + Cα2 η20

|x |2α+1 +
1

2

η20

|x |2α+3 + C
(∂1Y10)2

|x |2α

+ C
Y 2
10

|x |2α+1 + C
h20

|x |2α−3 dμSg (6.37)

Adding (6.32), (6.33) we employ Hardy’s inequality∫ ε

−ε

Y 2
10

|x |2α+1 dx ≤ 1

α2

∫ ε

−ε

(∂xY10)2

|x |2α−1 dx, ∂x ∼ 1√|x |∂1. (6.38)

and take advantage of the largeness of α to absorb most terms in the LHS and obtain a
weighted H1 estimate for Y10, η0. The higher order norms are controlled in turn using the
system (6.25) and differentiating in ∂1. If in addition |x | � 1, we deduce the improved
estimate (6.35) by absorbing in the LHS all the η0,Y10 terms appearing in the final
inequalities. ��

The Propositions 6.8, 6.9 combined imply that D� (6.20) is semi-Fredholm, i.e., it
has finite dimensional kernel and closed range. Since similar type of estimates can also
be derived for the adjoint operator, it follows that the linearized map is Fredholm. In the
case where |x | � 1, we proved that the estimates can be improved to yield that D� is
an isomorphism. This completes the proof of Proposition 6.6.
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Appendix A. Changing Frames Freedom; Propagating Identities; Retrieving the
EVE from the Reduced Equations

Given a spacetime (M1+3, g) and an orthonormal frame {ei }30, one may change to a
Lorenz gauge frame {ẽi }30 by solving the following semilinear system of equations,
which is derived by taking the divergence of (2.9):

�g(O
l
a) = (div Ã)a

d
Ol
d + Ã∂O + A∂O + Ok

a (divA)k
l

(by (2.15) for Ã) = Ã2O + Ã∂O + A∂O + OdivA

(from (2.8)) = O5A2 + O3(∂O)2 + AO4∂O + AO2∂O

+ O(∂O)2 + A∂O + OdivA,

where the terms without indices in the RHS stand for an algebraic expression of a finite
number terms of the depicted type.
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Lemma A.1. If the above system (which we write schematically as)

�g(O
b
i ) = O5A2 + O3(∂O)2 + AO4∂O + AO2∂O

+ O(∂O)2 + A∂O + OdivA. (A.1)

is well-posed in a certain solution space, then there exists a unique orthonormal frame

ẽi = Ob
i eb (A.2)

with Ob
i lying in that particular space, which is identical to {ei }30 on the initial hyper-

surface �0, verifies the Lorenz gauge condition (2.15) and such that the connection
coefficients ( Ã0)i j := g(∇ẽ0 ẽi , ẽ j ), i < j , are equal to a priori assigned functions on
�0; within the corresponding space of one order of regularity less than Ob

i .

Proof. It suffices to show that the initial data for (A.1) is uniquely determined by the
assertions. We set

Ob
i (τ = 0) := Ii

b (i.e., ẽi = ei on �0). (A.3)

Let

ẽ0(O
b
i )(τ = 0) = e0(O

b
i )(τ = 0) =: hbi , hbi mbj = −hbjmbi . (A.4)

Then the transition formula (2.8) for X = ẽ0 reads

( Ã0)i j (τ = 0) = (A0)i j (τ = 0) + hbi mbj . (A.5)

Thus, the components ( Ã0)i j can be freely prescribed initially by choosing hbi in (A.4)
accordingly. ��

A.1. Proof of proposition 2.1. We will leave the reader to fill in the details for the fact
that the solution (Aν)i j , Oa

i of (2.16), (2.19) corresponds to a spacetime (M1+3, g).
This is a consequence of the necessary initial assumption (2.20). One such immediate
consequence follows from (2.19) for i = 0:

∂0(O
a
0 ) = −Ob

0�a
[0b], Oa

0 (τ = 0) − I0
a = 0, (A.6)

which implies Oa
0 = I0a and hence e0 = ∂0 everywhere, since �a[00] = 0. The set of

functions Oa
i defines the orthonormal frame {ei }30 in M1+3 through (2.18) and hence

completely determines the metric g. What remains to be verified is that the connection
coefficients of {ei }30 are indeed the (Aν)i j ’s of the given solution. In other words, we
have to show that the connection D induced by the solution set (Aν)i j ,

Deν ei := (Aν)i
kek, (A.7)

is the Levi–Civita connection ∇ of the metric g. Formally, one cannot take this for
granted. It has to be retrieved from the equations (2.16), (2.19) and the initial assumption
(2.20). For example, the compatibility of D with respect to g is encoded in the skew-
symmetry of the (Aν)i j ’s

D(g) = 0, iff (Aν)i j + (Aν) j i = 0, (A.8)
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which also has to be verified, since it is a priori valid only initially (2.20). The way to do
this is by deriving the following new system of equations from (2.16) for the symmetric
sums:

�
(
(Aν)i j + (Aν) j i

) = (A[μ)ν]
k
ek

(
(Aμ)i j + (Aμ) j i

)
+ eμ

(
(A[μ)ν]k

[
(Ak)i j + (Ak) j i

])
+ eν

(
A
[
(A)i j + (A) j i

])
+ eν

(
(Aμ)μ

k[
(Ak)i j + (Ak)i j

])
, (A.9)

where we have assumed that the sum (A2)i j+(A2) j i corresponding to the term A2 in the
gauge condition (2.15) can be expressed as A

[
(A)i j + (A) j i

]
. Since (A.9) has zero initial

data (2.20), the symmetric sums are zero everywhere and hence the skew-symmetry
(A.8) propagates.21

Proof of proposition 2.1; EVE and Lorenz gauge. Recall (2.17) and the reduced equa-
tions Hνi j = 0. By assumption (Aν)i j is a solution of (2.16), i.e., the RHS of (2.17)
vanishes. Taking the divergence of (2.17) with respect to the index ν, the first part of the
LHS of (2.17), corresponding to the curl of the Ricci tensor, vanishes and we are left
with

�g
(
divA− A2)

i j

= (Aν)i
ceν

(
divA − A2)

cj + (Aν) j
ceν

(
divA − A2)

ic. (A.10)

The Lorenz gauge condition is valid initially (2.21). If the e0 derivative of
(
divA− A2

)
i j

is zero as well on �0, then the Lorenz gauge is valid in all of M1+3 = � × [0, T ].22
This is in fact implied by (2.17), putting ν = 0 we have

e0
(
divA − A2)

i j = ∇ jR0i − ∇iR0 j = 0 on �0 (A.11)

by virtue of the vanishing ofRab(τ = 0) (2.21) and the (twice contracted) secondBianchi
identity, ∇aRab = 1

2R, to replace if necessary a transversal derivative with tangential
ones to �0.
On the other hand, taking the ∇ i divergence of (2.17) and commuting derivatives we
obtain

�gRν j = ∇ i∇ jRνi = 1

2
∇ j∇νR + Ri

j
c
ν
Rci + Ri

j
c
iRνc

= Ri
j
c
ν
Rci + R j

cRνc, (A.12)

where we employed again the twice contracted second Bianchi identity and the fact that
the scalar curvature R vanishes everywhere: [contracting {ν j} in (2.17)]

0 = ∇iR − 1

2
∇iR = 1

2
∇iR, R

∣∣
�0

= 0. (A.13)

Now that we know the Lorenz gauge is valid, the identities (2.21) and (2.17) i = 0 imply

Rν j = 0, ∇0Rν j = ∇ jRν0, on �0. (A.14)

21 This follows by a basic a priori energy estimate for linear systems like (A.9), which in the singular
Schwarzschild background is derived in Sect. 5.3 for the more involved quasilinear system (4.3).
22 Note however that the term e0

(
divA−A2

)
i j is of second order in A and hence not at the level of initial data

for (2.16), which we are allowed to prescribe. If zero initially, this should be a consequence of the geometric
nature of the equations.
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Utilizing the second Binachi identity ∇aRab = 1
2R = 0 once more, we conclude that

∇0Rν j vanishes and hence the initial data set of (A.12) is the trivial one. Thus, the initial
condition Rν j (τ = 0) = 0 (2.21) propagates and the spacetime (M1+3, g) obtained
from the solution of (2.16) verifies the EVE (1.1). ��
Remark A.2. Given the frame {ei }30 initially on�0, and once the components (A0)i j (τ =
0) have been chosen,23 then the initial data set of (2.13) is fixed by condition (2.21),
i.e., the EVE and Lorenz gauge on �0. Indeed, the components (Aν)i j (τ = 0),
ν, i, j = 1, 2, 3, are determined uniquely by the orthonormal frame {ei }31 on (�0, g).
The (Ai )0 j (τ = 0)’s correspond to the components of second fundamental form Ki j of
�0, which is given by the solution to the constraints (1.5), included in (2.21). Moreover,
the expression of (2.21) in terms of A, for ν, i = 1, 2, 3, reads (schematically)

e0(Aν)0i = eν(A) + A2

e0(A0)i j =
3∑

μ=1

eμ(Aμ)i j + A2 on �0. (A.15)

Hence, the LHS functions are expressed in terms of already determined components.
Finally, the rest components e0(Aν)i j (τ = 0), ν, i, j = 1, 2, 3, are fixed by the algebraic
property of the Riemann tensor

R0νi j = Ri j0ν

e0(Aν)i j − eν(A0)i j − ([Aμ, Aν])i j − (A[μ)ν]k(Ak)i j =
ei (A j )0ν − e j (Ai )0ν − ([Ai , A j ])0ν − (A[i ) j]k(Ak)0ν

or

e0(Aν)i j = eν(A0)i j + ei (A j )0 j − e j (Ai )0ν + A2, on �0, (A.16)

since all the terms in the RHS have been accounted for. Notice that the definition of
Riemann curvature was implicitly used in deriving (A.12) upon commuting covariant
derivatives.
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8. Chruściel, P., Delay, E.: Onmapping properties of the general relativistic constraints operator in weighted
function spaces, with applications. Mém. Soc. Math. Fr. (N.S.) No. 94 (2003), vi+103 pp.

9. Dafermos, M.: Black holes without spacelike singularities. Commun. Math. Phys. 332, 729–757 (2014)
10. Dafermos, M. and Rodnianski I.: Lectures on black holes and linear waves. In: Clay Mathematics Pro-

ceedings, vol. 17, pp. 97–205. Amer. Math. Soc., Providence, RI (2013). arXiv:0811.0354
11. Dilts, J., Isenberg, J., Mazzeo, R., Meier, C.: Non-CMC solutions of the Einstein constraint equations on

asymptotically Euclidean manifolds. Class. Quantum Gravity 31, 1–10 (2014)
12. Garfinkle, D.: Numerical simulations of singular spacetimes. Class. Quantum Gravity 29, 7 (2012)
13. Geroch, R., Kronheimer, E., Penrose, R.: Ideal points in space-time. Proc. R. Soc. Lond. Ser. A 327, 545–

567 (1972)
14. Gicquaud, R., Ngô, Q.A.: On the far from constant mean curvature solutions to the Einstein constraint

equations. Class. Quantum Gravity 31, 19504 (2014)
15. Holst, M., Nagy, G., Tsogtgerel, G.: Rough solutions to the Einstein constraint equations on closed

manifolds without near-CMC conditions. Commun. Math. Phys. 288, 547–613 (2009)
16. Isenberg, J., Moncrief, V.: Asymptotic behaviour in polarized and half-polarizedU (1) symmetric vacuum

spacetimes. Class. Quantum Gravity 19(21), 5361–5386 (2002)
17. Kichenassamy, S., Rendall, A.D.: Analytic description of singularities in Gowdy spacetimes. Class.

Quantum Gravity 15(5), 1339–1355 (1998)
18. Klainerman, S., Rodnianski, I., Szeftel, J.: The bounded L2 curvature conjecture. Invent.

Math. 202(1), 91–216 (2015)
19. Luk, J.: Weak null singularities in general relativity. arXiv:1311.4970
20. Luk, J., Rodnianski, I.: Local propagation of impulsive gravitational waves. Commun. Pure Appl.

Math. 68(4), 511–624 (2015)
21. Luk, J., Rodnianski, I.: Nonlinear interaction of impulsive gravitational waves for the vacuum Einstein

equations. arXiv:1301.1072
22. Maxwell, D.: A class of solutions of the vacuum Einstein constraint equations with freely specified mean

curvature. Math. Res. Lett. 16, 627–645 (2009)
23. Maxwell, D.: A model problem for conformal parameterizations of the Eins tein constraint equa-

tions. Commun. Math. Phys. 302(3), 697–736 (2011)
24. Moncrief, V.: An integral equation for spacetime curvature in general relativity. Isaac Newton Institute

Preprints (2005)
25. Ori, A.: Perturbative approach to the inner structure of a rotating black hole. Gen. Relativ.

Gravit. 29(7), 881–929 (1997)
26. Poisson, E., Israel, W.: Internal structure of black holes. Phys. Rev. D (3) 41(6), 1796–1809 (1990)
27. Rendall, A.D.: Fuchsian analysis of singularities in Gowdy spacetimes beyond analyticity. Class. Quan-

tum Gravity 17(16), 3305–3316 (2000)
28. Rendall, A.D.: Fuchsian methods and spacetime singularities. Class. Quantum Gravity 21, 295–304

(2004)
29. Ringström, H.: The Bianchi IX attractor. Ann. Henri Poincar. 2(3), 405–500 (2001)
30. Ringström, H.: On Gowdy vacuum spacetimes. Math. Proc. Camb. Philos. Soc. 136(2), 485–512 (2004)
31. Rodnianski, I., Speck, J.: Stable Big Bang Formation in Near-FLRW Solutions to the Einstein-Scalar

Field and Einstein-Stiff Fluid Systems. arXiv:1407.6298

Communicated by P. T. Chruściel
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