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Abstract

We study the future stability of cosmological fluids, in spacetimes with an accelerated expansion,
which exhibit extreme tilt behavior, ie. their fluid velocity becoming asymptotically null at timelike
infinity. It has been predicted in the article [I7] that the latter behavior is dominant for sound speeds
beyond radiation c¢; = 1/4/3, hence, bifurcating off of the stable orthogonal fluid behavior modeled by
the classical FLRW family of solutions, for ¢ € [0, %] First, we construct homogeneous solutions to
the Einstein-Euler system with the latter behavior, in S spatial topology, for sound speeds ¢2 € (%7 1).
Then, we study their future dynamics and prove a global stability result in the restricted range ¢? €
(%, %) In particular, we show that extreme tilt behavior persists to sufficiently small perturbations of the
homogeneous backgrounds, without any symmetry assumptions or analyticity. Our method is based on a
bootstrap argument, in weighted Sobolev spaces, capturing the exponential decay of suitable renormalized
variables. Extreme tilt behavior is associated with a degeneracy in the top order energy estimates that
we derive, which allows us to complete our bootstrap argument only in the aforementioned restricted
range of sound speeds. Interestingly, this is a degeneracy that does not appear in the study of formal
series expansions. Moreover, for the Euler equations on a fixed FLRW background, our estimates can be
improved to treat the entire beyond radiation interval c2 € (%, 1), a result already obtained in [2I]. The
latter indicates that the former issue is related to the general inhomogeneous geometry of the perturbed
metric in the coupled to Einstein case.
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1 Introduction

The standard model in cosmology is the Einstein-Euler system with a positive cosmological constant:

) 1
Ric,, — ig””R +Agu =Ty, (1.1)
D"T,, =0, (1.2)
where T),,, is the energy momentum tensor of a perfect fluid,

TAW = (p +p)u#uv + pg;wa (13)
with linear equation of state p = ¢2p and sound speed in the interval ¢, € [0,1]. Different values of ¢, are
used to model different states of matter in the universe, e.g. dust c¢s = 0, radiation ¢y = %, stiff ¢; = 1.
Here, p, p are the pressure and density respectively, u is the unit fluid velocity, g(u,u) = —1, and we have

chosen geometric units so that in particular the speed of light is 1.
It is convenient to consider the renormalized fluid speed

” c 1
Up =P Uy, Ts = 1 +CZ € [07 5] (14)
Then, the equations of motion ([1.2]) read (Lemma |A.1)):
1
(D), + 5Dy(p%) =0, (1.5)
(1 —2ry)D,log p + D! v, =0. (1.6)

The initial data for (1.1]), (1.5), (1.6)) on a Cauchy hypersurface ¥ consist of (g, l::, 0, 0,70), satisfying the
constraint equations:

R— |k|? + (trk)® =2A + 2(1 + 2)p' 22 — 25, (1.7)
divk — dtrk = — (1 + ) =2 do, (1.8)

and the identity 02 = §(o, 1) + p*"=. It is well-known that the above system of equations is locally well-posed
(see [31, Section 3.2] for a detailed discussion), giving rise to a development (M, g, p,v).
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1.1 The space of homogeneous solutions: Orthogonal vs tilted fluids, radiation
bifurcation

There are numerous papers in the physics literature [9] 14l 15 19} 20] 27, 32 B3] that study the space of
homogeneous solutions to the Einstein-Euler system -. Most relevant to the present paper is the
work [15] (see also [I4] 27]), where the authors, using dynamical systems techniques, notice the following
classification of homogeneous solutions in various Bianchi symmetry classes (for the whole picture below to
be valid, a certain number of non-trivial structure coefficients are required):

1. The metric approaches a de Sitter-like state
g = —dt* + g;;dz'da’, (t,x) € [T, 4+00) x & = M. (1.9)

That is to say, the rate of expansion of the universe, g;; ~ e?!c;;, is uniform in all spatial directions
and is dictated by the Hubble constant, equal to leading order to H = y/A/3.

2. Asymptotically orthogonal fluids, 0 < ¢, < 1/4/3: For sound speeds below radiation, the fluid velocity
becomes asymptotically orthogonal to the level sets of ¢, ie. u = —ug0; + urey with ug — —1, uy — 0,
as t — 400, where g(er,ez) = dr;.

3. Tilted fluids, ¢; = 1/ V/3: The fluid velocity can pick up a ‘tilt’ at infinity, relative to the level sets
of ¢, while all components of the fluid remain bounded, ie. there exist constants u§°, u3°, such that
ug — ud’, ur — u°, as t — +oo, where u = —ugd; + urey and gler,ey) = dr;.

4. Fluids with extreme tilt, 1/v/3 < ¢s < 1: The components of the fluid velocity become unbounded,
while the fluid vector field u € T M approaches the null cone at infinity. More precisely, there exist
constants ug”, u$° such that

2
—A Ht t—=>+00 o —A Ht t=>+00 oo _ 3Cs -1 co\2 _ 00, 00
(& uy — Uq uy — ur, As = 1_702, (UO ) = Uy ur, (110)
S

s e

where u = —upd; + urer and g(er,e;) = dr7. Note that A, > 0, for ¢ € (%, 1). In other words, the
leading order behavior of u is a null vector field.

5. The density p decays exponentially in all above cases, as ¢ — 400, at a rate which depends on c,
compensating especially in case [] for the exponential growth of the fluid components ug, u;.

6. Breakdown, ¢, = 1: The fluid velocity becomes null in finite time. Hence, the model is not suitable for
global existence.

An immediate observation from the above classification is that there is a bifurcation phenomenon, regarding
the behavior of the fluid at infinity, relative to the different sound speeds at exactly the radiation case
cs =1/ V/3. Of course, this is a behavior exhibited by homogeneous solutions and the natural question that
arises is whether the latter phenomenon persists to inhomogeneous solutions.

1.2 Analytic solutions without symmetries: Stability/instability predictions

In [I7], the authors carried out a heuristic analysis of general, inhomogeneous, solutions to the Einstein-
Euler system — based on formal series expansions from infinity. They concluded that the behavior
of the fluid for the different sound speeds is consistent with the picture in the homogeneous case, the
difference being that the asymptotic data at infinity are now functions instead of constants, e.g. ¢;; 1= ¢;;(x),
ud® = ug®(x) etc. In particular, extreme tilt behavior for sound speeds in the range 1/v/3 < ¢, < 1, persists
to inhomogeneous solutions enjoying all degrees of freedom, in a function counting sense. The latter is an
indication that the obtained qualitative picture is generic.

A rigorous construction of analytic solutions, without symmetries, was subsequently achieved by Rendall
[28] using Fuchsian techniques. Once more, the behavior of solutions is determined in detail by expansions
from infinity to any order, in the spirit of [I7], containing all functional degrees of freedom. The only deviation
from the heuristic picture becomes apparent in the range 1/v/3 < ¢, < 1, for solutions having extreme tilt. In
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the latter regime, Rendall’s result [28] only applies to asymptotic data having non-vanishing spatial velocity,
ie. ug®(x)uP(z) # 0. In the presence of a vanishing point, he predicted the blowup of the density contrast
Vlog p, and hence a form of breakdown in the fluid, which in his words “is reminiscent of spikes” that are
observed in Big Bang singularities. Numerical support for Rendall’s breakdown prediction was recently given
in [2], and rigorously proven in [26], for a restricted range of sound speeds beyond radiation, under symmetry
assumptions, albeit for the relativistic Euler equations on a fixed FLRW background and not coupled to
Einstein. An interesting feature of the inhomogenous solutions of the relativistic Euler equations from [26] is
that they behave like orthogonal fluids at points where the spatial velocity vanishes at timelike infinity while
at points with non-vanishing spatial velocity they exhibit extreme tilt.

1.3 Future stability of FLRW: The range up to radiation 0 < ¢, < 1/\/§

The current work concerns the future stability of certain homogeneous background solutions in finite regularity
spaces. To that extent, the simplest background solution one can consider is a member of the FLRW family
of solutions. This is an orthogonal fluid and according to the predictions from the study of formal series
expansions, it can only be expected to be stable for sound speeds in the range 2 € [0, %]

Indeed, future stability of FLRW was first established for ¢2 € (0,%) in the irrotational case [30] and
subsequently in the presence of vorticity [31], showing in particular that the perturbed solution becomes
asymptotically orthogonal as well. Remarkably, the latter works demonstrated that an accelerated expansion
can silence fluid degeneracies, like shocks, which are in general expected to occur otherwiseEﬂ The dust case
s = 0 was treated in [16], where the fluid is asymptotically orthogonal as well, and the radiation case 2 = %
was treated via conformal methods [I8], where as in the heuristic picture, the fluid can pick up a slight tilt
at infinity. An alternative approach that provides a uniform treatment of future stability in the parameter

range 0 < ¢2 < £ can be found in [24]. For fluid stabilisation in higher dimensions, see the more recent [23].

1.4 Main results: Going beyond the radiation threshold ¢, > 1/\/§

For sound speeds above radiation, ie. ¢, > 1/v/3, FLRW is not the right background to consider, since the
heuristic analysis [I7] suggests that extreme tilt should be the dominant behavior, a feature qualitatively
different from FLRW. In order to study the future stability of extreme tilt behavior in fluids, it is appropriate
to consider homogeneous backgrounds that have this property.

1.4.1 The tilted homogeneous backgrounds

To allow for extreme tilt behavior in homogeneous solutions, a certain number of non-trivial structure coef-
ficients and anisotropy is needed to satisfy the constraints. We find it convenient to look at homogeneous
background metrics of the form

3
g=—d’ +) Gl v + G*()(V° @9 +9° @97, (1.11)

i=1

defined over [T, 4+00) x S?, where ¢® are the 1-forms dual to the non-holonomic basis of spatial vector fields

Y; defined in ([1.18)).

Also, we assume that the homogeneous fluid speeds w are tilted only relative to the first spatial coordinate:
7 = cosh((t))0; + sinh(A(t))GT ()Y7. (1.12)

The existence of such solutions, in the range ¢? € (%, 1), is obtained by an ODE analysis at infinity (see

Appendix . In other words, a backwards construction, assuming that the metric (1.11)) asymptotically
isotropizes:

G2(t) = (G)%e2Ht 4 1.0.t. G%(t) = lLo.t. 1.13
i(t) = (G) ,

1See for example Christodoulou’s breakthrough work [7] on the formation of shocks for the relativistic Euler equations in
Minkowski spacetime.

2Fluid stabilisation, as an effect of an accelerated expansion, was first rigorously established by Brauer-Rendall-Reula [3] for
Newtonian cosmological models.
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for some constants G3° > 0. T > 0 is some sufficiently large time given by the interval of existence of the
solution to the homogeneous Einstein-Euler system.

An important feature of the fluids that we consider is that both components of the fluid speed grow
exponentially, while the fluid speed itself becomes asymptotically null, as ¢ — +00, in the sense that

3c2—1 3c¢2 -1

cosh(A(t)) = age =<3 ey Lo.t., cosh(0(t)) = aje '~<2 ey Lo.t., ai = a3 #0, (1.14)
for % < ¢g < 1. The growth of the fluid components is compensated by the exponential decay of the density:

9 14c2

plt) = e =2 Lot (1.15)

The precise estimates satisfied by the above variables and their derivatives are stated in Lemma [2.3] and
derived in Appendix

1.4.2 Brief framework

We express all spacetime metrics in this article relative to a coframe, propagated along the gradient of a time
function ¢ € [T, +00):

g = —n?dt* + g (1.16)

Here n is the lapse of the t-foliation, ¥; = S3, the shift vector field is set to zero, and g is the induced
metric on X;. When we compare variables associated to different metrics, e.g. a homogeneous solution and
a perturbation of the latter, we use the natural identification of points in the different manifolds relative to
the above splitting. In this regard, the time function of the perturbed solution is fixed by requiring that the
lapse of its level sets equals

n—1=trk — trk, (1.17)

where trk is the mean curvature of >+ in the homogeneous background, see . As it turns out, the
condition leads to a parabolic equation for the lapse n, see (2.4), which is well-posed in the future
direction.

The 1-forms ¥, 1?2, 4> are dual to the basis of ¥;-tangent vector fields Y7, Ya, Y3 that are defined as follows.
Consider the basis of standard dS3-Killing vector fields

0 0 0 0

Y=g o g le T (@5~ gl
0 0 0 0

Y2 :(zlﬁ_x4%)|33+(z2$_1:3$)|33’ (118)
0] 0 0 0

Ya=(@'ggs 7 genle T (@507~ gl

where % here denote the Cartesian coordinate vector fields in R*. Since Y7 is diffeomorphic to S3, we pull
back Y; and then Lie propagate them along 0,

[0k, Yi] = 0. (1.19)
Note that Y; are non-holonomic, since initially on ¥
[Yi,Y)] = 2¢;5'Yi. (1.20)

Also, note that the relation is propagated in evolution by virtue of . The benefit of working with
the vector fields Y; is that they are non-degenerate. We will also use them as commutation vector fields to
derive higher order energy estimates in Section

Moreover, we consider an orthonormal frame

er = eby;, eo =n""'0y, (1.21)
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which is Fermi propagated along eg according to
D.,e;r = n " *(ern)eo, (1.22)

where D is the Levi-Civita connection of g. Note that e; is X;-tangent, provided it is initially the case. It
also holds that

D.,eo = n '(en)er. (1.23)
The connection coefficients associated to e, are

kry = —g(De,e0,e5) = krJ, v178 = 8(De,,e5,e8) = g(Ve,e5,e8) = —71B, (1.24)

where V is the Levi-Civita connection of g.
Lastly, the fluid vector field u is projected onto e,;:

U = g(uyeO) <0, ur = g(ua 6]), —Ug +ucuc = —1. (125)
Similarly, the renormalized fluid components equal

vy = p U, vy = ptuyg, —v3 +vove = —p*"e. (1.26)

1.4.3 Main theorem
We are now ready to state our overall stability theorem.

Theorem 1.1. Let g, p,u be a homogeneous solution (L.11)-(1.15) with extreme tilt, for ¢? € (%, %) Let

(S =S? g, loﬂ, p, 1) denote a perturbed initial data set around the latter homogeneous solution, satisfying the
constraints -, and let (M, g, p,u) be the corresponding mazximal solution to , , ./_gon-
sider the geometric and fluid variables k1, yrs5, €r,n, p* =, v, introduced above and let EU, 1B, €5, M, p¥re D),
denote the corresponding differences, after subtracting their background values, see (2.22)), (2.23)), [2.25). As-
sume that their initial data, induced by (g, Ioc, p, 1) and our choice of ey on X7 (see Section , are sufficiently
small in HN (371), for some N > 7 (see Sectionfor the precise definition of the norms):

& = kv sy + A ) + 1B ) + € Il s} (1.27)
i |

HN(27)

2rg

+ €2HTH{)\||%N(ET) +e

Then, the perturbed solution is globally defined in the future of X1, relative to the time function t normalized
by (L.17)), and the following estimates hold true:

kN Ex my + llTv ) + €5y (s, + e Rl Frn s, } < CE2%

S _ .
€2Ht||m|§{1\f*1(2t) 4 eT—2rs Ht||p2rs ?{Nfz(Et) §0527 (1.28)
. Sra py po .
e PAH By ) + e T (102 Iy, F 107 s, } S CE°,

for allt € [T, +00), where the constant C' > 0 depends on N and the background homogeneous solution, while

2 3c2 -1
i pre TR puye (1.29)
Moreover, the following improved estimates are valid:
Ikrsllwn .00 (s,) + 0]l wr—t00(5,) < Cee™2M (1.30)

—— 00

and there exist functions (€)% € WN=4°(S3), p2rs 955,53 € WN=5°°(S3) such that

167 — @) (W)™ ™ lwn-so(s,) < Cee™>,
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1[5 — B2 (@)e™ M yn 5.0 s,y < Ce2HE, (1.31)

4r 4r
2Ht— 255 Hty o~ 1255 HY

||p/2T\s —_ p/QT\soo(w)eiligsrs Ht”was,oc(Et § CEO(C_Ht + e

for allt € [T, +00), where 4”5 > 2. The leading order coefficients satisfy as well:

H(?’})O"(w)llww—m(gs),IIUN ( w500 gy, 1077 (@)llyn—s.00 sy < CE. (1.32)
Proof. The proof of the main estimates consists of a bootstrap argument . that is split into

Propositions [4.4] H . - The improved asymptotlo behaviors (|1.30) are a consequence of (|1.28] and

are derived in Proposition

Remark 1.2. For ¢? € (3, 2), the other parameters range inrs € (5,5), As € (0,3). If we were to treat
the whole beyond radlatlon range of sound speeds 2 € (3,1), then we would have 7, € (1, 3), As € (0, +00).
The reason for the restrictive assumption ¢ € (1 3 g) is due to a degenerate top order estimate for the fluid
variables, see in Proposition which is only useful when Ag < 1/2; ie. ¢s < 4/3/7, see also Remark
E9l We elaborate more on this issue in Section [T

Remark 1.3. The asymptotic behavior of the original variables g, p, u is easily deduced from Theorem
I = 1lwr-s(z,) < Ce M, lgis = 955 (@)X a0 (s, < C, (1.33)

le™ A b, — u® (W)l 5.0 s,y < Cle™ Mt 4 20 T3 1),

2 F¢ H 2Ht——4ts FHt (1.34)
leT=2% " p — p™ (w)llwv-s.e () S Ce”F + 22,
for all [T, +00), where
g5 = (Q)>QF)™, () (ee)* =6, (et)® = (€)™ + (é0)™, (1.35)
p°° = [pPre + () ]T, wy = (), ol =0 4T (1.36>
Here, (&2 ), p>°, U2 are the leading order coefficients of the corresponding background variables, see .
Remark 1.4. The asymptotic behavior of the metric (1.33)) is de Sitter-like, as anticipated. On the other
hand, the asymptotic behavior of the fluid variables ([1.34))-(1.35]) confirms that extreme tilt behavior persists
to general perturbations of the homogeneous backgrounds. Indeed, from (|1.31]) and (| we have
—(v§®)? + VPP = tiigloo 2 (—vE +vpvp) = — tiirrnoo ethp2TS =0. (1.37)
Hence,
(W) = (p%)" (v3°)? = [(p™) v} (p™) " vf° = ufu”, (1.38)

that is, the leading order behavior of u,, is null.

1.5 Previous work on the relativistic Euler equations: The entire beyond radi-
ation interval 1/v/3 < ¢, < 1

Our result is preceded by works on the relativistic Euler equations on a fixed (flat) FLRW background,
proving the future stability of homogeneous perfect fluids With extreme tilt, first for the restricted range
c? € (3, %) [25] and then for all sound speeds beyond radiation ¢? € (3, 1) [21]. This raises the question as to
whether our method can be improved to treat all 1/v/3 < ¢, < 1. In Appendix l we sketch a proof of the
analogue of the future stability result in [21] for the Euler equations on fixed S3-FLRW metrics, incorporating
the entire interval ¢2 € (1,1). The argument works independently of the value of ¢y, thanks to the absence of
certain error terms in the case of the simplified isotropic FLRW metric. Hence, we pinpoint in a sense where
the problem lies when studying the Euler equations on general inhomogeneous metrics, as in the coupled
to Einstein case. At the moment, we cannot see an improvement in our estimates that would lead to an
extension of Theorem for ¢2 > 3/7. We comment more on the degenerate top order estimates that we
are able to obtain in the next subsection. We should also emphasize that this seems to be a problem related
to energy estimates in finite regularity Sobolev spaces, which is not encountered in the study of formal series
expansions, making it even more peculiar should a real instability be present for ¢ > 3/7.
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1.6 Finite time breakdown prediction for the stiff fluid model: ¢, =1

The stiff case ¢; = 1 seems to be quite unstable, already by not permitting homogeneous solutions to the
Einstein-Euler system with extreme tilt, for general data. Indeed, this can be seen at the level of the ODE
analysis in Appendix Solving equations , for ¥1, 79 indicates that in general 7y ~ e3¢ (recall
that ry = %), while 77 ~ e~ H*, which means that the renormalized vector field ¥ would have to become null
in finite time for general leading order coefficients, even if the initial data are close to FLRW, ie. @ ~ 0.
Although the preceding observation concerns homogeneous solutions, it makes a strong case for instability.

In the irrotational case, the problem reduces to the study of the Einstein-massless-scalar field system. The
above breakdown behavior has actually been confirmed in [I1], for near FLRW data, without symmetries or
analyticity. More precisely, global existence is achieved for the scalar field, proving that its gradient, although
initially timelike, becomes null in finite time and eventually spacelike, except at critical points where its spatial
gradient vanishes. Thus, when interpreted as an irrotational stiff fluid, general perturbations of FLRW exhibit
the same type of breakdown.

Interestingly, the stiff fluid model was studied in spherically symmetry, for 1-ended asymptotically flat
spacetimes, in a series of papers [4 Bl [6l [§], as part of Christodoulou’s two phase model [4]. It is paired to
the dust model (¢; = 0) and while both are in general pathological, when it comes to gravitational collapse
or the formation of fluid degeneracies, the previous works prove that the two phases together form a more
physically stable model. Perhaps a remedy to the above phenomenon that we observe in the stiff case would
be a change in the equation of state, which would introduce a phase transition when the fluid velocity is close
to becoming null.

1.7 Method of proof: Degenerate top order estimates

Our proof i/s\based on bootstrapping the smallness of a weighted H™-type of energy for the variables
E, 5,€,1,0, p*'s, precisely, —. Improving the bootstrap assumptions yields a global solution sat-
isfying the main stability estimate (1.28]) by a standard continuation argument, see Proposition m
Assuming that the fluid variables are ‘well-behaved’, the stability analysis for the geometric variables is
similar to the stability of de Sitter, which by now has been well-understood in various different settings
[1, 12, 10, 11}, 22 29]. Hence, the crux of the matter lies in controlling the part of the energy corresponding

to the fluid variables ¥, p27s. As it turns out, the lower than top order energy in (3.5) can be controlled by
treating the resulting Euler equations ([2.30)), (2.31]) as transport equations, using the bootstrap assumptions
to view all other terms in the equations as error (here written at zeroth order):

T's

ﬁp/%\ = error. (1.39)

007 + Hur = error, 8tp/2T\s +
The argument actually resembles the analysis of formal series expansions [I7, 28] and it works for all sound
speeds beyond radiation ¢2 € (3, 1).

The stability analysis becomes more intricate when deriving top order energy estimates, due to the extreme
tilt behavior that we wish to bootstrap in the first place. Firstly, it requires a formulation of the Euler
equations which is useful for reading off the asymptotic behavior of the renormalized fluid variables, like
, and in addition, one where its symmetric hyperbolic structure can be exploited. At top order, this is
achieved by complementing the top order analogue of with an equation for v;Y vy, see , ,
(4.34). Regardless of the weights one chooses in the definition of the total energy &t (t) of the system, a top
order energy estimate for the Euler equations as we formulated them in — will have the form

t

ot<.'.1d - error N
Eiot(t) < initial data /TC’ (1) 20, 0)

2
Vo

Eror(T)dT, (1.40)

where the coefficient of the energy in the last integral contains the g-norm of the fluid vector field, cf. [13|
Section 1.1]. On the other hand, extreme tilt behavior implies that |g(v,v)| decays faster than vZ. Indeed,
based on the behavior of the fluid that we are trying to derive, see (|1.31]), we have

U(z) U(2) —2Ht+- 2= Ht 2A,Ht
= ~e -2 = et (1.41)

Ts

g(v,v)  pr
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Since A; — +00 as ¢; — 1, we observe that the energy estimate ((1.40) becomes more and more degenerate
the larger the sound speed is.
It is clear that in order to obtain a useful estimate for &0t (t) we need

C’ermr(t)eMSm < e 0Ht, for some 6 > 0. (1.42)

However, for general inhomogeneous metrics, Cepror(t) < e~ Ht is the best bound we have, see Remarks
The latter allows us to complete our bootstrap argument only when

3
24, < 1 & < = (1.43)
which leads to the restricted range of sound speeds beyond radiation, ¢? € (%, %), see also Remark

At the moment, we have no improved estimate for Ce,ror(t), apart from when the metric is exactly FLRW,
see Appendix In that case, we can show that actually Cerror(t) < e 0HLe=24sHt which in turn yields a
uniform energy estimate in ¢? € (3,1). This is consistent with the results in [2I]. We do not know whether
for general metrics the above degeneracy is actually present or merely a defect of our energy argument. We
should emphasize that it is only encountered at the level of energy estimates and not at the level of a formal
series expansion argument using , which indicates that if it is a real phenomenon, it cannot be seen by
studying analytic solutions.

1.8 Outline of the paper

In Section [2] we express the Einstein-Euler system in the framework introduced in Section [[.4:2} We set up
the equations for the perturbed variables minus their homogeneous counterparts, whose precise asymptotic
behavior is derived in Appendix[B] In Section[3| we introduce the weighted norms and bootstrap assumptions
that we will use to prove the future stability of the homogeneous background. In Section[d] we derive the main
energy estimates that complete the bootstrap argument, for the restricted range of sound speeds ¢? € (%, %)
The bootstrap estimates are reiterated in Section[f]to obtain the precise asymptotic behavior of all variables at
infinity. Finally, in Appendix [Cl we consider the Euler equations on a fixed S3>-FLRW background and sketch
how our main energy estimates can improved to encompass the entire beyond radiation interval ¢? € (%, %)

1.9 Notation

e We will use the symbol O(eP?), B € R, to denote smooth homogeneous functions R — R that satisfy
|ON O(ePY)| < Cn peP?t, for any N € N, where the constant Cy, 5 depends on N, B, A, c,, as well as the
background tilted solutions.

oH:\/g.

e C > 0 denotes a generic constant that depends on the number N of derivatives in our norms and the
homogeneous background we are perturbing about. Also, it will be allowed to change from one line to
the next.

Certain key parameters related to the speed of sound appear in the definition of our norms and renor-
malized quantities:

1 2 11 3c2 -1
(unrestricted range) e (g, 1), s =g —T—Scz € (Z’ 5), As = 105_ 2 € (0,400)
13 2 1 3 3c2 -1 1
(restricted range) Ze (5’ ?), s = —T—écz € (1, ﬁ)’ Ag = f“’_ 2 € (0, 5) (1.44)
4r, 2rg

(algebraic relations)

e We use Einstein summation for repeated indices. Whenever a sum is computed relative to the spatial
orthonormal frame, we do not raise indices, e.g. (eyn)e; = Z?Zl(eln)ef.



2 SETTING UP THE STABILITY PROBLEM 10

e Latin indices a,b,i,j, A, B,I,J range over {1,2,3}. Small letters correspond to the vector fields
Y1,Y5,Ys, while capital letters are reserved for the spatial orthonormal frame e;. In few instances
we use Greek letters «, 3, u, v, ranging over {0, 1,2,3}. For example, v%e, = —vgeg + vrer.

e The Riemann curvature Riem, Ricci curvature Ric, and scalar curvature R of g are defined as follows:

Riem(e,, es,¢,,6,) :=g(D2 _ e —ngeaey,eu),

eqeg vV
Ric(eq, ep) := — Riem(eq, eg, €3, €9) + Riem(eq, €1, €3, €1), (1.45)
R := — Ric(eg, e9) + Ric(ey, er),
where Dzaeﬂ e, = D¢, (Dcye,) — Dp,_c,€,. The corresponding curvature tensors of g, denoted by

Riem, Ric, R, are defined analogously.
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2 Setting up the stability problem

In this section, we express the Einstein-Euler system (1.1]), (1.5), (1.6 and the background homogeneous
variables in the gauge (|1.16)-(1.4)). Moreover, we derive the resulting equations for the variables that measure
the closeness of the perturbed solution to the homogeneous background.

2.1 The reduced Einstein-Euler equations
Lemma 2.1. The geometric variables k1,115, €%s,n satisfy the evolution equations:
eokrg+(n—1-— trE)sz =—n"ltereyn +ecyiic — erycsc (2.1)
+n"'yrcecn — YerpYpsc — YripYeen
_ 1
— A51J — (1 + Ci)pl 2TSU[”L)J — i(sjj(l — C?)p,
eovroB — kicycss =epkry — ejkpr — kicysic — kcsverc + kicvise + kpovirc (2.2)
+ n_l(eBn)kJI — n_l(EJTL)kB],
eoes =krcek, (2:3)
o¢n — ececn = —yecepepn — nkepkep + nA + attrE (2.4)
3
+ (L4 np' ™ vove + S (1= )np.
The renormalized fluid variables p,vo, vy satisfy the evolution equations:

1

veato + kopvovp == Seo(p™") = n (ecm)vove, (2.5)
1 _
Uo‘eavj + kcjvovc = — 56[(,{)2”) —n 1(6]71)11(2) — YcDIVCcUD, (2.6)
(1 = 2r)v%eq log p + votrk = egug — ecve —n~*(egn)ve — Yepcvp, (2.7)
where v¥e, = —vgeg + voec. Also, the following constraint equations hold:

2ecYppc — YeDEYEDC — YoepYEED =kopkop — (n— 1 —trk)? 4+ 2A + 2(1 + c2)p* 203 — 2¢%p, (2.8)

ecker +em+ kipyepc — kepyerp = — (1 + ¢2)p' = vguy. (2.9)
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Proof. First, note that the Einstein equations (1.1]), the formula (L.3) of T}, for p = ¢2p, and (L.4) imply
the formula:

1
Ric,, =Ag,, + (1 +c2)p' 0,0, + 5(1 — ) pguu- (2.10)

To prove (2.1), we use the formula (1.24]) for k;;, the propagation relations (1.22)), (1.23), and (2.10)) to

compute its ey derivative:

eokrs = — g(Dey(De, o), e) —n~ ' (en)g(De, €o, €)
== g(Dioeleo, ey) — g(DDeOel €0, €.7)
=Riem(es,eg,e7,€0) — g(DSIeOeO,eJ) —n"%(ern)(en)
= — Ric(er, e;) + Riem(er, ec,es,ec) — g(De, (Deyeo), e5) + 8D, ¢o€0,€.7) (2.11)
- n*2(61n)(eJn)
1
=—Ao1;— (L+H)p vy — §6IJ(1 —c?)p+Riem(er,ec, ey, ec)
—n"tere n + nflfy”cecn + krckcy.
Next, we use the Gauss equations
Riem(es,ec, ey, ec) = Ricler,ey) — krckey + trkkry (2.12)
and expand the Ricci term in the last RHS:
Ric(er,ey) = Riem(er,ec,e,ec) = g(ViIecec — Vimec,eJ)
=9(Ve;(Vececo),er) = 9(Vee (Ve ec),e9) — g(VvEIecec, es) + g(vvecezecﬂ es)
=9(Ve,(veepep),er) — 9(Vee (VicpeDp), €5) — viepYDCJ + YOI1DYDCOT (2.13)

=eryccy +YccpYIipJ — €cYIcg — YICDYCDJ — YICDYDCJ + YCIDYDCJ
= —ejYycJc +ecYrjc — YcipYpJC — YCCDYIJD;

where in the last equality we used the anti-symmetry v775 = —vrps. Plugging (2.12)-(B.24]) into (2.11]) and
using the gauge condition (1.17) yields (2.1)).
Also, contracting (2.12)), (B.24) gives

R -+ 2Ric(eo, e9) =2ecYppe — YoEDYDEC — YocpVEED — kickes + (trk)?, (2.14)

which after using the Einstein equations (1.1]), the gauge condition , and re-arranging the terms, results
in the Hamiltonian constraint equation (2.8). The momentum constraint equation is a rewriting of (its
version along ¥, instead of the initial hypersurface) using and expanding the divergence of k relative
to the frame e;.

For the lapse equation 7 we take the trace of , use the condition , multiply both sides with
n, and plug in .

The evolution equation (2.3 for the frame coeflicients is a direct consequence of the identity and
the propagation condition %[)

[eo,e1] =De,er — De,eg = n~ern)eo + krcec = n"(ern)eg + krcebd;,
[eo,er] =[n" 10, er] = n 0, er] +n t(en)eg = n 1 (ieh)0; +n " (ern)eo.
For (2.2), we use the formula (|1.24)) for 7,5, the propagation condition (1.22)), and the Codazzi equations
to compute its ey derivative:
e07178 =8(Dey(De,eg),ep) + g(De, e, Desen)
=g(D?,.,es,e8) + 8D, c €5, €8) +n " (epn)ks;

= Riem(eo, €1,€B, 6]) + g(D§1606J7 GB) + n72(61n)(6‘]’n)g(60, 63) + nil(eBn)kIJ
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=Riem(ep, €7, €0, 1) + &(De, (Deyes), ) — &(Dp,, s e8) +n ' (epn)kry
=Veskir — Ve, kpr +gDe, [n" (en)e],en) + kicyoss +n~ Hepn)krs

=Vepkir — Ve, kpr —n Y(esn)kpr + krevoss +n Hepn)krs

We arrive at the desired equation after expanding the covariant derivative terms in the last RHS.
To derive the fluid equations (2.5)-(2.7]), we expand the covariant operations:

D*v, =m"g(D,, (v¥¢q), e,) = —eouo + ecve + votrk + vpyepe +n” ' (ecn)ve, (2.15)
(D)o =g(Dyre, (v7er), e0) = —vo(eovo) + velecrvo) + vevpkep + n~(ecn)vove, (2.16)
(Dyv); =g(Duwe, (ve,), er) = —vo(eovr) + ve(ecvr) +n~ "t (em)vg + vevoker + vevpyeni, (2.17)

and plug them in (|1.5)-(L.6). O

Although the system ([2.5)-(2.7]) is symmetric hyperbolic in vy, vy, p, we find it more suitable in the deriva-
tions of the main estimates for the latter variables to eliminate vy in favor of vy, p using the identity
2 2r
—vy +vpvr = —p*e.

Lemma 2.2. The renormalized density p?™s satisfies the equation:

1—2rg, 1p% o voUr 9
- e )+ ker — trk) p*™
( 27 2 02 Jeolr™) + ( v} ot )r
2rg 2rg 27
p°"s vrvp pTe 1-2r;, 1p°",vc 9.
=— epvr + ecvo + ———5)—e s 2.18
2 v DV % cvc ( o, 2 2 )Uo c(p™) ( )
27
SV
_P 5 —1n 1(6[’!7,)1)3 Legn) chr'ycpch}
Vo Vo
Proof. Rewrite the equation as

1—2r,
2rg

(—voeo + veec)p™™ + votrkp®™ = p*equg — p**ecve — p* {n~ ! (ecn)ve + yepcvp
and replace egvg by

) 1
eovo = —equr + —eo(p?). (2.19)
Vo 2

Using the evolution equation (2.6]) to replace egv; with
1 1 _
egVvr = U—{kcwovc + §ej(p2”) +n l(e[n)vg + ’YCD]’UC’UD} (2.20)
0
and rearranging the terms in the resulting equation gives ([2.18)). O

2.2 The background tilted homogeneous solutions and the associated reduced
variables

In this subsection, we provide the precise asymptotic behavior and estimates satisfied by the homogeneous
solutions.

Lemma 2.3. There exist homogeneous solutions to the Einstein-Euler equations, of the form (1.11))-(1.12)),
such that the functions G;(t), G(t),0(t), p(t) : [T, +00) — R satisfy the estimates:

|8§VG1(1€) — leooHNthl < C’Neth

o |70 - 7

. 10YG@w)] < Ovem2 ™,

3¢ — 1 2lre} Ht} —a (2.21)

1—¢2

S C’Ne 1-ed )

oy [H(t) - Ht + em} ' < Cye 2t

for every N € N, % < ¢ < 1, where G,0°,p> > 0 are initialization constants at infinity and Cy also
depends on cs.
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Proof. Tt is contained in Lemma O
Given a homogeneous solution as above, we make the following choice of background orthonormal frame:
Yz — G%(t) G5 ()Y

. =0, (2.22)
VG0 - G (0G (1)

e =G (Y, ey = Gyl (1)Ys, €3 =

and compute its associated reduced variables.

Lemma 2.4. The reduced variables of the fixed background solution behave like

kry=—0rH + O(e~2HY), Frip = O(e 1), g =0 HY),

1—¢c?
=1 ~1-2rs _ (31-2rs\00,2 ,—2Ht O —4Ht 1—-2 .= s 2.93
n=1, p (p7 =) 4+ O(e™™), e £ (2.23)
Vo = ptp = vyt e T4 O(e 73, Ty = ey = 0y [ e+ O(e Y,

~00,1

where (p1=27:)%°2 > 0, [0 = [55°"| > 0 are constant coefficients of the above leading order terms.

Proof. See (B.21) in Appendix [B| and Lemma O

2.3 Initial data for the perturbed variables on >

The initial data set (g, lof, p,0,g) on X induces initial data for the reduced variables k., V1.5, €r,n, vo, v, p"
on Y, after choosing an initial orthonormal frame e;. Indeed, we have the freedom to choose t = T, ie. Y,
to be the image of the embedding of ¥ in the development (M, g, p,v). Identifying the underlying manifolds
of the homogeneous and perturbed solution, according to the 1+3 splitting , we can then compare the
two mean curvatures tr%, trk and obtain the initial datum of n via (1.17). The initial data for €% can be
any smooth perturbation of the homogeneous frame components ¢; (2.22)). For example, we may consider
the frame e; obtained by applying the Gram-Schmidt process to e; relative to g. Since g;; is assumed to be
sufficiently close to g;; initially, so will the corresponding frame components e, €;. Having defined the frame
er, the initial data for the rest of the reduced variables are readily induced by contracting the former with
the original initial data set. In order to satisfy the initial closeness assumption , sufficient smallness in
a norm of comparable order for g;; — g;; is needed.

2.4 The resulting equations for the perturbed variables minus the homogeneous
background variables

First, notice that combining the gauge condition (1.17]) with (2.23)) gives the following relation:
trk = —[3H + O(e *") + n — 1]. (2.24)

In this subsection, we derive the equations satisfied by the differences:

~ ~ R ~ ~ ~ =i i

kry =kry—krg, Y1JB =VI1JB — VIJB, n=n-—-n=n-1, T =ep —ef, (2.25)
~ Ts ~re~ ~ _ 7rg ~rs~ “ors _ 2rg ~2rs !
Vo = p “up — p "o, vr =pcur —pur, p2re = p=t = p"e,

using Lemma More generally, we will use the notation E& = p® — p®, for positive powers a > 0. Note
that since the background variables ([2.23)) are homogeneous, it holds e;(p?™*) = er(p?"=) etc.

Lemma 2.5. The geometric variables EU,%JB,%,ﬁ satisfy the evolution equations:

Ockry +3Hkr; = — eregn + necyrjc — nerycic (2.26)
+15cech — "YorpYpsc — MripYcep — WYCIDYDJIC — MYIIDYCCD
1

- §5IJ(1 —A)np

— (L+&)n(pt=2rsvpvy + p 20y + p 2 010y)
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- %5IJ(1 — AP+ 617 H(A +102) + O(e 2 a4 6,,0(e2H1)n?
— BH + 7+ O(e” ) |7ikry — [ + O(e 27 ky s,
0155 + HA1s5 =nepkis — neskp; (2.27)
- nElC”YBJC’ - NECJ’YBIC + TLEIC’YJBC + ’I”LEBC’YJIC + nEIC'YCJB
— Hnyryp +n0(e )y + 00 )yprs + n0O(e ")y 51
+n0(e™ )y 15 + 00(e Yy p + (’)( Y+ O(e 2
+0(e 7,81 + O(e 2" 18 + Ole )18 + (es)kyr — (es0)kpr,

0,67 + HEy =nkicel + kol + O(e ), (2.28)
oin+ 2HN =ececn — yoopepn — nic\cpkcp + 0(6_2Ht)n,/'€\cc (2.29)
+ (1+ ) {Ap" " veve + lﬁvcvc +p' 7 Bove + pt 010y )
3 N 3 . . _ ~
+ 5(1 —cA)np + 5(1 —cA)p—2Hn? + O(e 27,
The fluid variables 6I,p/2’“\s satisfy the evolution equations:
- - 1n — ) -
001 + Hor = = —ep(p?s) + n—cecvl
2 Vo Vo
. VD U1 n o
+ (ern)vg + nyepr—7ve + n’ylpj—lvp + —02A117 (2.30)
Vo Vo Vo
+ fkorve + korve + (kor + dorH oo
and
1—2rg 1p% —= —=
_ 8 27 2H 27
( 27, QUS)t(p )+ 2Hp
P2Ts VIVp i rs 4 (1 — 2ry 1 Pzrs ) vc (/27«\) (2 31)
=—n epv; +n ecv n ———)—¢ s .
v v DI vocc 27, 2 02 vocp
p2r5 UI 2
v (e1R)vg + nyepiVcvp + ny1prtiOp + 111107 § + —{ ecn)vc + MYcpcvp }
0 0
1 p2s 1 e v _
p 3t(~2“)—|—7 3:&( ") (vo + o) Vo — 1o ve Ikcj—trk) s _ pPre
) v} 2v v}
— v 2'[‘5 4T o
+ O(e—ZHt)pQrs _ 221 kCI Hp (pQT,; + Z)Qrs) +H p2~2 (UO + 'UO)UO
0 g Vo Vo
Vr 5= 51\01}] X 505)\1 Ucv
— (ker +0crH) (Soghprre + PO e 4 DO G2 =2 (Vo + 0)T0p™")
vg Yo Yo YoV

where 1)(2) =vove + p

Also, the following constraint equation holds:

27

ecker = — e — EID'YCDC + %CD'YC’ID - (%ID +drpH)yepe + (%CD +dcpH)Acip (2.32)
_ (1 + Cz){pl_zrs’l)()’l}[ + 51—27-5601}[ + 51—27'5506[}'

Remark 2.6. Notice that the equations ([2.30)-(2.31]) are not symmetric hyperbolic in vy, p/QT\S . Nevertheless,
they are symmetrizable, that is to Sﬁenergy estimates can be derived by considering suitable combinations

of Uy, p?"s at top order, see Section

Proof. The equations for the differences follow from the ones in Lemmas [2.] 2:2] and the fact that the
background variables are a solution to the reduced system of equations and that they are homogeneous. For
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example, using (2.1]) we have

Okry = —n(n—1—trk)kry — eresn + necyrse — nel’YCJC +v15080N — NYCIDYDJIC

— NYrgpYccb — A(SIJTL — (1 + Ci)npli?rsvﬂlj — 55]](1 — cg)np — 6tE].]

=— [3H +n+ O(eiﬂﬂ)]jﬂ\jkj - [3H +n+ 0(672Ht)]ﬁ7€\]¢] + 617 [H + O(eiQHt] (n+ ﬁ2)
+ 41 [3H2 + O(E_QHt)]ﬁ + tr’/;/;],] —ere n +necyrjc — nefyosc + Yrocecn
— nYcIpYpJc — "Y1IpYoCD — NYCIDYDJIC — WY 1IDYCCD — YCIDYDJIC — YIIDYCCD

—|—O(€_2Ht)ﬁ—A5]Jﬁ—A(51J—(1+62) (pl/\QTSUIUJ—Fpl 2“1}[1}‘]4-/) 2“11[’0])
—(1+C)p1 QT’U[UJ—FO( _4Ht) 5[](1—0) p—*(S[J(l—C)p—*5[J(1—C)p 8tkU

Now follows by noticing that the purely homogeneous terms cancel out, as well as 36;,H?n with
—Ad7 7, since 3H? = A.
We continue with the computations for (2.27)), using (2.2), (2.23), (2.25):
0178 =nepkry —nesjkpr — nkrcypic — nkcsypic + nkicvsee + nkpceysrc + nkicycss
+ (esn)kyr — (esn)kpr — OVrip
= neBEIJ - neJEBI - WIEIC’YBJC - nECJ’YBIC + nEchBc + TLEBC'}’JIC + ’I’LEIC'YCJB
—nHy1sp +n0(e ")y 1 +n0(e ") yp1s +n0(e ")y 51
+n0(e )y s18 + 1O )y18 + (epn)kyr — (esN)kp1
= neBEIJ - nEJEBI - n/];IC’YBJC - nECﬂBlc + nElCVJBc + nEBC’YJIC‘ + nif\IC'YCJB
— HA158 — Hy158 — nHy1s +100(e 2" ) yp 1 + 10(e ") yp1 s + 10(e _QHt)
+010(e Yy 5 + 00 ) yrp + O(e 2" A + O(e A1y + O(e 27,51
+0(e 7,18 + O(e " )A155 + Oe "1 + Ole "By + O(e )71
+0(e 515+ O(e "5 + (eN)kr — (esR)kpi.

YJIBI

Since y =n = k=0isa solution, the purely homogeneous terms cancel, leaving the asserted equation. The
computations for (2.28) are straightforward:

et B nkjoel, — 0,8 =kicel, + Rrcel — [H + O(e2H)]el — 6,2
—fikoel + kol — [H + O(e21)]et,

where in the last equality we used (2.3) for the homogeneous variable €t. For the equation ([2.29), we rewrite
the RHS of (2.4):

3
—ycopepn — nkepkep +nA + (14 )np! 2" vove + = (170 )np+5‘ttrk

=— ')’CCDeD/ﬁ — nECDECD — QTL’ECD/];ZCD - ’];C'DF]{}VCD - 3H2n + O(e th)n + A+ An

+ (142 {npl spove + pl=2svcve + P Dove + pr 2“1)11}1} + (14 A)pt 207
3 N 3 3 -
+ 5(1 —)np + 2(1 —A)p+ 2(1 — A)p + Otk
= — yoccpepn — n@CDkCD —2Hnn + O(e_QHt)n%CC + O(e_gHt)ﬁ (H? = %)

2r

+ (L + ) {Ap' " veve + pr2rvcve + pr T Bove + pt 2010 )

3 N 3 —~
+ 5 (L= )np+ 51—,
where in the last equality we used the fact that the purely homogeneous terms cancel out (since the back-

ground is a solution), and we plugged in (1.17) in the form ECC = —n. Hence, we obtain the desired
equation.
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The constraint equation (2.32]) follows directly from ([2.9) by plugging in (2.25]) and using the anti-symmetry
of yeep:

eckcr =ecker = —ern + kipyeep + kepyerp — (1+ ¢2)p' " vuy
= —esfi — kipyepe + kepyerp — (kip + 81pH)yepce + (kep + depH)yerp
-1+ ci){pl—zrsvom + P By + ,5172“170%\1} (1+¢ ) R

= —esfi+ kipyoep + kepyerp — (kip + 6rpH)iepe + (kep + depH)Aorp

2r

— (1 + &) {p' =2 vovr + p' " Tovr + p 2" Tovr }-

Next, we employ (2.6) to compute:

—

N n N 1 _ BN ~
04y = U—{vcecvl + kcrvove + 561(p2r5) +n~ " (ern)vg + Yeprvevp  — 9¢0;
0

Ve = P e
=n-_~ecvr +nkcrve + kerve + kerve + kv
0

1n = . n - n ~ N ~
+ = —er(p?s) + (ern)vo + —YyeprVcvp + —Y1prV10p + —A11107 — 040,
2 Vo Vo Vo Vo

where we used the vanishing of 7117 = 0, see (B.2)). We arrive at (2.30) after dropping the homogeneous
terms.

Finally, for the equation (2 , we plug in and -

1—2r, 1p*s._  ——

_ O 27
( 2rg 2 v2 )0 (%)
27 27 2r
vcvl o prrurvp pre 1—-2r, 1p° -
=— ke — trk s — —_— — = 2rs
n( ;> cr — tr ) n 7 v epvr +n o ecvc—l—n( o 2 2 )’Uo ec(p3s)
27 27
P ur g 9 1—-2r, 1p°" o
—_ 8 s
n 2 o n~(ern)vy Y(ecn)ve +'YCDC’UD} +( o 3 2 ) L (p7")
=— n<vcv1 ke — trk)p* — Cv[ korp*™s + {%H 3H + O(e 2t }pg’s
vg vg Yo
~2
~ (YoX% arv UCU[ Uc’UI ’Uc’l)] PR v
— (ker + Hécr)( 2 P2+~ P2~ P70 4~ (Vo + Vo) V0P + =5 o)
Yo Yo Uo Voo Yo
P ,32“ P> P>
{2 “H+ Y- = (V0 + 00)00H + = H +2H + O(e RN — pp?Te
vg Yoo 3
27‘ 2r 27
P vvp s 1—2r, 1 p°"s  vo ==
-n epvr +n ecvc +n - ) Ts
v% v pr Vo ore ( 21 2 vg v (P?)
27
P ur
T (esn)vg + +nYepricvp + NY1pro1Up + n"/ulvl}
0 0
27 27- ~or
pE . N 1—2r, 1 p=7s 1 p“"s ﬂrs
+ I {(ec)ve +Fepevp} + { o 2 2 20308 (vo + Vo) )s

where we made use of the identities Yoepc = 71171 = 0, see . The desured equation is obtained by
dropping all purely homogeneous terms. O

3 Norms, total energy, and bootstrap assumptions

3.1 Norms of the unknown variables expressed relative to the orthonormal
frame

We define the norm || f||z2(5,) for a scalar function by

22 = 2 5 dSS, .
11225, / P (3.1)
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where dS? is the canonical volume form on S3. Define also the corresponding HM (3;), W:°°(%,) norms:

sy = 2 IV lewys Mfllwsemy = Y 1Y fllze,, (3.2)

<M <M

where is ¢ is a spatial multi-index and Y"* is the operator that acts on v with repeated differentiation with
respect to the vector fields Y7, Yo, Y.

For the indexed variables that we study, their corresponding HM (3;), WM:>°(%,) norms are simply the
sum of their components:

3

IRl sy = D0 Mkralms,y: Elrs,) [ |ase s,
(Ze) (
I,J=1 I,J=1
3 3
|WH%{M(&) = Z |WIJB||%1M(2,,)7 |W||€1/Mfoc(zt) = Z |WIJB||€VM,w(zt)7
1,J,B=1 1,J,B=1 33
s s (3.3)
el sy = D Ity Nelivseimy = D el sy,
i,I=1 i, I=1
ol sy = D Bl W0l arce(sy = D I0ulliyanoe sy
pn=0 —
Define the energy of the geometric variables:
Egeom (t) =T {|Al Ty (g, + 11T (2, + 1k G (2} + €Al s, (3.4)
and the following energies of the fluid variables:
E tuid tow () = €2Ht||ﬁ||§1N71(zt) +er Htllp% ?w(zt)
—4A4, ~ T o ”
gfluzd top(t) : Ht{ 2Ht|| ||HN(Z ) + el 2rs t(Hp2 s HN(Et + ||p ||HN (3 ))} (35)
o—AAHt 2Ht|| ||HN =) + e4Ht(||p2rs||HN(2t) + HP HHN 1(2t)>
where we note the identity 1 8“ —4A, = 4 and recall the definitions
3c2 -1 c? 11 1
A, =2 € (0, , s=——=¢€(=,=), f € 1).
T €040 = mTs €3 g) or ¢; € (3:1)
On the other hand, observe that
1 1 3 13
As € (0, 5) and rs € (17 E) for ¢ € (57 ?)
Define also the total energy:
Etot (t) = ggeom (t) + gfluid.low (t) + gfluid.top(t)- (36)

Remark 3.1. There is a c,-dependent discrepancy in the weights (powers of e’*) used in the top order
energy in compared with the lower order energy in for the fluid variables. The larger c¢; is, the
larger the discrepancy, namely, the additional e~*4sH* factor. In fact, it becomes infinite as the sound speed
cs tends to 1, Ay — —&—ooEI This comes from a degeneracy in the top order energy estimates that we derlve

in Section see Proposition u We note that the weights in the HVN=1(%,), HVN~%(3;) norms of v,pQTs

4rg —_
respectlvely are optimal, that is to say the corresponding renormalized variables e*7, eT=2r HthTs have a
limit as ¢ — +o00. This will be proven in Section [5 once we have completed our overall continuity argument.

Normally, there should be a comparable (but smaller) discrepancy in the corresponding norms of the
geometric variables. However, for the range of sound speeds ¢? € (%, %) that we are working with, the

discrepancy in the weights of the top order energy of the fluid variables is small enough such that it does not
propagate to the top order energy of the geometric variables.

30ur method of proof can only tolerate the range of sound speeds c2 € (3 s 7) In Appendix [C|all sound speeds in the range
e (3 ,1) are allowed, albeit for the relativistic Euler equations in a fixed FLRW background.
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3.2 Bootstrap assumptions

Our bootstrap assumptions are that there exists a bootstrap time Tpoot € (T, +00) such that it holds
gtot (t) S &, Vt S [T7 TBoot), (37)

for a sufficiently small constant € > 0 to be determined below. Such a Tg,.: > 0 obviously exists by Cauchy
stability and the closeness of the perturbed initial data on Y7 to the homogeneous background initial data.

4 Future stability estimates

In this section, we derive the exponential decay of the variables EIJ, Y178, €r, 7,0, U1, ;ﬁr\s, in a manner that
yields a strict improvement of our bootstrap assumptions ((3.7), which in turn by a standard continuation
argument implies that Tg,,; = +00, ie. the perturbed solution exists for all future time and it satisfies the

estimate (3.7)) for all ¢ € [T, +00), see Proposition for the final statement.

4.1 Basic estimates and identities

We will frequently use the standard Sobolev inequality in (S?, dw):

I fllLe=(s) < Cllfllm2cs,), (4.1)

where C' > 0 depends on (S3, dw), dw being the standard metric on S®. Already, (3.7) and (4.1)) imply the
bounds

[kl .00 ) + [Tl 20 () + [ellwy—2.0 () < Cee™ ",

[l 2o,y < Oce2, (1.2
8]l w500 (s3,) < Cee™ 1, '

[|p?"s e

__4rs
WN—AL,oo(Zt) S CE@ 1-2rs

for all t € [T, Tgoot), where we note that drs > 9 for 2 > L Other power differences of p satisfy the

I—2r, 3
bounds:

el%mHt(

Pllw—s.0e () + 1Pl E-250)) + €7 (Pl x5,y + 1Bl v s,y) < Ce

—_— —_— 1—2rg —_ —_—
(| =20 llwwv—ace ) + 1012 =2 (zy) + €70 (10120 g s,y + 10127 [l gn-1(m,y) < Ce
(4.3)
When we commute the equations (2.26])-(2.32)) with Y*, we will use the commutator relation:
Y e/lf = > (YUY RYaf. (4.4)
t1Uta=t, |t2|<|t]
Also, since Y, is dw-Killing, we have the following integration by parts formula relative to ej:
fiterfa)do == [ [(erf)fe + (VieD i foldo (45)
o 3¢

In the derivations of the energy estimates below, it will be useful to control the following variables in
L (%).

Lemma 4.1. Assume that the bootstrap assumptions (3.7)) are valid for e sufficiently small and T sufficiently
large. Then there exist (non-zero) constants v5°, p>°, depending on the asymptotic data of the background
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fluid variables, such that the following pointwise bounds hold:

lvg = (@5°) " e || oo,y < Cle + e,
Psz ~00\ 275 (00| —2 2Ht— s rry _oHt\ 2Ht— s It
[ — —(p™) b('UO ) T—2rg ||L°°(Et) <C(e+e Je T-2r;
’ (4.6)
18: 1og vy + H|| oo () < Ce ",
2 s
|0 log p + H|| oo (s, < CePHt- 5 Ht
1—2r,
Jor all t € [T, Tpoot), where we recall that 5 4“ - > 2.
Proof. By Lemmas [2.3] [B.1] there exist (non zero) constants 95°, p°° such that
[0 — Tgoe ™| oz, < Ce?0, [P0 — (5)2re TE | < Cem TR L (4.7)

Then, the first two estimates in (4.6]) follow from the bootstrap assumptions (3.7) and the triangle inequality.
For the third estimate in (4.6, we use the identities (2.19)), (2.20) to write

vr 1 1 _
O log vy = *i*{kcwovc + ~er(p*") + n~Hem)vg + yeprvcvp (4.8)
Vg Vo Vo 2
pQTS
+ rsnvg—5 0 log p.
Yo
Rewriting as well
n v vr VI
**I*kcwovc —n**kczvc + **kczvc + **(kcz +dcrH)ve — Ing
Vo Vo Vo Vo Vo Vo Vo Vo Vo Vo
_vr 1 pQTs
—n**kcwc + f*kcwc + 77(]%[ +écrH)ve + —H — H,
Vg Vg g

and plugging it in (4.8)), we solve for d;logvy + H. The desired estimate follows by bounding the resulting

RHS in L°°(X;) using the bootstrap assumptions (3.7) and the fourth estimate in (4.6]).
Thus, it remains to derive the fourth estimate in (4.6). For this purpose, we rewrite the equation (2.18)):

27

v
(1 — 2r, —|—rsp )at log p + n( zglkC[ — trk)
g 0
n vivp n p2rs ve
=—— epvr + —ecvc + n(l —2ry — rs—z)—ec log p (4.9)
Vg Vo Vo ) Vo
n U[
— ——{n""(ern)vi + veprvcvp} +o- {n "(ecn)ve +vepevp }-

Rewrite also

vov vov = ™
(5 kor — trk) =7(—grker — trk) + —oker — keo
1}0 Uo U(Q)
275 ~
=St (ker + dorH) + P H — (Roc + 3H) + 21
0 0

and plug it into the last expression on the LHS of (4.9). Then isolate (1 —2rs + 1, pzés )8t (p?+) +2H and

estimate the RHS using the bootstrap assumptions (3.7)) and the already derived first two estimates in (4.6))
to infer that
P2

(1= 2rs + 2 )8tlogp+2HHLoo(Z) < Ce Mt (4.10)
O

Dividing with the coefficient of 0; log p and applying the second estimate in (4.6 once more gives the desired

estimate, since 0 > 2 — 1fr;rs > —1,for ¢z € (3,2), rs € (3. 15)- -
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4.2 Energy estimates for the geometric variables

In this subsection, we derive HY(X;) energy estimates for the geometric variables. First, we commute the
equations ([2.26])-(2.29), (2.32) with Y*, || < N, using (4.4)):

8tYL/k'\IJ + SHYL/k\IJ =—e;Y'esn + necYL:y\IJC — neIYL:y\CJC + ﬁ?J’ (4.11)
0Y'Arsp + HY 'A155 =nepY'kys —nesY'kpr + 84, (4.12)
o Y'el + HY'eh = ¢, (4.13)
Y'n+2HY'n =ecY'ecn + N, (414)
ecY ' ker =My, (4.15)
where
L= > (Y (ned )Y, Y' 23150 — (Y e}) Y Y 2e i — Y (nef) Yo Y 270 ) (4.16)
t1Uta=¢, |t2|<|t]
+Y* [’YIJcecﬁ — nYcIpYpJc — MY1IpYoCD — MYCIpDYDJC — MY1IDYCCD
— _ N o 1 N
— (14 A n(pt=2rsvvy + p 2Ty + 00y — 561,](1 —A)np
1 ~ R
— 5(5]](1 — Ci)ﬁ—l— (SIJH(ﬁ + ﬁQ) + (’)(e_QHt)n + 6]]0(6_2Ht)n2
— [BH + 7+ O(e 2 )]aksy — [ + O(e 27| k1s |,
Lop = > (Y (ne%)Y,Y ks — Y2 (ne%)Y,Y 2kp; } (4.17)
t1Uta=¢, |ea| <[t
+Y* [nEIC'YJBC + nEBC'YJIC + nEIC'YCJB — HEIC’YBJC - n/k\CJ'YBIC
— Hiyrgp +00(e 2 NYyp i1 +00(e ) yp 15 + 0O0(e 27y 51
+n0(e 2 )y 15 + nO(e )y 5 + O(e 27551 + O(e 2 A1,
+0(e 1951 + O(e 27115 + O(e 23155 + (esR)ksr — (esn)kpr |,
v =Y kroeh + kroes + O(e e ), (4.18)
N = Z (Y“ e‘é)YaYLecﬁ +Y* |:0(6_2Ht)’r7j€\cc — Yocpepn — niﬂ\cp/k\cp (4.19)
t1Uta=¢, [e2|<|¢]
+(1+ cg){ﬁpl_%**‘vcvc + pl=2rspcve + P2 Dove + 51_2"55161}
3 N 3 N . _ N
+50- np + Z1- c¢)p—2Hn® + O(e 2Ht)n]7
Mmr = — > (Y'et)Yo Y ?kor = Y* |:€Ih\ +kipyone — kepverp + (krp + drpH)3epe  (4.20)
t1Uta=¢, |ta|<[e|
— (kep + dcpH)Forp + (1 + ) {p1=2rsvour + p Tour + P12 To0s } -

The preceding terms can be viewed as error terms.

Lemma 4.2. Let N > 7 and assume that the bootstrap assumptions (3.7) are valid. Then the following
estimates holds:

3
"Rl p2csy + €T NS s pllas) + €€ acs, + e TN L2 (sy) + €I L2cs,) (4.21)
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3

3 ~ _1
e Z e2"lecti|| g s,y + Ce 2/ Eror(t)

c=1
for every |t]| < N and t € [T, Tpoot)-
Proof. First, we observe that since N > 7, each term in (4.16[)-(4.20)) has at most one factor with more than
N — 4 spatial derivatives. Hence, all terms in (4.16[)-(4.20)) can be controlled using the bootstrap assumptions
(3.7) and the basic estimates (4.2)), (4.3). We conclude (4.21]) by counting the powers of e* that correspond

to each factor in every term, recalling the definition of the energies (3.4)-(3.6). Indeed, we include here
examples of terms containing geometric variables that decay the slowest:

"0 (nAcipypac) |z, <Ce™ (e Al an(s,)) < Ce™ M/ Era(t),
3 3

L -~ ~ Ny 4 ) 3 ~
eft)|o ((eBM)krs)lL2(=)) < ettt Z lecnllg~ (s, < Ce s Ht Z 62Ht||€BnHHN(Zt), (4.22)
c=1 c=1

4110 (nophon) e, < Ce Ry, < Ce b /Eur(t).

The ones containing fluid variables are in fact more decaying decay quicker. We include the following examples
of the slowest decaying terms:

— 3 _1 _3 1 1 3
0 Bl| g2y < Ce2Mte M /€, (1) < Ce™ 210\ /€,,(8), (— >3 for 3 < < ?)

3 L2~ 3 _: ~
20 (012 Tove) | L2 (s,y < Ce2 e 5] g s, (4.23)

_3 _
SC@ 2Hte2AsHt Ht gtot(t)

Nl=

<Ce™

1 3
SC’e*%Htvé'tot(t). (2As < 1 for g < Cg < ?)
One can tediously check that all other terms in (4.16)-(4.20) either decay faster or are at the same rate as
above. O

We will make use of the following energy identity.

Lemma 4.3. The geometric variables %U,%JB,&}@ satisfy:
1 ~ ~ 1 - - 1 . . 1 -
56t(62HtYLk].]YLkIJ) + Zat(e2HtYL'YIJBYL71JB) 4 587: (62thLé~<LlngLI) 4 iat [eSHt (YLn)Q]

~ ~ 1
+ 2HH Y ey Y kg + 5I{em(wa)?
= — 62Ht6[ (YLif\]JYLGJﬁ) + 62th€(j (YLE]JYL/’?IJC) — 62th6] (YLE[JYL:Y\CJC) (4.24)
3
+ MMteq(Y'AY ec) — Z SN Y ecn)? + Z SN Y 1 ed) (Y, Y 2R)Y ‘eci
C=1 t1Uta=¢, |ta| <[t
+ MY e+ nMYY Fogo + Yk Ry, + Y364 5 + Y& e} + STy a)n,

for every |t] < N.

Proof. It follows by multiplying the equations (4.11f), (4.12]), (4.13)), (4.14) with e2HtL; ;. 12y, g, e2Hiet
e3Hth respectively, adding the resulting expressions, differentiating by parts, and plugging in the differentiated
momentum constraint. O

Now we can proceed to derive the main estimate in this subsection.

Proposition 4.4. Let N > 7 and assume that the bootstrap assumptions (3.7) are valid. Then the following
integral estimate holds:

t 3 t
ggeom(t) + / Z 63HT||eCﬁ||§-IN(ZT)dT S ngeom(T) + C/ e_%HTgtot(T)dT7 (425)
T o= T

for allt € [T, Tgoot)-
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Proof. Integrating the energy identity (4.24) in X, summing in |¢| < N, and integrating by parts using (4.5)
gives
3

1 ~ 1 opins _ " ~
SO bl s, + 5 €M AT ) + M Il sy + MRl En (s, + D el

2 Cc=1
Z / (Y, e®) (Y1 Y'R) — Ya(nel) (Y krs Y Arsc) + Ya(ned) (Y kY Fosc) bdw (4.26)
o< /2
- > / S (Y, el ) Y'RY ‘ecidw + Y / [ > Sy ed)(YaY P R)Y ech
[L|<N Zt |L|<N Lt1Uta=¢, |2 <|e|

+ MG Y e ghi + IR Y Ao + Yk Ry + Y'F188 5 + V'ET€EL} + 7 (VRN | du.

Next, we integrate in [T, t], make use of the bootstrap assumptions (3.7)), the basic estimates (4.2), Lemma
and Young’s inequality to obtain the energy inequality:

geom / Z 3HT||€CnHHN(2 )dT (427)

<C geom / 7672H75t t dT+/ Z e3H7—||6C'n||HN(E )dT

for some 1 < 1 of our choice, resulting from the application of Young’s inequality to the terms having a factor
Ytecn with o] = N, as well as the ones coming from (4.21]). Absorbing the last term in the corresponding
one in the LHS and readjusting the generic constant C, we conclude the desired estimate. O

4.3 Energy estimates for the fluid variables

First, we derive lower order energy estimates for the fluid variables vy, p/2T\ by treating the evolution equations
7 as transport equations. For the top order energy estimates, we use the additional equation
satisfied by v; Y0y, see below. Once we have obtained H” (3;) estimates for the fluid variables 7, ;275,
we control the H™V(X;) norm of 7y using the identity:

N 1

- (% Do + p2rs ). 4.98
Y= e+ (b +ve)ic + (4.28)

To begin with, we commute the equations (2.30)), (2.31) with Y*, || < N, using (4.4)):

- - 1n
oY'vr + HY 'vp fi—elYL( 2“) +n—ecY vr + 07, (4.29)
— — 27y 27
Froa 0,V p¥ 4 2HY p2re = — 2P0y 4 n P e (4.30)
Sy vy Vo Vo
1-2ry, 1p% v -
_ _~ YL 27‘5 L
+n( 27 21}8)1)06 (pre) + 3,
where
1
Vy= > ASY(e)YaY R () + Y (e ) VoY Ty ) (4.31)
2 Uo UO
t1Uta=u, |t2]<[e|
. N VD V1 o n o
+Y*{(ern)vo + nyepr—70c + nypr—op + — A1
Vo Vo Vo
+ nkcrve + kerve + (ker + 6crH)oe },
1—2r, 1p%s
—2rg — B 4. 2
frp ==+ 50w (4.32)
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1 274 R 1 27 Vv
P= > e |V n— L)Y, Y 250 — Y ( N A L
2rs f1—2rS Vo fl 27‘5 Vo
tiUta=¢, |e2]<[e| Zrs

1 1—2r, 1p2

vc 1 e
Yy« n - et Y, Y2 ( 2“ 2V (———YHY "2 p2rs
+ {flgfrs 27‘8 2 U% ) } ) (flgrzrS ) P
27‘S
+ frzan Y (——)Y" [ (ech)ve +nyepcvp
Lﬂ%g: . 2rs fl 275 () { }
p2rs vy
T2 o {(eln)vo + nyep1Vcvp + ny1prUp + n’yluvl}
o Yo
1 27"5 1 ~2rg veUs N
—5 i — Or(p*s) + = p2~2 0t (p*"*) (vo + T ) Vo — n( ker — trk)p s _ p2rsq
v 2, Uo
—2Ht\ o, _ VCVIp P pre
+ Oty — PR g P (g2 4 52y HE (v + )i
Yo Yo vgH
VoV Vo, U1
— (ker + 5CIH)( L e CQI,BQTS + CQIZ)QTS + §~2 (vo + To)00p*"*) |-
Uo Yo Vo VoV

The equations (B.17)), (2.30)), (4.29) also imply:

ecY'vr + &

1
O¢(vrY'vr) + 2Hv Y 01 = fn—e Y(p 2’“8) + n 2%
2 Vo Vo

where

1n - Ve vp V1 n
~ ~ ~ ~ ~Q~
S =By + {5 —er(p?) + n—ecVr + (e1n)vo + nycp1—0Vc + ny1p1 —0p + — 039111
2 v Vo Vo U U

+ fkorve + kerve + (ECI + dcrH)ve } Y 0r.

23

(4.33)

(4.34)

(4.35)

At top order, |¢| = N, the equations (4.29)), (4.30)), (4.34) combined yield the following energy identity.

Lemma 4.5. The top order fluid variables satisfy:

1 PN 1 —_—
§8t{e4Htp2TSYLUIY‘v1 + §f1g2rs et (Y pra)2 — A1 pv2 vvgY"t vIYLvE}
Ts 0

1 — 1 27"5
4 [H64Ht _ Zat(fI*QTs €4Ht)} (YLPQT.S)Q _ §e2Htat( 2Ht 2r )YLﬁIY o + 2at( - )64Ht’UIUEYLi)\[YLi)\E
2rg

Vo
1 2r 1 — 1
— 77’L€4Ht p [YL( QTS )YLEJ\I] _ ne4Ht /0 . S VIVUp uvp ., (YLij\Iyl,pQTS) + 7ne4Htp2rs Ujec (YL@\IY%J\]) (4.36)
2 Vo 2 Vo Vo 2 Vo
1 e,/ 1— 27 1p 1 4q Vo VIVE PN
- YL QTS _ t 2rs “C YO,V
* 4ne ( 2rg 2 v(z) ) vo ecl( ) ) 2ne P Vo vg co(Y'0r¥" )

1 —
=+ e4Htp2rs YLﬁImLI + 564Ht(pr2rs );BL 4Ht p 'U[YLUISL
vg

for every |t| = N

Proof. The energy identity (4.36]) is obtained by considering the following algebraic combination of equations:

1 —
4Ht 2réybv1 % ‘) + §e4thbp2rs X 430 4Htp UEYLUE x (. 34
v

and applying Leibnitz rule.

Next, we control the error terms (4.31)), (4.33)), (4.35)).
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Lemma 4.6. Let N > 7 and assume the bootstrap assumptions (3.7) are valid. Then the expressions
U1, B, & satisfy the lower order estimate:

3
4rg _ __A4rs
> > MV aey + Y, eT I TP o, SCe 4 TN e () (4.37)
[t|<N—-11=1 || <N-2

1

where we recall that ﬁ“ >2, 75 > 7,

2rg
3
[ e

l|=N -I=1

and the top order estimates:

Ts 3
Vil r2(s,) + €2Ht€]O|GL||L2(Et)] <Ce M eA /€0 (1) + C Y llermllan(s,), (4.38)
I=1

3
arg =N
Z €2Ht||mLHL2(Zt) SC(G_Ht +62Ht71721'5 Ht)w/gtot(t) —i—CZ ||€I”||HN(21)7 (439)

|t|=N—1,N I=1
for allt € [T, Tgoot)-

Remark 4.7. The exponent A;Ht having a bad sign in the RHS of comes from the terms in U}, &*
that do not contain a p?™s factor. This leads to the weak top order estimate , which only allows us to
close our bootstrap argument in the range c? € (%, %), see Remark On the other hand, these terms are
not present when looking at the relativistic Euler equations in a fixed FLRW background, which allows to
treat the whole range ¢? € ($,1), see Appendix

Proof. First, observe that since N > 7, there is at most one factor in every term of %,3*, & that contains
more than N — 4 spatial derivatives, for every |¢| < N. Hence, we control all error terms by counting the
powers of et corresponding to the lower order (optimal) behavior of each factor, leaving one factor with
maximum number of spatial derivatives, using the bootstrap assumptions , the basic estimates ,
(©3), and Lemma (to handle the inverse powers of vg).

1. Lower order error estimate (4.37). To control 4, |t| < N — 1, we recall the definitions (3.4), (3.5),
of the energies ggeom(t)a Efluid.low (t), gtot (t)

1., n — v _
ettt Z {zY 1(1}—6‘})1/@1”2 (p?=)+Y l(nv—e‘é)YaY““vl}
t1Uta=u, |e2|<|¢] 0 0 L2(3)
<Ce ([p? | av-rcz,) + e ol gr-1(z,)) (4.40)
re 4r,
SC(GHt_lEQTS + e*Ht) Stot(t) < Ceth /‘Stot(t), (1 7"2 > 27 o> 1)
— 27,

Ht ~ UD ~ U1 ~ n o
e HYL{(eln)vo + ncpr ~vc + DI VD + o i
0 0 0

+ fikerve + kerve + (ker + dcrH)oe .2 (4.41)

(Z4)

< CethHﬁHHN(zt) =+ C(Hi)\”HN*l(Et) + 1Vl av-1(m,) + IRl g -1(s,) + ”k”HN*l(Et))
< C’e*Ht\/ 5tot(t)-

This completes the estimate ([4.37) for 4. We proceed to estimate the L?*(3;) norm of P, [¢| < N — 2, in a
similar manner:

s 1 27 1 2rg
et D e ) Gl n et )Y, Y250 — Y ( nZ Uy, yeeg,
2rs f1727~s Vo fl—i’rs Vo Vo
11Uta=t, |12 <]e] Irs o1
1—2r, 1p% we - 1 -
yu - a YaYLz 2rs) — Y4 HY 2 p2rs 4.42
Y (g ey e S |
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< O] gv-2(m,y + Cle™ 't + e2H = T2 Hiy

< C(eHt 4 2H- T 1Y fe )

eri 1 g2

HN-2(%,) (Jer| > 1)

1 27"5

eToors Z f1 2r, VL 1(f1 - )Y TO{(eCﬁ)vc —|—n§chvD}
t1Ute=1
p275 U1
-2 ;{ erf)vg + nyeprcvp + nY1prtiUp + n%u%}
0
1 o2 1 p?rs VoU N
- ipvzfat(ﬁg”) 3. p2~2 0 (p*"*) (v + T0)Bo — A=~ ket — trk) p* — p"* (4.43)
0 5
—2Hty or, _ VCVIT: Pzrs 2, | or pre
T+ O(e2H) g — YU R g — O (02 4 )+ H Lo (00 + o)
g 3 v3vg
vcv Vov VeV VeUT
(/fc[—l-(SCIH)( L or, p2rs + QIﬁQT + QIﬁQTS-f— 5~ (Uo-‘rvo)vop )]
vg Yo Vo VoY L2(%,)

gce—HtHﬁ”HN,l 2, T+ C{|WHHN*2 = Tl av—2cs,) + 1kl ay-2(s,) + HﬁHHNf?(Et)}
+wwlme%Mmmwﬁ%Wn

<C(e” 2HI— T H YNV Erot (1)

HN-— 2(2 )

The above estimates give the desired control of P, |¢| < N — 2, in L?(%;), which completes the proof of
(14.37).

2. Top order error estimates (4.38])-(4.39). More careful power counting is needed due to the discrepancy
in the ef*-weights in the energy Eftuid.top(t), compared to Efiyid.iow(t) in (3.5)). For the convenience of the
reader, we note here the following power relations:

3c2 -1 2r c?
2Ht T Ht Ht— 55— Ht — A Ht s s s
c<C F=C A, = = —1 =
p € € b S I_Cg 1—7"3 9 TS 1+C§’
2rs _ R
2Ht TS”UHHN(Ef <C@2Ht77172"'s ‘UHHN(Et) — Cth ASHtHv”HN(Et) — CeAsHt gtot(t)> (444)
62Ht||p2rs HN(Zt) < Etot(t)~

We begin first with the estimates for U, |¢| = N

1
62Htprs Z {EYH(U )Y YL2( 2Ts)+ybl( . )Y YL2,UI}

11ULa=0, |1a]<|¢| 0 o L2(s,)
<O (12 || v () + € T[T v ) (4.45)

_2rs o,
SC(@ T— 2TS Ht+etheA5Ht) 5tot(t) < Ce HtpAsHt Stot(t), (1 7’2 - 1)

— 2r,
2Ht rg

~ UD ~ V1 ~ PPN

L

Y*{(erm)vo + nYep17 ~VC + MY1DI VD F Ui
0 0 0

+ fikerve + kerve + (ke + 501H)ﬁc}“L2(Zt)

3
2rg

< et s it Z lerfill v s,y + O pm e 9 [0] gz, (4.46)
=1

+ C(IAla~ 0 + 10l s,y + 1Ell v (s,))

3
<CY lerillgns,) + Ce Mt /0 (b),

I=1
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and proceed to estimate &*, |¢| = N, having just derived (4.38) for U:

Ts 1 — -~
2t P n (Yol ~ ~ VD ~ V1 ~ n o
e 7””1%3 + {**61(02”) +n—-ects + (efn)vo + nycpr—7vc + nyipr—Up + —0i V111

Vo 2 Vo Vo Vo Vo Vo

+nkcrve + ECI’UC + (%01 +0crH) Uc}YbﬁjuLz (4.47)

<CZ lerfill s, + Ce™ et /€ (t) + C€2Htp e 2Bl vy

I=1
3
<O leriillgn s, + Ce Mtet /8, (t).

=1
For the error terms in B, |¢| = N — 1, N, we have:

1 27 1 27
S fie [Y“(f n— )Y, Y2 5¢ — (s n'”—””’D )Y, Y27
2rg rs —2rg
t1Uta=t, |t2|<|¢| l = 2 =D O vo
1 1—2r, 1p%™ vc oa
R Y YL2 2r 9y«
f1727‘3 7’L( 27’3 2 U(Q) ) } ) (

2rg

62Ht

(4.48)

+y >HYL2,0/27~}
% L2(%:)

2Ht(e‘Ht 2T Y| 20 v s, (lei] = 1)
21,
1—2r,

< CePHte™ TE G v, + Ce

=Ce M 2 A 5| v s,y + Cle M+ PHE- T ) 2| p2re || v (s, (As =

—1)

<C( Ht 2Ht— T Ht) gtot(t)a

1 I ~
> froon YO (-—)Y" P {(ech)oe + nicpevp )

p27s vr
*{ (e1R)vg + nyepiVcvp + nyiproiOp + n'YllIU1}

Uo
2rg

lp% 1p vour
e N ) -
9 U% H(p™) + 9 U%U% t( "*)(vo + v0)vo TL( Uo

ko — trk)p*'s — p*'*n (4.49)

27"5

_ v
+O(672Ht)p2rs N CglkCI H'D ( 27 +p )Jer ('UO +’U0) o
Vo g v3TH
vr 5= Uovr Ve Ur Olells JUNOR
P = P = P (o UO)voﬁ%)}
0 Vo Vo Voo

~ ve
— (kcr + 5CIH)(
v2 L2(5)

3

4r

2 th lernllg~ (s, + Ce?ft-r= 2”Ht{HW’HHN(Zt) + Hk’HHN =0 T Il ey s, }
=1

+C(62Ht7%2‘?rsHt+ AHt— 555 Ht  Ht

S Ce2Ht7

He | g2

Nl gv—2(s,) + e lEw~ s

3
_ 4arg _ ~
< OZ ||€1”||HN(zt) + Ceth\/ Erot(t) + 0(672ASH’§ + = i 2A‘ﬂtth)||UHHN72(zt)
I=1

3
<O llerll s s,y + Cle™ Mt 4 P51 [ 7).
I=1

Thus, we have controlled the L?(X;) norms of all top order error terms in 3¢, |¢| = N — 1, N. This completes
the proof of the lemma. O

Our goal in this section is to prove the following proposition.
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Proposition 4.8. Let N > 7 be sufficiently large and assume the bootstrap assumptions (3.7) are valid.
Then the following energy estimates hold:

t
gfluid.low (t) S Cgfluid.low (T) + C/ (e_HT + 62HT7 lf;;‘g HT)gtOt (T)dTv (450)
T

t t -
5fluid-t0p(t) < Cgfluid.wp(T) + C/ eiHT€2ASHTgtot (T)dr + C/ (eiHT T AT ")t (T)dT (4.51)
T T

1 ('S apry ~
+§/TZe3H HeITLH%Z(ZT)dT7
I=1

for allt € [T, Tgoot)-

2
Remark 4.9. Here, it is evident that we can only hope to close our estimates if Ag = 3lcj:21 < % This is

Indeed, combining the energy estimates in Propositions we obtain an overall

verified for 2 € (3, 2).
Ht 24, Ht

estimate for the total energy &;,:(t), see the proof of Proposition Since the coefficient e~
naturally propagates to the latter overall estimate, Gronwall’s inequality only yields an estimate consistent
with our bootstrap assumptions (3.7)) in the case where —1 4+ 24, < 0.

Proof. Step 1. Derivation of (4.50). Multiplying the equation (4 with e2HtY%; gives the identity:

1 =R 1n
ieQthU—CeC(YLﬁIYLUI)—&—eQHtYLv]{f—e]Y 2“ } (4.52)

1 2Htv i v
- YY) =
5 Oc(e vrY'0r) ~ 5

Next, we integrate (4.52)) in X;, integrate by parts in ec, sum over |¢] < N — 1, and use the bootstrap
assumptions ([3.7)), the basic estimates (4.2]), (4.3]), and Lemmas to deduce the energy inequality:

1 N B R R —
30 > B3,y < Ce M B n 1 m,y + CeP D v e 102 v (s,
=1
+oef'j”||a||,j,w4(Z )( e Ht 4 PHI- T Y JE (7 (4.53)
<C(e” =2 8,0 (1).
Similarly, multiplying (4.30) with e tY‘/TQ—T\S gives the identity:
1 —_— 1 —
iat [GZPHt (YLPQTS)z] + (2H o P) e2PHt (YLPQTS)Q
1—27g
opHe L PPUUIUD S opmy P I i
=—e n—s Y*(p?rs)epY‘or + e ——n—Y"*(p?>")ecY Ve (4.54)
fl—2rS Vo Vo f1—2rS Vo
s s
1 1 oppy 1=2rs 1p uc o2 opHt 1 o
- - _ T\ = Y p2rs Y p2rs L
+2f1 2. " n( o, 2 0} )110 cc[(Y*p2r)] +e T L)

Setting P = 4257, , 1ntegrating (4.54)) in 2, summing over |¢| < N — 2, integrating by parts in ec in the first

term in the thlrd line , and arguing as above we derive:

1 8rs  prin o _ oOHt—Ars_p 8rs e o
N A el el T ey

Pt 5
+ =2 Y g2 HN*2<2»||”||HN*1@) (4.55)
<C(e H! +€2Ht7 )gtot( )-

Similarly, for P = 2 and summing over |¢| = N — 1 instead, we have

f’;s Ht)e4Ht||p/2?S 2

HN—I(Et)

1 _—
5315 [€4Ht [| 2" 2

_ Hi—
Fivoaiy) SOt 4 e
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Ht—-Ars [ /T ~
+ M= Y 020 | s 0 v sy (4.56)
drg 4
<O(e Ht 4 2HI-THn Hlye, (1), (4— —= =9 924,)
1—2r,
From (4.28)), we also have
3
19015y < Ol sy + O D [0y + O N oy m=0.1 (457)
I=1

For € > 0 sufficiently small, we obtain the lower and top order bounds

3
Ht||~ Ht ||~ Ht{ 2r.
e? t||U0H%1N—1(zt) 30262 tHUIH?arN—l(zt)‘*‘C64 Hlpe %{N—l(Et)a
o (4.58)
e AR By [ 5,y <O Y e A B[y s, + Cem AT 27 [, .
I=1

The desired lower order energy inequality (4.50) now follows by summing the energy inequalities (4.53)),
(4.55)), (4.56)), integrating in [T, t], and using the first bound in (4.58)).

Step 2. Derivation of (4.51). Integrate the top order energy identity (4.36) in X, integrate by parts
the terms in the third line of (4.36), sum over |t| = N, and use the bootstrap assumptions (3.7)), the basic
estimates (4.2), (4.3), Lemmas and Young’s inequality to deduce the energy inequality:

at|: Z / 4Ht QT‘S{YL,UI L’\ ,U{UUEYLA YD }dw—i— fl 2” 4Hth27S||HN Et):|
0

=N
4 s o 4 s — ~ ~
+ %H64Ht||p2rs||§-{,\, o+ T Ly 3 / AH 20 (Y15, Y Dy — “; By Y Opbde  (4.59)
° s =w 0
<C(e M+ 62Ht7ﬁm) AL p2rs i‘m(zt) + Ce*Mt| p2re HN(5,)€ ePHi- T HU”HN (=)

drg 2y N _ ~
+Ce™ Ht 4Ht*1 S HtH Hi]N(Et)—i_CgZHt ‘17275Ht||,UHHN(Et){e HteAsHt /gtot(t)+CZ||eln||HN(Zt)}

+ Ot p2re

3
- Ht——2t=_ g ~
HN(zt){(e ft 4 g2t r=a tit) 5tot(t)+Z||€m||HN(zt)}
I=1

3
C/ _Ht | 28— Hi | _Ht 2A,Ht 3Ht|, |2 4rs
Sg(e +e =2 0 4 em e )5t0t(t)+n;e HeInHHN(Et) (2- 1—2r, = —24,)
for some constant > 0 of our choice. Notice that by Cauchy-Schwartz it holds
27
e U VRV e S i
Y'u;Y'or — 12E Yo > (1 — E2E) Y = —-Y'urY'vr. (4.60)

Yo Yo Yo

2rg __Arg _ _ . .
Also, we recall that by Lemma Ly~ QAT HE _ (—24.Ht (2HE 20 o=24.Ht once, integrating
0

(4.59) in [T, ¢], it follows that

3
Ze 44, Ht, 2Ht||UI||HN(Et) + 4Ht||p2rs||HN =) (4.61)
=1

c [ Hi— %= g -
gcsflm»d‘mp(T)Jrg/ (7t 4 M Ity o= HE A 6, (1) + > e [esi][Fm s, -
T =1

Using in addition the second bound in (4.58)) and choosing 7 sufficiently small, we conclude the desired top
order energy estimate (4.51)). O
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4.4 Global existence in all of [T, +00) x S?

Having derived the main energy estimates in Propositions [£.4] we can now complete the overall bootstrap
argument by improving our assumptions (3.7)) and obtain a global stability result.

Proposition 4.10. Let N > 7 and assume the bootstrap assumptions (3.7) are valid. Then the following
energy estimate holds:

t t

Etot(t) < C&(T) + C/ (e7 =7 4 27 = ATV E ot (T)dT + C/ e HTe24: e, | (T)dr, (4.62)
T T

for all t € [T, Tgoot). Moreover, if 2A, < 1, ie. ¢ € (%, %), and &1 (T') is sufficiently small such that

+oo ‘
Céin(T) exp{C / e T AT g oA ) <, (4.63)
T

then (4.62) yields a strict improvement of the bootstrap assumptions (3.7). In the latter case, Tpoot = +00
and the estimate

Erot(t) < e (4.64)

holds for all t € [T, +00).

Proof. Summing the energy estimates (4.25)), (4.50), (4.51)) and readjusting the constant C gives (4.62)). By
Gronwall’s inequality, we obtain

t
Erot(t) < CEror(T) exp{C / eTHIT 4 I o HT2AT 7, (4.65)
T

for all ¢t € [T, Tyoot)-

Standard local well-posedness implies that the perturbed solution has a maximal time of existence T},q, >
T. If Thhar < 400, then for initial data sufficiently close to the background solution on t = T, consistent
with , there must exist a time ¢ty € [T, Tinae], such that SUPsei7,10) Etot(t) = €, otherwise the solution
can be further extended past t = T},,4, by standard continuation criteria. The latter equality cannot be true

due to (4.65)) and (4.63)). We conclude that T4, = +00 and that the bootstrap assumptions (3.7) are never
saturated, that is, (4.64) holds for all ¢t € [T, 4+00). O

5 The precise asymptotic behavior towards infinity

In this section, we derive the precise asymptotic behavior of each of the reduced variables EI T, V1IB, €5, T,

—

p37s g, U1 using the overall energy estimate (4.65)) and the equations in Lemma In particular, we prove:

Proposition 5.1. Let N > 7 and assume Propositz'on holds. Then the reduced variables ky;, 7 satisfy
the improved estimates:

HEIJ||WN—4>°<>(&) + HﬁHWN—“”(Zt) < Cee M1, (5.1)

—— 00

Moreover, there exist functions (€)% € WN=42°(S§3), p2r=  95° 5% € WN=52°(S§3) such that

17 = (@) 7 (@)e™ ™ -t s,y < Cee™ M, (5.2)
[0, — 02 (w)e™ T lywv-s.00(x,) < Cee™ Y, (5.3)

— —— 00 Ts Ts _ _4rg
||p2r5 — p2r5 (w)6_13‘2r§ Ht”wN—E),oc(Et) ch(eth + eZHt—szrs Ht)e 1fzr3 Ht’ (54)

for all t € [T, +00), where we recall that 1f“‘ >2,rs > %,

2rg
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Proof. The overall energy estimate (4.65)), together with the basic estimates (4.2), (4.3]), applied to control
the RHS of (2.26) yield the bound

||8£U + 3H/];IJ||WN*4«°°(ZJL) S CE(:’_QHt, (55)

which in turn implies

||€3Htkl.] _ 63HTkIJ(T, w)||WN74’°°(Et)

t
:‘ / 8t(63HT]<1[J)dT
T

Multiplying (5.6) with e=2#* and using the triangle inequality, we obtain

t t
< / 100(H R sl - 35, < C / Hir < Cecft. (5.6)
WN—4,oo(Zt) T T

Ersllwa—too(my < krsllwy-toempye 21t + Cee™2Ht < Cee™2H1, (5.7)

The argument for 7 is similar. This completes the proof of .

Having derived the improved estimates for 74;\1 7,7, we proceed to derive the precise asymptotic behaviors
of €%,7,, p/QT\s Treating the equations (2.28)), (2.30)), (2.31) as ODEs in ¢, using the energy estimate to
control the corresponding RHSs, we deduce the bounds:

|10 (e™ e llwrv-s(x,) < Cee™,
18 (") w5 (s, < Cee™ ™, (5.8)

(e o) =

w-s(z,) < Ce(e !+ PHImmam ity

)

for allt € [T, +00). Since the latter RHSs are integrable in [T, +00), it follows that the renormalized quantities
X Arg — . N ———00
eHtel Mgy em=2r 1 p2rs have limits as ¢ — +o0, denoted by (€°)%(w) € WN=42(S3), 5% (w), p?r=  (w) €

WN=52(33,). Integrating (5.8) in [t, +o0) gives the desired asymptotic behaviors (5.2)-(5.4) for €%, v, p2"=.
Indeed, the argument for €} is as follows:

18} — (@) (@)e™ T |yn—se(s,) = / 0,(e"7E})dr
t WN—4.00(%)
H +ee H 1
<o t/ 102 (5788 -t (3, (5.9)
t

+oo
< e*Ht/ Cee 27 dr < Cee™3H?,
t

The derivations for 07, p?7s are similar. To conclude the asymptotic behavior for Dy, we use the identity (4.28)
and the already derived behaviors of Uy, p27s. O

A Derivation of the equations of motion

Lemma A.1. The equations of motion D*T,,, = 0, for T,, given by (1.3) with p = c2p, are equivalent to
the system (L.5))-(L1.6).

Proof. Taking the divergence of (1.3)), for p = ¢2p, we have
(1+ ) (epphuy + (1+ )p(D )y + (1 + 2)p(Dyu)y, + 2Dyp = 0. (A1)
Contracting (A.1) with u” gives

u(epp) + (14 c2)p(DHu,) =0,

2

_ s 1
FEul (eup) +pTF (DHuy) =0, (4.2)

1+c§p
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1

D*(p*+Zu,) = 0.

Rewrite the energy momentum tensor (1.3]) using p = ¢2p and (L.4):

1—c2

Ty = (1+ )p ™ 0,0, + Epgp. (A.3)

Then the divergence of T}, becomes

2 2

D T,, = (1 + 2D (p 5 v, o, + (1+ ¢2)p™+ (Do), + D,

2

l—cg
=(1+c)D*(p e u,)v, + (1 +c2)p = (Dyv), +cDyp (A.4)
1— c2
=(1+ ci) 2 (Dyv)y + CgDup- (by (A.2))

21
We arrive at (1.5) after setting the last equation to zero and multiplying with (1 + ¢2)~! p”‘ .
Going back to (A.2), we replace u, in favor of v, and expand the divergence:

1 1— c _ 2 1— c2
0=DH(p*3u,) =D"(p*3v,) = 1+Czp 1+°2D op+ p T Dy, (A.5)
cgfl
Multiplying the last RHS with p'*+<% gives ((1.6). O

B ODE analysis for the homogeneous tilted backgrounds

Here, we prove the existence of homogeneous solutions to the Einstein-Euler system, of the form —,
for ¢2 € (%, 1), and derive their precise asymptotic behaviors. For consistency, we express the homogeneous
solutions in the gauge presented in Section

Consider the g-orthonormal frame . We compute the associated spatial connection coefficients using
the Koszul formula:

~ i ~ 7~ e~ ]~y e o~ ~
Y1iB = 5{9([3173J]a63> —g([es,eBler) + g([éB, €1],€5) }, (B.1)
the choice of frame (2.22)), the commutation relation (1.20), and the form of the metric (1.11)). They read:

Y112 = V113 = Y223 = Y332 = 0,
o = (a1 @) = 262 (OGT OG0, s = ([, 1) ) = 2652 (0GT (HG(),
Gy 1(t)G ( )

’7123 =
¢G2<t> G5 2(1)

[G3(8) — G3(¢) + Gi(t) — 2G* ()G * (1),

[G3(t) — GI(t) + G3(1)],  (B.2)

Y231 =
¢G3 t) — GG 2()

[G(8) — G3(¢) + G3(t) + 2G* ()G * ().

Y312 =
VG0 — GG (1)

y 1 . G2 (1)C5 (1)
€3 = , e3 = .
V3 — GG (1) VG0 — GHHG (1)

6} Gfl(t)a Eg = Ggl(t)»
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Notice that 4291 = —7331. Hence, we need only solve for 221 below. Expand also the fluid speed relative to
gOv gl
U= —up€y + U1€y (B.4)

and consider the renormalized fluid components vy = p"sug,v1 = p"*u;.

Then the identities in Lemma 2.1] become:

Bik11 — trkkiy = — 2321 + 292317312 — A — (1 + ) 232 — %(1 —)p, (B.5)
Oikaz — trkkoo = 21237312 — A — %(1 - ), (B.6)
Orkss — trkkss = 292317125 — A — %(1 -, (B.7)
Orkas — trkkaz = 271237221, (B.8)
Oo2r — k11¥aa1 = — 2kasT123 — azFost — k23Ta1a (B.9)
O123 — k1iAizs = (kuy — ka2)¥a12 + (k11 — kss)Fasn — 2ka3Fez (B.10)
OFos1 — kooTaz1 = (koo — kas)F123 + (kaz — k11)Aa12 (B.11)
B2 — kassiz = (ks — k11)Fes1 + (kas — k22)F12s (B.12)
det =knet, (B.13)
085 = k2283 + k33, (B.14)
0,3 = kg3e3, (B.15)
0,62 = k332 + ko3, (B.16)
001 = k101, (B.17)
—(1 = 2r,)0; log p + trk = 8; log T, (B.18)
where 93 = 0} + p*", ry € (4, 3). Also, the constraints reduce to
2¥2317123 + 271237312 + 2¥3127231 — 27301 (B.19)
— k2, + k3y + k25 + 2k25 — (trk)2 4 20 + 2(1 4+ 2)p' 202 — 227,
(EZZ — E33)F221 — k23 (Fa12 — Fos1) (B.20)

— (14 )20y

Existence for the above system of equations leads to a homogeneous solution of the Einstein-Euler system,
as long as the constraints are asymptotically satisfied to a certain order.
The solutions we will be looking at admit the expansions

El - _H+ Z k_oc e —mH + 0(6_7Ht), E23 _ Eg;ﬁe—SHt + 0(6_5Ht),

m=2
Yaz1 = O(e™ ), Fiop =Argpe M+ Z Yigpe Mt 0, T#£J#B#I, (B.21)
m=3
gi[ — (gi])oo,le—Ht + (9(6—3Ht)7 I=i, 5?3 _ O(€_4Ht),
5# — Z 'ﬁzo,me—mHt+O(e—4Ht), 1’51—27‘3 _ Z (ﬁl—2rs)oo,me—mHt_'_O(e—SHt).
m=1,3 m=2,4

The initial data of the above variables at infinity consist of the constants k?f} 3 5?3;, (7)o, opot, (pt2re )0

though the values i}“}é are determined from (¢%)°! and vice versa. Also, the extreme tilt of the fluid trans-

)

lates to the condition [35°"| = [3;°'|. Finally, the remaining constants are further constrained by the
identities (B.19)-(B.20). More precisely, we have the following lemma.
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Lemma B.1. Let ¢2 € (3,1). Given constants k5o ks Gt L0 (p172)°2, there eists a unique

solution to the evolution equations (B.5))-(B.18) with the asymptotic behavior (B.21)), such that
@)=t =@rhHT, i=1,
sy = (G UG TG ) TG = (G + (G317, (B.22)
Fosi = (G UG NG ) TG = (G52 + (G217,
Tore = (GO THGE) NG ) TG = (G5°) + (G?)7),

defined over an interval [T,+00), for some T > 0 sufficiently large. If in addition the following identities
hold:

k)% = (k)2 4> (kS Pkey ! — 2HES) — 260k 260k 4 6 Htrk™
1J 1J "IJ 1J
I,J 1,J

1
2L D= 2T 2l T

S

~00,1~00,5 ~00,3~00,3
=2 Z (’Y?}B’Y?BOIJ—"_QW?;B’V?IJ) (B.23)
I#£J#B#£I
700,3/~00,1  ~00,1
ka3 (Y315 — Yast )
— (14 &) (2 ),

the metric g of the form (L.11), defined from € via , together with p,u = p "=v, constitute a homo-
geneous solution to the Einstein-Euler system of the form (1.11)-(1.15)), satisfying the estimates in Lemma
23

Proof. Set
E][ =:—Hér;+ Ryy (B24)

and rewrite equations (B.5))-(B.18|) schematically:

DO =

atR[]-l-?)HR]]—R[[tI‘R HtI’R-ﬁ-’}/*’}/ (51[(1+C) o 2755}?—*(1—63)57

(B.25)
0:Ro3 + 3H Ra3 = Rastr R + 271237221, ( )
0Yo21 + HY221 = R117201 + Roz x ( )

0VrsB + Hyryp =Riyrgp + R+ 7, I#J#B#1 (B.28)
O + HeY = R+ ¢, (B.29)

01 + Hup = — Ryi11, ( )

O log(e3H 51 =2<) = trR. ( )

The constants k?js, 7oL (p1274)°02 and (&4)°1 3758, as in (B:22)), are the initial conditions for the variables
Rr7,71s8B, 'ép U1, p 2r, at infinity, with trivial data for 7s91, 'ég.

A standard Picard iteration argument gives rise to a solution to -, defined in an interval
[T, +00), for some T sufficiently large, and satisfying

Ry = O(e—QHt)7 Ros = 1008 o —3H1 + O(e—5Ht), Yoo = O(e—wﬂ)7 (B.32)
Frop =Ape M4 O3, T#J#B#1, (B.33)
e =@l M+ 0, I=i,  &=0(e), (B.34)

’,l‘)'u _ ;l‘}"zo,le—Ht (6 Ht)’ 51—27-s _ (ﬁl—Qrs)oo,Qe—QHt 4 O(€_4Ht).

Computing the higher orders in the expansions of the previous variables yields the desired asymptotic behavior

(B.21)) in a straightforward manner.
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Let
Co =k} + k2 + k23 + 225 — (trk)? + 20 + 2(1 + 2)pt 7232 — 2625 (B.35)
— 2Y9317123 — 271237312 — 273127231 + Va21 + V3315
C1 1= (ka2 — k11)Fa21 + (ka3 — k11)3s31 — kas(Fa1z — Fas1) + (14 ¢2)p' 2T (B.36)

Differentiating Co,C; and plugging in (B.5)-(B.18)), after a tedious computation, we obtain the equations:

0:Co — 2trkCy =0 <~ 0:Co + [6H + O(G_QHt)]CQ =0, (BS?)
9,C1 — (trk + k11)C1 =0 = 0,C1 + [4H + O(e2It)]C, = 0. (B.38)

It Come™™ Ht are the terms in the expansions of Cu, p = 0,1, then it is evident from the homogeneous

equations (B.37)-(B.38) that C,, = 0 everywhere, provided that Cgo 6 — €% = (. The latter conditions are
in fact equivalent to (B.23). This is indeed the case by expanding each term in the identities (B.35)-(B.36]

using . Hence, the constraints ( are valid for all ¢ € [T, +00).
The homogeneous solution g, u, p to the Einstem Euler system of the form (1.11))-(1.15]) is defined such

that Gy, G satisfy 1.' and ﬂ = p~"=v. Then one straightforwardly shows that the variables kj;, 775 given
by the solution to (B.5| are in fact the connection coefficients of ¢ g by observing that they satisfy the
same equations with same mitial conditions at infinity. The expansions 1)) imply the estimates in Lemma
since the remainders O(eP?) satisfy |0 O(eP?)| < Cn, peP?, an immediate consequence of the equations

B.3)-(B15). O

C Future stability of perfect fluids with extreme tilt and linear
equation of state p = c?p for the relativistic Euler equations on
a fixed S>-FLRW background: The full range 1/ V3<e <1

Here, we assume that the metric g is non-dynamical, everywhere equal to the FLRW metric

3
g=—dt* +a’(t)gss = —dt* +a’(t) > ¢ @ ¢, (C.1)

where

/

a2(t) = (a®)2e2Ht + O(1), % —H+ 020, ast— +oo. (C.2)

The variables p,v solve the relativistic Euler equations, ie. - with g as in . It is easy to
see that a similar ODE analysis from infinity as in Lemma only simpler since there is no coupling to
Einstein, yields a homogeneous solution to the Euler equations with the same qualitative properties for the
fluid. Indeed, the homogeneous Euler equations — reduce to

drla(t)or] =0, &[p' " a’(t)T0] = 0, (C.3)

where v3 = v7 + p?"=. Solving (C.3) from ¢ = +o00 to some ¢t = T > 1, we construct solutions having the
asymptotic behavior

G = e M 0@, p=0,1, e = () e 4 0@,

o
2 11 , 1 g s (C4)
T's 1+C§ € (iaZ% c € (gal)v (UO ) = (Ul ) )

where v{°, p>° are constants that correspond to the initial data of vy, p at ¢t = +o0.
The perturbed problem now concerns only the fluid variables p,v and the equations (2.5)-(2.7)) take the
following form.
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Lemma C.1. The fluid variables vy, vr, p?" satisfy the equations:

a’ Ve 11 . a’ prs
8,51}() + —vg — —ecvy = 7f8t(p2 S) + @p , (C5)
a Vo 2 vg a vy
drvr + Loy — € L1 ) (C.6)
v —v — —ecly = - —¢ s .
Al % cvr 2 00 (p77),
. a/ . ve , 27 2rg
(1=2r)0(p°") +3—p*" — ——ec(p*™) = — P Ovo + P ecve, (C.7)
a Vo ) Vo

where eg = O, ey = a~1Y;.

Proof. They follow from the equations (2.5)-(2.7) in Lemma after setting n = 1, kyy = 751(]%, and
realizing that

Yeprvevp = —Ycrpvevp = —g(Vger,0) = 0, T = vrey, Yepc =0, (C.8)

since e; = a~'Y7, where Y7 is ggs-Killing. O

By making the same bootstrap assumptions as in , albeit only for v,,, p?"s since the geometric variables
are fixed to their FLRW values, we notice that all the estimates derived in Section [4] are also valid for the
solution to —. In order to show that in the present case we can treat the full range of sound speeds
beyond radiation, ie. ¢2 € (%, 1), we need only improve the top order energy estimate (4.51) as to eliminate
the term with integrand coefficient e H#7e24sH7 <which prevents us from applying Gronwall’s inequality when
24, > 1, see Remark [£.9] Indeed, we will show that this is possible due to the simplified form of the equations
(C.H)-(C.7) relative to (2.5)-(2.7), importantly, thanks to the fact that all terms in the above RHSs contain
a factor of order p?7s. Notice that this is not the case for example in the equation , e.g. due to the term
Yeprvcvp. No obvious cancellations in the top order energy estimates seem to be possible because of such
terms, cf. .

We proceed by considering the differentiated analogues of —, commuting the equations with Y*,
[t] < N:

R / R R 11 o 10 27 R /YL/QTS /27 R
0 Y g + a*YL’UQ — Uﬁecybvo = 7—8thp2Ts - = tp2 ‘Do + aerp _ar 3 Y0y + 9{6, (09)
a Vo 2 v 2 v a v a vy
! 11 —_—
8,Y 0 + LV — YCecY iy = = —e VipPr + MY, (C.10)
a Vo 29
and
oy @ O VC v
(1 =2rg)0 Y p?rs + (83— 4+ —)Y*p2"s — (1 — 2ry)—ecY " p?rs (C.11)
a Vo Vo
21 21 27 )
= ey — oy + P M0y, 4 0y,
Vo Vo Vo Vo

All lower order terms from the previous commutations are included in 9Rg, R4, R. Moreover, they do not
contribute to the dangerous terms containing e~ #*e24sH* coefficients in the final energy inequalities and can
be treated as in the coupled to Einstein case.

The analogous top order energy identity to , for the system —, is the following:

S NN 1 ==
_64Htp27SYLU0 % " + e4Htp27syLvI % " + §€4HtYLp27~S % " (0'12)

which expands to

]- -~ [ T LS ]' L/\
§at{64Htp2TSYL’U[Y o7 — 64Htp2 S( U(])2 + 5(1 _ 27’8)64Ht(y p27‘s)2}

1 - Ly 1 T L=y a/ T L= LS
_ 562Htat(62Htp2rs)YL’U]Y o7 + 562Ht3t(€2Htp2 3)(Y 1}0)2 + (g _ H)€4Htp2 sY ’UIY o
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a . 1,.a Ow —
= (= H)e ™ p? (V1) + [5 (3 + ZOO) — (1= 2ry) H]e" ! (Y p2re)?
1 27 o R 1 2rg o R
= §e4Htp—eI(Y‘p2’“sYLv1) - fe“”p—at(prQTsY‘vo) (C.13)
Vo 2 Vo
1 v PN 1 , U o~ 1 ve .
4ot L e (Y5 Y p) — e e 2 en[(Y4T0))? 4 e (L — 2ry) Lec (Y p?re )]
2 Vo 2 Vo 4 Vo
R 1 8 R YL 27«S 271 R 2rg a R
+64Htp2rsyLU tp YL _ CL 4 CLp Y }+ 4Ht 2rgyL 21, p tV0 YLUO
2 Uo a v UO Vg Vg
~ ~ 1 =
+ €4Htp2rsyLvID;{3 _ €4Htp2TSYL’U0m6 + §€4Ht(YLp2rs)mL.
Differentiating by parts in d; in the term — ;e“{t Lkd - e (pr/%: Y'%y) and rearranging some terms in the RHS
gives
1 4Ht 2r L L 1 L/Qr\ L L \2 1 4Ht L? 2
5&{6 p S[Y 1Y v1+%Yp Y0y — (Y'p) ]}—&-1(1—27“5)@[6 (Ytp?rs) }
1 o 1 o n A
_ 5eQHtat(62Htp2'rs){Y'LUIY'L,UI + %YLp%«SYLUO _ (YL’U())2}
/ /
+ (CL _ H)64Htp2rs YL%\IYL%\I _ (CL _ H)€4Htp2rs (YL60)2
a a
1,_a 0w Lo 10,0 o' p°"s e
+ [5(3E + 200) — (1= 2rg)H]e ! (Y p2re)? — (5 tf;z + E%)€4Ht02 *(Y*%)?
0 0
Loame P e @'\ 4 PP
=€ —e(Y'p?sY'vr) + (H — —)e*"' —Y" " p2rs Y0y (C.14)
Vo a Vo
1 v PN 1 , U o~ 1 v Lo
+ 764Htp2“—cec(YLv1Y v7) — —etftp? S—Ceg[(Y 00)]? + —eMt(1 — ZTS)—CeC[(Y 0%:)?]
2 Vo 2 Vo 4 Vo

1 —
4 e4Htp2rsybi}\Im§ _ e4Htp2rsyLi)\Om6 4 §e4Ht(YLp2'r3)mL.

After the previous manipulations, it turns out that all terms in the RHS of (C.14)) can be bounded in L!(%;)
by the total energy times a uniformly (in ¢2) decaying coefficient, after 1ntegrat1ng by parts in ey, ec, and all
terms in the LHS which are exactly at the level of the total energy have a favorable sign. Indeed, recall the
asymptotic behaviors (Lemma [4.1))

Dy (p*") 4rg —
H|| o0 <C b= 1
27 . o L=z, < Ce

atvo

irs _ prt
21, ,

+ H| (s, <Ce” ™

integrate (C.14) in 3; and sum in [¢| < N to deduce the energy inequality

1 1 —
S0 Y / M2 [V T Y 0 + — Y p2rs YTy — (Y'00)? ] dw + = (1 — 2r,)eM ||yt p2rs
2 bR Vo 2

HN(E )
ll|l<N
2rs ~ ~
+ > / (—2 1) HeM PP Y Ty Y‘ P2 Y T — (Y'00)2 Ydw
w1 —2rg
[t|<N ==t
AHE)| op. (12 2r, 4Htp PN
+ 2 He |02 [y s, + > (1—27“5 DHe v} (Y o) d
< Ottt =55 1Y 20| v o 18] v s (C.15)
+ Z Cethe4Htp2r5 Y, Y 0 — (YLi)\O)2|dw+Cethe4Ht”p/2T\S %{N(zt)
|| <N

- ~ 1 =
+ Z {64Htp2rsybv1m; _ e4Htp2rsyL,U0%6 + §e4Ht(Y‘p2’“s)9‘iL}dw.
|| <N
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The terms in the last line, containing error terms from the commutation of equations (C.5))-(C.7) with Y,

can be treated similarly to (4.39), since they all contain factors of order p?"s in terms of decay in powers of
Ht
e’.

Moreover, we recall the algebraic relation

47'5 — s ~ _
Ao =2+ (-2 =1 5 TP s [0 sy < P Eia) (C16)
to infer from ((C.15])
1 4Ht 27‘ [P VP Lo2r VLS 4Ht Lo
50 > [/E [0y or + - Y 027 Y Bg — (YV'00)2] dw + 2(1—2705) Y p2re ey
<N k
2rg .
+ Z / ( s — 1)HeH? 2T°{YL’U[YL’U[+ YL 2T5YL1)0— Lvo)Z}dw (C.17)
w1 —2rg
[l <N
o 2rg P v
+ 2’/’81{641%||,02TS QHN(Et) + (1 g l)H e vo HY UO“HN (Z¢)
<Ot 4 A EE e, () + Y ce—Hte‘*Htp?Ts Y'0;Y 0 — (YD) |dw.
|| <N
Lemma C.2. The following inequality holds:
1. —
/ M P [Y'9,Y' 0y + —Y ' p2r=Y Ty — (Y'p)?]| dw
v
o " ’ (C.18)
s rg
> / Y Y Gydw — Cle + 2 TE Y, (1)
= Yo
for allt € [T, Tpoot)-
Proof. We differentiate the identity v3 = vjv; + p?™ in Y, [t| < N:
1. —
oY 0y = v Y01 + §YLp2TS + 7 (019)

where J* satisfies the bound

13| 2z, < Cev/Erar(t). (C.20)

Taking %Y‘/ﬁ’“\s to the LHS in (C.19)), diving by vy and squaring yields

. 1 5 11, ,== V10 o~ 2 P S
(Y'50)2 — —Y' 02 Yy + ~— (V'p2e)? = “CV'9,Y B0 + vV 0,3 + — (342 (C.21)
Vo 4 vg v v} vg
Hence, we have
1 —
/ M [Y' 9 Y0 + Y pPY Ty — (Y'%p)?] dw
A 0
R R R R 1 27 _
= [ {2 YYD — CRCY Y ] 4 2 B e T (Y2 )2 (C.22)
o Yo 4 vy
2 1
- / et p2rs [—QUIYLUIT + 7(7)2} dw
o Yo Yo
4rg
> / e4Htp—2YLﬁIYL51dw —C(e + Mt 1= S HEY /ot (1) (by Cauchy-Schwarz and (C.20))
PP o

as desired. O
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Next, we apply Lemma to (C.17) and recall that e4Ht% ~ e 4 HE2HE 14 deduce the energy
0
inequality

2

674A3Ht€2Ht||6”§{N(Zt)+64Ht||YLp2TS HN ()

t
Jr/T 674A5H762HT||6||§{N(2T)+64HT||YLp2r5 %IN(ZT)dT (C.23)

4rg

drg t
< C&ot(T) + Cle + 2= 1 g, (1) + / Cle+e T4 255N E, (1) dr
T

for all t € [T,TBoot). Taking e sufficiently small and T sufficiently large allows us to absorb the last two
terms in the LHS. Using as well the lower order estimate (4.50), we obtain the inequality

t

Etor(t) < CEot(T) + C / (e~ H™ 4 2HT—T5 Hr e (1) dr. (C.24)
T

Thus, Gronwall’s inequality applies for all ¢? € (%, 1), giving a uniform bound of the total energy, &;ot(t) <
C&ot(T), which can be used to close the bootstrap argument and conclude the future stability of the back-
ground homogeneous solutions to Euler’s equations with extreme tilt, for all sound speeds beyond radiation.
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