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Abstract

We prove the well-posedness of the initial boundary value problem for the Einstein equations with
sole boundary condition the requirement that the timelike boundary is totally geodesic. This provides the
first well-posedness result for this specific geometric boundary condition and the first setting for which
geometric uniqueness in the original sense of Friedrich holds for the initial boundary value problem.

Our proof relies on the ADM system for the Einstein vacuum equations, formulated with respect to
a parallelly propagated orthonormal frame along timelike geodesics. As an independent result, we first
establish the well-posedness in this gauge of the Cauchy problem for the Einstein equations, including
the propagation of constraints. More precisely, we show that by appropriately modifying the evolution
equations, using the constraint equations, we can derive a first order symmetric hyperbolic system for
the connection coefficients of the orthonormal frame. The propagation of the constraints then relies on
the derivation of a hyperbolic system involving the connection, suitably modified Riemann and Ricci
curvature tensors and the torsion of the connection. In particular, the connection is shown to agree with
the Levi-Civita connection at the same time as the validity of the constraints.

In the case of the initial boundary value problem with totally geodesic boundary, we then verify
that the vanishing of the second fundamental form of the boundary leads to homogeneous boundary
conditions for our modified ADM system, as well as for the hyperbolic system used in the propagation of
the constraints. An additional analytical difficulty arises from a loss of control on the normal derivatives
to the boundary of the solution. To resolve this issue, we work with an anisotropic scale of Sobolev spaces
and exploit the specific structure of the equations.
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1 Introduction

This article establishes the well-posedness of the initial boundary value problem (IBVP) for the Einstein
vacuum equations

Ric(g) =0, (1.1)

in the specific case of a totally geodesic timelike boundary.

1.1 The initial boundary value problem in General Relativity

In the standard formulation of the Cauchy problem for the Einstein vacuum equations, given a Riemannian
manifold (3, h) and a symmetric 2-tensor k satisfying the constraints equations

R — |k|* + (trk)?® =0, (1.2)
divk — dtrk =0,

where R is the scalar curvature of the Riemannian metric h and all operators are taken with respect to
h, the goal is to construct a Lorentzian manifold (M, g) solution to the Einstein equations, together with
an embedding of ¥ into M such that (h, k) coincides with the first and second fundamental form of the
embedding. For the IBVP, we now require that X is a manifold with boundary S. We consider an additional
manifold B = R x S, a section Sy = {0} x S of B which is identified with the boundary & of ¥ via a
diffeomorphim 1 s,, and a set of functions BC on B representing source terms for the chosen boundary
conditions. On top of the constraint equations, the initial and boundary data must also now verify the so-
called corner or compatibility conditions, a set of equations involving h, k, BC, their derivatives at all orders
on S and Sy, as well as a given real function w on S, which will eventually represent the angle between the
initial slice and the timelike boundary.

A solution to the IBVP is then a Lorentzian manifold (M, g) with a timelike boundary 7T, an embbeding 1);
of a neigbhoorhood of Sy C B into T, such that the boundary data BC can be identified with the corresponding
data on T, and an embedding ; of 3 into M respecting the initial data, with ¥;(S) = ¥4(Sp), such that
Y7 ' o [th]js = .5, and the angle between T and the future unit normal to ¢;(3) is w o [1/}1._1]% )"

There is a priori a large freedom in the choice of boundary conditions. The sources BC could correspond to
the values of tensor fields encoding the geometry of 7, for instance, the first or second fundamental forms of
T, its conformal geometry, some curvature invariants or they could correspond to components of geometric
tensor fields in some gauge and boundary conditions for the gauge itself.

The IBVP is related to many important aspects of general relativity and the Einstein equations, such
as numerical relativity, the construction of asymptotically Anti-de-Sitter spacetimes, timelike hypersurfaces
emerging as the boundaries of the support of massive matter fields or the study of gravitational waves in a
cavity and their nonlinear interactions. This problem was first addressed for the Einstein equations in the



1 INTRODUCTION 3

seminal work of Friedrich-Nagy [13], as well as by Friedrich [I0] in the related Anti-de-Sitter settingﬂ Well-
posedness of the IBVP has since been obtained in generalized wave coordinates, see [I7] or the recent [1]E|
and for various first and second order systems derived from the ADM formulation of the Einstein equations,
see for instance [9, [19] and previous work in numerics [2], [14]. We refer to [20] for an extensive review of the
subject.

1.2 Geometric uniqueness

One of the remaining outstanding issues, concerning the study of the Einstein equations in the presence of
a timelike boundary, is the geometric uniqueness problem of Friedrich [12]. Apart from the construction
of asymptotically Anti-de-Sitter spacetimes [10], where the timelike boundary is a conformal boundary at
spacelike infinity, all results establishing well-posedness, for some formulations of the IBVP, impose certain
gauge conditions on the boundary, and the boundary data depend on these choices. In particular, given
a solution to the Einstein equations with a timelike boundary, different gauge choices will lead to different
boundary data, in each of the formulations for which well-posedness is known. On the other hand, if we had
been given the different boundary data a priori, we would not know that these lead to the same solution.
The situation is thus different from the usual initial value problem, for which only isometric data lead to
isometric solutions, which one then regards as the same solution.

In the Anti-de-Sitter setting, this problem admits one solution: in [I0], Friedrich proved that one can take
the conformal metric of the boundary as boundary data, which is a geometric condition independent of any
gauge. Even in the Anti-de-Sitter setting, it is actually possible to formulate other boundary conditions,
such as dissipative boundary conditions, for which one knows how to prove well-posedness, however, with a
formulation of the boundary conditions that is gauge dependent and thus, such that we do not know whether
geometric uniqueness holds or not.

1.3 The IBVP with totally geodesic boundary

Our main result shows the local well-posedness of the IBVP with totally geodesic boundary, analogous to the
classical result [5] for the initial value problem. Recall that in the absence of a timelike boundary, (M, g)
is an extension of (M”,g¢"), if there exists an isometric embedding ¥ : M” — M, preserving orientation,
and such that ¢ o ¢} = 1);, where ¢} : 3 — M" is the embedding of the initial hypersurface into M”. For
the IBVP, we require in addition that ¢ o ¢, = 1), where ¢} : B — M" is the embedding of the timelike
boundary B into M”. More precisely, the statement of our theorem is the following:

Theorem 1.1. Let (X, h, k) be a smooth initial data set for the Finstein vacuum equations such that ¥ is a 3-
manifold with boundary 0% = S. For a smooth function w defined on S, we assume that the corner conditions
corresponding to the totally geodesic boundary condition with respect to w hold on S. Then, there exists a
smooth Lorentzian manifold (M, g) solution to the Einstein vacuum equations with boundary OM =X U T
such that

1. there exists an embedding ; of ¥ onto S with (h, k) coinciding with the first and second fundamental
form of the embedding,

2.TNE = ¥;(S) and T is a timelike hypersurface emanating from 1;(S) at an angle w o [¢f1}|w,i(5)

3
relative to the future unit normal of X,

8. T is totally geodesic, i.e. it has vanishing second fundamental form x,

4. geometric uniqueness holds: given any other solution (M’,g') verifying[1,[4 and[3, (M, g) and (M’ g')
are both extensions of yet another solution (M",g") verifying[1], [ and |3

1See also [, [7] for extensions and other proofs of well-posedness in the Anti-de-Sitter case.

2To be more precise, the boundary data in [I] relies on an auxiliary wave map equation akin to generalized wave coordinates.
This introduces a geometric framework to address the IBVP, albeit for the Einstein equations coupled to the auxiliary wave
map equation.
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Remark 1.2. The function w corresponds to the angle of the (hyperbolic) rotation that takes the future unit
normal of ¥ on 1;(S) to the future unit normal of ;(S) within 7, see (3.2) and Figure

In the specific case of a totally geodesic boundary, the corner conditions mentioned in the theorem can then
be written purely in terms of (h, k), w and their derivatives at all orders on S. These are the conditions that
would be satisfied at the intersection of a totally geodesic timelike boundary and a spacelike hypersurface
of a solution to the vacuum Einstein equations. In Lemma we write the zeroth order condition with an
angle explictly. We do not write the higher order conditions explicitly, but they can be obtained from our
choice of boundary conditions, the zeroth order conditions and the Einstein equations. We do state the first
order condition in the simple case of an orthogonal slice in Lemma (3.4

For the proof of Theorem [I.I] we will only consider the case of the initial hypersurface intersecting 7°
orthogonally, since a standard argument allows one to select such an orthogonal slice in the domain of
dependence region of (X, h, k), by appealing to the classical initial boundary value problem, see Section

Remark 1.3. The geometric uniqueness is a direct consequence of our choice of geometric boundary conditions.
Although totally geodesic boundaries are of course quite special, this result provides the first setting in which
geometric uniqueness holds for the Einstein vacuum equations with zero cosmological constant A = 0. Note
also that here, since we prescribe homogeneous boundary conditions, we did not introduce an abstract
embedding of & x R into the spacetime, since the prescribed value of y is identical on each point of the
boundary.

Remark 1.4. The above theorem is obtained using a system of reduced equations based on the ADM system in
a geodesic gauge. For the reduced equations, due to the presence of a boundary and our choice of boundary
conditions, we prove local well-posedness in a scale of anisotropic Sobolev spaces, see Definition [3.6] and
Proposition [3.10] Indeed, the boundary conditions can a priori only be commuted by tangential derivatives
to the boundary. Thus, our Sobolev spaces distinguish between derivatives tangential and normal to the
boundary. In view of this, the normal derivatives cannot be estimated using commutation and standard
energy estimates, but instead, are recovered from the equations directly, which allow to rewrite normal
derivatives in terms of tangential ones. However, the structure of the equations plays an essential role here,
since some components do not have any normal derivatives appearing in the equations. The anisotropic
Sobolev spaces provide a solution to this analytical problem. Such issues have been investigated for
more general first order symmetric hyperbolic systems, already in [21], where similar anisotropic spaces are
used to study the local well-posedness of the IBVP with characteristic boundaries of constant multiplicity
(cf. Remark . Nevertheless, we include a treatment of the reduced IBVP in our specific setting, for the
sake of completeness, see the proof of Proposition [3.10]

Remark 1.5. Since the reduced system is solved in (anisotropic) Sobolev spaces, one can obtain a similar
statement assuming only that the initial data lie in a standard H*® space, s > 7, with corner conditions
satisfied up to the corresponding finite order.

Remark 1.6. We note that, importantly, our choice of boundary conditions for the Einstein equations trans-
lates to admissible boundary conditions both for the reduced system of evolution equations that we use to
construct a solution (see Lemma and for the hyperbolic system that allows a posteriori to prove the
propagation of constraints (see Lemma and recover the Einstein equations. More precisely, x = 0 on
the boundary implies the validity of the momentum constraint, which translates to homogeneous boundary
conditions for certain Ricci components. Note that we are not referring to here, but to the analogous
constraint equations where k is replaced by x and div and tr are the divergence and trace with respect to
the induced metric on the boundary.

Remark 1.7. In order to construct initial data sets to which local well-posedness theorems of the IBVP can
be applied, including Theorem one needs to solve the constraint equations with boundary. However, the
corner conditions already mentioned impose various relations between h and k and their derivatives at all
orders on S. For these reasons, it is unclear how the known methods for solving the constraint equations can
be adapted to construct solutions in this setting.

On the other hand, it is not hard to construct a special family of initial data verifying the assumptions of
Theorem Such data can for instance be constructed by considering solutions to the Einstein equations
admitting a spacelike Killing vector field, which is also hypersurface orthogonal. Explicit examples are given
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by the Schwarzschild solution
2M 2M
gschw = —(1 — ==)dt®> + (1 — =—=)"1dr? 4 r*(d#? + sin? 0dp?),
r r

where the level sets of ¢ in the exterior region or the level sets of ¢ in the interior of the black hole are totally
geodesic hypersurfaces.

Remark 1.8. If one thinks of y = 0 as the vanishing of the Lie derivative of the solution in the normal
direction to the boundary, our boundary conditions could be interpreted as homogeneous Neumann boundary
conditions, and, in this respect, a natural direction for possible extensions of the present result would be
to consider inhomogeneous Neumann type boundary conditions, for instance by prescribing a non-zero x.
However, there seem to be nontrivial obstructions for such type of results to hold, both analytic, due to
various losses of derivatives, and geometric, since geodesics of the boundary are no longer geodesics of the
Lorentzian manifold. On a more physical point of view, note that if one thinks of x = 0 as a form of
homogeneous Neumann boundary conditions, our setting is applicable to the study of gravitational waves in
a cavity.

Remark 1.9. Recall that if ¢ : (M, g) — (M, g) is an isometry of a Riemanian or Lorentzian manifold, then
every connected component of the set of fixed points {p € M : ¥ (p) = p} is totally geodesic [I6]. This
suggestﬂ another possible proof of Theorem at least in the case where the initial data intersect the
boundary orthogonally, based on extending the initial data via reflection, then solving the regular Cauchy
problem for the extended data and finally checking that the resulting spacetime enjoys a discrete isometry.
Of course, this approach is clearly not generalizable to other kind of boundary conditions, while the proof of
this paper may serve as a basis for further applications in the subject.

1.4 The hyperbolicity of the ADM system in a geodesic gauge

As already explained, our choice of evolution equations is based on the ADM formulation of the Einstein
equations. This formalism and its many variants are widely used in the study of the Einstein equations, by
theoretical or numerical means. They are based on a 3 + 1 splitting of the underlying Lorentzian manifold
(M, g) through a choice of time function ¢ and the foliation induced by its level sets ;. The main dynamical
variables are the first and second fundamental forms (g, K) of each ¥, satisfying, together with the lapse and
shift of the foliation, a system of partial differential equations, which is first order in the time derivative. This
system is generally underdetermined due to the geometric invariance of the equations. In order to render
it well-determined, one naturally needs to make additional gauge choices, leading to a reduced system of
equations. In full generality, they are many possible such choices, see for example [I1] and the references
therein. For rigorous studies of the well-posedness problem we refer the reader to [3] [19].

In this paper, we consider the reduced ADM system for the Einstein vacuum equations, obtained by writing

the equations in an orthonormal frame {e#}izo, which is parallelly propagated with respect to a family of

timelike geodesics. In this setting, the lapse of the foliation is fixed to 1, while the shift vector field is set to
zero, and the spacetime metric takes the form

g = —dt* + gp,daPdat, (1.4)

where (2!, 2% 23) are t-transported coordinates, with respect to which the orthonormal frame is expressed
via

€0 = ata € = .fipapv 81) = fbp €b, Za.] = 172737 (15)

where f;? f°, = 6%, fo,fp0 = 7. Here, and throughout the text, the Einstein summation is used for the Latin
indices that range in 1,2,3.

In the classical ADM formalism, the main evolution equations are first order equations (in 9;) for gpq, Otgpq;
the second variable corresponding to the second fundamental form of ¥;. When expressed in terms of the

3We would like to thank M.T. Anderson and E. Witten for this suggestion.
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previous orthonormal frame, the components g,, correspond to the frame coefficients f;”, while the second
fundamental form is now evaluated against the spatial frame components e;:

Kij = g(De,e0,€;) = Kji, (1.6)

where D is the Levi-Civita connection of g. In our framework, K;;, f;? satisfy the evolution equations ,
(2.8). The right-hand-side of contains up to two spatial derivatives of f;?, encoded in the Ricci tensor
of g. However, we find it analytically convenient to expand this term using the spatial connection coefficients
of the frame:

Lijp == g(De,ej,e5) = g(De,e5,ep) = =g, (1.7)

where D is the Levi-Civita connection of g. These then satisfy the propagation equation ([2.7)).

At first glance, the system lb does not seem to be eligible for an energy estimate, due to the
first term in the right-hand-side of (2.6 that renders the system non-symmetric and could lead to a loss
of derivatives. This is a well-known problem of the ADM system. One remedy is to consider a harmonic
gauge [3] on the slices 3;, which would eliminate this bad term. The adoption of such gauges introduces new
variables to the system (lapse, shift vector field) that satisfy elliptic equations. Another argument was given
in [I8], where the authors made use of the momentum constraint , in order to eliminate any such bad
terms in the energy estimates by integrating by parts. For this, they used a CMC foliation, a transported
coordinate system (t, 1,22, 23) and the associated Christoffel symbols, to derive a priori energy estimates,
assuming the existence of a spacetime solution verifying the constraints, instead of working with a system
for which well-posedness holds, as we do in this paper.

In contrast, the ADM system can be transformed into a second order system of equations for the second
fundamental form of the time slices, expressed in terms of transported coordinates (¢, 2!, 22, #3). This was first
derived in [6], where the authors demonstrated its hyperbolicity under the gauge assumption gt = 0. It turns
out that the second order system for K is also hyperbolic in normal transported coordinates , without
any additional gauge assumptions, see the framework presented in [8] with an application to asymptotically
Kasner-like singularities. Recently, we also used the aforementioned second order system for K (see [9]) to
analyse the initial boundary value problem for the Einstein vacuum equations in the maximal gauge.

In the present study, we carry out the analysis in the geodesic gauge presented above, circumventing the
apparent loss of derivatives issue (see Lemma by making use of both the Hamiltonian and momentum
constraints. In [I4, 9], both the Hamiltonian and momentum constraints were already used to modify
the ADM system and obtain well-posedness of the equations in coordinate-based gauges. The orthonormal
frame that we consider in the present article seems to simplify the analysis of the boundary conditions in
our setting. We thus prove that by modifying —, adding appropriate multiples of —, one
obtains a first order symmetric hyperbolic system for the unknowns, see —, which is suitable for a
local existence argument. In order to facilitate the propagation of the (anti)symmetries of K and I', we also
(anti)symmetrize parts of the equations.

In general, once the reduced system is solved, one then recovers the Einstein equations through the Bianchi
equations. For a modified system, however, the equations one solves for are not directly equivalent to the
vanishing of the components of the Ricci tensor and thus this procedure becomes more complicated. See [19]
Appendix A] for such an example concerning the progragation of constraints in a modified ADM setting. It
is for this reason that one should make minimal modifications to the reduced equations, since any additional
change could complicate even further the final system for the vanishing quantities, making it intractable via
energy estimates. Nonetheless, for the modified system we consider, we are able to recover the full Einstein
equations by deriving a hyperbolic system for appropriate combinations of the vanishing quantities (see
Lemma . Note that since the connection is obtained by solving the modified reduced equations, it can
only be shown to agree with the Levi-Civita connection at the same time as the recovery of the full Einstein
equations (see Section . This issue was already present in the approach of [I3] using an orthonormal frame.
In particular, it is not known a priori that the torsion of the connection vanishes. Thus, the unknowns in
the hyperbolic system used for the recovery of the Einstein equations are the components of the torsion, as
well as the components of the Ricci and Riemann tensors, after suitable symmetrizations and modifications.
The modifications involve the torsion and are similar to the modifications used in [I3], where the authors
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study the Einstein equations at the level of the Bianchi equations, which results into a different system for
the recovery of the Einstein equations.

Our result on the well-posedness of the initial value problem for the Einstein equations in the above
framework can be stated as follows:

Theorem 1.10. The initial value problem for the modified reduced system , , , for the
frame and connection coefficients is locally well-posed in L°H®(X:), for s > 3. Moreover, if the initial
data (3, h, K) satisfy the constraint equations —, then the solution to , , , with the
induced initial data (see Section , induces a solution of . In particular, the initial value problem for
the Einstein vacuum equations, cast as a modified ADM system, is locally well-posed.

Remark 1.11. Adding the boundary conditions for the reduced system that arise from the totally geodesic
condition, assuming that the corner conditions hold, and replacing the usual Sobolev spaces H*® by anisotropic
Sobolev spaces B (see Definition , which contain half as many transversal derivatives to the boundary
compared to the number of tangential derivatives in L?(3;), the analogue of Theorem for the initial
boundary value problem holds true, see Propositions [3.10} [£-8]

Remark 1.12. Note that the geodesic gauge considered here respects the hyperbolicity of the equations. In
particular, the usual finite speed of propagation and domain of dependence arguments can be proven in
this gauge. Hence, in the case of the initial boundary value problem, one can localize the analysis near a
point on the boundary, provided that the orthonormal frame we consider is adapted to the boundary. This
requirement is verified for vanishing second fundamental form x (Lemma .

1.5 Outline

In Section [2] we set up our modified version of the ADM system. We first formulate the standard ADM
evolution equations in the geodesic gauge (Lemma and then prove (in Lemma a first order energy
identity, assuming that the constraints hold. This identity leads us to the introduction of the modified
evolution equations —. The resulting system is then shown to be symmetric hyperbolic in Lemma
Although the local well-posedness of the usual initial value problem follows from standard arguments,
to simplify the treatment of the IBVP, we establish localized energy estimates in Section (see Proposition
2.12)), using the structure of the commuted equations identified in Section In Section we briefly
describe how to derive the initial data for the reduced system from the geometric initial data.

Section [3]is devoted to the initial boundary value problem for the modified ADM system. First, in Section
B.1] we compute the zeroth compatibility conditions with a given angle w. Then, in Section[3.2] we describe the
procedure that allows us to work with an initial hypersurface orthogonal to the timelike boundary 7. Using
that our geodesic frame is adapted to the totally geodesic boundary (Lemma , we express the vanishing
of x in terms of certain of the components K;;,I';;, and derive the first order compatibility conditions for an
orthogonal slice (see Lemmas [3.4). Finally, in Section [3.4] we prove the local well-posedness of the initial
boundary value problem for the modified reduced system of equations, subject to the boundary conditions
induced by the vanishing of x. The main difficulty here arises from a loss in the control of the normal
derivatives to the boundary, cf. Remark forcing us to introduce anisoptropic Sobolev spaces.

Finally, in Section[d] we show that once a solution to the reduced system has been obtained, our framework
allows for the recovery of the Einstein vacuum equations, both for the standard Cauchy problem and in the
presence of a totally geodesic boundary, thus completing the proofs of Theorems and (see Section
. The starting point is to introduce the Lorentzian metric and the connection associated to a solution of
the reduced equations. One easily verifies that the connection is compatible with the metric, by virtue of the
propagation of the antisymmetry of the spatial connection coefficients I';;; (see Lemma . On the other
hand, the connection is not a priori torsion free and therefore, does not a priori agree with the Levi-Civita
of the metric. We first derive various geometrical identities such as the Bianchi equations and the Gauss-
Codazzi equations, in the presence of torsion (cf. Lemma . Since the resulting equations are not suitable
to propagate the constraints, we consider modified Riemann and Ricci curvature tensors , both for the
spacetime geometry and the geometry of the time slices, the modifications depending on the torsion (cf. [13]
Section 6]). The symmetries of these modified curvatures are studied in Lemma and Then, we prove
that they lead to a symmetric hyperbolic system — for the modified spacetime Ricci curvature
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components and the torsion. Finally, we show that the boundary conditions satisfied by the solution to the
modified ADM system, which are in turn induced by the vanishing of x (see Lemma 7 imply boundary
conditions for the modified spacetime Ricci curvature (Lemma that are suitable for an energy estimate.
The final argument for the recovery of the Einstein equations, both for the Cauchy problem and in the case
a totally geodesic timelike boundary, is presented in Section [£.3]

1.6 Notation

We use Greek letters «, 3, u, v etc, for indices ranging from 0 to 3, Latin letters ¢, j, a,b, ¢ etc, as spatial
indices 1,2, 3, and capital letters A, B for the indices 1,2 (which correspond below to spacelike vector fields
tangential to the boundary).

The indices p, g, r are reserved for the coordinate vector fields, while the remaining Latin and Greek letters
correspond to the orthonormal frame.

Einstein’s summation is used for repeated upper and lower indices, with the range of the sum being that
of the specific indices. All tensors throughout the paper are evaluated against the orthonormal frame {e#}g.
In particular, we raise and lower indices using mqs = diag(—1,1,1,1). For example, K;7 = K,j, e = —ep.
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2 The ADM system in a geodesic gauge

In this section we introduce our framework and show that the Einstein vacuum equations (EVE) reduce to a
first order symmetric hyperbolic system for the connection coefficients of a parallelly propagated orthonormal
frame. For completeness, we confirm the well-posedness of the initial value problem in usual H*® spaces.

2.1 The modified ADM evolution equations and their hyperbolicity

Let (M, g) be a 3 + 1-dimensional Lorentzian manifold and let ¥y be a Cauchy hypersurface equipped with
an orthonormal frame eq, €9, e3. Also, let eg be the future unit normal to Xg. We extend the frame {eu}g by
parallel propagation along timelike geodesics emanating from ¥, with initial speed eq:

D.,e, =0 (2.1)

If ¢ is the proper time parameter of the ey geodesics, {t = 0} = X, then g takes the form (1.4]), where ¢ is the
induced metric on ¥, and the transition between {e#}g and a transported coordinate system (¢, x1, 22, x3) is
defined via (L.5). The connection coefficients of the orthonormal frame are K;;,T';;p, defined in (1.6, (1.7).

Our convention for the spacetime Riemann, Ricci, and scalar curvatures is

Ropuw = 8((De,De, — D, D, — D[emEB})em ev), Rp, = Rapu®, R=R," (2.2)

and similarly for the curvature tensors of g, denoted by R;;;», Rji, . We now state the well-known Gauss-
codazzi equations. We also provide a short proof for the convenience of the reader since similar computations
will be used to retrieve the Einstein equtions in Section [d but with a torsion.

Lemma 2.1. With the above conventions, the Gauss and Codazzi equations for ¥; read:
Raijp = Raijp + Kap Kij — Koj K, (2.3)
Roijo = DjKyi — Dy Ky,

where

Raijp = eal'ijp — €il'ajp — LapTije + TivTaje — LaiTejp + Lia T (2.5)



2 THE ADM SYSTEM IN A GEODESIC GAUGE 9

Proof. We employ the formulas
De,,ej = Deiej + KijeOa Deb60 = Kbcem [eja eb] = Dejeb - Debej = (Fjbc - 1_\bjc)ec
to compute

Raijo =g((D¢,De, — D¢, D, — D[ea,ei])eja ev)
=8(De, (De,ej + Kijeo) — De,(De,ej + Kajeo) = Die, e,1€55 €b)
:g(DeaDeiej - DeiDeaej - D[ea,ei]ejv Gb) + Kinab - KajKib7

Roijp = Rjpoi =g((De;De, — De,De; — D, e, ) €05 €1)
:g(Dej (Kp“ec) — De, (chec), €;) — (Fjbc - Fbjc)Kci
=ej Ky + KpTjei — epKji — K;Tpe; — (Djp® — ;) Ko

and

Raijb =9((De,De; — D¢, D, — ‘D[ea,ei])e‘j7 e)

:g(Dea (rijcec)v eb) - g(Dei (Fajcec)a eb) - (Faic - Fiac)g(Decej7 65)
=ealijb +TijTach — €lajp — TajTich — Tai® — Tia) e

which can be seen to correspond to the asserted formulas by using the antisymmetry of I';; in (j;b). O

Lemma 2.2. The components K;j;, i, fi¥, fbp satisfy the following identities:

eoKij + trKKij = — Rgf) + Rif),
1

=3 el — €’ Tijp+T? T ejy + DTy (2.6)
+ ejI‘bib — ebl“jib-i-I‘bjcl“m-b + becl—‘jic + R,Sf)

eol'ijp + KiUejo, = DKy — Dy Kji

= eiji - ebKj' — FjbCKci - FjichC + FbjCKci + FbiCKj (27)
eofi¥ + Ki°fP = (2.8)
eof’p — K =0 (2.9)
for all indices i,j,b = 1,2,3, where
S 1 S 1
R = 5 (Bij + Rja), Ry = 5 (Rij + Ryi) (2.10)
() _

Remark 2.3. The Ricci tensor associated to the Levi-Civita connection is always symmetric, and thus R}

R;; in this case. However, in order to establish local well-posedness, we will construct the connection from
modified equations below and it will no longer hold a priori that R;; or K;; are symmetric, unless we expand

the right-hand side of (2.6]) in terms of the symmetrised Ricci tensor RZ(]S). In this form, the symmetry of
K;; is automatically propagated, provided it is valid initially.

Proof. The propagation condition implies the second variation equation
Roioj =8((DegDe; — De;Dey — Dieg e,1)€0, €5) = 8(De, (Ki€c) — D(b,, ¢, ~D.. e0)€0: €5)
=eoKij + Kibg(Debeo, ej) = eoK;; + Kibej. (2.11)
Utilising we have
Roio; = —Roijo = Rij — Ruys” = Ryj — Rij — trK Ky + K"K, (2.12)
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On the other hand, contracting (2.5) in (a;b) gives
—Rij = —Rui;" = el — €"Tijp + T%Tejy — Ti*Tejp + T Tije — Ti"Tje
=e; T — eTyjp + T Tojp + T2 Ty (2.13)
=e;T — " Tjip+T";Tep + I Tjic = —Rjs,

where in the last equality we used the symmetry of the Ricci tensor of g. Combining (2.11)), (2.12)) and (2.13)),

we conclude (2.6)).
By (2.1) and the Codazzi equation (2.4) it follows that

eol'sjo =g(DeyDe,ej, ) = Roijp + g(De,Degey, ep) + 8(Dieg,ei1€55 €b)
= ROijb +8 (D(Deo C'i_DeiEO)ej’ eb) (214)
=D;Ky; — DyKj; — K;T'ejo,

which yields (2.7)).

Finally, we have
Kicec = DeieO = Deieo - Deoei = [ei7 60] = [fipapa 875] = Kicfcpap = _eOfipapa
which implies (2.8). Utilising the relation f;? f, = 6%, we also conclude (2.9). O

Remark 2.4. Contracting the formula (2.13) and using antisymmetry of I';;; with respect to the last two
indices, we notice that the two first order terms combine to give

—R = 27T jy+T°T oy, + T, T .. (2.15)

In the next lemma, we illustrate the structure of the equations — that we exploit in the local
existence argument below, by deriving the main energy identity for K;;,T';;» (at zeroth order). For the
moment, we make use of both the Hamiltonian and momentum contraints —, i.e., the fact that we
have an actual solution to .

Lemma 2.5. Let g be a solution to the EVE. Then the variables K;j;,1';; satisfy the following identity:
1 2 2, 1 ijby . Lo ijb
§€O(|K‘ )+ tr K| K|* + Zeo[l“ijbf Pl + EKi L™
=e;[K7T?] — e'[trKT?;) — ep [T K] + %trK [(trK)? — |K[>~T%T oy — T%°T% ] (2.16)
— D e K9T = Ty KT + K905 T i + D% Tjic] + TP [To;¢ Kei + Toi°Kjel,
where |K|? = KYK,;.
Proof. Multiplying by I'* and using its antisymmetry in (j;b) gives the identity

1

iJ 1 c 3] ©j v 15 c c
ZEO[Fiij”b] + iKz chbI‘ Jb = 7eb[I‘ ijji] + K’ ebI‘iﬂ, +T ]b[Fbj i+ Fbi Kj ] (217)

Multiplying (2.6) by K% and using its symmetry in (4;5), we also have
§eo(|K|2) +trK|K|?* = K9e,T%;, — K'9e Ty, + KT Tojp + TTyjc]. (2.18)

Notice that the second terms on the right-hand sides of (2.17]) and (2.18)) are exact opposites, hence, canceling
out upon summation of the two identities.

We proceed by rewriting the first term on the right-hand side of (2.18)), making use of both constraint
equations (|1.3)-(1.2)) in the following manner

Kijei].—‘bjb :ei[KijI‘bjb] — ei(Kij)Fbjb
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=e;[K9Tb ) — ftr KT — T/ KTy, — T KT, (by (L:3))

1 ) ) . . L
= UK [RATYT gy + T T je] = Ty KT 5y = T KT (by (2.15))
. . 1 . .
=e;[K9Tb )] — e [tr KT 3] + §u~K[(trK)2 — [K[2=T%°Tjp, — T%°TY ] (by (T.2))
— T KTy = T KT
Combining the above identities, we obtain (2.16)). O

Although the differential identity provides a way of deriving a priori estimates for K;;,;jp, the
equations — are still not eligible for a local existence argument, because of the heavy use of the
constraint equations in the argument. Indeed, in a local existence proof via a Picard iteration scheme, the
constraints are no longer valid off of the initial hypersurface . This implies that a structure similar to the
one identified in Lemma [2.5]is no longer present, which leads to a loss of derivatives.

We remedy this problem by adding appropriate multiples of the constraints in the RHS of the evolution
equations ([2.6)-(2.7)), resulting to the system:

1
eokij + K Kij = |:einjb — €"Tijo + TP Tejp+T% Tije + €%, — €Ty + LT+ Tic|  (2.19)

2
eolijo + KiTejp =ej Ky — ey K — Tjp Koy —T'ji"Kpe + Tpj Koy + Ty K (2.20)

1
— =03 [2e“rbab+rbacrmb + YT, + |K|? - (trK)Q]

+d;p |:€cch — FcClKlj — chchl — ejtrK:|
_6ij |:60ch - Fccszlb - Fcbchl - ebtrK:|

Remark 2.6. Contracting (2.3)) in (a;b), (¢;7), contracting (2.4) in (¢;b), and utilising (2.15]), we notice that
the added expressions in the last lines of (2.19)-(2.20) correspond to

1
- 551-]- [2earba,, + T8 + T0T % + |K|* — (trK)Q]

1
2

Sib [ecch ~TKy; — T Ky — ejtrK] — 8y [ecch ~ T Ky — T4 Ky — eptr K

1
§ij[R— |K)? + (trK)?] = §5ij [R + 2Ryo],

= 5ib |:DCKCj — eth'K:| — (5”' |:DCKC1, — ebtrK} = 5ibROj — 5in0b,

which are indeed multiples of the Hamiltonian and momentum constraints (1.2}, (|1.3).
By definition of the initial data, cf. Section Kij = Kji, Tijp = =Ty, fipfbp = 62’, fbpqu = 4] will be

valid initially for any solution and the same can be imposed for any iterate in a Picard iteration scheme.

Lemma 2.7. A solution Kij,Fijmfip,fbp to (2.19), (2.20), (2.8), (2.9) satisfies the properties K;; = Kj;,
Lijpb = =Ty, [P fl, =68, foofrl = 61, provided they hold true initially.

Proof. The variables K;; — Kji, Dijo + Ding, fi? fop — 60, fopfpd — 47 satisfy the following homogeneous ODE
system with trivial initial data:

eo(Ki' — Kﬂ) + tI‘K(Kij - KJ) =0
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eo(Tijp + Tivj) + Ki¢(Lejp + Teps) =0
eo(fif'p = 87) + K (fP f*p — 62) — K (fiPfp — 67) = 0
eo(f*pfs? —68) =0
This implies that they must be identically zero. O

Lemma 2.8. The equations (2.19), (2.20), coupled to the ODE (2.8)), constitute a first order symmetric
hyperbolic system.

Proof. Tt suffices to look at the linearised equations around zerofY]

eoK11 = e3l'223 — e2l'303, 2e0K12 = —e3l'123 — e3l'213 + 1’303 + €21'313,
eo Koo = e3l'113 — e11's13, 2e0K13 = e3l'212 + €2l'123 — €1l'203 — e2l'312,

eo K33 = eal'112 — €112, 2e0Ka3 = —e3l'112 + e1l'213 — eal'113 + e1l'319, (2.21)
eol'113 = e3 K22 — €2 K3, eol'223 = e3 K11 — e1 K3, eol'123 = —e3 K12 + €2 K3,
eol'213 = —e3 K12 + 1 Kag, eol'313 = e2 K12 — €1 Koo, eol'323 = e1 K12 — €2 K11,
eol's12 = e1 Ka3 — €2 K13, eol'112 = —e3Ka3 + e2 K33, eol'212 = e3 K13 — e1 K33

As one can tediously check, (2.21)) is symmetric.

Alternatively, one can verify that the principal symbol of (2.19)), (2.20) is symmetric relative to the scalar
product associated with the quadratic form 2K* K;; + F”bFiﬂ, since the spatial symbol of each equation
reads

20eK)i; = &1 — ETup + &0 — €T i — 20,,6°T 0
(0eD)ijp =& Kpi — &Ky + 0 (E°Kj — EtrK) — 6;5(E°K o — &trK),
and hence,
2K (UgK)Z‘j + f‘ijb((fg . f‘)ijb =2K% (ng)ij + f‘ijb(agf)ijb,

where Kij, fijb, f(ij, f‘ijb are variations of the components K;;,T";;;, having the same (anti)symmetry prop-
erties. 0

2.2 The differentiated system

In order to derive higher order energy estimates below, we will need to work with differentiated versions
of —. Moreover, for the boundary value problem (Section , we commute the equations with
components of the orthonormal frame, which enables us to use the structure identified in (2.21]) to control
energies that contain an appropriate number of normal derivatives to the boundary (see Proposition .
For this purpose, we consider a multi-index I and the corresponding combination of vector fields e/ among
{eﬂ}%. We will use the following commutation formulas to compute the differentiated equations below:

lei, e0] = K€, les,e5] = fp(eifiP)ea — [p(e; fiP)ea (2.22)

We note that follows by and . It is important that we do not use relations between the
orthonormal frame and its connection coefficients, as for example, [e;, e;] = I';;°e. — I';;“e., to compute the
commuted equations, since in a local existence argument it is not a priori known that I';;;, are the connection
coefficients of e, es,e3. The fact that the solution to the modified evolution equations — gives
indeed the connection coefficients of the orthonormal frame {e,, }3, with respect to the Levi-Civita connection
of the metric induced by the latter, is shown in Section (| together with the vanishing of the Einstein tensor.

4In fact, the system (2.21)) corresponds exactly to (2.19)-(2.20) up to zeroth order terms.

5We are grateful to an anonymous referee for the this observation.
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Applying el to both sides of the equations (2.19), (2.20)), we obtain:

eoeIKij + 61 (tI‘KKij)

1
= 5 {eielfl’jb — ebeIFijb + ejGIFbib — ebeIFﬂb - 25ij€a€IFbab:| - [61, eo]Kij (223)
1
+ 5 |:[€I, ei}rb]’b — [el, €b]Fijb + [61, ej]Fbib — [61, €b]Fjib — 26ij [617 e“]Fbab]
1
+ 5! [F"frcjb + L% Tije + T Teit + T Tjic — i [["*Teap + T T e + [K[* — (trK)Q]} ,
eoe' Tijp + el (Ki°Tejp)

= 6j€IKbi - ebeIKji + 5ib(ecechj - ejeltrK) - 5ij(eceIKCb - ebeltrK) - [eI, eo]Tijb (2.24)
+ [eI, ;| Kpi — [el, en) Kji + 6ib([el, e‘|Kej — [eI, e;|trK) — 6ij([el, e1Kep — [el, ep]trK)

+e! [beKci + i Kje = Djp K = it Koo — 0 (D Ky + T Ker) + 63D Ko + F“bchl)}
The differentiated versions of the equations (2.8]), (2.9) read

eoe! fi? + Kl f.P = — > e Kce™ f.P — [e e fi?, (2.25)
ILHUlx,=I, |I2‘<‘I|

eoel f0, — K.lbel fe, = > e K ez fe, — (el eo) f0), (2.26)
LHUl,=I, |12|<‘I‘

where the union of the multi-indices Iy, I5 is unordered and can be any possible permutation of I.

Lemma 2.9. Let K;;,ij, fiP be either a solution to , , or an iterative version of these
equations, where the frame coefficients f;7 (and hence e; = f70;) are determined by solving with K;; of
the previous step. In the latter case, the first order terms in the RHS of - should have K;j,I';j
of the current iterates we’re solving for. Then for any a combination of derivatives e, K;;,T;;y satisfy the
following identity:

1 5 1
ieo(elK”elKij) + ieo(eIF”beIFijb)
=e;[e! KeIT? ;] — eP[e! K9 e T3] — ej[e’ trKe' TP
+ el K {[el,ei}I‘bjb — e, €®0yj — 6i50e”, e“]Fbab} — e Kel | eg] Ky (2.27)
g 1.
+ TP {[617 ej|Kyi + Sip([ef, e Koy — [¢, @j]th)} - iejpljb[el, eoll'ijp
. 1
+ el KWel {rbicrcjb +T%Tyje — trKK;j — 55” [TP%D gy + T T e+ K |* — (trK)ﬂ
I1ijb 1 c c 1 c cl c
+e'I'% Fbj ci + i Kj - §Ki chb—5ib(rc Klj +I J Kcl)
Proof. Tt follows straightforwardly by multiplying (2.23))-(2.24]) with e/ K%/, %el I'7% and using Lemma O

2.3 Local well-posedness of the reduced equations for the Cauchy problem

Since the above equations form a symmetric hyperbolic system, local well-posedness follows from standard
arguments. Nonetheless, we provide details below concerning the derivation of higher order energy estimates
and the domain of dependence. This will allow us to treat the boundary case by a modification of the present
section.
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Define the H*(U,) spaces, U; C ¥4, as the set of functions satisfying

a2 = 3 /U (ehu)?voly, < +o0, (2.28)
1< /Ut

where I is a multi-index consisting only of spatial indices so that e’ is a combination of I derivatives among
e1, €2, e3, and voly, is the intrinsic volume form. One might need more than one orthonormal frame to cover
all of T'34, but we could also consider the corresponding norms restricted to the slicing U; of a neighbourhood
of a point. In the case where u depends on various spatial indices, we define its H® norm similarly, summing
as well over all indices.

Remark 2.10. The above H*® spaces are equivalent to the usual spaces defined using coordinate derivatives
0!, provided we have control over the transition coefficients f;?, fbp. The use of e! vector fields is essential
for the treatment of the boundary problem in the next section. For this subsection we could have used 97
instead.

Lemma 2.11. Let U; be an open, bounded, subset of 3; with smooth boundary. Assume the transition
coefficients fiP, f°, satisfy the bounds

3

S5 sup (€SP ey + el fpllie ) < D, (2.29)

11)<1 4,b,p=1 L€[0T]

for some T > 0. Then the following Sobolev inequalities hold with respect to the H® spaces defined above:

ullLoe @,y < Cllullazw,)s lullLa@w,y < Cllullaw,) (2.30)

for all t € [0,T], where C > 0 depends on U and D.

Proof. Tt is immediate by invoking the corresponding classical inequalities (for H® spaces defined via coordi-
nate derivatives) and using (2.29)):

Hu”QLoo(Ut) < C/U (0%u)? + (0u)? + u?voly,

=C FAE*u)? + f2(ef)?(eu)® + f2(ew)® + u?voly,
Uy

<C | D*e*u)* 4+ D*(eu)? + D*(eu)? + u*voly,
U

The second inequality is derived similarly. O

Proposition 2.12. The initial value problem for the system of reduced equations (2.19), (2.20)), (2.8]), (2.9)
is well-posed in L H®, s > 3, with initial data prescribed along the Cauchy hypersurface .

Proof. We assume that a globally hyperbolic solution exists, in the relevant spaces, and derive a priori
energy estimates below. Since the estimates for f;P, fbp can be trivially derived using the ODEs —,
we assume we already have control over their H® norm. Note that the assumption s > 3 is consistent with
the pointwise control of up one derivative of f;?, f°, via .

Consider the differentiated equations (2.23)-(2.24)), for a multi-index I of order |I| < s, over the future
domain of dependenceﬁ of a neighbourhood of a point, Uy, foliated by Uz, t € [0, T}, for some small T' > 0, as
depicted in Figure [I}] Using Lemma we obtain the energy inequality:

1 1
Z 8,5/[] 5 Z(BIKU)2 + Z Z(elri]’b)ZVOlUt

[1|<s 4,5,b

6Since the domain of dependence depends on the spacetime metric, in a Picard iteration the actual region of spacetime is not
known until after a solution has been found, but one can enlarge slightly the domain to guarantee that in the end the resulting
region includes the true domain of dependence of Up.
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Ur

H{ Ut J\I;*\!a
/ UOXH o
by

Figure 1: Local domain of dependence.

1 1
3 > (€Ki + +t1 > (') *volay, (2.31)

IA
|
—

11<s 70U T i i3:b
{ Z Z(eIFijb)Q} trKvoly, (Opvoly, = trKvoly,)
\I\SS i3 ,3,b

ejle’ K'e'Tl) — e'leltrKel T ;] — ep[e’ Tbe! K] voly,

=

IA
»

S

+
q\\

_|_

—

( TR [[e eI — [ef, "0z — 04 [el,ea]f‘bab} — el K'e! eg)Kij
U

~
IN

g 1, .
+ TP {[617 ej| K + Sin([ef, e K oj — [el,ej]trK)} - 2€IF”b[6I,60]Fz‘jb) voly,
+ CIE | s T3, + CIE =0, (by (2.30))

for a constant C' > 0, depending on the number of derivatives s and U;. The first term in the RHS comes
from the coarea formula, having a negative sign since the null boundary of {U},¢,4 is ingoing. Indeed,
we can write U; as a union of an open set Up (independent of ¢) and 2D surfaces constituting a variation
of U, in the inward normal direction N to the surfaces. Decomposing 0; = L — N, we then notice that L
commutes with the integral, while the —/N component gives the additional boundary term above. The last
line includes all the terms corresponding to the last two lines in , which are treated by estimating the
lowest order term in L* and using Cauchy-Schwarz. To bound the terms in the second and third from last
lines, we expand the commutators schematically in the two types of terms using :

< ClIE ol (232)

’ / elu x [e! | egluvoly, / elux e K x e euvoly,
Ut Ut

Hal+[I2|=[1]-1

for u = K,T', and

/ elux [el, e;]uvoly, | = / efux el fxeef * e evvoly, (2.33)
v |11+ T+ Ta | =1 —1 7 Ve
< Cllull s 1 1oy 0l s ) (by (2.30))
for (u,v) = (K,T) or (T, K), where we make use of the L* estimate (2.30)) only in the last inequality, when
s =3, |I2] = |I3| = 1, after performing Cauchy-Schwarz twice, otherwise estimating the lowest order term in

L.
We may combine (2.31))-(2.33)), integrate in [0,¢] and integrate by parts to obtain the overall integral
inequality

1 1 1 1 t
§||K||%{S(Ut) + EHFH%{S(UQ < iHKH%{S(UO) + ZHFH?qs(UO) + C/O |:||K||H5(UT)||F”%IS(UT)
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UK e + 1B o V€ e I o }dT (2.31)
/ > / Z el K;j)? fZ(eIFiijVOlUth
|I)<s”OU ij,b

L E

where we have used that the coefficients of the interior terms generated by integrating by parts the terms in
the fourth line in , contain first derivatives of f;? that can be estimated in L.

It remains to show that the sum of all boundary terms in the last two lines of - ) has a favourable sign.
For notational simplicity in the following computations, we assume that 63| U, —N and omit e!. This is
without loss of generally, since Npy. can be written as a linear combination of €1, e, ez, where the sum of
the squares of the coeflicients is 1. Repeating the argument that follows for each component of Nyys_, leads
to the same conclusion by using Cauchy’s inequality.

/ |: Iche re ib — eItI"KeIFbcb IF”ce Kji:| NCVOIUth
|1]<3 Ut

The integrands of the boundary terms then read:

1. 1. , 3
- KK - 1F”’Tiﬂ, + K31 — tr KT, — T3 K,
1 1 S 1 .
=—3 (K33)* — K*3K a3 — §KABKAB — Z(ch)2 (Kap == Kap — 3045Kc°)
1 1 1 1
- ZFABCFABC - ZFSABF3AB - §F33AF33A - §FASBFA3B

+ K3Tb g — KcOTP35 —T83Kp

1 1 A 1
=—3 (K33)* — K*3K 3 — §KABKAB - Z(KCC)2 (2.35)
1 1 1 1~ ~ 1 ~
- ZFABCFABC - 1F3ABF3AB - §F33AF33A - §FA3BFA3B - Z(chc)Q (Tasp :=Tass — 50480 c3°)

+ K32 TP 45 — KoOT P — T4 K 4.
Rewrite the last line
K3*TP 45 — KcOTP3p —T483 K45
=K3" TP 4p — Kc“TPap + T3P Kup (2.36)
=K3'TP 45 — %KCCFBSB + TP K ap
< Ky Kaa+ P50 a5 + (KGO + 1(0%55)? + 545 T ass + LRAP R
Notice that TBARTE 45 = (I'112)% + (T'a21)2.

Thus, plugging (2.36) into ([2.35)), we conclude that the sum of all boundary terms has an overall negative
sign. Therefore, they can be dropped in (2.34), giving

1 1 1 1 ¢
§|\K|ﬁ{s(m) + ZHF”?'—IS(Ut) < §||K||?'—IS(UO) + ZHF”%IS(UO) + C/o |:|K|H5(UT)||F%{S(U )
(2.37)

B e,y + Hf”?{S(UT)”K”HS(UT)||F|HS(UT):|d7'

The preceding estimate, combined with bounds for ||f]|2 «(u,) that are straightforwardly derived using

(2.25)-(2.26)), can be upgraded to a Picard iteration and a local existence result in a standard way, we omit
the details. O
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2.4 Initial data

Our initial data (3¢, g, K) are that of the EVE, i.e. the induced metric and the second fundamental form
on Y, verifying the constraint equations —, with h,k replaced by ¢, K. Given an orthonormal
frame eq, e2, e3 on X and an abstract coordinate system (1, 22, 23), the initial data for f7, fbp7 K;;, L'y are
determined in the obvious way from , , . In particular, the functions I';;; are the connection
coefficients associated to ej, ez, e3, with respect to the Levi-Civita connection D of g, and they are hence
anti-symmetric in the indices j, b, while K;; = Kj;, f;? % = 6%, fopfo? = 67 on Y.

3 Application to totally geodesic boundaries

We now consider how to apply our framework to the initial boundary value problem, in the case of timelike,
totally geodesic boundaries. In this case, with N being the outward unit normal to T, the second fundamental
form of the boundary

x(Y,Z):=g(DyN,Z) =x(Z,Y), Y, Z 1 N, (3.1)

is identically zero, x = 0.

We start in Section by deriving the zeroth order compability conditions in the case of an angle w. In
order to use the setting of the previous section, it will be convenient that the orthonormal frame is adapted to
the boundary, so that eq is for instance tangent to 7. For this, we need the spacelike slice to be orthogonal to
the boundary, so we briefly outline a standard reduction that allows us to do so in Section [3:2] We also state
the first order compatibility condition in the case w = 0 and then derive the induced boundary conditions
from the geometric ones in Section[3.3] Then, in Section[3.4] we prove the local well-posedness of the resulting

IBVP for the reduced equations (2.8)), (2.19)), (2.20]), see Proposition

3.1 Zeroth order compatibility conditions with an angle

Consider a solution to the Einstein equations (M, g) with a totally geodesic timelike boundary 7. For a
time function ¢ and a foliation of M by the level sets X; of ¢, with 3¢ an initial orthogonal slice, we use the
notation S; for the cross sections X; N7 and denote Sy = S.

Figure 2: The classical solution in the domain of dependence D(X).

Let eg be the normal to S, within 7, and N be the outward unit normal to the boundary. The initial slice
> will not in general be orthogonal to the boundary 7, but it will have a given angle w : S — R, that defines
the hyperbolic rotation between (eg, N) and the pair (n, N), where n is the future unit normal to ¥ on S
and N is the outward unit normal to S, within 3, see Figure

{ eo = ncoshw — Nsinhw { n= egcoshw + N sinhw
N = ’

—nsinhw + N coshw N = ¢psinhw+ Ncoshw ~ (32)



3 APPLICATION TO TOTALLY GEODESIC BOUNDARIES 18

Lemma 3.1 (zeroth order compatibility conditions with an angle). Let (h,k) denotes the first and second

fundamental form of X. Then, (3, h, k) must satisfy the following zeroth order compatibility conditions:
X(X,Y)=0 = k(X,Y)sinhw = h(V+N,Y) coshw (3.3)
X(X,e0) =0 = E(X,N)=Xw .

for all X,Y € TS, where V is the Levi-Civita connection of h.

Higher order compatibility conditions can be derived using the zeroth order compatibility conditions ,
the boundary conditions and the Einstein vacuum equations. These can be written intrinsically on ¥ as
relations involving only (h, k), the function w and their derivatives on S. We do not write the details in the
general case, but in Lemma [3.4] we write the first order conditions in the particular case of an initial slice
intersecting the timelike boundary orthogonally.

Proof. Recall that k(X,Y) =g(Dxn,Y), for X, Y € TY. Plugging in the definition of x, we have
X(X,Y) =g(Dw(—nsinhw + N coshw),Y)
= — k(X,Y)sinhw + h(V%N,Y) coshw — g(n,Y) X sinhw + h(N,Y)X coshw
=—k(X,Y)sinhw + h(VN,Y) coshw

and
X(X, e9) =g(Dw(—nsinhw + N coshw), ncoshw — N sinhw)
= (coshw)*Xw + k(X, N)(sinhw)? — k(X, N)(coshw)? — (sinhw)*Xw
=—k(X,N)+ Xuw,
which proves the equivalence . O

3.2 Choosing an orthogonal initial slice to the boundary

With the notations of the previous section, we may consider D(X) the (future and past) domain of dependence
of 3, see Figure[2] Note that D(X) can be constructed by solving a pure initial value problem with the initial
data (X, h,k). Consider an another initial hypersurface, ¥ contained in D(X) and such that Yo N X = S.
Let Ny, be the unit normal to S in ¥y and ex, be its future unit normal. If the hyperbolic angle between
the pair (ex,, Nx,) and (n, N) is equal to the angle w, then it follows that (es,, Nx,) = (eo, N) and that ¥
is orthogonal to 7.

Thus, given initial data (X, h, k) verifying the compatibility conditions with an angle w, one can first solve
the classical initial value problem with data (X, h, k) to obtain a development D(X) and an embedding 1);
of ¥ into D(X). One then chooses a new initial slice ¥y in D(X), such that ¢;(X) N Xy = ¢;(S) and the
hyperbolic angle between (ex,, Nx, ), (n, N) is equal to w. Provided we can solve the IBVP with compatibility
conditions induced from the original ones by setting w = 0, the new slice will then be orthogonal to the
boundary.

3.3 Boundary and compatibility conditions in the geodesic frame

From now on, we focus on solving the initial boundary value problem in the case of initial data with w =0
and thus also consider a spacetime with a totally geodesic timelike boundary 7 and a foliation ¥; orthogonal
to T.

For a spacetime with a timelike boundary 7, the eg geodesics relative to g, emanating from S, will not
in general remain tangent to 7. This makes the geodesic frame , as it stands, unsuitable for studying
the general boundary value problem. However, for a totally geodesic boundary, the eg geodesics will indeed
foliate a neighbourhood of 7.

An essential ingredient in our approach is the use of an adapted frame to the boundary. The existence
of such a frame, compatible with the propagation conditon , is possible thanks to the vanishing of the
second fundamental form Y.
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Lemma 3.2 (Adapted frame to the boundary). Let ¥o be orthogonal to T, as in Figure@ and let eq denote
its future unit normal. Also, let e1,ea, e3 be an orthonormal frame tangent to Yo, such that at the boundary
e1,es € TS and e3 coincides with the outward unit normal N. Then the frame verifying 1s adapted to
the boundary. In particular, the ey curves emanating from S remain tangent to T and e3 = N on T.

Proof. Define the tangential, orthonormal frame €y, €1,€> on T by the condition:
Wéoéo — Wéoél == VéOéZ == O, (34)

where Y is the covariant connection intrinsic to 7. Also, we impose that éy = ep, &1 = e1,62 = ey at S.
Then, ég, €1, €2, N satisfy

Déoéo = Dgoél = DéOéQ = DgON = O7 on T, (35)

since the second fundamental form of 7 vanishes. Hence, the two set of frames €g, €1, €2, N and eq, e1, €2, €3
satisfy the same propagation equation and have the same initial configurations at S. We arrive at the
conclusion that they must coincide. O

Lemma 3.3 (Boundary conditions for the orthogonal foliation). For the particular geodesic frame eg, e1, ea, e3
that is adapted to the boundary, as above, the vanishing of x induces the following boundary conditions on

Kij, Tijo:

Kas = K3za=Tasp=Taps =0, (3.6)
satisfied on T, for every A, B =1,2.
Proof. The conditions follow from the relations
Kaz = K34 = g(De,e0,€3) = —Xoa, Pasp = —T'aps = g(De,e3,€5) = X5, on T, (3.7)
and the vanishing of x. O

Lemma 3.4 (Compatibility conditions for the orthogonal foliation). The initial data of K;j,Tije, fi? that
correspond to the orthonormal frame in Lemmal3.4, must satisfy corner conditions at S to all orders allowed
m our energy spaces. The zeroth order conditions are the boundary conditions , which are induced by
, while the first order conditions read:

B B b C c
e3sl'"ap =e"T'sap — Iy T'34c, e3Kop = —2I'317 K¢,

(3.8)
es K11 = — 20329 Ko, e3Kio = 319 Koc + T3 K.

Remark 3.5. Note that the above conditions only involve the initial data (X, h, k) since the frame (e, ez, €3)
is tangential to ¥ and the connection coefficients are those of the Riemannian metric h. If we assume that
we have a solution foliated by >, then the relations would hold on each &;. We can then inductively
take eg derivatives of , commute eg with ep, es3 and replace all eg K, egl" derivatives using the evolution
equations —. Restricted to Sy, the resulting equations only involve the initial data and are the
higher order compatibility conditions expressed with respect to an orthonormal frame.

Proof. The zeroth order compatibility conditions are derived from the ones with an angle , using the
rotation relations . We confirm that these are indeed the boundary conditions , without using the
existence of a spacetime solution to the IBVP, as in the proof of Lemma[3.3] showing that they can be derived
solely from the initial data on the original initial slice ¥ and the knowledge of the angle w. We compute on

S:
K a3 =g(De,e0,e3) = g(D., (ncoshw — N sinhw), —nsinhw + N coshw)
= e wsinh? w + k(ea, N) cosh® w — k(e4, N) sinh? w — e w cosh? w

=—ceaw+k(ea,N)=0
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and
Casp = g(De,e3,e5) = g(De, (—nsinhw + N coshw),ep) = —k(ea, ep)sinhw + h(V.,N,eg) = 0.

Together with the symmetry/antisymmetry of Ksza,T a3p, this proves our claim for the zeroth order corner
conditions.

Restricting , , fori=3,7=Aandi= A,j = 3,b= B respectively, to the intersection S and
utilising , we obtain the equations:

1
0=eoKs34 +trKKs3y = 2 |:€3FbAb — e T3ap+T%3Teap + T T'34c
+ealsy — €T azp+T0 AT ezp + beCFA3c:|

1
=3 {GSFBAB —ePTaap + becngc]

0=-eol'asp + KaTesp =e3Kpa —epKsa —I'3spKea —I'3a°Kpe+T'p3°Kea + T'aKae
+ 6AB |:€CK63 — FCCbeg, — chbKCb — €3tIK:|

=e3Kpa — T35 Koa — T34 Kpo — dapesKc©

which give the conditions ((3.8)). O

3.4 Local well-posedness for the initial boundary value problem

In the following, we consider a Lorentzian manifold with boundary of the form (D,g) with D foliated by
spacelike hypersurfaces U;C X¢, D = (J,cg 7] Uy, such that 0D = Uy U TUH U Urp, with T timelike and H
ingoing null, T' > 0, as depicted in Figure The U; are moreover assumed to be orthogonal to 7.

\
\
\
|

Figure 3: A local domain of dependence region near the boundary.

We assume that (D, g) is globally hyperbolic in the sense of a Lorentzian manifold with timelike boundary
[15]. In particular, we assume that D is such that given p € D, J~(p) N JT (Uy U T) is compact, so that all
the computations below are well defined. We will prove high order energy estimates on g assuming it solves
the Einstein equations with the corresponding initial and boundary data. These a priori estimates can then
be upgraded via a Picard iteration to obtain the existence of a solution.

We denote by e any of the derivatives tangential to the boundary eg,eq,es. We consider the following
modified Sobolev spaces, denoted B®, which, for a given s, contains [J] normal derivatives compared to s

tangential derivatives, [5] being the integer part of 3.

Definition 3.6. Let s € N. For any u € L{°L?(U;), we consider the following energy norm on each slice Uy,

Bs(U,) = Z |\glle§2uHL2(Ut)7
[11]42]12]<s

lul
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and the corresponding energy space

B*(Uy) = que L™ ([0,T); L*(U;)) : sup ess Z HgIleézuHLz(Ut) < 400 p. (3.9)
U T ARETAES

Remark 3.7. The need for the B*® spaces is dictated by the form of the modified ADM system, which
only allows the control of roughly half the number of normal derivatives compared with the number of
tangential derivatives in L?. Here is also where the definition of the norms with respect to e, vector fields
becomes particularly useful. Note that we have also included time derivatives in the norms.

Remark 3.8. The reduced equations (2.19)), (2.20)), coupled to the ODE (2.8)), and subject to the boundary
conditions (3.6, fit in the context of more general characteristic symmetric hyperbolic systems that have
been studied in the literature [2I]. In the language of [21]:

— the space H(Q) coincides with B*(Uy), for e3 = 04,
— A, has a kernel of constant rank 4, equal to the number of variables in (2.21)) whose evolution equation
does not contain ez derivatives,

—and M(z) is the (constant) projection matrix on the latter variables, satisfying (A,u,u) = 0 for all
u € kerM (z).

Hence, the local well-posedness theorems in [21] apply to our specific case as well. For the convenience of
the reader, we derive the local well-posedness estimates for the present problem in Proposition

Lemma 3.9. Let s > 6 and let
vl Bsw,) < Co, v = Kij,Tijor i f0p,

for all 0 <t <T. Changing the order of the tangential and normal derivatives in the definition (3.9)) gives
an equivalent norm, up to a constant depending on Cy. More precisely, the following inequality holds true

le’ull L2,y < C Z Z le™ e ull L2 (0, (3.10)

[I1|<r |I2|<m

for any e! that consists of r tangential and m es derivatives, r + 2m < s. The constant C is of the form
C = D+ TCZ, where D > 0 depends only on initial norms.

Proof. We argue by induction in |I| = r + m. According to (2.22), a commutation between a tangential and
a normal derivative in e/u gives terms of the form

elile, esle’u = e/t (K x ee’?u) + e (f x ef * ee’?u), |J1| + | J2| = |I| — 2
There are two distinct cases for bounding the L? norm of the previous RHS.

e The derivatives are relatively equally distributed among the corresponding factors, in which case we
can bound their L? norms using the L* estimate in ([2.30)) and the inductive step.

e Most derivatives hit one of the factors, in which we can apply (2.30) to the lowest order factor and use
the inductive step.

The assumption s > 6 allows for a pointwise bound on the factor ef via (2.30). The dependence of the
constant C' in D, Cy comes from the use of the following basic estimate:

, c-s t , y
e ol ey < el olEaqy + [ 216 vl lleoe! vlzaqw, dr < D+ TC3
0

to the terms eI/v7 v = (K;;,Tijp, fid, fbj), that have one less than maximum number of tangential derivatives,
ie. for e’ containing 7’ tangential and m’ es derivatives with r’ + 2m’ < s — 1. O



3 APPLICATION TO TOTALLY GEODESIC BOUNDARIES 22

Proposition 3.10. Under the boundary and compatibility conditions (3.6), (3.8), as well as their higher
2.10),

order analogues up to order s — 1 (see Remark , the system (| 2.20), (2.8), (2.9) has a locally
well-posed initial boundary value problem in L B*(Uy), for s > 7.

Proof. We prove an energy estimate in the space L™ ([0,T]; B®), for s > 7 and T sufficiently small. To this
end, we proceed by a bootstrap argument and assume that we have a smooth solution u on [0, 7], for some
T > 0, satisfying

[l

Bs(uy) < Co, (3.11)

for all 0 <t < T. The slices U; correspond now to the neighbourhood of a point at the boundary g N 7.
We will upgrade this type of non-quantitative estimate into a quantitative one depending only on the initial
data. This is the kind of estimate that is required to then prove existence and uniqueness of solutions via a
Picard iteration scheme (cf. also [21]). As for the solution to the linear problem required at each step in the
iteration, this follows by a duality argument, using the symmetry of the system , combined with the
fact that the boundary terms in a usual energy argument for (2.19)-(2.20) vanish by virtue of the boundary
conditions , see below. This implies that the dual system has the same form, satisfying the same
homogeneous Dirichlet boundary conditions, as in , for the corresponding dual variables.

Step 1: Estimates for tangential derivatives. Consider I a multi-index of order |I| < s, such that e/ = ¢!

does not contain any ez derivative. We repeat the energy argument of Proposition where we use the
differentiated equations — for e/ = e!. Note that by the above bootstrap assumption and since
s > 7, the Sobolev inequalities used to control the L>, L* norms of certain terms are still applicable. In
particular, the error terms generated by the various integration by parts (due to e; not being Killing) can be
controlled in this way and then absorbed by choosing T sufficiently small depending only on the norm of the
initial data.

We examine now the arising 7-boundary terms in the energy argument. Going back to the fourth line of
, we notice that these terms are

/ ' K37e'Tbjy, — e'tr Ke T3, — ' T 3¢’ K jvols,

s,

= / e Ka3e'TPap + ' K32e'T8 gp — e"tr Ke TP 35 — ' T4B 3¢ Ky pvols,, (3.12)
S0

for |I| < s. Since e’ is tangential, we infer by (3.6)) that all boundary terms vanish.

Since we commute only with tangential derivatives, the error terms corresponding to (2.32))-(2.33)) take the
form
/ el K x el K QIZGKVOIUt + / el K % QIlf * glzef *QI36FV01Ut
U, Uy

[I1]|+[I2|=]I|-1 [I1]|+]I2|+ (13| =[1] -1

Thus, they contain at most one ez derivative and can be handled using ([2.30]) (since we include at least three
normal derivatives in our B® norms, s > 7) and the bootstrap assumption. We make use of the L* estimate
only for the second term, in the case |I;| = 0, where both e = e3.

Step 2: Consequences of the bootstrap assumption. First, we note that a standard energy argument for
([2:25)-([2-26)) gives the desired estimate for the part of the norm involving fi’, f*;, making use only of the
bootstrap assumption:

3
Z sup (||§Il€§2fip||L2(Ut) + ||§h€§2fbp||L2(Ut)) < Dy, (3.13)
ib.p=1 tE[0.T]

where D depends on initial norms and CZT. The latter can be made smaller than a universal constant by
taking T" > 0 sufficiently small.
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Moreover, any term having a less than top order number of tangential derivatives can also be bounded in
L? by using only the bootstrap assumption in the following manner:

t
! ! ! !
the?uuig(m) < theé?uH%z(Uo) +/0 2||§11€§2U||L2(U,)||87—Q116§2U||L2(UT)d7

<lle"tefull?s ) +TC3 (11} < s —2|Ls))
< Diow (3.14)

for some T > 0 sufficiently small, where D), denotes a constant depending on the initial L? norms of
N "2u, 9,0" 0% u.

Thus, matters are reduced to estimating the top order K;;,I';;; terms.

Step 3: Induction for the normal derivatives. To complete the energy argument, we must estimate the norms
el e ul L2, with || 4+ 2| = s, u = K, T.

We proceed by induction in |I3]. Step I above shows in particular that one can deal with |I3] = 0. Let
m < [5] — 1 and assume that, for all multi-indices I; and I verifying |I1| + 2|I3| = s, [I2| < m, we have a
bound of the form

sup |le" ezt ullL2w,) < Do, (3.15)
t€[0,T]

for some T' > 0 sufficiently small, where D,,, depends only on the B*-norm of the initial data of (K, Tjb, fi/, fbj)7
the number of derivatives s, m, and is independent of Cy. We will derive (3.15|) for |Iz] = m + 1.
Let us split the variables Kj;;,I';;, into two sets:

1. the good set
G = {Kn, K12, Ko, K31, K32, 112,212, T'113, 223, T123 + T'213 }, (3.16)

2. the bad set
B = {K33,1'313,I'323, I's12, ['123 — 213} . (3.17)

According to the composition of the system (2.19)-(2.20)) identified in (2.21), we have the following two
schematic types of equations

colg =esUg + e Up+ U, (3.18)
eoUp iEA\I/g + U W, (319)

satisfied by Vg € G,V € B, ¥ € G U B, where we note that e3Ug corresponds to a single representative
of the good set, whereas e4¥g,e4¥g could be an algebraic combination of more than one terms from the
corresponding sets.

Starting with (3.18]), we differentiate the equation in et egz, |I| + 2|15 = s — 1, | 14| = m:
Qllegfeg\llg = gllegfeo\llg — Qlleé"’eA\IJB — glleéz RERD (3.20)

Note that the derivatives acting on ¥Ug in the LHS contain one more tangential derivative than what we need
for the desired estimate on Wg.It is necessary to include this extra tangential derivative in order to infer the
bound on ¥y directly below.

The first two terms in the RHS of (3.20]) are at the level of the inductive assumption (3.15)). To bound the
L? norm of the third term we employ (2.30) as follows:

I/ I/
e e (U« W)l < 1Bl e Wlay + 30 el el U bt ek Bl
[J2],|L2|<m

c-S 1/
< Nllmzwle e Ul 2wy + D e e mu,lle es* ¥lmw,)  (3:21)
[J2],|La|<m

<Dp, (by Step 2)
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This implies an L? estimate for e’ el Wg, |I,|+2|I2| = s+1, |Iz] = m+1, in accordance with (3.15) (choosing
Dy > D120w +D,,). As we remarked above, the previous term contains one tangential derivative more than
required. The desired estimate for |I;| + 2|Iz| = s, |I2] = m + 1 is in fact simpler.

For W5 we apply e'*el?, |I1| + 2|I2| = s, [Io] = m + 1 to (3.19):
el egzeo\IlB =l 6§2€A\I/g + glle:é? (U % W), (3.22)

The first term in the RHS has just being controlled in L? (cf. Lemma [3.9). The argument for the second
term is as in (3.21), only now the final RHS becomes

lem e (5 W) | 20y < Dy + Diowlle™ e W 20y < Diow Dt + Diowlle” el Wnll o,y (3.23)
Thus, combining with Lemma |3.9} we have the bound
leoe™ e WgllL2(v,) < DiowDmt1 + Diowlle™ €52 W] 12(u,) (3.24)

The first line in (3.14) then gives the estimate

t
>l e sl i, <D+ > / le" e5? U gl L2 (v,) (DiowDm+1 + Diowlle™ e Uil 2w, )dr (3.25)
VB vpeB”0

Employing Gronwall’s inequality, we obtain the desired estimate for Uz by taking 7" > 0 sufficiently small.
This completes the proof of the proposition. O

4 A solution to the EVE

In this section we show that the solution of the modified reduced system, with initial data as in Section
[2:4] either for the standard Cauchy problem or for the boundary value problem, subject to the conditions
in Lemmas is in fact a solution to the EVE, see Proposition 4.8 and the conclusion in Section 4.3
Thus, completing the proofs of Theorems

4.1 The geometry of a solution to the reduced equations

Having solved , , , for K;j, Lijb, fi?, fbp, we declare that ey = 9, together with ey, es, e3
given by , constitute an orthonormal frame. This completely determines the spacetime metric g, which
splits in the form . We then need to verify that the variables K;;,I';; are indeed the second fundamental
form of the t-slices and spatial connection coeficients of the orthonormal frame we have just defined, with
respect to the Levi-Civita connection D of g. In fact, this must be derived at the same time with the vanishing
of the spacetime Ricci tensor, confirming that the solution of the reduced system is in fact a solution of the
EVE.

For this purporse, we define the connection D by the relations
Deoeﬂ = 0, Deieo = Kﬂej, Deiej = I‘l-jbeb + K,L'je() (41)

and denote the projection of D onto the span of e, es, ez by D. Let

Ropu”en = (DeaDeﬁ - DeﬁDea - D[emefx])eu = —Rga,"er, Rg, = Rapp”, R=R," (4.2)

be the Riemann, Ricci, and scalar curvatures of f); the curvatures Eaijb,éij,é associated to D are de-
fined similarly. For notational simplicity, we will also use in certain places below the convention I'yg, =
g(ﬁea es,e,)= —Laup, despite the fact that we have used T" so far to denote only spatial connection coeffi-
cients. In particular, with this convention I';o; = —I';j0 = K;j,T0ap = 0.

Define the torsion of D:

Copw = 8([easeu] — De, e + ﬁeueaa ev) = —Clav (4.3)
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Note that D is not a priori torsion-free, however, it annihilates the metric g.

The next lemma is a list of standard identities for the torsion and curvature tensors of f), which are the
same for any affine connection compatible with g. We include a proof for the sake of completeness.

Lemma 4.1. The connection D is compatible with g, ﬁg = 0, while its curvature and torsion tensors satisfy:

Cijp = [Ppeifi? — fPpe; fi¥ —Tijp + iy = —Clan, Capo = Coij = Cio; = 0, (4.4)

0 =Raguw + Rgpaw + Ruapy + DuCopy + DaChpy + DsClhuay (4.5)
+Cos'Clun + Cua' Cipy + Cp,' Clow

Ropu == Ragup, Raijp = —Rain; (4.6)

0= f)uﬁaﬁ"ﬂ? + f)ocﬁﬁmé + f)ﬁﬁuavé - Cualﬁl,@wé - Caﬁzf{l,w(s — Cﬁulﬁlaw (4.7)

Moreover, the Gauss and Codazzi equations in Lemma[2.1] become:

Raijp = Raijp + Kap Kij — Koj Ky, (4.8)
f{jbOi :-5ij1' — -5bKji — Cp'Ky;. (4.9)

Proof. The compatibility of D with g is equivalent to:

(Dag)uu =0 — g(f)ea €us ey) + g(eu, f)eaeu) =0

Hence, it follows from the antisymmetry of I';;; = —1';;, see Lemma and the definition (4.1]). Therefore,
D is also compatible with g. By definition (4.2), this also implies the antisymmetry of the curvatures

Rapur, Raijp With respect to the last two indices.

By (2.22)) and (4.1)) we derive the identities
€0, €] — Degei + D e = —Kie, + Kie, = 0,
leisej] — De,ej + De,ei = fopeifiPey — fopesfifer — (Dif® — Tji%)ey + (Kji — Kij)eo,

which yield (4.4), thanks to the symmetry of K;; (Lemma .
Next, we derive the first Bianchi identity (4.5 using the definitions (4.2)), (4.3)):

Rappuw + Rpuar + Ryapy
=g((D.,D., —D.,D., — Dy, c,))en €) +8((De,De, — De, D, — Dy, )eas €1)
+g((De,De, — D, D., — Dy, c.])es, €)
=g(D., ([es, €] — Cou'er) ) + 8(Dey ([eps €al — Cua'er), €0) + (e, ([ear 5] — Capler), €1)
— &(Dye, il ) — 8(Die, eniCarer) — 8(Die, cojess )
=g(D.. ([eg, eu]) — Die,.en1€as 1) + 8(De ([es €al) — Die, eatess ) + 8(De, ([€as es]) — Dic, eaieus €v)
—g(D.,.(Cauler),en) — 8(De,y (Cua'er), e1) — g(De, (Capler), €)
= [eps [ear es]] + [eas [eg, €ul] + [es; [eps €al] = Cuing(e!, [eas ep)) — Cangle [es, €u])
— Cang(e, [ens eal) — €aChuv — Cau'Tatw — €8Cuar — Cua'Tpiw — €4Capy — Cup'T s
=CuCas' — Cutu(Tap' = T5a)=CatnCs' — Cotn (Tt — T ) —C1Clia (Jacobi’s identity)
— Cp1(Cpa’ = Tap') = €aCuv = Cpu'Tatv — €6Cuar — Cua'Tpiv — €4Capy — Cap' Tyt

The last RHS can be seen to correspond to the torsion terms in (4.5) by using the antisymmetries of I'o g, Cogy
in the last two and first two indices respectively.

On the other hand, we have

D,R(eq,ep) + Daﬁ(eﬂ’ en) + ﬁﬁﬁ(em €a)
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:De“(DeaDe/g — DeﬁDe(y — D[ea,eﬁ]) — (De“ea)V(DeyDeﬁ — DGEDGV — D[eu,eﬁ])
- (DeMeB)U(DeaDeV -D., D, — D[ea,eu])
+ Dea (DegDeu - De“Deg - D[eﬁ,e“]) - (Dea eﬁ)u(DeuDe“ - DeMDe,, - D[eweu])
- (Deaeu)y(DEBDeu — D, D - D[EB,EU])
+ Deg (De“Dea - DeaD D[eu,ea]) - (Degeu)u(De,,Dea - DeQDeV - D[ey,ea])
— (Deﬁeoé)”(De D, D D _D[eu,ey])
=[D.,,D.,]D,, + [Deﬁ,D D, + [D.,,De,]De, — (D¢, eq — De.e,)’Ries,ep)
— (De.es — De,ea)’"Rien,e,) — (Deyey — Dejea)’Ries, ea)
~[De, Dy, eﬁ]] De..Diey el = ey Die,s el

~Die,csDe, ~Diey e, De = Dy, e D,
+ D[e“,[e(,,eg]] + D[em[eﬁ,eu]] + D[eﬁv[ewea]] (adding zero by Jacobi’s identity)

:ﬁ(e#, ea)DeB + R(eq, eﬁ)De“ + ﬁ(eg, e#)Dea + ([ea ep] — Deaeg + Deﬁea)”ﬁ(ey, €en)
+ (les: €] = Deyep + De,es) Riew, €a) + (e, €a] — De,ea + De,ep) Roew, es)

The second Bianchi identity follows by applying the precedlng expression to e, taking the inner product
with es and utilising the idenitty [eq, eg] = Casler + D W€8 — D 5€a
Finally, for the Gauss and Codazzi equatlons ., we repeat the steps in the proof of Lemma

making use of the formula [e;, ;] = Cjple; + De] ep — Debe], without identifying Romb, ij()z (which uses the
torsion free property of the connection). This completes the proof of the lemma. O

4.2 Modified curvature and propagation equations for vanishing quantities

An essential step in proving the vanishing of Cjjs, ﬁﬁu is the derivation of propagation equations for them,

using the reduced equations (2.19)-(2.20) and the Bianchi identities for the curvature of D in Lemma It
these equations are suitable for an energy argument, then we can infer the vanishing of the relevant variables
from their vanishing on the initial hypersurface.

However, for the particular curvature of D we have defined, this system would fail to be hyperbolic, hence,
obstructing us from deriving energy estimates. Indeed, this can be seen by examining the system of evolution
equations in Lemma which we derive below for the modified curvature (4.10). The first order system
- is in fact symmetrlc hyperbolic, but if we were to replace R by R this would fail to be the case,
due to the addltlonal first order Cjj, terms with no particular structure.

For this purpose, we consider the modified curvature:

~ ~ ~ ~

Ros.” ¢, == (D.,D., —D., D, — Dﬁeaeﬂ_ﬁeﬁea)eu = (Ragu” + Cap’Tr" e (4.10)

Note that f{agm, is not tensorial with respect to its third index p. We also define ﬁgu = f{a/g,ﬂ, R = f{lﬂ

and similarly for the modified curvatures R”-jln ﬁij, R of D. Then we have the following identities, which are
immediate consequences of Lemma, and (4.10)):

Lemma 4.2. The curvatures ﬁagl“,, R”—jb satisfy the identites:

~ ~ ~ ~ ~ ~

Raﬁpy = Rﬁa,ul/ = *Raﬁv,uy Raijb = *Riajb = *Raibj (411)

0= ﬁaﬂuv + ﬁﬁufw + ﬁuaﬁv + DuCapy + DaCpuy + DClan (4.12)
+Caﬁlol,uu + Cpalclﬁu + Cﬁulclow - aﬁ/\FApy - Oﬁp)\]-—‘kow - C,uozA]-—‘)\Bl/

Rop — Rpo = — D"Copy — DuCpy — DCluo (4.13)

—Cop'Ciut — Ca' Cig* — Cu' Clat + Cpp ' Taa® 4 Cra Tagh
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0 :ﬁuﬁaﬁ'ﬂs + f)aﬁﬁu'y& + ]Sﬁﬁuowé - Cﬂal(ﬁlﬁ'yé - Clﬁury'w?) (4.14)
- aﬁl(ﬁlwé - Cluvlwvé) - Cﬁul(ﬁla’vé - Olavru'yé)

+ [Raguw + Rauar + Ruapr+Cas'Cruw + Cra' Cigy + C, Cran

- aﬁ)\F)\,uv - CB;L)\FACW - C,u(x)\FABl/ Fu'y§ (415)

- aﬁyﬁurwé - Cﬁuyﬁarwé - Cuayﬁﬁrvw
ﬁaijb = Ru'jb + Koy Kij — Koj Kip,
Rjs0i = D Kyi — DyK i,
Ryo = D'Ky; — Dytr K

~

Raijb =ealijp — €ilajp — LapTije + TivTaje — LaiTejp + LT

4.16
4.17
4.18

(
(
(
(4.19

)
)
)
)

where everything is interpreted tensorially, e.g., f)urwé =e vy — FW)TMé — I‘W)‘FV,\(; — F/M;)\F,,Y)\.

Proof. The antisymmetries follow from the definition (4.10]), the antisymmetries (4.2)), (4.6]) of f{ag,w
and that of Cug, in (o; 8). Also, plugging (4.10) into gives (4.12)), while contractinth respect
to (u;v) gives . Moreover, (4.16)-(4.17) follow from —4.9 by plugging in the definition and
recalling that Cy;0 = 0, see . Contracting (4.17) also gives (4.18)). The computation of the curvature
formula is straightforward, using the definition of }Aim'jb, analogous to , cf. the proof of Lemma
]

For the lgss obvious Bianchi-type identity 7 we plug into and treat all the terms tensorially.
Although R,ps,s is not a tensor in v, its difference from C,g"I', s is. Therefore, we deduce

0 :ﬁu(ﬁaﬁvﬁ - Caﬁyrwﬁ) + ﬁa (ﬁlﬁw& - Cﬁuurwyé) + ﬁﬁ(ﬁuavé - meurwé)
- ual(ﬁlﬂvé - ClﬁVFV'yt?) - CaBl(ﬁlu'wS - CZ#VFV’Y(S) - Cﬁul(ﬁla’yé - Clowlw'w?)
= ﬁ/tﬁaﬁ'yé + ﬁaﬁﬁ/wé + ﬁﬁﬁ/mvé
- ual(ﬁlﬁw - Clﬁvryvé) - Caﬁl(ﬁlxwé - CZWFU'Y&) - Cﬁul(ﬁlavtS - Clowlw'vé)
_(f)uCaBU + f)acﬁuu + f)ﬁcuay)rl/%_caﬂyf)urwé - Cﬁuuf)arvw - Cuayf)ﬁrwé
On the other hand, we employ the first Bianchi identity to write
- f)ucaﬁu - f)aCBuU - ]550“@"
=Rapu + Rauar + Ruapr+Cas'Cluw + Cua' Cipy + Ca,' Craw
—Cap’Trw = O Taaw — Cua*Tagy
which completes the proof of the lemma. O

Remark 4.3. It is important that (4.14)) does not contain any spatial derivatives of Cjjp, which could lead to
a non-symmetric system for the vanishing variables, cf. Lemma [£-5] We were able to replace such terms by
using the first Bianchi identity (4.12). In turn, we must express the cyclic curvature sum in (4.14)) solely by
Ricci terms.

Lemma 4.4. The cyclic sum ﬁ(aﬁu)u = ﬁagw + ﬁgﬂm, + ﬁ#ag,, satisfies:
Rapiy; = (Ria — Rai)ge; + (Re; — Riy)ga; + (Ray — Rpa)8gij,
R(obi)o = Raviyo = 0, R (0pi); = —0i;Reo + R0

Proof. For the first identity, we notice that if either of a,b,i coincide, both sides are trivially zero. In the
case where a,b,i are all distinct, j must coincide with one of them (since ¥; is 3-dimensional), say j = a.
Then we have

(4.20)

S e N e P - S . S
Ry — Rip =R — Ran™ ™= Ravia + Riava + Rovoi — Roios = Ryapiya + Rosoi — Roios (4.21)
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On the other hand, using the symmetry of Kj; it holds

Roi = g((D,D., — D,, D, — Dﬁeoerf)abeo)eo’ e;) = eoKpi + Kb Kii = Roion, (4.22)

Combining (4.21)-(4.22)) yeilds the first identity in (4.20)). Also, (4.22)) implies the first part of the second
identity in (4.20) regarding Rgpiyo = 0.
Next, we employ (4.17) to infer:
ﬁ(abi)o = - ﬁ4ab0i - ﬁbi(]a - ﬁia()b
= — DoKyi + DyKai — DyKiq + DiKyq — DiKay + Do Ky
=0

To prove the last identity in (4.20) we utilise the reduced equation (2.20)), which we rewrite in a more covariant
way using (4.18]):

eolij + KiTejp = f)iji - BbKji + 6ibﬁj0 - 5ijf{b0 (4.23)

Appealing to the symmetry of K once more, we compute:

o~

Ropi); = ﬁObij + ﬁbioj‘ - ﬁOibj
= g((DeoDeb - DebDeo - D]Seoebff)ehe(])eiv ej)

+ DyK;j — DiKy; — g((De,De, — D¢, D, — 1515606_158'@0)%» ej) (by (4.17))
= eoLbij + KpTeij — eolin; — KiTapj + DpKy; — DiKy;
=D, Kt — DyKji — 6ijReo + 04 Rio + DK ;5 — Di Ky, (by (&:23))

= —6;;Rpo + 0pjRi0,
as asserted. O

Recall that we symmetrized the RHS of (2.6), such that the symmetry of K;; is automatically propagated
off of the initial hypersurface. Consequently, we must treat the symmetrized and antisymmetrized Ricci
tensors as different variables:

ss) 1o o 5(S NI P = = (A
R = 5 (Rij +Ryi) = R, RV = 5 (Rij —Ryi) = ~RY. (4.24)

ji ij

With the above lemmas at our disposal, we derive the following propagation equations for the variables that
should vanish.

Lemma 4.5. The variables ﬁﬁm Cijp satisfy the following system of equations:

eoCijp = Kp'Ciji — K;'Crjp — K Oy — 5ibﬁj0 + 5jbﬁi0a (4.25)
eoRio = e;Roo + €aﬁ§f) - Fazﬂﬁﬁa - Faaﬁﬁw—Li(C, ﬁ)> Ro; = —Rio, (4.26)
eoRoo = " Rag — Faabﬁbo-i-Lo(a ﬁ)7 (4.27)
_ 1 -~ _ _ _ 1, - 1 - _
coR(;) =5 (e Rio — eiRyo)~ KRy = Kj'REY — SK" Rt 5 K" Regoye + My (C,R), (4.28)
ﬁ’z(f) =- 6ijﬁ00; (4.29)

where

~

QLN(Cv R) == mel(ﬁlﬁw - Clﬂvruvé) - Caﬂl(ﬁlw5 - CZWFV%) - Cﬂul(ﬁlaw - Clavlwvé)

+ ﬁ'aﬁuu + ﬁﬁuau + f(uag,,—i—OaBlClW + C’WZC’U;V + CBHZCJW—C@BAF,\W (4.30)
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_CBH)\FAaV - Cuoc)\r/\ﬁl/] Fu'y& - Caﬁyﬁuru'yé - Cﬁuyﬁaruvé - C,uayﬁﬁru'yéy

~ 1 1 1 1 1
M;;(C,R) = — 5eoLij(C) — 5KJLU(C) - §Kleil(C) — iKblLijlb(C) + §K“Lijbl(0)
1
- 5 C’ijlebel + CjbleiKbl + Cbileijl - CljbebKil - ilbebKjl — Clbbeinl (431)
e K — Cripe; K — CblbejKil] ;

Lij(C) = D*Cijp + D;iCji% + D;Cyi® — € Cyjiy — e;Ci — e;Ci® (4.32)

+ Ci Ot + Cy' O + C'OY — Ci' TR — Ci'Ty,0,
Liju(C) = ﬁbcijl + f)icjbl + chbil —epCiji — €;Cjp; — €;Chy (4.33)

- Cijdcdbl - Cbidcdjl — Cp?Cait + CijTap + Cjp"T i + CiTajr.

Remark 4.6. The system (4.25) constltutes a (linear, homogeneous) first order symmetrlc hyperbolic

system for the variables C”b,Rzo,Roo, A). Indeed we notice that L, (C, R) 55 (C, R) (ijby can be
viewed, by virtue of Lemma 4 4] and , , as linear expressions in the unknowns, Wlth coefficients

depending on the solution K”, Lije, fi?, f°p to the reduced equations (2.8§] . -, 2.20) and their first
derivatives.

Proof. We compute (4.25)) by directly differentiating (4.4) and using the commutation formula (2.22)), the
evolution equations ([2.8)), (2.9)), (4.23)), Lemma along with (4.18):

eoCijp = eo(fpeifi” — fPpei fi¥ — Tijh + Tjin)
- chfcpeifjp - fbpei(chfcp) - fpricecfjp - chfcpejfip + fbpej (Kicfcp) + fprjcecfip
- [— Ki'Tyjy + DKy — DyKj; + R0 — 5ijﬁb0:|
+ [— KTy + DiKyj — DyKij + 0;3Ri0 — 6ijﬁb0:|
=K' Ciji — K;'Cijp — K;' Oy — 5ibﬁj0 + 6jbﬁi0 (4.34)

Moreover, a direct computation shows that

ﬁOb = _ﬁOibi = - g((ﬁeoﬁei - ]567;]560 - ]f:v)f)eoei,f)eieo)ebv ei)
=—eolp' — KiTe' €2 (1 ~Ryo (4.35)

Also, contracting in (a;b) and (i;j) we obtain
R+ 2Rg =R — |K|? + (trK)?, (4.36)
while
ﬁOin =— ﬁOijO = ﬁ«ij - ﬁbijb ﬁij - éij —trKK;; + KibKjb
ﬁOin =eoKij + K"Ky, (by (4.22))
= eoKij + trKK;; = —R;; + Ry (4.37)

Contracting (4.19) and using the antisymmetry of I';;; (see Lemma 7 the spatial Ricci tensor in the
preceding RHS expands to

7@13’ = 7Ebijb = einjb — ebFijb+FbiCchb -+ becFijc (438)
By the symmetry of K;; we also have

eoKij + tI’KKij = _ﬁz(f) + ﬁgf) (439)
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Due to (4.38)), we find that the reduced equation ([2.19)) corresponds to (cf. (2.15) and Remark
~ 1 ~
colij + KKy = = Ry + 50, [R — |K” + (trK)?] (4.40)

Combining (4.36)-(4.40)we deduce the identities:

%(ﬁij +Ry) = %5@' [R + 2Roo] (4.41)
Contracting indices in gives
R+ Ry = g[ﬁ + 2R =  R=-4Rq = %(ﬁij +R;;) = —6;;Roo, (4.42)
which confirms .
Next, we contract the second Bianchi identity in the indices («; ) and (53;+) to obtain:
DRy = 3 DR+ Lu(C,R), (4.43)

where L, (C, ﬁ) is given by (4.30). Hence, for p =i = 1,2,3, we deduce the equation
~ T~ ~ 1 A~ o~ ~ ~
eoRio DoR;p = —§€iR +D’R;,—L; (C, R)
‘b Qeiﬁoo + eaﬁl(.f) + eaf{l(.f) - Faiﬁﬁﬁa - Faaﬁﬁiﬂ_Li(C7 ﬁ)
B2 e Roo + "R — T Ry — Ta™Ris—Li(C,R)

which proves (4.26]).
Employing the identity (4.43) once more, for u = 0, we have

Y @~ o~ 1 o~ o~ .
eoRoo DoRy = _§€0R + DaRoa—Lo (C, R)
2€0ﬁ00 + eaﬁoa - Kabﬁl(j) - trKﬁoo - Faabﬁ()b—Lo(C, ﬁ)

Solving for eOIN{OO and using (4.29)), (4.35)), we obtain (4.27)).
Going back to (4.13), we put @ = 4,5 = j and use (4.4) to keep only the spatial part of the identity.
Differentiating both sides in ey and using the commutation formula (2.22) we compute:

72601%5-;-4) =e€g {f)bCijb + ﬁiCjbb + chbib + C’ilelbb + C’bilC’ljb + CjblClib - jbll““b — Cbilfljb} (4.44)
_ b b b bl l b l b
=e€ eocijb + eiEOCjb + ejeocbi - K elCijb - Ki eleb - Kj elei + eoLij(C)
where L;;(C) is given by (4.32). We rewrite the second line in (4.44) by plugging in (4.25):
ebeoCijb + eieonbb + ejeOCbib — KblelC’l-jb — KilelC’jbb — Kjleleib
=eb [Kblcijl — K'Cijp — K, Cup — 5ibf{jo + 5jbﬁio] +e; [Kblcjbl - K;'Cp’ — KM Oy, — f{jo + 3ﬁjo]
+e; |:Kblcbil — K"Cyp — K,'Cp” — 3R + ﬁi0:| — K"eCijp — Ki'eiCp® — KjleiCy®

= eiﬁjo - ejﬁi0+Kbl(ebCijl + €;Cjp + € Chit) — K (e’ Crip + €;Cn” + e1C?) (4.45)
— K1 (e"Cipp + €iCi® + e1Cii®) — K" (e;Cjip + €Clip + €1C455)+Cijie" Ki' + Cjpiei K + Chype; K
— Cipe’ K — Cupe Kt — Cpbei Kt — Cipei K — Cripe; K — Oy e; K
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On the other hand, from (4.13) and the first Bianchi identity (4.12)), the spatial derivatives of Cjj in (4.45)
can be replaced by

K" (e,Ciji + eiCiui + €;Cit) — Ki' (e"Cijp, + €;Cn” + e1C") — K (e"Cip + €;Ci” + €1Ci?)
— Kbl(eileb + ejClib + 6lCijb) (4.46)
= 2K RV + 2K RGY + KPR (31— KR+ Ki L (C) + K La(C) + K [Lijiy (C) — Liju(O)],

where L; ;5 is given by (4.33).
Summarizing (4.44)-(4.33) gives (4.28)) and completes the proof of the lemma. O

In the presence of a timelike, totally geodesic, boundary, the boundary conditions (3.6)) yield boundary
conditions for certain components of the modified Ricci curvature R,g. In particular, we have:

Lemma 4.7. The spacetime metric g induced by the solution to the boundary problem for (2.8), (2.19),
(12.20), subject to (3.6]), as described above, satisfies:

ﬁog = ﬁgo =0, ﬁgg = ﬁgg) =0, on T. (4.47)

Proof. All subsequent computations are restricted to the boundary 7. The first boundary condition follows
by setting b = 3 in (4.35)) and using the boundary condition (3.6]):

Ros = —Rgo = —eolis’ — K;Ts’ = —elpa® — Kaslas? — KaPTp? = 0.
For the second boundary condition, we first notice that by (4.29) it holds
ﬁgg = —ﬁ,gB = ﬁ(Bg) = —ﬁ,:(,)g) = ﬁBg.

Contracting (4.16) in (a;b) and setting ¢ = B, j = 3, we obtain

Rps — Ropos = Rps + trKKps — K3*Kp,

=e"Tp3p — el 3+ 5T s + T2 T pae (by (4.38),i=B,j =3)
+ tI‘KKB3 — K3aKBa
Rps =e“Tpsc — epl 0 + T T psc + T palasc + T Tpse (by (4.22))

+trKKps — K3"Kpa + eoKps + K Kza + Kp3Ka3

Every term in the preceding RHS vanished by virtue of the boundary condition (3.6, which implies the
vanishing of Rp3 and hence that of Rgg. ]

4.3 Final step

The equations — constitute a linear first order symmetric hyperbolic system (see also Remark
4.6)) for the variables f{HO, f{gf), Cljp, which in the presence of a timelike boundary also satisfy the conditions
4.47). As an immediate implication, we conclude that the solution K;;, I';jp, fi¥, f°, to the reduced equations
2.19), (2.20), , , is indeed a solution to the EVE. More precisely, we have:

Proposition 4.8. Consider a solution to the reduced equations (2.19), (2.20), (2.8), (2.9), such that

1. Kij,Fijb,fip,fbp € LXH?, s > 3, for the classical Cauchy problem;

2. Kij,Tiju, fiP, f°p € L°B*, s > 17, subject to (3.6)), for the boundary value problem.

Then the variables f{W,Cijb vanish. In particular, D is the Levi-Civita connection D of g. Moreover, g

satisfies the EVE and in the case 2. the boundary is totally geodesic.
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Proof. The coeflicients in — depend on K;j, Tyijp, fi7, f°p and their first spatial derivatives. Hence,
they are bounded, provided up to three of their spatial derivatives are bounded in L?. This is consistent with
the spaces L H?, for s > 3, and L B?, for s > 7.

In the absence of a boundary, the symmetry of the system — implies uniquenesg of solutions (via
a standard energy estimate). Since C;j, vanishes on the initial hypersurface, we have that D = D. By virtue

of (4.13) (for a« =4, 8 = j) and (4.4)), we have that f{l(»f) |Eo = 0. Also, the validity of the constraints, together
with the formula (4.29)), implies 1?{“0’20 = 0, see (4.18]), (4.36). Hence, f{uo,ﬁgf),@jb vanish everywhere
and D = D. By ([:29), R\’ = 0, and hence, R,,, = Ry, = 0.

In the presence of a timelike boundary, we notice that in a typical L?-energy estimate for (4.25)-(4.28)),
the arising 7-boundary terms equal

ﬁooﬁgo + ﬁg?)ﬁiovolst = ﬁooﬁ?,o + ﬁ%@)ﬁBO + ﬁgé)ﬁgovolst " 0. (448)
St St

Therefore, an energy estimate closes and the previous argument applies. Since D = D is the actual Levi-Civita
connection of g, the variables K;;,';j;, are the true connection coefficients of the orthonormal frame {e, }3,
given by , . Hence, the geometric formulas are valid, where xpa, xap are the components of
the actual second fundamental form y of T, which vanish by virtue of the condition . The component
X00 = (D¢, e3,€0) = —g(es, De,ep) vanishes, since eq is geodesic. We conclude that x =0, i.e., T is totally
geodesic. O

4.4 Proof of Theorems 1.1},

It is a combination of Propositions We note in particular that geometric uniqueness is
immediate from the homogeneity of our boundary conditions. After setting up the geodesic gauge in any
vacuum spacetime with totally geodesic timelike boundary, the relevant connection coefficients will vanish, in
which case the uniqueness statement for the reduced system of equations applies to solutions with the same
initial data.
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