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Abstract

We study the future stability of cosmological fluids, in spacetimes with an accelerated expansion,
which exhibit extreme tilt behavior, ie. their fluid velocity becoming asymptotically null at timelike
infinity. It has been predicted in the article [17] that the latter behavior is dominant for sound speeds
beyond radiation cs = 1/

√
3, hence, bifurcating off of the stable orthogonal fluid behavior modeled by

the classical FLRW family of solutions, for c2s ∈ [0, 1
3
]. First, we construct homogeneous solutions to

the Einstein-Euler system with the latter behavior, in S3 spatial topology, for sound speeds c2s ∈ ( 1
3
, 1).

Then, we study their future dynamics and prove a global stability result in the restricted range c2s ∈
( 1
3
, 3
7
). In particular, we show that extreme tilt behavior persists to sufficiently small perturbations of the

homogeneous backgrounds, without any symmetry assumptions or analyticity. Our method is based on a
bootstrap argument, in weighted Sobolev spaces, capturing the exponential decay of suitable renormalized
variables. Extreme tilt behavior is associated with a degeneracy in the top order energy estimates that
we derive, which allows us to complete our bootstrap argument only in the aforementioned restricted
range of sound speeds. Interestingly, this is a degeneracy that does not appear in the study of formal
series expansions. Moreover, for the Euler equations on a fixed FLRW background, our estimates can be
improved to treat the entire beyond radiation interval c2s ∈ ( 1

3
, 1), a result already obtained in [21]. The

latter indicates that the former issue is related to the general inhomogeneous geometry of the perturbed
metric in the coupled to Einstein case.
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1 Introduction

The standard model in cosmology is the Einstein-Euler system with a positive cosmological constant:

Ricµν − 1

2
gµνR+ Λgµν =Tµν , (1.1)

DµTµν =0, (1.2)

where Tµν is the energy momentum tensor of a perfect fluid,

Tµν = (ρ+ p)uµuν + pgµν , (1.3)

with linear equation of state p = c2sρ and sound speed in the interval cs ∈ [0, 1]. Different values of cs are
used to model different states of matter in the universe, e.g. dust cs = 0, radiation cs = 1√

3
, stiff cs = 1.

Here, p, ρ are the pressure and density respectively, u is the unit fluid velocity, g(u, u) = −1, and we have
chosen geometric units so that in particular the speed of light is 1.
It is convenient to consider the renormalized fluid speed

vµ = ρrsuµ, rs =
c2s

1 + c2s
∈ [0,

1

2
]. (1.4)

Then, the equations of motion (1.2) read (Lemma A.1):

(Dvv)ν +
1

2
Dν(ρ

2rs) = 0, (1.5)

(1− 2rs)Dv log ρ+Dµvµ =0. (1.6)

The initial data for (1.1), (1.5), (1.6) on a Cauchy hypersurface Σ consist of (̊g, k̊, ρ̊, v̊, v̊0), satisfying the
constraint equations:

R̊− |̊k|2 + (tr̊k)2 =2Λ + 2(1 + c2s)ρ̊
1−2rs v̊20 − c2sρ̊, (1.7)

d̊iv̊k − dtr̊k =− (1 + c2s)ρ̊
1−2rs v̊0̊v, (1.8)

and the identity v̊20 = g̊(̊v, v̊)+ ρ̊2rs . It is well-known that the above system of equations is locally well-posed
(see [31, Section 3.2] for a detailed discussion), giving rise to a development (M,g, ρ, v).
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1.1 The space of homogeneous solutions: Orthogonal vs tilted fluids, radiation
bifurcation

There are numerous papers in the physics literature [9, 14, 15, 19, 20, 27, 32, 33] that study the space of
homogeneous solutions to the Einstein-Euler system (1.1)-(1.8). Most relevant to the present paper is the
work [15] (see also [14, 27]), where the authors, using dynamical systems techniques, notice the following
classification of homogeneous solutions in various Bianchi symmetry classes (for the whole picture below to
be valid, a certain number of non-trivial structure coefficients are required):

1. The metric approaches a de Sitter-like state

g = −dt2 + gijdx
idxj , (t, x) ∈ [T,+∞)× Σ ∼= M. (1.9)

That is to say, the rate of expansion of the universe, gij ∼ e2Htcij , is uniform in all spatial directions

and is dictated by the Hubble constant, equal to leading order to H =
√

Λ/3.

2. Asymptotically orthogonal fluids, 0 ≤ cs < 1/
√
3: For sound speeds below radiation, the fluid velocity

becomes asymptotically orthogonal to the level sets of t, ie. u = −u0∂t + uIeI with u0 → −1, uI → 0,
as t→ +∞, where g(eI , eJ) = δIJ .

3. Tilted fluids, cs = 1/
√
3: The fluid velocity can pick up a ‘tilt’ at infinity, relative to the level sets

of t, while all components of the fluid remain bounded, ie. there exist constants u∞0 , u
∞
I , such that

u0 → u∞0 , uI → u∞I , as t→ +∞, where u = −u0∂t + uIeI and g(eI , eJ) = δIJ .

4. Fluids with extreme tilt, 1/
√
3 < cs < 1: The components of the fluid velocity become unbounded,

while the fluid vector field u ∈ TM approaches the null cone at infinity. More precisely, there exist
constants u∞0 , u

∞
I such that

e−AsHtu0
t→+∞−→ u∞0 , e−AsHtuI

t→+∞−→ u∞I , As =
3c2s − 1

1− c2s
, (u∞0 )2 = u∞I u

∞
I , (1.10)

where u = −u0∂t + uIeI and g(eI , eJ) = δIJ . Note that As > 0, for c2s ∈ ( 13 , 1). In other words, the
leading order behavior of u is a null vector field.

5. The density ρ decays exponentially in all above cases, as t → +∞, at a rate which depends on cs,
compensating especially in case 4 for the exponential growth of the fluid components u0, uI .

6. Breakdown, cs = 1: The fluid velocity becomes null in finite time. Hence, the model is not suitable for
global existence.

An immediate observation from the above classification is that there is a bifurcation phenomenon, regarding
the behavior of the fluid at infinity, relative to the different sound speeds at exactly the radiation case
cs = 1/

√
3. Of course, this is a behavior exhibited by homogeneous solutions and the natural question that

arises is whether the latter phenomenon persists to inhomogeneous solutions.

1.2 Analytic solutions without symmetries: Stability/instability predictions

In [17], the authors carried out a heuristic analysis of general, inhomogeneous, solutions to the Einstein-
Euler system (1.1)-(1.8) based on formal series expansions from infinity. They concluded that the behavior
of the fluid for the different sound speeds is consistent with the picture 1-5 in the homogeneous case, the
difference being that the asymptotic data at infinity are now functions instead of constants, e.g. cij := cij(x),
u∞0 = u∞0 (x) etc. In particular, extreme tilt behavior 4, for sound speeds in the range 1/

√
3 < cs < 1, persists

to inhomogeneous solutions enjoying all degrees of freedom, in a function counting sense. The latter is an
indication that the obtained qualitative picture is generic.
A rigorous construction of analytic solutions, without symmetries, was subsequently achieved by Rendall

[28] using Fuchsian techniques. Once more, the behavior of solutions is determined in detail by expansions
from infinity to any order, in the spirit of [17], containing all functional degrees of freedom. The only deviation
from the heuristic picture becomes apparent in the range 1/

√
3 < cs < 1, for solutions having extreme tilt. In
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the latter regime, Rendall’s result [28] only applies to asymptotic data having non-vanishing spatial velocity,
ie. u∞I (x)u∞I (x) ̸= 0. In the presence of a vanishing point, he predicted the blowup of the density contrast
∇ log ρ, and hence a form of breakdown in the fluid, which in his words “is reminiscent of spikes” that are
observed in Big Bang singularities. Numerical support for Rendall’s breakdown prediction was recently given
in [2], and rigorously proven in [26], for a restricted range of sound speeds beyond radiation, under symmetry
assumptions, albeit for the relativistic Euler equations on a fixed FLRW background and not coupled to
Einstein. An interesting feature of the inhomogenous solutions of the relativistic Euler equations from [26] is
that they behave like orthogonal fluids at points where the spatial velocity vanishes at timelike infinity while
at points with non-vanishing spatial velocity they exhibit extreme tilt.

1.3 Future stability of FLRW: The range up to radiation 0 ≤ cs ≤ 1/
√
3

The current work concerns the future stability of certain homogeneous background solutions in finite regularity
spaces. To that extent, the simplest background solution one can consider is a member of the FLRW family
of solutions. This is an orthogonal fluid and according to the predictions from the study of formal series
expansions, it can only be expected to be stable for sound speeds in the range c2s ∈ [0, 13 ].

Indeed, future stability of FLRW was first established for c2s ∈ (0, 13 ) in the irrotational case [30] and
subsequently in the presence of vorticity [31], showing in particular that the perturbed solution becomes
asymptotically orthogonal as well. Remarkably, the latter works demonstrated that an accelerated expansion
can silence fluid degeneracies, like shocks, which are in general expected to occur otherwise.12 The dust case
cs = 0 was treated in [16], where the fluid is asymptotically orthogonal as well, and the radiation case c2s = 1

3
was treated via conformal methods [18], where as in the heuristic picture, the fluid can pick up a slight tilt
at infinity. An alternative approach that provides a uniform treatment of future stability in the parameter
range 0 < c2s ≤ 1

3 can be found in [24]. For fluid stabilisation in higher dimensions, see the more recent [23].

1.4 Main results: Going beyond the radiation threshold cs > 1/
√
3

For sound speeds above radiation, ie. cs > 1/
√
3, FLRW is not the right background to consider, since the

heuristic analysis [17] suggests that extreme tilt should be the dominant behavior, a feature qualitatively
different from FLRW. In order to study the future stability of extreme tilt behavior in fluids, it is appropriate
to consider homogeneous backgrounds that have this property.

1.4.1 The tilted homogeneous backgrounds

To allow for extreme tilt behavior in homogeneous solutions, a certain number of non-trivial structure coef-
ficients and anisotropy is needed to satisfy the constraints. We find it convenient to look at homogeneous
background metrics of the form

g̃ = −dt2 +
3∑

i=1

G2
i (t)ψ

i ⊗ ψi +G2(t)(ψ2 ⊗ ψ3 + ψ3 ⊗ ψ2), (1.11)

defined over [T,+∞)× S3, where ψi are the 1-forms dual to the non-holonomic basis of spatial vector fields
Yi defined in (1.18).
Also, we assume that the homogeneous fluid speeds ũ are tilted only relative to the first spatial coordinate:

ũ = cosh(θ(t))∂t + sinh(θ(t))G−1
1 (t)Y1. (1.12)

The existence of such solutions, in the range c2s ∈ ( 13 , 1), is obtained by an ODE analysis at infinity (see
Appendix B). In other words, a backwards construction, assuming that the metric (1.11) asymptotically
isotropizes:

G2
i (t) = (G∞

i )2e2Ht + l.o.t. G2(t) = l.o.t., (1.13)

1See for example Christodoulou’s breakthrough work [7] on the formation of shocks for the relativistic Euler equations in
Minkowski spacetime.

2Fluid stabilisation, as an effect of an accelerated expansion, was first rigorously established by Brauer-Rendall-Reula [3] for
Newtonian cosmological models.
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for some constants G∞
i > 0. T > 0 is some sufficiently large time given by the interval of existence of the

solution to the homogeneous Einstein-Euler system.
An important feature of the fluids that we consider is that both components of the fluid speed (1.12) grow

exponentially, while the fluid speed itself becomes asymptotically null, as t→ +∞, in the sense that

cosh(θ(t)) = a0e
3c2s−1

1−c2s
Ht

+ l.o.t., cosh(θ(t)) = a1e
3c2s−1

1−c2s
Ht

+ l.o.t., a20 = a21 ̸= 0, (1.14)

for 1√
3
< cs < 1. The growth of the fluid components is compensated by the exponential decay of the density:

ρ̃(t) = ρ̃∞e
−2

1+c2s
1−c2s

Ht
+ l.o.t. (1.15)

The precise estimates satisfied by the above variables and their derivatives are stated in Lemma 2.3, and
derived in Appendix B.

1.4.2 Brief framework

We express all spacetime metrics in this article relative to a coframe, propagated along the gradient of a time
function t ∈ [T,+∞):

g = −n2dt2 + gijψ
iψj . (1.16)

Here n is the lapse of the t-foliation, Σt
∼= S3, the shift vector field is set to zero, and g is the induced

metric on Σt. When we compare variables associated to different metrics, e.g. a homogeneous solution and
a perturbation of the latter, we use the natural identification of points in the different manifolds relative to
the above splitting. In this regard, the time function of the perturbed solution is fixed by requiring that the
lapse of its level sets equals

n− 1 = trk̃ − trk, (1.17)

where trk̃ is the mean curvature of Σt in the homogeneous background, see (2.23). As it turns out, the
condition (1.17) leads to a parabolic equation for the lapse n, see (2.4), which is well-posed in the future
direction.
The 1-forms ψ1, ψ2, ψ3 are dual to the basis of Σt-tangent vector fields Y1, Y2, Y3 that are defined as follows.

Consider the basis of standard dS3-Killing vector fields

Y1 =(x1
∂

∂x2
− x2

∂

∂x1
)
∣∣
S3 + (x3

∂

∂x4
− x4

∂

∂x3
)
∣∣
S3 ,

Y2 =(x1
∂

∂x4
− x4

∂

∂x1
)
∣∣
S3 + (x2

∂

∂x3
− x3

∂

∂x2
)
∣∣
S3 , (1.18)

Y3 =(x1
∂

∂x3
− x3

∂

∂x1
)
∣∣
S3 + (x4

∂

∂x2
− x2

∂

∂x4
)
∣∣
S3 ,

where ∂
∂xj here denote the Cartesian coordinate vector fields in R4. Since ΣT is diffeomorphic to S3, we pull

back Yi and then Lie propagate them along ∂t,

[∂t, Yi] = 0. (1.19)

Note that Yi are non-holonomic, since initially on ΣT

[Yi, Yj ] = 2ϵij
lYl. (1.20)

Also, note that the relation (1.20) is propagated in evolution by virtue of (1.19). The benefit of working with
the vector fields Yi is that they are non-degenerate. We will also use them as commutation vector fields to
derive higher order energy estimates in Section 4.
Moreover, we consider an orthonormal frame

eI = eiIYi, e0 = n−1∂t, (1.21)
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which is Fermi propagated along e0 according to

De0eI = n−1(eIn)e0, (1.22)

where D is the Levi-Civita connection of g. Note that eI is Σt-tangent, provided it is initially the case. It
also holds that

De0e0 = n−1(eIn)eI . (1.23)

The connection coefficients associated to eµ are

kIJ := −g(DeIe0, eJ) = kIJ , γIJB = g(DeI , eJ , eB) = g(∇eIeJ , eB) = −γIBJ , (1.24)

where ∇ is the Levi-Civita connection of g.
Lastly, the fluid vector field u is projected onto eµ:

u0 = g(u, e0) < 0, uI = g(u, eI), −u20 + uCuC = −1. (1.25)

Similarly, the renormalized fluid components equal

v0 = ρrsu0, vI = ρrsuI , −v20 + vCvC = −ρ2rs . (1.26)

1.4.3 Main theorem

We are now ready to state our overall stability theorem.

Theorem 1.1. Let g̃, ρ̃, ũ be a homogeneous solution (1.11)-(1.15) with extreme tilt, for c2s ∈ ( 13 ,
3
7 ). Let

(ΣT
∼= S3, g̊, k̊, ρ̊, ů) denote a perturbed initial data set around the latter homogeneous solution, satisfying the

constraints (1.7)-(1.8), and let (M,g, ρ, u) be the corresponding maximal solution to (1.1), (1.5), (1.6). Con-

sider the geometric and fluid variables kIJ , γIJB , e
i
I , n, ρ

2rs , vµ introduced above and let k̂IJ , γ̂IJB , ê
i
I , n̂, ρ̂

2rs , v̂µ
denote the corresponding differences, after subtracting their background values, see (2.22), (2.23), (2.25). As-

sume that their initial data, induced by (̊g, k̊, ρ̊, ů) and our choice of eI on ΣT (see Section 2.3), are sufficiently
small in HN (ΣT ), for some N ≥ 7 (see Section 3.1 for the precise definition of the norms):

ε̊2 = e2HT
{
∥k̂∥2HN (ΣT ) + ∥γ̂∥2HN (ΣT ) + ∥ê∥2HN (ΣT ) + eHT ∥n̂∥2HN (ΣT )

}
+ e2HT ∥v̂∥2HN (ΣT ) + e

8rs
1−2rs

HT ∥ρ̂2rs∥2HN (ΣT ).
(1.27)

Then, the perturbed solution is globally defined in the future of ΣT , relative to the time function t normalized
by (1.17), and the following estimates hold true:

e2Ht
{
∥k̂∥2HN (Σt)

+ ∥γ̂∥2HN (Σt)
+ ∥ê∥2HN (Σt)

+ eHt∥n̂∥2HN (Σt)

}
≤Cε̊2,

e2Ht∥v̂∥2HN−1(Σt)
+ e

8rs
1−2rs

Ht∥ρ̂2rs∥2HN−2(Σt)
≤Cε̊2, (1.28)

e−2AsHt
{
e2Ht∥v̂∥2

ḢN (Σt)
+ e

8rs
1−2rs

Ht
(
∥ρ̂2rs∥2

ḢN−1(Σt)
+ ∥ρ̂2rs∥2

ḢN (Σt)

)}
≤Cε̊2,

for all t ∈ [T,+∞), where the constant C > 0 depends on N and the background homogeneous solution, while

rs =
c2s

1 + c2s
, As =

3c2s − 1

1− c2s
. (1.29)

Moreover, the following improved estimates are valid:

∥k̂IJ∥WN−4,∞(Σt) + ∥n̂∥WN−4,∞(Σt) ≤ Cε̊e−2Ht (1.30)

and there exist functions (ê∞)iI ∈WN−4,∞(S3), ρ̂2rs
∞
, v̂∞0 , v̂

∞
I ∈WN−5,∞(S3) such that

∥êiI − (êiI)
∞(ω)e−Ht∥WN−4,∞(Σt) ≤Cε̊e−3Ht,
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∥v̂µ − v̂∞µ (ω)e−Ht∥WN−5,∞(Σt) ≤Cε̊e−2Ht, (1.31)

∥ρ̂2rs − ρ̂2rs
∞
(ω)e−

4rs
1−2rs

Ht∥WN−5,∞(Σt) ≤Cε̊(e−Ht + e2Ht− 4rs
1−2rs

Ht)e−
4rs

1−2rs
Ht,

for all t ∈ [T,+∞), where 4rs
1−2rs

> 2. The leading order coefficients satisfy as well:

∥(êiI)∞(ω)∥WN−4,∞(S3), ∥v̂∞µ (ω)∥WN−5,∞(S3), ∥ρ̂2rs
∞
(ω)∥WN−5,∞(S3) ≤ Cε̊. (1.32)

Proof. The proof of the main estimates (1.28) consists of a bootstrap argument (3.7) that is split into
Propositions 4.4, 4.8, 4.10. The improved asymptotic behaviors (1.30)-(1.31) are a consequence of (1.28) and
are derived in Proposition 5.1.

Remark 1.2. For c2s ∈ ( 13 ,
3
7 ), the other parameters range in rs ∈ ( 14 ,

3
10 ), As ∈ (0, 12 ). If we were to treat

the whole beyond radiation range of sound speeds c2s ∈ ( 13 , 1), then we would have rs ∈ ( 14 ,
1
2 ), As ∈ (0,+∞).

The reason for the restrictive assumption c2s ∈ ( 13 ,
3
7 ) is due to a degenerate top order estimate for the fluid

variables, see (4.51) in Proposition 4.8, which is only useful when As < 1/2, ie. cs <
√
3/7, see also Remark

4.9. We elaborate more on this issue in Section 1.7.

Remark 1.3. The asymptotic behavior of the original variables g, ρ, u is easily deduced from Theorem 1.1:

∥n− 1∥WN−4,∞(Σt) ≤ Ce−2Ht, ∥gij − g∞ij (ω)e
2Ht∥WN−4,∞(Σt) ≤ C, (1.33)

∥e−AsHtuµ − u∞µ (ω)∥WN−5,∞(Σt) ≤C(e−Ht + e2Ht− 4rs
1−2rs

Ht),

∥e
2rs

1−2rs
Htρ− ρ∞(ω)∥WN−5,∞(Σt) ≤C(e−Ht + e2Ht− 4rs

1−2rs
Ht),

(1.34)

for all [T,+∞), where

g∞ij = (ΩC
i )

∞(ΩC
j )

∞, (ΩC
i )

∞(ebC)
∞ = δbi , (ebC)

∞ = (êbC)
∞ + (ẽbC)

∞, (1.35)

ρ∞ =
[
ρ̂2rs

∞
+ (ρ̃∞)2rs

] 1
2rs , u∞µ = (ρ∞)rsv∞µ , v∞µ = v̂∞µ + ṽ∞µ . (1.36)

Here, (ẽbC)
∞, ρ̃∞, ṽ∞µ are the leading order coefficients of the corresponding background variables, see (B.21).

Remark 1.4. The asymptotic behavior of the metric (1.33) is de Sitter-like, as anticipated. On the other
hand, the asymptotic behavior of the fluid variables (1.34)-(1.35) confirms that extreme tilt behavior persists
to general perturbations of the homogeneous backgrounds. Indeed, from (1.31) and (B.21) we have

−(v∞0 )2 + v∞I v
∞
I = lim

t→+∞
e2Ht(−v20 + vIvI) = − lim

t→+∞
e2Htρ2rs = 0. (1.37)

Hence,

(u∞0 )2 = (ρ∞)2rs(v∞0 )2 = [(ρ∞)rsv∞I ](ρ∞)rsv∞I = u∞I u
∞
I , (1.38)

that is, the leading order behavior of uµ is null.

1.5 Previous work on the relativistic Euler equations: The entire beyond radi-
ation interval 1/

√
3 < cs < 1

Our result is preceded by works on the relativistic Euler equations on a fixed (flat) FLRW background,
proving the future stability of homogeneous perfect fluids with extreme tilt, first for the restricted range
c2s ∈ ( 13 ,

1
2 ) [25] and then for all sound speeds beyond radiation c2s ∈ ( 13 , 1) [21]. This raises the question as to

whether our method can be improved to treat all 1/
√
3 < cs < 1. In Appendix C, we sketch a proof of the

analogue of the future stability result in [21] for the Euler equations on fixed S3-FLRW metrics, incorporating
the entire interval c2s ∈ ( 13 , 1). The argument works independently of the value of cs, thanks to the absence of
certain error terms in the case of the simplified isotropic FLRW metric. Hence, we pinpoint in a sense where
the problem lies when studying the Euler equations on general inhomogeneous metrics, as in the coupled
to Einstein case. At the moment, we cannot see an improvement in our estimates that would lead to an
extension of Theorem 1.1, for c2s ≥ 3/7. We comment more on the degenerate top order estimates that we
are able to obtain in the next subsection. We should also emphasize that this seems to be a problem related
to energy estimates in finite regularity Sobolev spaces, which is not encountered in the study of formal series
expansions, making it even more peculiar should a real instability be present for c2s ≥ 3/7.
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1.6 Finite time breakdown prediction for the stiff fluid model: cs = 1

The stiff case cs = 1 seems to be quite unstable, already by not permitting homogeneous solutions to the
Einstein-Euler system with extreme tilt, for general data. Indeed, this can be seen at the level of the ODE
analysis in Appendix B. Solving equations (B.30), (B.31) for ṽ1, ṽ0 indicates that in general ṽ0 ∼ e−3Ht (recall
that rs =

1
2 ), while ṽ1 ∼ e−Ht, which means that the renormalized vector field ṽ would have to become null

in finite time for general leading order coefficients, even if the initial data are close to FLRW, ie. ũ ∼ ∂t.
Although the preceding observation concerns homogeneous solutions, it makes a strong case for instability.
In the irrotational case, the problem reduces to the study of the Einstein-massless-scalar field system. The

above breakdown behavior has actually been confirmed in [11], for near FLRW data, without symmetries or
analyticity. More precisely, global existence is achieved for the scalar field, proving that its gradient, although
initially timelike, becomes null in finite time and eventually spacelike, except at critical points where its spatial
gradient vanishes. Thus, when interpreted as an irrotational stiff fluid, general perturbations of FLRW exhibit
the same type of breakdown.
Interestingly, the stiff fluid model was studied in spherically symmetry, for 1-ended asymptotically flat

spacetimes, in a series of papers [4, 5, 6, 8], as part of Christodoulou’s two phase model [4]. It is paired to
the dust model (cs = 0) and while both are in general pathological, when it comes to gravitational collapse
or the formation of fluid degeneracies, the previous works prove that the two phases together form a more
physically stable model. Perhaps a remedy to the above phenomenon that we observe in the stiff case would
be a change in the equation of state, which would introduce a phase transition when the fluid velocity is close
to becoming null.

1.7 Method of proof: Degenerate top order estimates

Our proof is based on bootstrapping the smallness of a weighted HN -type of energy for the variables

k̂, γ̂, ê, n̂, v̂, ρ̂2rs , precisely, (3.4)-(3.7). Improving the bootstrap assumptions yields a global solution sat-
isfying the main stability estimate (1.28) by a standard continuation argument, see Proposition 4.10.
Assuming that the fluid variables are ‘well-behaved’, the stability analysis for the geometric variables is

similar to the stability of de Sitter, which by now has been well-understood in various different settings
[1, 12, 10, 11, 22, 29]. Hence, the crux of the matter lies in controlling the part of the energy corresponding

to the fluid variables v̂, ρ̂2rs . As it turns out, the lower than top order energy in (3.5) can be controlled by
treating the resulting Euler equations (2.30), (2.31) as transport equations, using the bootstrap assumptions
to view all other terms in the equations as error (here written at zeroth order):

∂tv̂I +Hv̂I = error, ∂tρ̂2rs +
4rs

1− 2rs
ρ̂2rs = error. (1.39)

The argument actually resembles the analysis of formal series expansions [17, 28] and it works for all sound
speeds beyond radiation c2s ∈ ( 13 , 1).
The stability analysis becomes more intricate when deriving top order energy estimates, due to the extreme

tilt behavior that we wish to bootstrap in the first place. Firstly, it requires a formulation of the Euler
equations which is useful for reading off the asymptotic behavior of the renormalized fluid variables, like
(1.39), and in addition, one where its symmetric hyperbolic structure can be exploited. At top order, this is
achieved by complementing the top order analogue of (1.39) with an equation for vIY

ιv̂I , see (4.29), (4.30),
(4.34). Regardless of the weights one chooses in the definition of the total energy Etot(t) of the system, a top
order energy estimate for the Euler equations as we formulated them in (1.5)-(1.6) will have the form

Etot(t) ≤ initial data−
∫ t

T

Cerror(τ) ·
v20

g(v, v)
Etot(τ)dτ, (1.40)

where the coefficient of the energy in the last integral contains the g-norm of the fluid vector field, cf. [13,
Section 1.1]. On the other hand, extreme tilt behavior implies that |g(v, v)| decays faster than v20 . Indeed,
based on the behavior of the fluid that we are trying to derive, see (1.31), we have

− v20
g(v, v)

=
v20
ρ2rs

∼ e−2Ht+ 4rs
1−2rs

Ht = e2AsHt. (1.41)
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Since As → +∞ as cs → 1, we observe that the energy estimate (1.40) becomes more and more degenerate
the larger the sound speed is.
It is clear that in order to obtain a useful estimate for Etot(t) we need

Cerror(t)e
2AsHt ≲ e−δHt, for some δ > 0. (1.42)

However, for general inhomogeneous metrics, Cerror(t) ≲ e−Ht is the best bound we have, see Remarks 4.7.
The latter allows us to complete our bootstrap argument only when

2As < 1 ⇔ c2s <
3

7
, (1.43)

which leads to the restricted range of sound speeds beyond radiation, c2s ∈ ( 13 ,
3
7 ), see also Remark 4.9.

At the moment, we have no improved estimate for Cerror(t), apart from when the metric is exactly FLRW,
see Appendix C. In that case, we can show that actually Cerror(t) ≲ e−δHte−2AsHt, which in turn yields a
uniform energy estimate in c2s ∈ ( 13 , 1). This is consistent with the results in [21]. We do not know whether
for general metrics the above degeneracy is actually present or merely a defect of our energy argument. We
should emphasize that it is only encountered at the level of energy estimates and not at the level of a formal
series expansion argument using (1.39), which indicates that if it is a real phenomenon, it cannot be seen by
studying analytic solutions.

1.8 Outline of the paper

In Section 2, we express the Einstein-Euler system in the framework introduced in Section 1.4.2. We set up
the equations for the perturbed variables minus their homogeneous counterparts, whose precise asymptotic
behavior is derived in Appendix B. In Section 3, we introduce the weighted norms and bootstrap assumptions
that we will use to prove the future stability of the homogeneous background. In Section 4, we derive the main
energy estimates that complete the bootstrap argument, for the restricted range of sound speeds c2s ∈ ( 13 ,

3
7 ).

The bootstrap estimates are reiterated in Section 5 to obtain the precise asymptotic behavior of all variables at
infinity. Finally, in Appendix C, we consider the Euler equations on a fixed S3-FLRW background and sketch
how our main energy estimates can improved to encompass the entire beyond radiation interval c2s ∈ ( 13 ,

3
7 ).

1.9 Notation

• We will use the symbol O(eBt), B ∈ R, to denote smooth homogeneous functions R → R that satisfy
|∂Nt O(eBt)| ≤ CN,Be

Bt, for any N ∈ N, where the constant CN,B depends on N,B,Λ, cs, as well as the
background tilted solutions.

• H =
√

Λ
3 .

• C > 0 denotes a generic constant that depends on the number N of derivatives in our norms and the
homogeneous background we are perturbing about. Also, it will be allowed to change from one line to
the next.

• Certain key parameters related to the speed of sound appear in the definition of our norms and renor-
malized quantities:

(unrestricted range) c2s ∈ (
1

3
, 1), rs =

c2s
1 + c2s

∈ (
1

4
,
1

2
), As =

3c2s − 1

1− c2s
∈ (0,+∞)

(restricted range) c2s ∈ (
1

3
,
3

7
), rs =

c2s
1 + c2s

∈ (
1

4
,
3

10
), As =

3c2s − 1

1− c2s
∈ (0,

1

2
) (1.44)

(algebraic relations)
4rs

1− 2rs
> 2, As = −1 +

2rs
1− 2rs

• We use Einstein summation for repeated indices. Whenever a sum is computed relative to the spatial
orthonormal frame, we do not raise indices, e.g. (eIn)eI =

∑3
I=1(eIn)eI .
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• Latin indices a, b, i, j, A,B, I, J range over {1, 2, 3}. Small letters correspond to the vector fields
Y1, Y2, Y3, while capital letters are reserved for the spatial orthonormal frame eI . In few instances
we use Greek letters α, β, µ, ν, ranging over {0, 1, 2, 3}. For example, vαeα = −v0e0 + vIeI .

• The Riemann curvature Riem, Ricci curvature Ric, and scalar curvature R of g are defined as follows:

Riem(eα, eβ , eµ, eν) :=g(D2
eαeβ

eν −D2
eβeα

eν , eµ),

Ric(eα, eβ) :=−Riem(eα, e0, eβ , e0) +Riem(eα, eI , eβ , eI), (1.45)

R :=−Ric(e0, e0) +Ric(eI , eI),

where D2
eαeβ

eν := Deα(Deβeν) − DDeαeβeν . The corresponding curvature tensors of g, denoted by
Riem, Ric, R, are defined analogously.
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2 Setting up the stability problem

In this section, we express the Einstein-Euler system (1.1), (1.5), (1.6) and the background homogeneous
variables in the gauge (1.16)-(1.4). Moreover, we derive the resulting equations for the variables that measure
the closeness of the perturbed solution to the homogeneous background.

2.1 The reduced Einstein-Euler equations

Lemma 2.1. The geometric variables kIJ , γIJB , e
i
I , n satisfy the evolution equations:

e0kIJ + (n− 1− trk̃)kIJ =− n−1eIeJn+ eCγIJC − eIγCJC (2.1)

+ n−1γIJCeCn− γCIDγDJC − γIJDγCCD

− ΛδIJ − (1 + c2s)ρ
1−2rsvIvJ − 1

2
δIJ(1− c2s)ρ,

e0γIJB − kICγCJB = eBkIJ − eJkBI − kICγBJC − kCJγBIC + kICγJBC + kBCγJIC (2.2)

+ n−1(eBn)kJI − n−1(eJn)kBI ,

e0e
i
I = kICe

i
C , (2.3)

∂tn− eCeCn =− γCCDeDn− nkCDkCD + nΛ + ∂ttrk̃ (2.4)

+ (1 + c2s)nρ
1−2rsvCvC +

3

2
(1− c2s)nρ.

The renormalized fluid variables ρ, v0, vI satisfy the evolution equations:

vαeαv0 + kCDvCvD =− 1

2
e0(ρ

2rs)− n−1(eCn)v0vC , (2.5)

vαeαvI + kCIv0vC =− 1

2
eI(ρ

2rs)− n−1(eIn)v
2
0 − γCDIvCvD, (2.6)

(1− 2rs)v
αeα log ρ+ v0trk = e0v0 − eCvC − n−1(eCn)vC − γCDCvD, (2.7)

where vαeα = −v0e0 + vCeC . Also, the following constraint equations hold:

2eCγDDC − γCDEγEDC − γCCDγEED = kCDkCD − (n− 1− trk̃)2 + 2Λ + 2(1 + c2s)ρ
1−2rsv20 − 2c2sρ, (2.8)

eCkCI + eIn+ kIDγCDC − kCDγCID =− (1 + c2s)ρ
1−2rsv0vI . (2.9)
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Proof. First, note that the Einstein equations (1.1), the formula (1.3) of Tµν , for p = c2sρ, and (1.4) imply
the formula:

Ricµν =Λgµν + (1 + c2s)ρ
1−2rsvµvν +

1

2
(1− c2s)ρgµν . (2.10)

To prove (2.1), we use the formula (1.24) for kIJ , the propagation relations (1.22), (1.23), and (2.10) to
compute its e0 derivative:

e0kIJ =− g(De0(DeIe0), eJ)− n−1(eJn)g(DeIe0, e0)

=− g(D2
e0eIe0, eJ)− g(DDe0

eIe0, eJ)

=Riem(eI , e0, eJ , e0)− g(D2
eIe0e0, eJ)− n−2(eIn)(eJn)

=−Ric(eI , eJ) +Riem(eI , eC , eJ , eC)− g(DeI (De0e0), eJ) + g(DDeI
e0e0, eJ) (2.11)

− n−2(eIn)(eJn)

=− ΛδIJ − (1 + c2s)ρ
1−2rsvIvJ − 1

2
δIJ(1− c2s)ρ+Riem(eI , eC , eJ , eC)

− n−1eIeJn+ n−1γIJCeCn+ kICkCJ .

Next, we use the Gauss equations

Riem(eI , eC , eJ , eC) =Ric(eI , eJ)− kICkCJ + trkkIJ (2.12)

and expand the Ricci term in the last RHS:

Ric(eI , eJ) =Riem(eI , eC , eJ , eC) = g(∇2
eIeCeC −∇2

eCeIeC , eJ)

= g(∇eI (∇eCeC), eJ)− g(∇eC (∇eIeC), eJ)− g(∇∇eI
eCeC , eJ) + g(∇∇eC

eIeC , eJ)

= g(∇eI (γCCDeD), eJ)− g(∇eC (γICDeD), eJ)− γICDγDCJ + γCIDγDCJ (2.13)

= eIγCCJ + γCCDγIDJ − eCγICJ − γICDγCDJ − γICDγDCJ + γCIDγDCJ

=− eIγCJC + eCγIJC − γCIDγDJC − γCCDγIJD,

where in the last equality we used the anti-symmetry γIJB = −γIBJ . Plugging (2.12)-(B.24) into (2.11) and
using the gauge condition (1.17) yields (2.1).
Also, contracting (2.12), (B.24) gives

R+ 2Ric(e0, e0) = 2eCγDDC − γCEDγDEC − γCCDγEED − kICkCJ + (trk)2, (2.14)

which after using the Einstein equations (1.1), the gauge condition (1.17), and re-arranging the terms, results
in the Hamiltonian constraint equation (2.8). The momentum constraint equation is a rewriting of (1.8) (its
version along Σt instead of the initial hypersurface) using (1.17) and expanding the divergence of k relative
to the frame eI .

For the lapse equation (2.4), we take the trace of (2.1), use the condition (1.17), multiply both sides with
n, and plug in (2.8).
The evolution equation (2.3) for the frame coefficients is a direct consequence of the identity (1.21) and

the propagation condition (1.22):

[e0, eI ] =De0eI −DeIe0 = n−1(eIn)e0 + kICeC = n−1(eIn)e0 + kICe
i
C∂i,

[e0, eI ] = [n−1∂t, eI ] = n−1[∂t, eI ] + n−1(eIn)e0 = n−1(∂te
i
I)∂i + n−1(eIn)e0.

For (2.2), we use the formula (1.24) for γIJB , the propagation condition (1.22), and the Codazzi equations
to compute its e0 derivative:

e0γIJB =g(De0(DeIeJ), eB) + g(DeIeJ ,De0eB)

=g(D2
e0eIeJ , eB) + g(DDe0eI

eJ , eB) + n−1(eBn)kIJ

=Riem(e0, eI , eB , eJ) + g(D2
eIe0eJ , eB) + n−2(eIn)(eJn)g(e0, eB) + n−1(eBn)kIJ
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=Riem(eB , eJ , e0, eI) + g(DeI (De0eJ), eB)− g(DDeI
e0eJ , eB) + n−1(eBn)kIJ

=∇eBkJI −∇eJkBI + g(DeI [n
−1(eJn)e0], eB) + kICγCJB + n−1(eBn)kIJ

=∇eBkJI −∇eJkBI − n−1(eJn)kBI + kICγCJB + n−1(eBn)kIJ

We arrive at the desired equation after expanding the covariant derivative terms in the last RHS.
To derive the fluid equations (2.5)-(2.7), we expand the covariant operations:

Dµvµ =mµνg(Deµ(v
αeα), eν) = −e0v0 + eCvC + v0trk + vDγCDC + n−1(eCn)vC , (2.15)

(Dvv)0 =g(Dvµeµ(v
νeν), e0) = −v0(e0v0) + vC(eCv0) + vCvDkCD + n−1(eCn)v0vC , (2.16)

(Dvv)I =g(Dvµeµ(v
νeν), eI) = −v0(e0vI) + vC(eCvI) + n−1(eIn)v

2
0 + vCv0kCI + vCvDγCDI , (2.17)

and plug them in (1.5)-(1.6).

Although the system (2.5)-(2.7) is symmetric hyperbolic in v0, vI , ρ, we find it more suitable in the deriva-
tions of the main estimates for the latter variables to eliminate v0 in favor of vI , ρ using the identity
−v20 + vIvI = −ρ2rs .

Lemma 2.2. The renormalized density ρ2rs satisfies the equation:(1− 2rs
2rs

+
1

2

ρ2rs

v20

)
e0(ρ

2rs) +
(vCvI
v20

kCI − trk
)
ρ2rs

=− ρ2rs

v20

vIvD
v0

eDvI +
ρ2rs

v0
eCvC +

(1− 2rs
2rs

− 1

2

ρ2rs

v20

)vC
v0
eC(ρ

2rs) (2.18)

− ρ2rs

v20

vI
v0

{
n−1(eIn)v

2
0 + γCDIvCvD

}
+
ρ2rs

v0

{
n−1(eCn)vC + γCDCvD

}
.

Proof. Rewrite the equation (2.7) as

1− 2rs
2rs

(−v0e0 + vCeC)ρ
2rs + v0trkρ

2rs = ρ2rse0v0 − ρ2rseCvC − ρ2rs
{
n−1(eCn)vC + γCDCvD

}
and replace e0v0 by

e0v0 =
vI
v0
e0vI +

1

2
e0(ρ

2rs). (2.19)

Using the evolution equation (2.6) to replace e0vI with

e0vI =
1

v0

{
kCIv0vC +

1

2
eI(ρ

2rs) + n−1(eIn)v
2
0 + γCDIvCvD

}
(2.20)

and rearranging the terms in the resulting equation gives (2.18).

2.2 The background tilted homogeneous solutions and the associated reduced
variables

In this subsection, we provide the precise asymptotic behavior and estimates satisfied by the homogeneous
solutions.

Lemma 2.3. There exist homogeneous solutions to the Einstein-Euler equations, of the form (1.11)-(1.12),
such that the functions Gi(t), G(t), θ(t), ρ̃(t) : [T,+∞) → R satisfy the estimates:

|∂Nt Gi(t)−G∞
i H

NeHt| ≤ CNe
−Ht, |∂Nt G(t)| ≤ CNe

− 1
2Ht,∣∣∣∣∂Nt [

θ(t)− 3c2s − 1

1− c2s
Ht+ θ∞

]∣∣∣∣ ≤ CNe
−2Ht,

∣∣∣∣∂Nt [
ρ̃(t)− ρ̃∞e

−2
1+c2s
1−c2s

Ht
]∣∣∣∣ ≤ CNe

−4
1+c2s
1−c2s

Ht
,

(2.21)

for every N ∈ N, 1
3 < c2s < 1, where G∞

i , θ
∞, ρ̃∞ > 0 are initialization constants at infinity and CN also

depends on cs.
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Proof. It is contained in Lemma B.1.

Given a homogeneous solution as above, we make the following choice of background orthonormal frame:

ẽ1 = G−1
1 (t)Y1, ẽ2 = G−1

2 (t)Y2, ẽ3 =
Y3 −G2(t)G−2

2 (t)Y2√
G2

3(t)−G4(t)G−2
2 (t)

, ẽ0 = ∂t, (2.22)

and compute its associated reduced variables.

Lemma 2.4. The reduced variables of the fixed background solution behave like

k̃IJ = −δIJH +O(e−2Ht), γ̃IJB = O(e−Ht), ẽiI = O(e−Ht),

ñ = 1, ρ̃1−2rs = (ρ̃1−2rs)∞,2e−2Ht +O(e−4Ht), 1− 2rs =
1− c2s
1 + c2s

, (2.23)

ṽ0 = ρ̃rs ũ0 = ṽ∞,1
0 e−Ht +O(e−3Ht), ṽI = ρ̃rs ũI = δ1I [ṽ

∞,1
1 e−Ht +O(e−3Ht)],

where (ρ̃1−2rs)∞,2 > 0, |ṽ∞,1
0 | = |ṽ∞,1

0 | > 0 are constant coefficients of the above leading order terms.

Proof. See (B.21) in Appendix B and Lemma B.1.

2.3 Initial data for the perturbed variables on ΣT

The initial data set (̊g, k̊, ρ̊, v̊, v̊0) on Σ induces initial data for the reduced variables kIJ , γIJB , e
i
I , n, v0, vI , ρ

2rs

on ΣT , after choosing an initial orthonormal frame eI . Indeed, we have the freedom to choose t = T , ie. ΣT ,
to be the image of the embedding of Σ in the development (M,g, ρ, v). Identifying the underlying manifolds
of the homogeneous and perturbed solution, according to the 1+3 splitting (1.16), we can then compare the

two mean curvatures trk̃, trk and obtain the initial datum of n via (1.17). The initial data for eiI can be
any smooth perturbation of the homogeneous frame components ẽiI (2.22). For example, we may consider
the frame eI obtained by applying the Gram-Schmidt process to ẽI relative to g. Since gij is assumed to be
sufficiently close to g̃ij initially, so will the corresponding frame components eiI , ẽ

i
I . Having defined the frame

eI , the initial data for the rest of the reduced variables are readily induced by contracting the former with
the original initial data set. In order to satisfy the initial closeness assumption (1.27), sufficient smallness in
a norm of comparable order for gij − g̃ij is needed.

2.4 The resulting equations for the perturbed variables minus the homogeneous
background variables

First, notice that combining the gauge condition (1.17) with (2.23) gives the following relation:

trk = −
[
3H +O(e−2Ht) + n− 1

]
. (2.24)

In this subsection, we derive the equations satisfied by the differences:

k̂IJ = kIJ − k̃IJ , γ̂IJB = γIJB − γ̃IJB , n̂ = n− ñ = n− 1, êiI = eiI − ẽiI ,

v̂0 = ρrsu0 − ρ̃rs ũ0, v̂I = ρrsuI − ρ̃rs ũI , ρ̂2rs = ρ2rs − ρ̃2rs ,
(2.25)

using Lemma 2.1. More generally, we will use the notation ρ̂α = ρα − ρ̃α, for positive powers α > 0. Note

that since the background variables (2.23) are homogeneous, it holds eI(ρ
2rs) = eI(ρ̂2rs) etc.

Lemma 2.5. The geometric variables k̂IJ , γ̂IJB , ê
i
I , n̂ satisfy the evolution equations:

∂tk̂IJ + 3Hk̂IJ =− eIeJ n̂+ neC γ̂IJC − neI γ̂CJC (2.26)

+ γIJCeC n̂− nγ̂CIDγDJC − nγ̂IJDγCCD − nγ̃CIDγ̂DJC − nγ̃IJDγ̂CCD

− (1 + c2s)n(ρ̂
1−2rsvIvJ + ρ̃1−2rs v̂IvJ + ρ̃1−2rs ṽI v̂J)−

1

2
δIJ(1− c2s)n̂ρ
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− 1

2
δIJ(1− c2s)ρ̂+ δIJH(n̂+ n̂2) +O(e−2Ht)n̂+ δIJO(e−2Ht)n̂2

−
[
3H + n̂+O(e−2Ht)

]
n̂k̂IJ −

[
n̂+O(e−2Ht)

]
k̂IJ ,

∂tγ̂IJB +Hγ̂IJB =neB k̂IJ − neJ k̂BI (2.27)

− nk̂ICγBJC − nk̂CJγBIC + nk̂ICγJBC + nk̂BCγJIC + nk̂ICγCJB

−Hn̂γIJB + n̂O(e−2Ht)γBJI + n̂O(e−2Ht)γBIJ + n̂O(e−2Ht)γJBI

+ n̂O(e−2Ht)γJIB + n̂O(e−2Ht)γIJB +O(e−2Ht)γ̂BJI +O(e−2Ht)γ̂BIJ

+O(e−2Ht)γ̂JBI +O(e−2Ht)γ̂JIB +O(e−2Ht)γ̂IJB + (eBn̂)kJI − (eJ n̂)kBI ,

∂tê
i
I +HêiI = n̂kICe

i
C + k̂IC ê

i
C +O(e−2Ht)êiI , (2.28)

∂tn̂+ 2Hn̂ = eCeC n̂− γCCDeDn̂− nk̂CDk̂CD +O(e−2Ht)nk̂CC (2.29)

+ (1 + c2s)
{
n̂ρ1−2rsvCvC + ρ̂1−2rsvCvC + ρ̃1−2rs v̂CvC + ρ̃1−2rs ṽ1v̂1

}
+

3

2
(1− c2s)n̂ρ+

3

2
(1− c2s)ρ̂− 2Hn̂2 +O(e−2Ht)n̂.

The fluid variables v̂I , ρ̂2rs satisfy the evolution equations:

∂tv̂I +Hv̂I =
1

2

n

v0
eI(ρ̂2rs) + n

vC
v0
eC v̂I

+ (eI n̂)v0 + nγCDI
vD
v0
v̂C + nγ1DI

ṽ1
v0
v̂D +

n

v0
ṽ21 γ̂11I (2.30)

+ n̂kCIvC + k̂CIvC + (k̃CI + δCIH)v̂C

and (1− 2rs
2rs

+
1

2

ρ2rs

v20

)
∂t(ρ̂2rs) + 2Hρ̂2rs

=− n
ρ2rs

v20

vIvD
v0

eDv̂I + n
ρ2rs

v0
eC v̂C + n

(1− 2rs
2rs

− 1

2

ρ2rs

v20

)vC
v0
eC(ρ̂2rs) (2.31)

− ρ2rs

v20

vI
v0

{
(eI n̂)v

2
0 + nγCDI v̂CvD + nγ1DI ṽ1v̂D + nγ̂11I ṽ

2
1

}
+
ρ2rs

v0

{
(eC n̂)vC + nγ̂CDCvD

}
− 1

2

ρ̂2rs

v20
∂t(ρ̃

2rs) +
1

2

ρ̃2rs

v20 ṽ
2
0

∂t(ρ̃
2rs)(v0 + ṽ0)v̂0 − n̂

(vCvI
v20

kCI − trk
)
ρ2rs − ρ2rs n̂

+O(e−2Ht)ρ̂2rs − vCvI
v20

k̂CIρ
2rs −H

ρ̂2rs

v20
(ρ2rs + ρ̃2rs) +H

ρ̃4rs

v20 ṽ
2
0

(v0 + ṽ0)v̂0

− (k̃CI + δCIH)
(vCvI
v20

ρ̂2rs +
v̂CvI
v20

ρ̃2rs +
ṽC v̂I
v20

ρ̃2rs +
ṽC ṽI
v20 ṽ

2
0

(v0 + ṽ0)v̂0ρ̃
2rs

)
where v20 = vCvC + ρ2rs .
Also, the following constraint equation holds:

eC k̂CI =− eI n̂− k̂IDγCDC + k̂CDγCID − (k̃ID + δIDH)γ̂CDC + (k̃CD + δCDH)γ̂CID (2.32)

− (1 + c2s)
{
ρ̂1−2rsv0vI + ρ̃1−2rs v̂0vI + ρ̃1−2rs ṽ0v̂I

}
.

Remark 2.6. Notice that the equations (2.30)-(2.31) are not symmetric hyperbolic in v̂I , ρ̂2rs . Nevertheless,
they are symmetrizable, that is to say, energy estimates can be derived by considering suitable combinations

of v̂I , ρ̂2rs at top order, see Section 4.3.

Proof. The equations for the differences follow from the ones in Lemmas 2.1, 2.2 and the fact that the
background variables are a solution to the reduced system of equations and that they are homogeneous. For
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example, using (2.1) we have

∂tk̂IJ =− n(n− 1− trk̃)kIJ − eIeJn+ neCγIJC − neIγCJC + γIJCeCn− nγCIDγDJC

− nγIJDγCCD − ΛδIJn− (1 + c2s)nρ
1−2rsvIvJ − 1

2
δIJ(1− c2s)nρ− ∂tk̃IJ

=−
[
3H + n̂+O(e−2Ht)

]
k̂IJ −

[
3H + n̂+O(e−2Ht)

]
n̂k̂IJ + δIJ

[
H +O(e−2Ht

]
(n̂+ n̂2)

+ δIJ
[
3H2 +O(e−2Ht)

]
n̂+ trk̃k̃IJ − eIeJ n̂+ neC γ̂IJC − neI γ̂CJC + γIJCeC n̂

− nγ̂CIDγDJC − nγ̂IJDγCCD − nγ̃CIDγ̂DJC − nγ̃IJDγ̂CCD − γ̃CIDγ̃DJC − γ̃IJDγ̃CCD

+O(e−2Ht)n̂− ΛδIJ n̂− ΛδIJ − (1 + c2s)n(ρ̂
1−2rsvIvJ + ρ̃1−2rs v̂IvJ + ρ̃1−2rs ṽI v̂J)

− (1 + c2s)ρ̃
1−2rs ṽI ṽJ +O(e−4Ht)n̂− 1

2
δIJ(1− c2s)n̂ρ−

1

2
δIJ(1− c2s)ρ̂−

1

2
δIJ(1− c2s)ρ̃− ∂tk̃IJ .

Now (2.26) follows by noticing that the purely homogeneous terms cancel out, as well as 3δIJH
2n̂ with

−ΛδIJ n̂, since 3H2 = Λ.
We continue with the computations for (2.27), using (2.2), (2.23), (2.25):

∂tγ̂IJB =neBkIJ − neJkBI − nkICγBJC − nkCJγBIC + nkICγJBC + nkBCγJIC + nkICγCJB

+ (eBn)kJI − (eJn)kBI − ∂tγ̃IJB

=neB k̂IJ − neJ k̂BI − nk̂ICγBJC − nk̂CJγBIC + nk̂ICγJBC + nk̂BCγJIC + nk̂ICγCJB

− nHγIJB + nO(e−2Ht)γBJI + nO(e−2Ht)γBIJ + nO(e−2Ht)γJBI

+ nO(e−2Ht)γJIB + nO(e−2Ht)γIJB + (eBn̂)kJI − (eJ n̂)kBI

=neB k̂IJ − neJ k̂BI − nk̂ICγBJC − nk̂CJγBIC + nk̂ICγJBC + nk̂BCγJIC + nk̂ICγCJB

−Hγ̂IJB −Hγ̃IJB − n̂HγIJB + n̂O(e−2Ht)γBJI + n̂O(e−2Ht)γBIJ + n̂O(e−2Ht)γJBI

+ n̂O(e−2Ht)γJIB + n̂O(e−2Ht)γIJB +O(e−2Ht)γ̂BJI +O(e−2Ht)γ̂BIJ +O(e−2Ht)γ̂JBI

+O(e−2Ht)γ̂JIB +O(e−2Ht)γ̂IJB +O(e−2Ht)γ̃BJI +O(e−2Ht)γ̃BIJ +O(e−2Ht)γ̃JBI

+O(e−2Ht)γ̃JIB +O(e−2Ht)γ̃IJB + (eBn̂)kJI − (eJ n̂)kBI .

Since γ̂ = n̂ = k̂ = 0 is a solution, the purely homogeneous terms cancel, leaving the asserted equation. The
computations for (2.28) are straightforward:

∂tê
i
I

(2.3)
= nkICe

i
C − ∂tẽ

i
I = n̂kICe

i
C + k̂ICe

i
C −

[
H +O(e−2Ht)

]
eiI − ∂tẽ

i
I

= n̂kICe
i
C + k̂IC ê

i
C −

[
H +O(e−2Ht)

]
êiI ,

where in the last equality we used (2.3) for the homogeneous variable ẽiI . For the equation (2.29), we rewrite
the RHS of (2.4):

− γCCDeDn− nkCDkCD + nΛ + (1 + c2s)nρ
1−2rsvCvC +

3

2
(1− c2s)nρ+ ∂ttrk̃

=− γCCDeDn̂− nk̂CDk̂CD − 2nk̃CDk̂CD − k̃CDk̃CD − 3H2n̂+O(e−2Ht)n̂+ Λ+ Λn̂

+ (1 + c2s)
{
n̂ρ1−2rsvCvC + ρ̂1−2rsvCvC + ρ̃1−2rs v̂CvC + ρ̃1−2rs ṽ1v̂1

}
+ (1 + c2s)ρ̃

1−2rs ṽ21

+
3

2
(1− c2s)n̂ρ+

3

2
(1− c2s)ρ̂+

3

2
(1− c2s)ρ̃+ ∂ttrk̃

=− γCCDeDn̂− nk̂CDk̂CD − 2Hnn̂+O(e−2Ht)nk̂CC +O(e−2Ht)n̂ (H2 = Λ
3 )

+ (1 + c2s)
{
n̂ρ1−2rsvCvC + ρ̂1−2rsvCvC + ρ̃1−2rs v̂CvC + ρ̃1−2rs ṽ1v̂1

}
+

3

2
(1− c2s)n̂ρ+

3

2
(1− c2s)ρ̂,

where in the last equality we used the fact that the purely homogeneous terms cancel out (since the back-

ground is a solution), and we plugged in (1.17) in the form k̂CC = −n̂. Hence, we obtain the desired
equation.
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The constraint equation (2.32) follows directly from (2.9) by plugging in (2.25) and using the anti-symmetry
of γCCD:

eC k̂CI = eCkCI = −eI n̂+ kIDγCCD + kCDγCID − (1 + c2s)ρ
1−2rsv0vI

=− eI n̂− k̂IDγCDC + k̂CDγCID − (k̃ID + δIDH)γCDC + (k̃CD + δCDH)γCID

− (1 + c2s)
{
ρ̂1−2rsv0vI + ρ̃1−2rs v̂0vI + ρ̃1−2rs ṽ0v̂I

}
− (1 + c2s)ρ̃

1−2rs ṽ0ṽI

=− eI n̂+ k̂IDγCCD + k̂CDγCID − (k̃ID + δIDH)γ̂CDC + (k̃CD + δCDH)γ̂CID

− (1 + c2s)
{
ρ̂1−2rsv0vI + ρ̃1−2rs v̂0vI + ρ̃1−2rs ṽ0v̂I

}
.

Next, we employ (2.6) to compute:

∂tv̂I =
n

v0

{
vCeC v̂I + kCIv0vC +

1

2
eI(ρ̂2rs) + n−1(eI n̂)v

2
0 + γCDIvCvD

}
− ∂tṽI

=n
vC
v0
eC v̂I + n̂kCIvC + k̂CIvC + k̃CI v̂C + k̃1I ṽ1

+
1

2

n

v0
eI(ρ̂2rs) + (eI n̂)v0 +

n

v0
γCDI v̂CvD +

n

v0
γ1DI ṽ1v̂D +

n

v0
γ̂11I ṽ

2
1 − ∂tṽI ,

where we used the vanishing of γ̃11I = 0, see (B.2). We arrive at (2.30) after dropping the homogeneous
terms.
Finally, for the equation (2.31), we plug in (2.18) and (2.24):(1− 2rs

2rs
+

1

2

ρ2rs

v20

)
∂t(ρ̂2rs)

=− n
(vCvI
v20

kCI − trk
)
ρ2rs − n

ρ2rs

v20

vIvD
v0

eDv̂I + n
ρ2rs

v0
eC v̂C + n

(1− 2rs
2rs

− 1

2

ρ2rs

v20

)vC
v0
eC(ρ̂2rs)

− n
ρ2rs

v20

vI
v0

{
n−1(eIn)v

2
0 + γCDIvCvD

}
+ n

ρ2rs

v0

{
n−1(eCn)vC + γCDCvD

}
+

(1− 2rs
2rs

+
1

2

ρ2rs

v20

)
∂t(ρ̃

2rs)

=− n̂
(vCvI
v20

kCI − trk
)
ρ2rs − vCvI

v20
k̂CIρ

2rs +
{v20 − ρ2rs

v20
H − 3H +O(e−2Ht)

}
ρ̂2rs

− (k̃CI +HδCI)
(vCvI
v20

ρ̂2rs +
v̂CvI
v20

ρ̃2rs +
ṽC v̂I
v20

ρ̃2rs +
ṽC ṽI
v20 ṽ

2
0

(v0 + ṽ0)v̂0ρ̃
2rs +

ṽ21
ṽ20
ρ̃2rs

)
−
{ ρ̂2rs
v20

H +
ρ̃2rs

v20
H − ρ̃2rs

v20 ṽ
2
0

(v0 + ṽ0)v̂0H +
ρ̃2rs

ṽ20
H + 2H +O(e−2Ht)

}
ρ̃2rs − n̂ρ2rs

− n
ρ2rs

v20

vIvD
v0

eDv̂I + n
ρ2rs

v0
eC v̂C + n

(1− 2rs
2rs

− 1

2

ρ2rs

v20

)vC
v0
eC(ρ̂2rs)

− ρ2rs

v20

vI
v0

{
(eI n̂)v

2
0 ++nγCDI v̂CvD + nγ1DI ṽ1v̂D + nγ̂11I ṽ

2
1

}
+
ρ2rs

v0

{
(eC n̂)vC + γ̂CDCvD

}
+
{1− 2rs

2rs
+

1

2

ρ̂2rs

v20
− 1

2

ρ̃2rs

v20 ṽ
2
0

(v0 + ṽ0)v̂0 +
1

2

ρ̃2rs

ṽ20

}
∂t(ρ̃

2rs),

where we made use of the identities γ̃CDC = γ̃11I = 0, see (B.2). The desired equation is obtained by
dropping all purely homogeneous terms.

3 Norms, total energy, and bootstrap assumptions

3.1 Norms of the unknown variables expressed relative to the orthonormal
frame

We define the norm ∥f∥L2(Σt) for a scalar function by

∥f∥2L2(Σt)
:=

∫
Σt

f2(t, ω)dS3, (3.1)
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where dS3 is the canonical volume form on S3. Define also the corresponding HM (Σt),W
M,∞(Σt) norms:

∥f∥2HM (Σt)
=

∑
|ι|≤M

∥Y ιf∥L2(Σt), ∥f∥WM,∞(Σt) =
∑

|ι|≤M

∥Y ιf∥L∞(Σt), (3.2)

where is ι is a spatial multi-index and Y ι is the operator that acts on v with repeated differentiation with
respect to the vector fields Y1, Y2, Y3.
For the indexed variables that we study, their corresponding HM (Σt),W

M,∞(Σt) norms are simply the
sum of their components:

∥k̂∥2HM (Σt)
=

3∑
I,J=1

∥k̂IJ∥2HM (Σt)
, ∥k̂∥2WM,∞(Σt)

=

3∑
I,J=1

∥k̂IJ∥2WM,∞(Σt)
,

∥γ̂∥2HM (Σt)
=

3∑
I,J,B=1

∥γ̂IJB∥2HM (Σt)
, ∥γ̂∥2WM,∞(Σt)

=

3∑
I,J,B=1

∥γ̂IJB∥2WM,∞(Σt)
,

∥ê∥2HM (Σt)
=

3∑
i,I=1

∥êiI∥2HM (Σt)
, ∥ê∥2WM,∞(Σt)

=

3∑
i,I=1

∥êiI∥2WM,∞(Σt)
,

∥v̂∥2HM (Σt)
=

3∑
µ=0

∥v̂µ∥2HM (Σt)
, ∥v̂∥2WM,∞(Σt)

=

3∑
µ=0

∥v̂µ∥2WM,∞(Σt)
.

(3.3)

Define the energy of the geometric variables:

Egeom(t) = e2Ht
{
∥γ̂∥2HN (Σt)

+ ∥ê∥2HN (Σt)
+ ∥k̂∥2HN (Σt)

}+ e3Ht∥n̂∥2HN (Σt)
(3.4)

and the following energies of the fluid variables:

Efluid.low(t) = e2Ht∥v̂∥2HN−1(Σt)
+ e

8rs
1−2rs

Ht∥ρ̂2rs∥2HN−2(Σt)
,

Efluid.top(t) = e−4AsHt
{
e2Ht∥v̂∥2

ḢN (Σt)
+ e

8rs
1−2rs

Ht
(
∥ρ̂2rs∥2

ḢN (Σt)
+ ∥ρ̂2rs∥2

ḢN−1(Σt)

)}
(3.5)

= e−4AsHte2Ht∥v̂∥2
ḢN (Σt)

+ e4Ht
(
∥ρ̂2rs∥2

ḢN (Σt)
+ ∥ρ̂2rs∥2

ḢN−1(Σt)

)
,

where we note the identity 8rs
1−2rs

− 4As = 4 and recall the definitions

As =
3c2s − 1

1− c2s
∈ (0,+∞), rs =

c2s
1 + c2s

∈ (
1

4
,
1

2
), for c2s ∈ (

1

3
, 1).

On the other hand, observe that

As ∈ (0,
1

2
) and rs ∈ (

1

4
,
3

10
) for c2s ∈ (

1

3
,
3

7
).

Define also the total energy:

Etot(t) = Egeom(t) + Efluid.low(t) + Efluid.top(t). (3.6)

Remark 3.1. There is a cs-dependent discrepancy in the weights (powers of eHt) used in the top order
energy in (3.5) compared with the lower order energy in (3.5) for the fluid variables. The larger cs is, the
larger the discrepancy, namely, the additional e−4AsHt factor. In fact, it becomes infinite as the sound speed
cs tends to 1, As → +∞.3 This comes from a degeneracy in the top order energy estimates that we derive

in Section 4.3, see Proposition 4.8. We note that the weights in the HN−1(Σt), H
N−2(Σt) norms of v̂, ρ̂2rs

respectively are optimal, that is to say the corresponding renormalized variables eHtv̂, e
4rs

1−2rs
Htρ̂2rs have a

limit as t→ +∞. This will be proven in Section 5, once we have completed our overall continuity argument.
Normally, there should be a comparable (but smaller) discrepancy in the corresponding norms of the

geometric variables. However, for the range of sound speeds c2s ∈ ( 13 ,
3
7 ) that we are working with, the

discrepancy in the weights of the top order energy of the fluid variables is small enough such that it does not
propagate to the top order energy of the geometric variables.

3Our method of proof can only tolerate the range of sound speeds c2s ∈ ( 1
3
, 3
7
). In Appendix C all sound speeds in the range

c2s ∈ ( 1
3
, 1) are allowed, albeit for the relativistic Euler equations in a fixed FLRW background.



4 FUTURE STABILITY ESTIMATES 18

3.2 Bootstrap assumptions

Our bootstrap assumptions are that there exists a bootstrap time TBoot ∈ (T,+∞) such that it holds

Etot(t) ≤ ε, ∀t ∈ [T, TBoot), (3.7)

for a sufficiently small constant ε > 0 to be determined below. Such a TBoot > 0 obviously exists by Cauchy
stability and the closeness of the perturbed initial data on ΣT to the homogeneous background initial data.

4 Future stability estimates

In this section, we derive the exponential decay of the variables k̂IJ , γ̂IJB , ê
i
I , n̂, v̂0, v̂I , ρ̂

2rs , in a manner that
yields a strict improvement of our bootstrap assumptions (3.7), which in turn by a standard continuation
argument implies that TBoot = +∞, ie. the perturbed solution exists for all future time and it satisfies the
estimate (3.7) for all t ∈ [T,+∞), see Proposition 4.10 for the final statement.

4.1 Basic estimates and identities

We will frequently use the standard Sobolev inequality in (S3, dω):

∥f∥L∞(Σt) ≤ C∥f∥H2(Σt), (4.1)

where C > 0 depends on (S3, dω), dω being the standard metric on S3. Already, (3.7) and (4.1) imply the
bounds

∥k̂∥WN−2,∞(Σt) + ∥γ̂∥WN−2,∞(Σt) + ∥ê∥WN−2,∞(Σt) ≤Cεe−Ht,

∥n̂∥WN−2,∞(Σt) ≤Cεe−
3
2Ht,

∥v̂∥WN−3,∞(Σt) ≤Cεe−Ht,

∥ρ̂2rs∥WN−4,∞(Σt) ≤Cεe−
4rs

1−2rs
Ht,

(4.2)

for all t ∈ [T, TBoot), where we note that 4rs
1−2rs

> 2 for c2s >
1
3 . Other power differences of ρ satisfy the

bounds:

e
2

1−2rs
Ht

(
∥ρ̂∥WN−4,∞(Σt) + ∥ρ̂∥HN−2(Σt)

)
+ e

1
rs

Ht
(
∥ρ̂∥ḢN (Σt)

+ ∥ρ̂∥ḢN−1(Σt)

)
≤Cε,

e2Ht
(
∥ρ̂1−2rs∥WN−4,∞(Σt) + ∥ρ̂1−2rs∥HN−2(Σt)

)
+ e

1−2rs
rs

Ht
(
∥ρ̂1−2rs∥ḢN (Σt)

+ ∥ρ̂1−2rs∥ḢN−1(Σt)

)
≤Cε.

(4.3)

When we commute the equations (2.26)-(2.32) with Y ι, we will use the commutator relation:

[Y ι, eI ]f =
∑

ι1∪ι2=ι, |ι2|<|ι|

(Y ι1eaI )Y
ι2Yaf. (4.4)

Also, since Ya is dω-Killing, we have the following integration by parts formula relative to eI :∫
Σt

f1(eIf2)dω = −
∫
Σt

[(eIf1)f2 + (Yie
i
I)f1f2]dω. (4.5)

In the derivations of the energy estimates below, it will be useful to control the following variables in
L∞(Σt).

Lemma 4.1. Assume that the bootstrap assumptions (3.7) are valid for ε sufficiently small and T sufficiently
large. Then there exist (non-zero) constants ṽ∞0 , ρ̃

∞, depending on the asymptotic data of the background
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fluid variables, such that the following pointwise bounds hold:

∥v−1
0 − (ṽ∞0 )−1eHt∥L∞(Σt) ≤C(ε+ e−Ht)eHt,

∥ρ
2rs

v20
− (ρ̃∞)2rs(ṽ∞0 )−2e2Ht− 4rs

1−2rs
Ht∥L∞(Σt) ≤C(ε+ e−2Ht)e2Ht− 4rs

1−2rs
Ht,

∥∂t log v0 +H∥L∞(Σt) ≤Ce−Ht,

∥∂t log ρ+
2

1− 2rs
H∥L∞(Σt) ≤Ce2Ht− 4rs

1−2rs
Ht,

(4.6)

for all t ∈ [T, TBoot), where we recall that 4rs
1−2rs

> 2.

Proof. By Lemmas 2.3, B.1, there exist (non-zero) constants ṽ∞0 , ρ̃
∞ such that

∥ṽ0 − ṽ∞0 e
−Ht∥L∞(Σt) ≤ Ce−3Ht, ∥ρ̃2rs − (ρ̃∞)2rse−

4rs
1−2rs

Ht∥ ≤ Ce−
8rs

1−2rs
Ht. (4.7)

Then, the first two estimates in (4.6) follow from the bootstrap assumptions (3.7) and the triangle inequality.
For the third estimate in (4.6), we use the identities (2.19), (2.20) to write

∂t log v0 =
n

v0

vI
v0

1

v0

{
kCIv0vC +

1

2
eI(ρ

2rs) + n−1(eIn)v
2
0 + γCDIvCvD

}
(4.8)

+ rsnv0
ρ2rs

v20
∂t log ρ.

Rewriting as well

n

v0

vI
v0

1

v0
kCIv0vC = n̂

vI
v0

1

v0
kCIvC +

vI
v0

1

v0
k̂CIvC +

vI
v0

1

v0
(k̃CI + δCIH)vC − vIvI

v20
H

= n̂
vI
v0

1

v0
kCIvC +

vI
v0

1

v0
k̂CIvC +

vI
v0

1

v0
(k̃CI + δCIH)vC +

ρ2rs

v20
H −H,

and plugging it in (4.8), we solve for ∂t log v0 +H. The desired estimate follows by bounding the resulting
RHS in L∞(Σt) using the bootstrap assumptions (3.7) and the fourth estimate in (4.6).

Thus, it remains to derive the fourth estimate in (4.6). For this purpose, we rewrite the equation (2.18):

(
1− 2rs + rs

ρ2rs

v20

)
∂t log ρ+ n

(vCvI
v20

kCI − trk
)

=− n

v20

vIvD
v0

eDvI +
n

v0
eCvC + n

(
1− 2rs − rs

ρ2rs

v20

)vC
v0
eC log ρ (4.9)

− n

v20

vI
v0

{
n−1(eIn)v

2
0 + γCDIvCvD

}
+
n

v0

{
n−1(eCn)vC + γCDCvD

}
.

Rewrite also

n
(vCvI
v20

kCI − trk
)
= n̂

(vCvI
v20

kCI − trk
)
+
vCvI
v20

k̂CI − k̂CC

+
vCvI
v20

(k̃CI + δCIH) +
ρ2rs

v20
H − (k̃CC + 3H) + 2H

and plug it into the last expression on the LHS of (4.9). Then isolate
(
1 − 2rs + rs

ρ2rs

v2
0

)
∂t(ρ

2rs) + 2H and

estimate the RHS using the bootstrap assumptions (3.7) and the already derived first two estimates in (4.6)
to infer that ∥∥(1− 2rs + rs

ρ2rs

v20

)
∂t log ρ+ 2H

∥∥
L∞(Σt)

≤ Ce−Ht. (4.10)

Dividing with the coefficient of ∂t log ρ and applying the second estimate in (4.6) once more gives the desired
estimate, since 0 > 2− 4rs

1−2rs
> −1, for c2s ∈ ( 13 ,

3
7 ), rs ∈ ( 14 ,

3
10 ).
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4.2 Energy estimates for the geometric variables

In this subsection, we derive HN (Σt) energy estimates for the geometric variables. First, we commute the
equations (2.26)-(2.29), (2.32) with Y ι, |ι| ≤ N , using (4.4):

∂tY
ιk̂IJ + 3HY ιk̂IJ =− eIY

ιeJ n̂+ neCY
ιγ̂IJC − neIY

ιγ̂CJC + Kι
IJ , (4.11)

∂tY
ιγ̂IJB +HY ιγ̂IJB =neBY

ιk̂IJ − neJY
ιk̂BI +Gι

IJB , (4.12)

∂tY
ιêiI +HY ιêiI =Eι

Ii, (4.13)

∂tY
ιn̂+ 2HY ιn̂ = eCY

ιeC n̂+Nι, (4.14)

eCY
ιk̂CI =Mι

I , (4.15)

where

Kι
IJ =

∑
ι1∪ι2=ι, |ι2|<|ι|

{
Y ι1(neaC)YaY

ι2 γ̂IJC − (Y ι1eaI )YaY
ι2eJ n̂− Y ι1(neaI )YaY

ι2 γ̂CJC

}
(4.16)

+ Y ι

[
γIJCeC n̂− nγ̂CIDγDJC − nγ̂IJDγCCD − nγ̃CIDγ̂DJC − nγ̃IJDγ̂CCD

− (1 + c2s)n(ρ̂
1−2rsvIvJ + ρ̃1−2rs v̂IvJ + ρ̃1−2rs ṽI v̂J)−

1

2
δIJ(1− c2s)n̂ρ

− 1

2
δIJ(1− c2s)ρ̂+ δIJH(n̂+ n̂2) +O(e−2Ht)n̂+ δIJO(e−2Ht)n̂2

−
[
3H + n̂+O(e−2Ht)

]
n̂k̂IJ −

[
n̂+O(e−2Ht)

]
k̂IJ

]
,

Gι
IJB =

∑
ι1∪ι2=ι, |ι2|<|ι|

{
Y ι1(neaB)YaY

ι2 k̂IJ − Y ι2(neaJ)YaY
ι2 k̂BI

}
(4.17)

+ Y ι

[
nk̂ICγJBC + nk̂BCγJIC + nk̂ICγCJB − nk̂ICγBJC − nk̂CJγBIC

−Hn̂γIJB + n̂O(e−2Ht)γBJI + n̂O(e−2Ht)γBIJ + n̂O(e−2Ht)γJBI

+ n̂O(e−2Ht)γJIB + n̂O(e−2Ht)γIJB +O(e−2Ht)γ̂BJI +O(e−2Ht)γ̂BIJ

+O(e−2Ht)γ̂JBI +O(e−2Ht)γ̂JIB +O(e−2Ht)γ̂IJB + (eBn̂)kJI − (eJ n̂)kBI

]
,

Eι
Ii =Y ι

{
n̂kICe

i
C + k̂IC ê

i
C +O(e−2Ht)êiI

}
, (4.18)

Nι =
∑

ι1∪ι2=ι, |ι2|<|ι|

(Y ι1eaC)YaY
ιeC n̂+ Y ι

[
O(e−2Ht)nk̂CC − γCCDeDn̂− nk̂CDk̂CD (4.19)

+ (1 + c2s)
{
n̂ρ1−2rsvCvC + ρ̂1−2rsvCvC + ρ̃1−2rs v̂CvC + ρ̃1−2rs ṽ1v̂1

}
+

3

2
(1− c2s)n̂ρ+

3

2
(1− c2s)ρ̂− 2Hn̂2 +O(e−2Ht)n̂

]
,

Mι
I =−

∑
ι1∪ι2=ι, |ι2|<|ι|

(Y ι1eaC)YaY
ι2kCI − Y ι

[
eI n̂+ k̂IDγCDC − k̂CDγCID + (k̃ID + δIDH)γ̂CDC (4.20)

− (k̃CD + δCDH)γ̂CID + (1 + c2s)
{
ρ̂1−2rsv0vI + ρ̃1−2rs v̂0vI + ρ̃1−2rs ṽ0v̂I

}]
.

The preceding terms can be viewed as error terms.

Lemma 4.2. Let N ≥ 7 and assume that the bootstrap assumptions (3.7) are valid. Then the following
estimates holds:

eHt∥Kι
IJ∥L2(Σt) + eHt∥Gι

IJB∥L2(Σt) + eHt∥Eι
Ii∥L2(Σt) + e

3
2Ht∥Nι∥L2(Σt) + eHt∥Mι

I∥L2(Σt) (4.21)



4 FUTURE STABILITY ESTIMATES 21

≤Ce−
1
2Ht

3∑
C=1

e
3
2Ht∥eC n̂∥HN (Σt) + Ce−

1
2Ht

√
Etot(t)

for every |ι| ≤ N and t ∈ [T, TBoot).

Proof. First, we observe that since N ≥ 7, each term in (4.16)-(4.20) has at most one factor with more than
N −4 spatial derivatives. Hence, all terms in (4.16)-(4.20) can be controlled using the bootstrap assumptions
(3.7) and the basic estimates (4.2), (4.3). We conclude (4.21) by counting the powers of eHt that correspond
to each factor in every term, recalling the definition of the energies (3.4)-(3.6). Indeed, we include here
examples of terms containing geometric variables that decay the slowest:

eHt∥∂ι(nγ̂CIDγDJC)∥L2(Σt) ≤CeHt(e−Ht∥γ̂∥HN (Σt)) ≤ Ce−Ht
√

Etot(t),

eHt∥∂ι((eBn̂)kIJ)∥L2(Σt) ≤CeHt
3∑

C=1

∥eC n̂∥HN (Σt) ≤ Ce−
1
2Ht

3∑
C=1

e
3
2Ht∥eBn̂∥HN (Σt),

e
3
2Ht∥∂ι(nk̂CDk̂CD)∥L2(Σt) ≤Ce

1
2Ht∥k̂∥HN (Σt) ≤ Ce−

1
2Ht

√
Etot(t).

(4.22)

The ones containing fluid variables are in fact more decaying decay quicker. We include the following examples
of the slowest decaying terms:

e
3
2Ht∥∂ιρ̂∥L2(Σt) ≤Ce

3
2Hte−

1
rs

Ht
√
Etot(t) ≤ Ce−

3
2Ht

√
Etot(t), (

1

rs
> 3 for

1

3
< c2s <

3

7
)

e
3
2Ht∥∂ι(ρ̃1−2rs v̂CvC)∥L2(Σt) ≤Ce

3
2Hte−3Ht∥v̂∥HN (Σt) (4.23)

≤Ce−
3
2Hte2AsHt−Ht

√
Etot(t)

≤Ce−
3
2Ht

√
Etot(t). (2As < 1 for

1

3
< c2s <

3

7
)

One can tediously check that all other terms in (4.16)-(4.20) either decay faster or are at the same rate as
above.

We will make use of the following energy identity.

Lemma 4.3. The geometric variables k̂IJ , γ̂IJB , ê
i
I , n̂ satisfy:

1

2
∂t(e

2HtY ιk̂IJY
ιk̂IJ) +

1

4
∂t(e

2HtY ιγ̂IJBY
ιγ̂IJB) +

1

2
∂t(e

2HtY ιêiIY
ιêiI) +

1

2
∂t[e

3Ht(Y ιn̂)2]

+ 2He2HtY ιk̂IJY
ιk̂IJ +

1

2
He2Ht(Y ιn̂)2

=− e2HteI(Y
ιk̂IJY

ιeJ n̂) + e2HtneC(Y
ιk̂IJY

ιγ̂IJC)− e2HtneI(Y
ιk̂IJY

ιγ̂CJC) (4.24)

+ e3HteC(Y
ιn̂Y ιeC n̂)−

3∑
C=1

e3Ht(Y ιeC n̂)
2 +

∑
ι1∪ι2=ι, |ι2|<|ι|

e3Ht(Y ι1eaC)(YaY
ι2 n̂)Y ιeC n̂

+ e2Ht
{
Mι

JY
ιeJ n̂+ nMι

JY
ιγ̂CJC + Y ιk̂IJK

ι
IJ + Y ιγ̂IJBG

ι
IJB + Y ιêiIE

ι
Ii

}
+ e3Ht(Y ιn̂)Nι,

for every |ι| ≤ N .

Proof. It follows by multiplying the equations (4.11), (4.12), (4.13), (4.14) with e2Htk̂IJ ,
1
2e

2Htγ̂IJB , e
2HtêiI ,

e3Htn̂ respectively, adding the resulting expressions, differentiating by parts, and plugging in the differentiated
momentum constraint.

Now we can proceed to derive the main estimate in this subsection.

Proposition 4.4. Let N ≥ 7 and assume that the bootstrap assumptions (3.7) are valid. Then the following
integral estimate holds:

Egeom(t) +

∫ t

T

3∑
C=1

e3Hτ∥eC n̂∥2HN (Στ )
dτ ≤ CEgeom(T ) + C

∫ t

T

e−
1
2HτEtot(τ)dτ, (4.25)

for all t ∈ [T, TBoot).
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Proof. Integrating the energy identity (4.24) in Σt, summing in |ι| ≤ N , and integrating by parts using (4.5)
gives

1

2
∂t
{
e2Ht∥k̂∥2HN (Σt)

+
1

2
e2Ht∥γ̂∥2HN (Σt)

+ e2Ht∥ê∥2HN (Σt)
+ e3Ht∥n̂∥2HN (Σt)

}
+

3∑
C=1

e3Ht∥eC n̂∥2HN (Σt)

≤
∑
|ι|≤N

∫
Σt

e2Ht
{
(Yae

a
J)(Y

ιk̂IJY
ιn̂)− Ya(ne

a
C)(Y

ιk̂IJY
ιγ̂IJC) + Ya(ne

a
I )(Y

ιk̂IJY
ιγ̂CJC)

}
dω (4.26)

−
∑
|ι|≤N

∫
Σt

e3Ht(Yae
a
C)Y

ιn̂Y ιeC n̂dω +
∑
|ι|≤N

∫
Σt

[ ∑
ι1∪ι2=ι, |ι2|<|ι|

e3Ht(Y ι1eaC)(YaY
ι2 n̂)Y ιeC n̂

+ e2Ht
{
Mι

JY
ιeJ n̂+ nMι

JY
ιγ̂CJC + Y ιk̂IJK

ι
IJ + Y ιγ̂IJBG

ι
IJB + Y ιêiIE

ι
Ii

}
+ e3Ht(Y ιn̂)Nι

]
dω.

Next, we integrate in [T, t], make use of the bootstrap assumptions (3.7), the basic estimates (4.2), Lemma
4.2 and Young’s inequality to obtain the energy inequality:

Egeom(t) +

∫ t

T

3∑
C=1

e3Hτ∥eC n̂∥2HN (Στ )
dτ (4.27)

≤CEgeom(T ) +

∫ t

T

C

η
e−

1
2HτEtot(τ)dτ +

∫ t

T

η

3∑
C=1

e3Hτ∥eC n̂∥2HN (Στ )
dτ,

for some η < 1 of our choice, resulting from the application of Young’s inequality to the terms having a factor
Y ιeC n̂ with |ι| = N , as well as the ones coming from (4.21). Absorbing the last term in the corresponding
one in the LHS and readjusting the generic constant C, we conclude the desired estimate.

4.3 Energy estimates for the fluid variables

First, we derive lower order energy estimates for the fluid variables v̂I , ρ̂2rs by treating the evolution equations
(2.30), (2.31) as transport equations. For the top order energy estimates, we use the additional equation

satisfied by vIY
ιv̂I , see (4.34) below. Once we have obtained HN (Σt) estimates for the fluid variables v̂I , ρ̂2rs ,

we control the HN (Σt) norm of v̂0 using the identity:

v̂0 =
1

v0 + ṽ0

{
(ṽC + vC)v̂C + ρ̂2rs

}
. (4.28)

To begin with, we commute the equations (2.30), (2.31) with Y ι, |ι| ≤ N , using (4.4):

∂tY
ιv̂I +HY ιv̂I =

1

2

n

v0
eIY

ι(ρ̂2rs) + n
vC
v0
eCY

ιv̂I +Vι
I , (4.29)

f 1−2rs
2rs

∂tY
ιρ̂2rs + 2HY ιρ̂2rs =− n

ρ2rs

v20

vIvD
v0

eDY
ιv̂I + n

ρ2rs

v0
eCY

ιv̂C (4.30)

+ n
(1− 2rs

2rs
− 1

2

ρ2rs

v20

)vC
v0
eCY

ι(ρ̂2rs) +Pι,

where

Vι
I =

∑
ι1∪ι2=ι, |ι2|<|ι|

{1
2
Y ι1(

n

v0
eaI )YaY

ι2(ρ̂2rs) + Y ι1(n
vC
v0
eaC)YaY

ι2 v̂I
}

(4.31)

+ Y ι
{
(eI n̂)v0 + nγCDI

vD
v0
v̂C + nγ1DI

ṽ1
v0
v̂D +

n

v0
ṽ21 γ̂11I

+ n̂kCIvC + k̂CIvC + (k̃CI + δCIH)v̂C
}
,

f 1−2rs
2rs

=
1− 2rs
2rs

+
1

2

ρ2rs

v20
, (4.32)
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Pι =
∑

ι1∪ι2=ι, |ι2|<|ι|

f 1−2rs
2rs

[
Y ι1(

1

f 1−2rs
2rs

n
ρ2rs

v0
eaC)YaY

ι2 v̂C − Y ι1(
1

f 1−2rs
2rs

n
ρ2rs

v20

vIvD
v0

eaD)YaY
ι2 v̂I (4.33)

+ Y ι1
{ 1

f 1−2rs
2rs

n
(1− 2rs

2rs
− 1

2

ρ2rs

v20

)vC
v0
eaC

}
YaY

ι2(ρ̂2rs)− 2Y ι1(
1

f 1−2rs
2rs

)HY ι2 ρ̂2rs
]

+
∑

ι1∪ι2=ι

f 1−2rs
2rs

Y ι1(
1

f 1−2rs
2rs

)Y ι2

[
ρ2rs

v0

{
(eC n̂)vC + nγ̂CDCvD

}
− ρ2rs

v20

vI
v0

{
(eI n̂)v

2
0 + nγCDI v̂CvD + nγ1DI ṽ1v̂D + nγ̂11I ṽ

2
1

}
− 1

2

ρ̂2rs

v20
∂t(ρ̃

2rs) +
1

2

ρ̃2rs

v20 ṽ
2
0

∂t(ρ̃
2rs)(v0 + ṽ0)v̂0 − n̂

(vCvI
v20

kCI − trk
)
ρ2rs − ρ2rs n̂

+O(e−2Ht)ρ̂2rs − vCvI
v20

k̂CIρ
2rs −H

ρ̂2rs

v20
(ρ2rs + ρ̃2rs) +H

ρ̃4rs

v20 ṽ
2
0

(v0 + ṽ0)v̂0

− (k̃CI + δCIH)
(vCvI
v20

ρ̂2rs +
v̂CvI
v20

ρ̃2rs +
ṽC v̂I
v20

ρ̃2rs +
ṽC ṽI
v20 ṽ

2
0

(v0 + ṽ0)v̂0ρ̃
2rs

)]
.

The equations (B.17), (2.30), (4.29) also imply:

∂t(vIY
ιv̂I) + 2HvIY

ιv̂I =
1

2
n
vI
v0
eIY

ι(ρ̂2rs) + n
vCvI
v0

eCY
ιv̂I +Sι (4.34)

where

Sι = vIV
ι
I +

{1
2

n

v0
eI(ρ̂2rs) + n

vC
v0
eC v̂I + (eI n̂)v0 + nγCDI

vD
v0
v̂C + nγ1DI

ṽ1
v0
v̂D +

n

v0
ṽ21 γ̂11I (4.35)

+ n̂kCIvC + k̂CIvC + (k̃CI + δCIH)vC
}
Y ιv̂I .

At top order, |ι| = N , the equations (4.29), (4.30), (4.34) combined yield the following energy identity.

Lemma 4.5. The top order fluid variables satisfy:

1

2
∂t
{
e4Htρ2rsY ιv̂IY

ιv̂I +
1

2
f 1−2rs

2rs

e4Ht(Y ιρ̂2rs)2 − e4Ht ρ
2rs

v20
vIvEY

ιv̂IY
ιv̂E

}
+
[
He4Ht − 1

4
∂t(f 1−2rs

2rs

e4Ht)
]
(Y ιρ̂2rs)2 − 1

2
e2Ht∂t(e

2Htρ2rs)Y ιv̂IY
ιv̂I +

1

2
∂t(

ρ2rs

v20
)e4HtvIvEY

ιv̂IY
ιv̂E

=
1

2
ne4Ht ρ

2rs

v0
eI [Y

ι(ρ̂2rs)Y ιv̂I ]−
1

2
ne4Ht ρ

2rs

v20

vIvD
v0

eD(Y ιv̂IY
ιρ̂2rs) +

1

2
ne4Htρ2rs

vC
v0
eC(Y

ιv̂IY
ιv̂I) (4.36)

+
1

4
ne4Ht

(1− 2rs
2rs

− 1

2

ρ2rs

v20

)vC
v0
eC [(Y

ιρ̂2rs)2]− 1

2
ne4Htρ2rs

vC
v0

vIvE
v20

eC(Y
ιv̂IY

ιv̂E)

+ e4Htρ2rsY ιv̂IV
ι
I +

1

2
e4Ht(Y ιρ̂2rs)Pι − e4Ht ρ

2rs

v20
vIY

ιv̂IS
ι

for every |ι| = N .

Proof. The energy identity (4.36) is obtained by considering the following algebraic combination of equations:

e4Htρ2rsY ιv̂I × (4.29) +
1

2
e4HtY ιρ̂2rs × (4.30)− e4Ht ρ

2rs

v20
vEY

ιv̂E × (4.34)

and applying Leibnitz rule.

Next, we control the error terms (4.31), (4.33), (4.35).
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Lemma 4.6. Let N ≥ 7 and assume the bootstrap assumptions (3.7) are valid. Then the expressions
VI ,P

ι,Sι satisfy the lower order estimate:

∑
|ι|≤N−1

3∑
I=1

eHt∥Vι
I∥L2(Σt) +

∑
|ι|≤N−2

e
4rs

1−2rs
Ht∥Pι∥L2(Σt) ≤C(e−Ht + e2Ht− 4rs

1−2rs
Ht)

√
Etot(t) (4.37)

where we recall that 4rs
1−2rs

> 2, rs >
1
4 , and the top order estimates:

∑
|ι|=N

[ 3∑
I=1

e2Htρrs∥Vι
I∥L2(Σt) + e2Ht ρ

rs

v0
∥Sι∥L2(Σt)

]
≤Ce−HteAsHt

√
Etot(t) + C

3∑
I=1

∥eI n̂∥HN (Σt), (4.38)

∑
|ι|=N−1,N

e2Ht∥Pι∥L2(Σt) ≤C(e−Ht + e2Ht− 4rs
1−2rs

Ht)
√
Etot(t) + C

3∑
I=1

∥eI n̂∥HN (Σt), (4.39)

for all t ∈ [T, TBoot).

Remark 4.7. The exponent AsHt having a bad sign in the RHS of (4.38) comes from the terms in Vι
I ,S

ι

that do not contain a ρ2rs factor. This leads to the weak top order estimate (4.51), which only allows us to
close our bootstrap argument in the range c2s ∈ ( 13 ,

3
7 ), see Remark 4.9. On the other hand, these terms are

not present when looking at the relativistic Euler equations in a fixed FLRW background, which allows to
treat the whole range c2s ∈ ( 13 , 1), see Appendix C.

Proof. First, observe that since N ≥ 7, there is at most one factor in every term of Vι
I ,P

ι,Sι that contains
more than N − 4 spatial derivatives, for every |ι| ≤ N . Hence, we control all error terms by counting the
powers of eHt corresponding to the lower order (optimal) behavior of each factor, leaving one factor with
maximum number of spatial derivatives, using the bootstrap assumptions (3.7), the basic estimates (4.2),
(4.3), and Lemma 4.1 (to handle the inverse powers of v0).
1. Lower order error estimate (4.37). To control Vι

I , |ι| ≤ N − 1, we recall the definitions (3.4), (3.5),
(3.6) of the energies Egeom(t), Efluid.low(t), Etot(t):

eHt

∥∥∥∥ ∑
ι1∪ι2=ι, |ι2|<|ι|

{1
2
Y ι1(

n

v0
eaI )YaY

ι2(ρ̂2rs) + Y ι1(n
vC
v0
eaC)YaY

ι2 v̂I
}∥∥∥∥

L2(Σt)

≤CeHt
(
∥ρ̂2rs∥HN−1(Σt) + e−Ht∥v̂∥HN−1(Σt)

)
(4.40)

≤C(eHt− 4rs
1−2rs + e−Ht)

√
Etot(t) ≤ Ce−Ht

√
Etot(t), (

4rs
1− 2rs

> 2, rs >
1

4
)

eHt
∥∥Y ι

{
(eI n̂)v0 + nγCDI

vD
v0
v̂C + nγ1DI

ṽ1
v0
v̂D +

n

v0
ṽ21 γ̂11I

+ n̂kCIvC + k̂CIvC + (k̃CI + δCIH)v̂C
}∥∥

L2(Σt)
(4.41)

≤Ce−Ht∥n̂∥HN (Σt) + C
(
∥v̂∥HN−1(Σt) + ∥γ̂∥HN−1(Σt) + ∥n̂∥HN−1(Σt) + ∥k̂∥HN−1(Σt)

)
≤Ce−Ht

√
Etot(t).

This completes the estimate (4.37) for Vι
I . We proceed to estimate the L2(Σt) norm of Pι, |ι| ≤ N − 2, in a

similar manner:

e
4rs

1−2rs
Ht

∥∥∥∥ ∑
ι1∪ι2=ι, |ι2|<|ι|

f 1−2rs
2rs

[
Y ι1(

1

f 1−2rs
2rs

n
ρ2rs

v0
eaC)YaY

ι2 v̂C − Y ι1(
1

f 1−2rs
2rs

n
ρ2rs

v20

vIvD
v0

eaD)YaY
ι2 v̂I

+ Y ι1
{ 1

f 1−2rs
2rs

n
(1− 2rs

2rs
− 1

2

ρ2rs

v20

)vC
v0
eaC

}
YaY

ι2(ρ̂2rs)− 2Y ι1(
1

f 1−2rs
2rs

)HY ι2 ρ̂2rs
]∥∥∥∥

L2(Σt)

(4.42)
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≤C∥v̂∥HN−2(Σt) + C(e−Ht + e2Ht− 4rs
1−2rs

Ht)e
4rs

1−2rs
Ht∥ρ̂2rs∥HN−2(Σt) (|ι1| ≥ 1)

≤C(e−Ht + e2Ht− 4rs
1−2rs

Ht)
√
Etot(t),

e
4rs

1−2rs
Ht

∥∥∥∥ ∑
ι1∪ι2=ι

f 1−2rs
2rs

Y ι1(
1

f 1−2rs
2rs

)Y ι2

[
ρ2rs

v0

{
(eC n̂)vC + nγ̂CDCvD

}
− ρ2rs

v20

vI
v0

{
(eI n̂)v

2
0 + nγCDI v̂CvD + nγ1DI ṽ1v̂D + nγ̂11I ṽ

2
1

}
− 1

2

ρ̂2rs

v20
∂t(ρ̃

2rs) +
1

2

ρ̃2rs

v20 ṽ
2
0

∂t(ρ̃
2rs)(v0 + ṽ0)v̂0 − n̂

(vCvI
v20

kCI − trk
)
ρ2rs − ρ2rs n̂ (4.43)

+O(e−2Ht)ρ̂2rs − vCvI
v20

k̂CIρ
2rs −H

ρ̂2rs

v20
(ρ2rs + ρ̃2rs) +H

ρ̃4rs

v20 ṽ
2
0

(v0 + ṽ0)v̂0

− (k̃CI + δCIH)
(vCvI
v20

ρ̂2rs +
v̂CvI
v20

ρ̃2rs +
ṽC v̂I
v20

ρ̃2rs +
ṽC ṽI
v20 ṽ

2
0

(v0 + ṽ0)v̂0ρ̃
2rs

)]∥∥∥∥
L2(Σt)

≤Ce−Ht∥n̂∥HN−1(Σt) + C
{
∥γ̂∥HN−2(Σt) + ∥v̂∥HN−2(Σt) + ∥k̂∥HN−2(Σt) + ∥n̂∥HN−2(Σt)

}
+ Ce2Ht− 4rs

1−2rs
HteHt∥v̂∥HN−2(Σt) + e2Ht∥ρ̂2rs∥HN−2(Σt)

≤C(e−Ht + e2Ht− 4rs
1−2rs

Ht)
√

Etot(t).

The above estimates give the desired control of Pι, |ι| ≤ N − 2, in L2(Σt), which completes the proof of
(4.37).
2. Top order error estimates (4.38)-(4.39). More careful power counting is needed due to the discrepancy

in the eHt-weights in the energy Efluid.top(t), compared to Efluid.low(t) in (3.5). For the convenience of the
reader, we note here the following power relations:

e2Htρrs ≤ CeHteHt− 2rs
1−2rs =CeHte−AsHt, As =

3c2s − 1

1− c2s
=

2rs
1− rs

− 1, rs =
c2s

1 + c2s
,

e2Htρrs∥v̂∥ḢN (Σt)
≤Ce2Ht− 2rs

1−2rs ∥v̂∥ḢN (Σt)
= CeHt−AsHt∥v̂∥ḢN (Σt)

= CeAsHt
√
Etot(t), (4.44)

e2Ht∥ρ̂2rs∥ḢN (Σt)
≤
√
Etot(t).

We begin first with the estimates for Vι
I , |ι| = N :

e2Htρrs
∥∥∥∥ ∑

ι1∪ι2=ι, |ι2|<|ι|

{1
2
Y ι1(

n

v0
eaI )YaY

ι2(ρ̂2rs) + Y ι1(n
vC
v0
eaC)YaY

ι2 v̂I
}∥∥∥∥

L2(Σt)

≤Ce2Htρrs
(
∥ρ̂2rs∥HN (Σt) + e−Ht∥v̂∥HN (Σt)

)
(4.45)

≤C(e−
2rs

1−2rs
Ht + e−HteAsHt)

√
Etot(t) ≤ Ce−HteAsHt

√
Etot(t), (

2rs
1− 2rs

> 1)

e2Htρrs
∥∥Y ι

{
(eI n̂)v0 + nγCDI

vD
v0
v̂C + nγ1DI

ṽ1
v0
v̂D +

n

v0
ṽ21 γ̂11I

+ n̂kCIvC + k̂CIvC + (k̃CI + δCIH)v̂C
}∥∥

L2(Σt)

≤CeHt− 2rs
1−2rs

Ht
3∑

I=1

∥eI n̂∥HN (Σt) + Ce2Htρrse−Ht∥v̂∥HN (Σt) (4.46)

+ C
(
∥γ̂∥HN (Σt) + ∥n̂∥HN (Σt) + ∥k̂∥HN (Σt)

)
≤C

3∑
I=1

∥eI n̂∥HN (Σt) + Ce−HteAsHt
√

Etot(t),
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and proceed to estimate Sι, |ι| = N , having just derived (4.38) for Vι
I :

e2Ht ρ
rs

v0

∥∥vIVι
I +

{1
2

n

v0
eI(ρ̂2rs) + n

vC
v0
eC v̂I + (eI n̂)v0 + nγCDI

vD
v0
v̂C + nγ1DI

ṽ1
v0
v̂D +

n

v0
ṽ21 γ̂11I

+ n̂kCIvC + k̂CIvC + (k̃CI + δCIH)vC
}
Y ιv̂I

∥∥
L2(Σt)

(4.47)

≤C

3∑
I=1

∥eI n̂∥HN (Σt) + Ce−HteAsHt
√
Etot(t) + Ce2Ht ρ

rs

v0
e−2Ht∥v̂∥ḢN (Σt)

≤C

3∑
I=1

∥eI n̂∥HN (Σt) + Ce−HteAsHt
√
Etot(t).

For the error terms in Pι, |ι| = N − 1, N , we have:

e2Ht

∥∥∥∥ ∑
ι1∪ι2=ι, |ι2|<|ι|

f 1−2rs
2rs

[
Y ι1(

1

f 1−2rs
2rs

n
ρ2rs

v0
eaC)YaY

ι2 v̂C − Y ι1(
1

f 1−2rs
2rs

n
ρ2rs

v20

vIvD
v0

eaD)YaY
ι2 v̂I

+ Y ι1
{ 1

f 1−2rs
2rs

n
(1− 2rs

2rs
− 1

2

ρ2rs

v20

)vC
v0
eaC

}
YaY

ι2(ρ̂2rs)− 2Y ι1(
1

f 1−2rs
2rs

)HY ι2 ρ̂2rs
]∥∥∥∥

L2(Σt)

(4.48)

≤Ce2Hte−
4rs

1−2rs
Ht∥v̂∥HN (Σt) + Ce2Ht(e−Ht + e2Ht− 4rs

1−2rs
Ht)∥ρ̂2rs∥HN (Σt) (|ι1| ≥ 1)

=Ce−Hte−2AsHteHt∥v̂∥HN (Σt) + C(e−Ht + e2Ht− 4rs
1−2rs

Ht)e2Ht∥ρ̂2rs∥HN (Σt) (As =
2rs

1− 2rs
− 1)

≤C(e−Ht + e2Ht− 4rs
1−2rs

Ht)
√
Etot(t),

e2Ht

∥∥∥∥ ∑
ι1∪ι2=ι

f 1−2rs
2rs

Y ι1(
1

f 1−2rs
2rs

)Y ι2

[
ρ2rs

v0

{
(eC n̂)vC + nγ̂CDCvD

}
− ρ2rs

v20

vI
v0

{
(eI n̂)v

2
0 + nγCDI v̂CvD + nγ1DI ṽ1v̂D + nγ̂11I ṽ

2
1

}
− 1

2

ρ̂2rs

v20
∂t(ρ̃

2rs) +
1

2

ρ̃2rs

v20 ṽ
2
0

∂t(ρ̃
2rs)(v0 + ṽ0)v̂0 − n̂

(vCvI
v20

kCI − trk
)
ρ2rs − ρ2rs n̂ (4.49)

+O(e−2Ht)ρ̂2rs − vCvI
v20

k̂CIρ
2rs −H

ρ̂2rs

v20
(ρ2rs + ρ̃2rs) +H

ρ̃4rs

v20 ṽ
2
0

(v0 + ṽ0)v̂0

− (k̃CI + δCIH)
(vCvI
v20

ρ̂2rs +
v̂CvI
v20

ρ̃2rs +
ṽC v̂I
v20

ρ̃2rs +
ṽC ṽI
v20 ṽ

2
0

(v0 + ṽ0)v̂0ρ̃
2rs

)]∥∥∥∥
L2(Σt)

≤Ce2Ht− 4rs
1−2rs

Ht
3∑

I=1

∥eI n̂∥HN (Σt) + Ce2Ht− 4rs
1−2rs

Ht
{
∥γ̂∥HN (Σt) + ∥k̂∥HN (Σt) + ∥n̂∥HN (Σt)

}
+ C(e2Ht− 4rs

1−2rs
Ht + e4Ht− 8rs

1−2rs
HteHt)∥v̂∥HN−2(Σt) + eHt∥ρ̂2rs∥HN (Σt)

≤C

3∑
I=1

∥eI n̂∥HN (Σt) + Ce−Ht
√
Etot(t) + C(e−2AsHt + e2Ht− 4rs

1−2rs
Hte−2AsHteHt)∥v̂∥HN−2(Σt)

≤C

3∑
I=1

∥eI n̂∥HN (Σt) + C(e−Ht + e2Ht− 4rs
1−2rs

Ht)
√
Etot(t).

Thus, we have controlled the L2(Σt) norms of all top order error terms in Pι, |ι| = N − 1, N . This completes
the proof of the lemma.

Our goal in this section is to prove the following proposition.
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Proposition 4.8. Let N ≥ 7 be sufficiently large and assume the bootstrap assumptions (3.7) are valid.
Then the following energy estimates hold:

Efluid.low(t) ≤CEfluid.low(T ) + C

∫ t

T

(e−Hτ + e2Hτ− 4rs
1−2rs

Hτ )Etot(τ)dτ, (4.50)

Efluid.top(t) ≤CEfluid.top(T ) + C

∫ t

T

e−Hτe2AsHτEtot(τ)dτ + C

∫ t

T

(e−Hτ + e2Hτ− 4rs
1−2rs

Hτ )Etot(τ)dτ (4.51)

+
1

2

∫ t

T

3∑
I=1

e3Hτ∥eI n̂∥2L2(Στ )
dτ,

for all t ∈ [T, TBoot).

Remark 4.9. Here, it is evident that we can only hope to close our estimates if As =
3c2s−1
1−c2s

< 1
2 . This is

verified for c2s ∈ ( 13 ,
3
7 ). Indeed, combining the energy estimates in Propositions 4.4, 4.8, we obtain an overall

estimate for the total energy Etot(t), see the proof of Proposition 4.10. Since the coefficient e−Hte2AsHt

naturally propagates to the latter overall estimate, Gronwall’s inequality only yields an estimate consistent
with our bootstrap assumptions (3.7) in the case where −1 + 2As < 0.

Proof. Step 1. Derivation of (4.50). Multiplying the equation (4.29) with e2HtY ιv̂I gives the identity:

1

2
∂t(e

2HtY ιv̂IY
ιv̂I) =

1

2
e2Htn

vC
v0
eC(Y

ιv̂IY
ιv̂I) + e2HtY ιv̂I

{1
2

n

v0
eIY

ι(ρ̂2rs) +Vι
I

}
. (4.52)

Next, we integrate (4.52) in Σt, integrate by parts in eC , sum over |ι| ≤ N − 1, and use the bootstrap
assumptions (3.7), the basic estimates (4.2), (4.3), and Lemmas 4.1, 4.6 to deduce the energy inequality:

1

2
∂t

3∑
I=1

e2Ht∥v̂I∥2HN−1(Σt)
≤Ce−Hte2Ht∥v̂∥2HN−1(Σt)

+ CeHt∥v̂∥HN−1(Σt)e
Ht∥ρ̂2rs∥HN (Σt)

+ CeHt∥v̂∥HN−1(Σt)(e
−Ht + e2Ht− 4rs

1−2rs
Ht)

√
Etot(t) (4.53)

≤C(e−Ht + e2Ht− 4rs
1−2rs

Ht)Etot(t).

Similarly, multiplying (4.30) with e2PHtY ιρ̂2rs gives the identity:

1

2
∂t
[
e2PHt(Y ιρ̂2rs)2

]
+
(
2H

1

f 1−2rs
2rs

− P
)
e2PHt(Y ιρ̂2rs)2

=− e2PHt 1

f 1−2rs
2rs

n
ρ2rs

v20

vIvD
v0

Y ι(ρ̂2rs)eDY
ιv̂I + e2PHt 1

f 1−2rs
2rs

n
ρ2rs

v0
Y ι(ρ̂2rs)eCY

ιv̂C (4.54)

+
1

2

1

f 1−2rs
2rs

e2PHtn
(1− 2rs

2rs
− 1

2

ρ2rs

v20

)vC
v0
eC

[
(Y ιρ̂2rs)2

]
+ e2PHt 1

f 1−2rs
2rs

Y ι(ρ̂2rs)Pι.

Setting P = 4rs
1−2rs

, integrating (4.54) in Σt, summing over |ι| ≤ N − 2, integrating by parts in eC in the first
term in the third line (4.54), and arguing as above we derive:

1

2
∂t
[
e

8rs
1−2rs

Ht∥ρ̂2rs∥2HN−2(Σt)

]
≤C(e−Ht + e2Ht− 4rs

1−2rs
Ht)e

8rs
1−2rs

Ht∥ρ̂2rs∥2HN−2(Σt)

+ e
4rs

1−2rs
Ht∥ρ̂2rs∥HN−2(Σt)∥v̂∥HN−1(Σt) (4.55)

≤C(e−Ht + e2Ht− 4rs
1−2rs

Ht)Etot(t).

Similarly, for P = 2 and summing over |ι| = N − 1 instead, we have

1

2
∂t
[
e4Ht∥ρ̂2rs∥2

ḢN−1(Σt)

]
≤C(e−Ht + e2Ht− 4rs

1−2rs
Ht)e4Ht∥ρ̂2rs∥2

ḢN−1(Σt)
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+ e4Ht− 4rs
1−2rs

Ht∥ρ̂2rs∥ḢN−1(Σt)
∥v̂∥ḢN (Σt)

(4.56)

≤C(e−Ht + e2Ht− 4rs
1−2rs

Ht)Etot(t). (4− 4rs
1− 2rs

= 2− 2As)

From (4.28), we also have

∥v̂0∥2HN−m(Σt)
≤ Cε∥v̂0∥2HN−m(Σt)

+ C

3∑
I=1

∥v̂I∥2HN−m(Σt)
+ Ce4Ht∥ρ̂2rs∥2HN−m(Σt)

, m = 0, 1. (4.57)

For ε > 0 sufficiently small, we obtain the lower and top order bounds

e2Ht∥v̂0∥2HN−1(Σt)
≤C

3∑
I=1

e2Ht∥v̂I∥2HN−1(Σt)
+ Ce4Ht∥ρ̂2rs∥2HN−1(Σt)

,

e−4AsHte2Ht∥v̂0∥2HN (Σt)
≤C

3∑
I=1

e−4AsHte2Ht∥v̂I∥2HN (Σt)
+ Ce−4AsHte4Ht∥ρ̂2rs∥2HN (Σt)

.

(4.58)

The desired lower order energy inequality (4.50) now follows by summing the energy inequalities (4.53),
(4.55), (4.56), integrating in [T, t], and using the first bound in (4.58).

Step 2. Derivation of (4.51). Integrate the top order energy identity (4.36) in Σt, integrate by parts
the terms in the third line of (4.36), sum over |ι| = N , and use the bootstrap assumptions (3.7), the basic
estimates (4.2), (4.3), Lemmas 4.1, 4.6, and Young’s inequality to deduce the energy inequality:

1

2
∂t

[ ∑
|ι|=N

∫
Σt

e4Htρ2rs
{
Y ιv̂IY

ιv̂I −
vIvE
v20

Y ιv̂IY
ιv̂E

}
dω +

1

2
f 1−2rs

2rs

e4Ht∥ρ̂2rs∥2
ḢN (Σt)

]

+
4rs − 1

2rs
He4Ht∥ρ̂2rs∥2

ḢN (Σt)
+

4rs − 1

1− 2rs
H

∑
|ι|=N

∫
Σt

e4Htρ2rs
{
Y ιv̂IY

ιv̂I −
vIvE
v20

Y ιv̂IY
ιv̂E

}
dω (4.59)

≤C(e−Ht + e2Ht− 4rs
1−2rs

Ht)e4Ht∥ρ̂2rs∥2
ḢN (Σt)

+ Ce2Ht∥ρ̂2rs∥ḢN (Σt)
e2Ht− 4rs

1−2rs
Ht∥v∥ḢN (Σt)

+ Ce−Hte4Ht− 4rs
1−2rs

Ht∥v̂∥2
ḢN (Σt)

+ Ce2Ht− 2rs
1−2rs

Ht∥v̂∥ḢN (Σt)

{
e−HteAsHt

√
Etot(t) + C

3∑
I=1

∥eI n̂∥HN (Σt)

}
+ Ce2Ht∥ρ̂2rs∥ḢN (Σt)

{
(e−Ht + e2Ht− 4rs

1−2rs
Ht)

√
Etot(t) +

3∑
I=1

∥eI n̂∥HN (Σt)

}
≤ C

η

(
e−Ht + e2Ht− 4rs

1−2rs
Ht + e−Hte2AsHt

)
Etot(t) + η

3∑
I=1

e3Ht∥eI n̂∥2HN (Σt)
(2− 4rs

1− 2rs
= −2As)

for some constant η > 0 of our choice. Notice that by Cauchy-Schwartz it holds

Y ιv̂IY
ιv̂I −

vIvE
v20

Y ιv̂IY
ιv̂E ≥ (1− vEvE

v20
)Y ιv̂IY

ιv̂I =
ρ2rs

v20
Y ιv̂IY

ιv̂I . (4.60)

Also, we recall that by Lemma 4.1, ρ2rs

v2
0

∼ e2Ht− 4rs
1−2rs

Ht = e−2AsHt, e2Htρ2rs ∼ e−2AsHt. Hence, integrating

(4.59) in [T, t], it follows that

3∑
I=1

e−4AsHte2Ht∥v̂I∥2ḢN (Σt)
+ e4Ht∥ρ̂2rs∥2

ḢN (Σt)
(4.61)

≤CEfluid.top(T ) +
C

η

∫ t

T

(
e−Ht + e2Ht− 4rs

1−2rs
Ht + e−Hte2AsHt

)
Etot(t) + η

3∑
I=1

e3Ht∥eI n̂∥2HN (Σt)
.

Using in addition the second bound in (4.58) and choosing η sufficiently small, we conclude the desired top
order energy estimate (4.51).
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4.4 Global existence in all of [T,+∞)× S3

Having derived the main energy estimates in Propositions 4.4, 4.8, we can now complete the overall bootstrap
argument by improving our assumptions (3.7) and obtain a global stability result.

Proposition 4.10. Let N ≥ 7 and assume the bootstrap assumptions (3.7) are valid. Then the following
energy estimate holds:

Etot(t) ≤ CEtot(T ) + C

∫ t

T

(e−
1
2Hτ + e2Hτ− 4rs

1−2rs
Hτ )Etot(τ)dτ + C

∫ t

T

e−Hτe2AsHtEtot(τ)dτ, (4.62)

for all t ∈ [T, TBoot). Moreover, if 2As < 1, ie. c2s ∈ ( 13 ,
3
7 ), and Etot(T ) is sufficiently small such that

CEtot(T ) exp{C
∫ +∞

T

e−
1
2Hτ + e2Hτ− 4rs

1−2rs
Hτ + e−Hτe2AsHτdτ} < ε, (4.63)

then (4.62) yields a strict improvement of the bootstrap assumptions (3.7). In the latter case, TBoot = +∞
and the estimate

Etot(t) < ε (4.64)

holds for all t ∈ [T,+∞).

Proof. Summing the energy estimates (4.25), (4.50), (4.51) and readjusting the constant C gives (4.62). By
Gronwall’s inequality, we obtain

Etot(t) ≤ CEtot(T ) exp{C
∫ t

T

e−
1
2Hτ + e2Hτ− 4rs

1−2rs
Hτ + e−Hτe2AsHτdτ}, (4.65)

for all t ∈ [T, Tboot).
Standard local well-posedness implies that the perturbed solution has a maximal time of existence Tmax >

T . If Tmax < +∞, then for initial data sufficiently close to the background solution on t = T , consistent
with (4.63), there must exist a time t0 ∈ [T, Tmax], such that supt∈[T,t0) Etot(t) = ε, otherwise the solution
can be further extended past t = Tmax by standard continuation criteria. The latter equality cannot be true
due to (4.65) and (4.63). We conclude that Tmax = +∞ and that the bootstrap assumptions (3.7) are never
saturated, that is, (4.64) holds for all t ∈ [T,+∞).

5 The precise asymptotic behavior towards infinity

In this section, we derive the precise asymptotic behavior of each of the reduced variables k̂IJ , γ̂IJB , ê
i
I , n̂,

ρ̂2rs , v̂0, v̂I using the overall energy estimate (4.65) and the equations in Lemma 2.2. In particular, we prove:

Proposition 5.1. Let N ≥ 7 and assume Proposition 4.10 holds. Then the reduced variables k̂IJ , n̂ satisfy
the improved estimates:

∥k̂IJ∥WN−4,∞(Σt) + ∥n̂∥WN−4,∞(Σt) ≤ Cεe−2Ht. (5.1)

Moreover, there exist functions (ê∞)iI ∈WN−4,∞(S3), ρ̂2rs
∞
, v̂∞0 , v̂

∞
I ∈WN−5,∞(S3) such that

∥êiI − (ê∞)iI(ω)e
−Ht∥WN−4,∞(Σt) ≤Cεe−3Ht, (5.2)

∥v̂µ − v̂∞µ (ω)e−Ht∥WN−5,∞(Σt) ≤Cεe−2Ht, (5.3)

∥ρ̂2rs − ρ̂2rs
∞
(ω)e−

4rs
1−2rs

Ht∥WN−5,∞(Σt) ≤Cε(e−Ht + e2Ht− 4rs
1−2rs

Ht)e−
4rs

1−2rs
Ht, (5.4)

for all t ∈ [T,+∞), where we recall that 4rs
1−2rs

> 2, rs >
1
4 .
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Proof. The overall energy estimate (4.65), together with the basic estimates (4.2), (4.3), applied to control
the RHS of (2.26) yield the bound

∥∂tk̂IJ + 3Hk̂IJ∥WN−4,∞(Σt) ≤ Cεe−2Ht, (5.5)

which in turn implies

∥e3Htk̂IJ − e3HT k̂IJ(T, ω)∥WN−4,∞(Σt)

=

∥∥∥∥∫ t

T

∂t(e
3Hτ k̂IJ)dτ

∥∥∥∥
WN−4,∞(Σt)

≤
∫ t

T

∥∂t(e3Hτ k̂IJ∥WN−4,∞(Στ )dτ ≤ Cε

∫ t

T

eHτdτ ≤ CεeHt. (5.6)

Multiplying (5.6) with e−3Ht and using the triangle inequality, we obtain

∥k̂IJ∥WN−4,∞(Σt) ≤ ∥k̂IJ∥WN−4,∞(ΣT )e
−3Ht + Cεe−2Ht ≤ Cεe−2Ht. (5.7)

The argument for n̂ is similar. This completes the proof of (5.1).

Having derived the improved estimates for k̂IJ , n̂, we proceed to derive the precise asymptotic behaviors

of êiI , v̂µ, ρ̂
2rs . Treating the equations (2.28), (2.30), (2.31) as ODEs in t, using the energy estimate (4.64) to

control the corresponding RHSs, we deduce the bounds:

∥∂t(eHtêiI)∥WN−5(Σt) ≤Cεe−2Ht,

∥∂t(eHtv̂I)∥WN−5(Σt) ≤Cεe−Ht, (5.8)

∥∂t(e
4rs

1−2rs
Htρ̂2rs)∥WN−5(Σt) ≤Cε(e−Ht + e2Ht− 4rs

1−2rs
Ht),

for all t ∈ [T,+∞). Since the latter RHSs are integrable in [T,+∞), it follows that the renormalized quantities

eHtêiI , e
Htv̂I , e

4rs
1−2rs

Htρ̂2rs have limits as t → +∞, denoted by (ê∞)iI(ω) ∈ WN−4,∞(S3), v̂∞I (ω), ρ̂2rs
∞
(ω) ∈

WN−5,∞(Σt). Integrating (5.8) in [t,+∞) gives the desired asymptotic behaviors (5.2)-(5.4) for êiI , v̂I , ρ̂
2rs .

Indeed, the argument for êiI is as follows:

∥êiI − (ê∞)iI(ω)e
−Ht∥WN−4,∞(Σt) = e−Ht

∥∥∥∥ ∫ +∞

t

∂τ (e
Hτ êiI)dτ

∥∥∥∥
WN−4,∞(Στ )

≤ e−Ht

∫ +∞

t

∥∂τ (eHτ êiI)∥WN−4,∞(Στ )dτ (5.9)

≤ e−Ht

∫ +∞

t

Cεe−2Hτdτ ≤ Cεe−3Ht.

The derivations for v̂I , ρ̂2rs are similar. To conclude the asymptotic behavior for v̂0, we use the identity (4.28)

and the already derived behaviors of v̂I , ρ̂2rs .

A Derivation of the equations of motion

Lemma A.1. The equations of motion DµTµν = 0, for Tµν given by (1.3) with p = c2sρ, are equivalent to
the system (1.5)-(1.6).

Proof. Taking the divergence of (1.3), for p = c2sρ, we have

(1 + c2s)u
µ(eµρ)uν + (1 + c2s)ρ(D

µuµ)uν + (1 + c2s)ρ(Duu)ν + c2sDνρ = 0. (A.1)

Contracting (A.1) with uν gives

uµ(eµρ) + (1 + c2s)ρ(D
µuµ) = 0,

1

1 + c2s
ρ
− c2s

1+c2s uµ(eµρ) + ρ
1

1+c2s (Dµuµ) = 0, (A.2)
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Dµ(ρ
1

1+c2s uµ) = 0.

Rewrite the energy momentum tensor (1.3) using p = c2sρ and (1.4):

Tµν = (1 + c2s)ρ
1−c2s
1+c2s vµvν + c2sρgµν . (A.3)

Then the divergence of Tµν becomes

DµTµν =(1 + c2s)D
µ(ρ

1−c2s
1+c2s vµ)vν + (1 + c2s)ρ

1−c2s
1+c2s (Dvv)ν + c2sDνρ

=(1 + c2s)D
µ(ρ

1
1+c2s uµ)vν + (1 + c2s)ρ

1−c2s
1+c2s (Dvv)ν + c2sDνρ (A.4)

= (1 + c2s)ρ
1−c2s
1+c2s (Dvv)ν + c2sDνρ. (by (A.2))

We arrive at (1.5) after setting the last equation to zero and multiplying with (1 + c2s)
−1ρ

c2s−1

1+c2s .
Going back to (A.2), we replace uµ in favor of vµ and expand the divergence:

0 = Dµ(ρ
1

1+c2s uµ) = Dµ(ρ
1−c2s
1+c2s vµ) =

1− c2s
1 + c2s

ρ
− 2c2s

1+c2s Dvρ+ ρ
1−c2s
1+c2s Dµvµ (A.5)

Multiplying the last RHS with ρ
c2s−1

1+c2s gives (1.6).

B ODE analysis for the homogeneous tilted backgrounds

Here, we prove the existence of homogeneous solutions to the Einstein-Euler system, of the form (1.11)-(1.15),
for c2s ∈ ( 13 , 1), and derive their precise asymptotic behaviors. For consistency, we express the homogeneous
solutions in the gauge presented in Section 1.4.2.
Consider the g̃-orthonormal frame (2.22). We compute the associated spatial connection coefficients using

the Koszul formula:

γ̃IJB =
1

2

{
g̃([ẽI , ẽJ ], ẽB)− g̃([ẽJ , ẽB ], ẽI) + g̃([ẽB , ẽI ], ẽJ)

}
, (B.1)

the choice of frame (2.22), the commutation relation (1.20), and the form of the metric (1.11). They read:

γ̃112 = γ̃113 = γ̃223 = γ̃332 = 0,

γ̃221 = −g̃([ẽ2, ẽ1], ẽ2) = 2G−2
2 (t)G−1

1 (t)G2(t), γ̃331 = −g̃([ẽ3, ẽ1], ẽ3) = −2G−2
2 (t)G−1

1 (t)G2(t),

γ̃123 =
G−1

1 (t)G−1
2 (t)√

G2
3(t)−G4(t)G−2

2 (t)
[G2

3(t)−G2
1(t) +G2

2(t)], (B.2)

γ̃231 =
G−1

1 (t)G−1
2 (t)√

G2
3(t)−G4(t)G−2

2 (t)
[G2

3(t)−G2
2(t) +G2

1(t)− 2G4(t)G−2
2 (t)],

γ̃312 =
G−1

1 (t)G−1
2 (t)√

G2
3(t)−G4(t)G−2

2 (t)
[G2

1(t)−G2
3(t) +G2

2(t) + 2G4(t)G−2
2 (t)].

Here, the frame and metric components are related via:

ẽ11 = G−1
1 (t), ẽ22 = G−1

2 (t), ẽ33 =
1√

G2
3(t)−G4(t)G−2

2 (t)
, ẽ23 = − G2(t)G−2

2 (t)√
G2

3(t)−G4(t)G−2
2 (t)

. (B.3)
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Notice that γ̃221 = −γ̃331. Hence, we need only solve for γ221 below. Expand also the fluid speed relative to
ẽ0, ẽ1

ũ = −ũ0ẽ0 + ũ1ẽ1 (B.4)

and consider the renormalized fluid components ṽ0 = ρ̃rs ũ0, ṽ1 = ρ̃rs ũ1.
Then the identities in Lemma 2.1 become:

∂tk̃11 − trk̃k̃11 =− 2γ̃2221 + 2γ̃231γ̃312 − Λ− (1 + c2s)ρ̃
1−2rs ṽ21 −

1

2
(1− c2s)ρ̃, (B.5)

∂tk̃22 − trk̃k̃22 =2γ̃123γ̃312 − Λ− 1

2
(1− c2s)ρ̃, (B.6)

∂tk̃33 − trk̃k̃33 =2γ̃231γ̃123 − Λ− 1

2
(1− c2s)ρ̃, (B.7)

∂tk̃23 − trk̃k̃23 =2γ̃123γ̃221, (B.8)

∂tγ̃221 − k̃11γ̃221 =− 2k̃23γ̃123 − k̃23γ̃231 − k̃23γ̃312 (B.9)

∂tγ̃123 − k̃11γ̃123 =(k̃11 − k̃22)γ̃312 + (k̃11 − k̃33)γ̃231 − 2k̃23γ̃221 (B.10)

∂tγ̃231 − k̃22γ̃231 =(k̃22 − k̃33)γ̃123 + (k̃22 − k̃11)γ̃312 (B.11)

∂tγ̃312 − k̃33γ̃312 =(k̃33 − k̃11)γ̃231 + (k̃33 − k̃22)γ̃123 (B.12)

∂tẽ
1
1 = k̃11ẽ

1
1, (B.13)

∂tẽ
2
2 = k̃22ẽ

2
2 + k̃23ẽ

2
3, (B.14)

∂tẽ
3
3 = k̃33ẽ

3
3, (B.15)

∂tẽ
2
3 = k̃33ẽ

2
3 + k̃23ẽ

2
2, (B.16)

∂tṽ1 = k̃11ṽ1, (B.17)

−(1− 2rs)∂t log ρ̃+ trk̃ = ∂t log ṽ0, (B.18)

where ṽ20 = ṽ21 + ρ̃2rs , rs ∈ ( 14 ,
1
2 ). Also, the constraints reduce to

2γ̃231γ̃123 + 2γ̃123γ̃312 + 2γ̃312γ̃231 − 2γ̃2221 (B.19)

= k̃211 + k̃222 + k̃233 + 2k223 − (trk̃)2 + 2Λ + 2(1 + c2s)ρ̃
1−2rs ṽ20 − 2c2sρ̃,

(k̃22 − k̃33)γ̃221 − k̃23(γ̃312 − γ̃231) (B.20)

=− (1 + c2s)ρ̃
1−2rs ṽ0ṽ1.

Existence for the above system of equations leads to a homogeneous solution of the Einstein-Euler system,
as long as the constraints are asymptotically satisfied to a certain order.
The solutions we will be looking at admit the expansions

k̃II = −H +

6∑
m=2

k̃∞,m
IJ e−mHt +O(e−7Ht), k̃23 = k̃∞,3

23 e−3Ht +O(e−5Ht),

γ̃221 = O(e−4Ht), γ̃IJB = γ̃∞,1
IJBe

−Ht +

5∑
m=3

γ̃∞,m
IJB e−mHt +O(e−6Ht), I ̸= J ̸= B ̸= I, (B.21)

ẽiI = (ẽiI)
∞,1e−Ht +O(e−3Ht), I = i, ẽ23 = O(e−4Ht),

ṽµ =
∑

m=1,3

ṽ∞,m
µ e−mHt +O(e−4Ht), ρ̃1−2rs =

∑
m=2,4

(ρ̃1−2rs)∞,me−mHt +O(e−5Ht).

The initial data of the above variables at infinity consist of the constants k̃∞,3
IJ , γ̃∞,1

IJB , (ẽ
i
I)

∞,1, ṽ∞,1
µ , (ρ̃1−2rs)∞,2,

though the values γ̃∞,1
IJB are determined from (ẽiI)

∞,1 and vice versa. Also, the extreme tilt of the fluid trans-

lates to the condition |ṽ∞,1
0 | = |ṽ∞,1

1 |. Finally, the remaining constants are further constrained by the
identities (B.19)-(B.20). More precisely, we have the following lemma.
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Lemma B.1. Let c2s ∈ ( 13 , 1). Given constants k̃∞,3
II , k̃∞,3

23 , G∞,−1
I , ṽ∞,1

µ , (ρ̃1−2rs)∞,2, there exists a unique

solution to the evolution equations (B.5)-(B.18) with the asymptotic behavior (B.21), such that

(ẽiI)
∞,1 =(G∞,1

I )−1, i = I,

γ̃∞,1
123 =(G∞,1

1 )−1(G∞,1
2 )−1(G∞,1

3 )−1[(G∞,1
3 )2 − (G∞,1

1 )2 + (G∞,1
2 )2],

γ̃∞,1
231 =(G∞,1

1 )−1(G∞,1
2 )−1(G∞,1

3 )−1[(G∞,1
3 )2 − (G∞,1

2 )2 + (G∞,1
1 )2],

γ̃∞,1
312 =(G∞,1

1 )−1(G∞,1
2 )−1(G∞,1

3 )−1[(G∞,1
1 )2 − (G∞,1

3 )2 + (G∞,2
2 )2],

(B.22)

defined over an interval [T,+∞), for some T > 0 sufficiently large. If in addition the following identities
hold: ∑

I,J

(k̃∞,3
IJ )2 − (trk∞,3)2 +

∑
I,J

(k̃∞,2
IJ k̃∞,4

IJ − 2Hk̃∞,6
IJ )− 2trk∞,2trk∞,4 + 6Htrk∞,6

2(1 + c2s)
{
(ρ̃1−2rs)∞,4(ṽ∞,1

0 )2 + 2(ρ̃1−2rs)∞,2ṽ∞,1
0 ṽ∞,3

0

}
− 2c2s

[
ρ̃1−2rs)∞,2

] 1
1−2rs

=2
∑

I ̸=J ̸=B ̸=I

(γ̃∞,1
IJB γ̃

∞,5
BIJ +

1

2
γ̃∞,3
IJB γ̃

∞,3
BIJ), (B.23)

k̃∞,3
23 (γ̃∞,1

312 − γ̃∞,1
231 )

= (1 + c2s)(ρ
1−2rs)∞,2ṽ∞,1

0 ṽ∞,1
1 ,

the metric g̃ of the form (1.11), defined from ẽiI via (B.3), together with ρ̃, ũ = ρ̃−rs ṽ, constitute a homo-
geneous solution to the Einstein-Euler system of the form (1.11)-(1.15), satisfying the estimates in Lemma
2.3.

Proof. Set

k̃II =: −HδIJ +RIJ (B.24)

and rewrite equations (B.5)-(B.18) schematically:

∂tRII + 3HRII =RIItrR−HtrR+ γ̃ ⋆ γ̃ − δ1I(1 + c2s)ρ̃
1−2rs ṽ21 −

1

2
(1− c2s)ρ̃, (B.25)

∂tR23 + 3HR23 =R23trR+ 2γ̃123γ̃221, (B.26)

∂tγ̃221 +Hγ̃221 =R11γ̃221 +R23 ⋆ γ̃ (B.27)

∂tγ̃IJB +Hγ̃IJB =RII γ̃IJB +R ⋆ γ̃, I ̸= J ̸= B ̸= I (B.28)

∂tẽ
i
I +HẽiI =R ⋆ ẽ, (B.29)

∂tṽ1 +Hṽ1 =−R11ṽ1, (B.30)

∂t log(e
3Htρ̃1−2rs ṽ0) = trR. (B.31)

The constants k̃∞,3
IJ , ṽ∞,1

, (ρ̃1−2rs)∞,2 and (ẽiI)
∞,1, γ̃∞,1

IJB , as in (B.22), are the initial conditions for the variables

RIJ , γ̃IJB , ẽ
i
I , ṽ1, ρ̃

1−2rs at infinity, with trivial data for γ̃221, ẽ
2
3.

A standard Picard iteration argument gives rise to a solution to (B.25)-(B.31), defined in an interval
[T,+∞), for some T sufficiently large, and satisfying

RII = O(e−2Ht), R23 = k̃∞,3e−3Ht +O(e−5Ht), γ̃221 = O(e−5Ht), (B.32)

γ̃IJB = γ̃∞,1
IJBe

−Ht +O(e−3Ht), I ̸= J ̸= B ̸= I, (B.33)

ẽiI = (ẽiI)
∞,1e−Ht +O(e−3Ht), I = i, ẽ23 = O(e−4Ht), (B.34)

ṽµ = ṽ∞,1
µ e−Ht +O(e−3Ht), ρ̃1−2rs = (ρ̃1−2rs)∞,2e−2Ht +O(e−4Ht).

Computing the higher orders in the expansions of the previous variables yields the desired asymptotic behavior
(B.21) in a straightforward manner.
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Let

C0 := k̃211 + k̃222 + k̃233 + 2k223 − (trk̃)2 + 2Λ + 2(1 + c2s)ρ̃
1−2rs ṽ20 − 2c2sρ̃ (B.35)

− 2γ̃231γ̃123 − 2γ̃123γ̃312 − 2γ̃312γ̃231 + γ̃2221 + γ̃2331,

C1 := (k̃22 − k̃11)γ̃221 + (k̃33 − k̃11)γ̃331 − k̃23(γ̃312 − γ̃231) + (1 + c2s)ρ̃
1−2rs ṽ0ṽ1. (B.36)

Differentiating C0, C1 and plugging in (B.5)-(B.18), after a tedious computation, we obtain the equations:

∂tC0 − 2trk C0 =0 ⇐⇒ ∂tC0 + [6H +O(e−2Ht)]C0 = 0, (B.37)

∂tC1 − (trk̃ + k̃11)C1 =0 ⇐⇒ ∂tC1 + [4H +O(e−2Ht)]C1 = 0. (B.38)

If C∞,m
µ e−mHt are the terms in the expansions of Cµ, µ = 0, 1, then it is evident from the homogeneous

equations (B.37)-(B.38) that Cµ = 0 everywhere, provided that C∞,6
0 = C∞,4

1 = 0. The latter conditions are
in fact equivalent to (B.23). This is indeed the case by expanding each term in the identities (B.35)-(B.36)
using (B.21). Hence, the constraints (B.19)-(B.20) are valid for all t ∈ [T,+∞).
The homogeneous solution g̃, ũ, ρ̃ to the Einstein-Euler system of the form (1.11)-(1.15) is defined such

that GI , G satisfy (B.3) and ũ = ρ̃−rs ṽ. Then one straightforwardly shows that the variables k̃IJ , γ̃IJB given
by the solution to (B.5)-(B.12) are in fact the connection coefficients of g̃ by observing that they satisfy the
same equations with same initial conditions at infinity. The expansions (B.21) imply the estimates in Lemma
2.3, since the remainders O(eBt) satisfy |∂Nt O(eBt)| ≤ CN,Be

Bt, an immediate consequence of the equations
(B.5)-(B.18).

C Future stability of perfect fluids with extreme tilt and linear
equation of state p = c2sρ for the relativistic Euler equations on
a fixed S3–FLRW background: The full range 1/

√
3 < cs < 1

Here, we assume that the metric g is non-dynamical, everywhere equal to the FLRW metric

g = −dt2 + a2(t)gS3 = −dt2 + a2(t)

3∑
i=1

ψi ⊗ ψi, (C.1)

where

a2(t) = (a∞)2e2Ht +O(1),
a′

a
= H +O(e−2Ht), as t→ +∞. (C.2)

The variables ρ, v solve the relativistic Euler equations, ie. (1.5)-(1.6) with g as in (C.1). It is easy to
see that a similar ODE analysis from infinity as in Lemma B.1, only simpler since there is no coupling to
Einstein, yields a homogeneous solution to the Euler equations with the same qualitative properties for the
fluid. Indeed, the homogeneous Euler equations (B.17)-(B.18) reduce to

∂t[a(t)ṽ1] = 0, ∂t[ρ̃
1−2rsa3(t)ṽ0] = 0, (C.3)

where ṽ20 = ṽ21 + ρ̃2rs . Solving (C.3) from t = +∞ to some t = T ≫ 1, we construct solutions having the
asymptotic behavior

ṽµ = ṽ∞µ e
−Ht +O(e−3Ht), µ = 0, 1, ρ̃1−2rs = (ρ̃∞)1−2rse−2Ht +O(e−4Ht),

rs =
c2s

1 + c2s
∈ (

1

2
,
1

4
), c2s ∈ (

1

3
, 1), (ṽ∞0 )2 = (ṽ∞1 )2,

(C.4)

where ṽ∞1 , ρ̃
∞ are constants that correspond to the initial data of ṽ1, ρ̃ at t = +∞.

The perturbed problem now concerns only the fluid variables ρ, v and the equations (2.5)-(2.7) take the
following form.
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Lemma C.1. The fluid variables v0, vI , ρ
2rs satisfy the equations:

∂tv0 +
a′

a
v0 −

vC
v0
eCv0 =

1

2

1

v0
∂t(ρ

2rs) +
a′

a

ρ2rs

v0
, (C.5)

∂tvI +
a′

a
vI −

vC
v0
eCvI =

1

2

1

v0
eI(ρ

2rs), (C.6)

(1− 2rs)∂t(ρ
2rs) + 3

a′

a
ρ2rs − vC

v0
eC(ρ

2rs) =− ρ2rs

v0
∂tv0 +

ρ2rs

v0
eCvC , (C.7)

where e0 = ∂t, eI = a−1YI .

Proof. They follow from the equations (2.5)-(2.7) in Lemma 2.1, after setting n = 1, kIJ = −δIJ a′

a , and
realizing that

γCDIvCvD = −γCIDvCvD = −g(∇veI , v) = 0, v := vIeI , γCDC = 0, (C.8)

since eI = a−1YI , where YI is gS3-Killing.

By making the same bootstrap assumptions as in (3.7), albeit only for v̂µ, ρ̂2rs since the geometric variables
are fixed to their FLRW values, we notice that all the estimates derived in Section 4 are also valid for the
solution to (C.5)-(C.7). In order to show that in the present case we can treat the full range of sound speeds
beyond radiation, ie. c2s ∈ ( 13 , 1), we need only improve the top order energy estimate (4.51) as to eliminate
the term with integrand coefficient e−Hτe2AsHτ , which prevents us from applying Gronwall’s inequality when
2As ≥ 1, see Remark 4.9. Indeed, we will show that this is possible due to the simplified form of the equations
(C.5)-(C.7) relative to (2.5)-(2.7), importantly, thanks to the fact that all terms in the above RHSs contain
a factor of order ρ2rs . Notice that this is not the case for example in the equation (2.6), e.g. due to the term
γCDIvCvD. No obvious cancellations in the top order energy estimates seem to be possible because of such
terms, cf. (C.8).
We proceed by considering the differentiated analogues of (C.5)-(C.7), commuting the equations with Y ι,

|ι| ≤ N :

∂tY
ιv̂0 +

a′

a
Y ιv̂0 −

vC
v0
eCY

ιv̂0 =
1

2

1

v0
∂tY

ιρ̂2rs − 1

2

∂tρ
2rs

v20
Y ιv̂0 +

a′

a

Y ιρ̂2rs

v0
− a′

a

ρ2rs

v20
Y ιv̂0 +Rι

0, (C.9)

∂tY
ιv̂I +

a′

a
Y ιv̂I −

vC
v0
eCY

ιv̂I =
1

2

1

v0
eIY

ιρ̂2rs +Rι
I , (C.10)

and

(1− 2rs)∂tY
ιρ̂2rs + (3

a′

a
+
∂tv0
v0

)Y ιρ̂2rs − (1− 2rs)
vC
v0
eCY

ιρ̂2rs (C.11)

=
ρ2rs

v0
eCY

ιv̂C − ρ2rs

v0
∂tY

ιv̂0 +
ρ2rs

v0

∂tv0
v0

Y ιv̂0 +Rι.

All lower order terms from the previous commutations are included in Rι
0,R

ι
I ,R. Moreover, they do not

contribute to the dangerous terms containing e−Hte2AsHt coefficients in the final energy inequalities and can
be treated as in the coupled to Einstein case.
The analogous top order energy identity to (4.36), for the system (C.9)-(C.11), is the following:

−e4Htρ2rsY ιv̂0 × (C.9) + e4Htρ2rsY ιv̂I × (C.10) +
1

2
e4HtY ιρ̂2rs × (C.11), (C.12)

which expands to

1

2
∂t
{
e4Htρ2rsY ιv̂IY

ιv̂I − e4Htρ2rs(Y ιv̂0)
2 +

1

2
(1− 2rs)e

4Ht(Y ιρ̂2rs)2
}

− 1

2
e2Ht∂t(e

2Htρ2rs)Y ιv̂IY
ιv̂I +

1

2
e2Ht∂t(e

2Htρ2rs)(Y ιv̂0)
2 + (

a′

a
−H)e4Htρ2rsY ιv̂IY

ιv̂I
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− (
a′

a
−H)e4Htρ2rs(Y ιv̂0)

2 + [
1

2
(3
a′

a
+
∂tv0
v0

)− (1− 2rs)H]e4Ht(Y ιρ̂2rs)2

=
1

2
e4Ht ρ

2rs

v0
eI(Y

ιρ̂2rsY ιv̂I)−
1

2
e4Ht ρ

2rs

v0
∂t(Y

ιρ̂2rsY ιv̂0) (C.13)

+
1

2
e4Htρ2rs

vC
v0
eC(Y

ιv̂IY
ιv̂I)−

1

2
e4Htρ2rs

vC
v0
eC [(Y

ιv̂0)]
2 +

1

4
e4Ht(1− 2rs)

vC
v0
eC [(Y

ιρ̂2rs)2]

+ e4Htρ2rsY ιv̂0
{1
2

∂tρ
2rs

v20
Y ιv̂0 −

a′

a

Y ιρ̂2rs

v0
+
a′

a

ρ2rs

v20
Y ιv̂0

}
+

1

2
e4Htρ2rsY ιρ̂2rs

ρ2rs

v0

∂tv0
v0

Y ιv̂0

+ e4Htρ2rsY ιv̂IR
ι
I − e4Htρ2rsY ιv̂0R

ι
0 +

1

2
e4Ht(Y ιρ̂2rs)Rι.

Differentiating by parts in ∂t in the term − 1
2e

4Ht ρ
2rs

v0
∂t(Y

ιρ̂2rsY ιv̂0) and rearranging some terms in the RHS
gives

1

2
∂t
{
e4Htρ2rs

[
Y ιv̂IY

ιv̂I +
1

v0
Y ιρ̂2rsY ιv̂0 − (Y ιv̂0)

2
]}

+
1

4
(1− 2rs)∂t

[
e4Ht(Y ιρ̂2rs)2

]
− 1

2
e2Ht∂t(e

2Htρ2rs)
{
Y ιv̂IY

ιv̂I +
1

v0
Y ιρ̂2rsY ιv̂0 − (Y ιv̂0)

2
}

+ (
a′

a
−H)e4Htρ2rsY ιv̂IY

ιv̂I − (
a′

a
−H)e4Htρ2rs(Y ιv̂0)

2

+ [
1

2
(3
a′

a
+
∂tv0
v0

)− (1− 2rs)H]e4Ht(Y ιρ̂2rs)2 − (
1

2

∂tρ
2rs

v20
+
a′

a

ρ2rs

v20
)e4Htρ2rs(Y ιv̂0)

2

=
1

2
e4Ht ρ

2rs

v0
eI(Y

ιρ̂2rsY ιv̂I) + (H − a′

a
)e4Ht ρ

2rs

v0
Y ιρ̂2rsY ιv̂0 (C.14)

+
1

2
e4Htρ2rs

vC
v0
eC(Y

ιv̂IY
ιv̂I)−

1

2
e4Htρ2rs

vC
v0
eC [(Y

ιv̂0)]
2 +

1

4
e4Ht(1− 2rs)

vC
v0
eC [(Y

ιρ̂2rs)2]

+ e4Htρ2rsY ιv̂IR
ι
I − e4Htρ2rsY ιv̂0R

ι
0 +

1

2
e4Ht(Y ιρ̂2rs)Rι.

After the previous manipulations, it turns out that all terms in the RHS of (C.14) can be bounded in L1(Σt)
by the total energy times a uniformly (in c2s) decaying coefficient, after integrating by parts in eI , eC , and all
terms in the LHS which are exactly at the level of the total energy have a favorable sign. Indeed, recall the
asymptotic behaviors (Lemma 4.1)

∥∂tv0
v0

+H∥L∞(Σt) ≤ Ce−Ht, ∥∂t(ρ
2rs)

ρ2rs
+

4rs
1− 2rs

H∥L∞(Σt) ≤ Ce2Ht− 4rs
1−2rs

Ht,

integrate (C.14) in Σt and sum in |ι| ≤ N to deduce the energy inequality

1

2
∂t

∑
|ι|≤N

[ ∫
Σt

e4Htρ2rs
[
Y ιv̂IY

ιv̂I +
1

v0
Y ιρ̂2rsY ιv̂0 − (Y ιv̂0)

2
]
dω +

1

2
(1− 2rs)e

4Ht∥Y ιρ̂2rs∥2
ḢN (Σt)

]

+
∑
|ι|≤N

∫
Σt

(
2rs

1− 2rs
− 1)He4Htρ2rs

{
Y ιv̂IY

ιv̂I +
1

v0
Y ιρ̂2rsY ιv̂0 − (Y ιv̂0)

2
}
dω

+ 2rsHe
4Ht∥ρ̂2rs∥2HN (Σt)

+

∫
Σt

(
2rs

1− 2rs
− 1)He4Ht ρ

4rs

v20
(Y ιv̂0)

2dω

≤Ce4Hte−
4rs

1−2rs
Ht∥ρ̂2rs∥HN (Σt)∥v̂∥HN (Σt) (C.15)

+
∑
|ι|≤N

∫
Σt

Ce−Hte4Htρ2rs
∣∣Y ιv̂IY

ιv̂I − (Y ιv̂0)
2
∣∣dω + Ce−Hte4Ht∥ρ̂2rs∥2HN (Σt)

+
∑
|ι|≤N

∫
Σt

{
e4Htρ2rsY ιv̂IR

ι
I − e4Htρ2rsY ιv̂0R

ι
0 +

1

2
e4Ht(Y ιρ̂2rs)Rι

}
dω.
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The terms in the last line, containing error terms from the commutation of equations (C.5)-(C.7) with Y ι,
can be treated similarly to (4.39), since they all contain factors of order ρ2rs in terms of decay in powers of
eHt.

Moreover, we recall the algebraic relation

4− 4rs
1− 2rs

= 2 + (1− 2As)− 1 ⇒ e4Hte−
4rs

1−2rs
Ht∥ρ̂2rs∥HN (Σt)∥v̂∥HN (Σt) ≤ e−HtEtot(t) (C.16)

to infer from (C.15)

1

2
∂t

∑
|ι|≤N

[ ∫
Σt

e4Htρ2rs
[
Y ιv̂IY

ιv̂I +
1

v0
Y ιρ̂2rsY ιv̂0 − (Y ιv̂0)

2
]
dω +

1

2
(1− 2rs)e

4Ht∥Y ιρ̂2rs∥2
ḢN (Σt)

]

+
∑
|ι|≤N

∫
Σt

(
2rs

1− 2rs
− 1)He4Htρ2rs

{
Y ιv̂IY

ιv̂I +
1

v0
Y ιρ̂2rsY ιv̂0 − (Y ιv̂0)

2
}
dω (C.17)

+ 2rsHe
4Ht∥ρ̂2rs∥2HN (Σt)

+ (
2rs

1− 2rs
− 1)He4Ht ρ

4rs

v20
∥Y ιv̂0∥2HN (Σt)

≤C(e−Ht + e2Ht− 4rs
1−2rs

Ht)Etot(t) +
∑
|ι|≤N

∫
Σt

Ce−Hte4Htρ2rs
∣∣Y ιv̂IY

ιv̂I − (Y ιv̂0)
2
∣∣dω.

Lemma C.2. The following inequality holds:∫
Σt

e4Htρ2rs
[
Y ιv̂IY

ιv̂I +
1

v0
Y ιρ̂2rsY ιv̂0 − (Y ιv̂0)

2
]
dω

≥
∫
Σt

e4Ht ρ
4rs

v20
Y ιv̂IY

ιv̂Idω − C(ε+ e2Ht− 4rs
1−2rs

Ht)Etot(t)
(C.18)

for all t ∈ [T, TBoot).

Proof. We differentiate the identity v20 = vIvI + ρ2rs in Y ι, |ι| ≤ N :

v0Y
ιv̂0 = vIY

ιv̂I +
1

2
Y ιρ̂2rs + Iι (C.19)

where Iι satisfies the bound

e2Ht∥Iι∥L2(Σt) ≤ Cε
√
Etot(t). (C.20)

Taking 1
2Y

ιρ̂2rs to the LHS in (C.19), diving by v0 and squaring yields

(Y ιv̂0)
2 − 1

v0
Y ιρ̂2rsY ιv̂0 +

1

4

1

v20
(Y ιρ̂2rs)2 =

vIvC
v20

Y ιv̂IY
ιv̂C +

2

v20
vIY

ιvII
ι +

1

v20
(Iι)2. (C.21)

Hence, we have∫
Σt

e4Htρ2rs
[
Y ιv̂IY

ιv̂I +
1

v0
Y ιρ̂2rsY ιv̂0 − (Y ιv̂0)

2
]
dω

=

∫
Σt

{
e4Htρ2rs

[
Y ιv̂IY

ιv̂I −
vIvC
v20

Y ιv̂IY
ιv̂C

]
+

1

4

ρ2rs

v20
e4Ht(Y ιρ̂2rs)2

}
dω (C.22)

−
∫
Σt

e4Htρ2rs
[ 2

v20
vIY

ιvII
ι +

1

v20
(Iι)2

]
dω

≥
∫
Σt

e4Ht ρ
4rs

v20
Y ιv̂IY

ιv̂Idω − C(ε+ e2Ht− 4rs
1−2rs

Ht)
√
Etot(t) (by Cauchy-Schwarz and (C.20))

as desired.
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Next, we apply Lemma C.2 to (C.17) and recall that e4Ht ρ
4rs

v2
0

∼ e−4AsHte2Ht to deduce the energy

inequality

e−4AsHte2Ht∥v̂∥2HN (Σt)
+ e4Ht∥Y ιρ̂2rs∥2HN (Σt)

+

∫ t

T

e−4AsHτe2Hτ∥v̂∥2HN (Στ )
+ e4Hτ∥Y ιρ̂2rs∥2HN (Στ )

dτ (C.23)

≤CEtot(T ) + C(ε+ e2Ht− 4rs
1−2rs

Ht)Etot(t) +
∫ t

T

C(ε+ e−Hτ + e2Hτ− 4rs
1−2rs

Hτ )Etot(τ)dτ

for all t ∈ [T, TBoot). Taking ε sufficiently small and T sufficiently large allows us to absorb the last two
terms in the LHS. Using as well the lower order estimate (4.50), we obtain the inequality

Etot(t) ≤ CEtot(T ) + C

∫ t

T

(e−Hτ + e2Hτ− 4rs
1−2rs

Hτ )Etot(τ)dτ. (C.24)

Thus, Gronwall’s inequality applies for all c2s ∈ ( 13 , 1), giving a uniform bound of the total energy, Etot(t) ≤
CEtot(T ), which can be used to close the bootstrap argument and conclude the future stability of the back-
ground homogeneous solutions to Euler’s equations with extreme tilt, for all sound speeds beyond radiation.
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[10] D. Fajman and K. Kröncke, Stable fixed points of the Einstein flow with positive cosmological constant,
Comm. Anal. Geom. 28 (2020), no. 7, 1533–1576.

[11] G. Fournodavlos, Future dynamics of FLRW for the massless-scalar field system with positive cosmolog-
ical constant, J. Math. Phys. 63 (2022), no. 3, 032502, 23pp.

[12] H. Friedrich, On the existence of n-geodesically complete or future complete solutions of Einstein’s field
equations with smooth asymptotic structure, Comm. Math. Phys. 107 (1986), no. 4, 587-609.



REFERENCES 39

[13] D. Ginsberg and H. Lindblad, On the local well-posedness for the relativistic Euler equations for a liquid
body, Ann. PDE 9 (2023), no. 23, 120pp.

[14] M. Goliath and U. S. Nilsson, Isotropization of two-component fluids, J. Math. Phys. 41 (2000), 6906-
6917.

[15] M. Goliath and G. F. R. Ellis, Homogeneous cosmologies with a cosmological constant, Phys. Rev. D 60
(1999), 023502.
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