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Abstract

We give a short proof of local well-posedness for the initial boundary value problem in general
relativity with sole boundary condition the requirement that the boundary is umbilic. This includes
as a special case the totally geodesic boundary condition that we had previously addressed in [8]. The
proof is based on wave coordinates and the key observation that the momentum constraint is always
valid for umbilic boundaries. This allows for a greater freedom in the choice of boundary conditions,
since imposing the umbilic condition also provides Neumann boundary conditions for three of the
four wave coordinates conditions. Moreover, the umbilic condition, being geometric, implies that
geometric uniqueness in the sense of Friedrich holds in this specific case.

1 Introduction

In this note, we establish the local well-posedness of the initial boundary value problem (IBVP) for the
Einstein vacuum equations

Ric(g) = 0, (1.1)

in the specific case of an umbilic timelike boundary.

1.1 The initial boundary value problem in General Relativity

In the standard formulation of the Cauchy problem for the Einstein vacuum equations, given a Riemannian
manifold (Σ, h) and a 2-tensor k satisfying the constraint equations

R(h)− |k|2 + (trk)2 = 0, (1.2)

divk − dtrk = 0, (1.3)

where R(h) is the scalar curvature of the Riemannian metric h and all spatial operators are taken with
respect to h, the goal is to construct a Lorentzian manifold (M, g) solution to the Einstein equations,
together with an embedding of Σ intoM such that (h, k) coincides with the first and second fundamental
forms of the embedding. For the IBVP, we now require that Σ is a manifold with boundary S. We
consider an additional manifold B = R × S, a section S0 = {0} × S of B, which is identified with the
boundary S of Σ via a diffeomorphim ψs,s0 , and a set of functions BC on B representing source terms
for the chosen boundary conditions. On top of the constraint equations, the initial and boundary data
must also now verify the so-called corner or compatibility conditions, a set of equations involving h, k,BC,
their derivatives at all orders on S and S0, as well as a given real function ω on S, which eventually will
represent the angle between the initial slice and the timelike boundary.

A solution to the IBVP is then a Lorentzian manifold (M,g) with a timelike boundary T , an em-
bbeding ψt of a neigbhoorhood of S0 ⊂ B into T , such that the boundary data BC can be identified
with the corresponding data on T , and an embedding ψi of Σ into M respecting the initial data, with
ψi(S) = ψt(S0), such that ψ−1

t ◦ [ψi]|S = ψs,s0 and the angle between T and ψi(Σ) is ω ◦
[
ψ−1
i

]
ψi(S)

.

There is a priori a large freedom in the choice of boundary conditions. The sources BC could correspond
to the values of tensor fields encoding the geometry of T , for instance, the first or second fundamental
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forms of T , its conformal geometry, some curvature invariants or they could correspond to components
of geometric tensor fields in some gauge and boundary conditions for the gauge itself.

The IBVP is related to many important aspects of general relativity and the Einstein equations, such as
numerical relativity, the construction of asymptotically Anti-de-Sitter spacetimes, timelike hypersurfaces
emerging as the boundaries of the support of massive matter fields or the study of gravitational waves in a
cavity [3] and their nonlinear interactions. This problem was first addressed for the Einstein equations in
the seminal work of Friedrich-Nagy [12], as well as by Friedrich [9] in the related Anti-de-Sitter setting1.
Well-posedness of the IBVP has since been obtained in generalized wave coordinates, see [16] or the recent
[1]2 and for various first and second order systems derived from the ADM formulation of the Einstein
equations, see for instance [7, 17] and previous work in numerics [2, 13]. We refer the reader to [18] for
an extensive review of the subject.

1.2 Geometric uniqueness and completeness

One of the remaining outstanding issues, concerning the study of the Einstein equations in the presence of
a timelike boundary, is the geometric uniqueness problem of Friedrich [10]. Apart from the construction
of asymptotically Anti-de-Sitter spacetimes [9], where the timelike boundary is a conformal boundary
at spacelike infinity and our recent work in the totally geodesic case, [8], all results establishing well-
posedness, for some formulations of the IBVP, impose certain gauge conditions on the boundary, and the
boundary data depend on these choices. In particular, given a solution to the Einstein equations with a
timelike boundary, different gauge choices will lead to different boundary data, in each of the formulations
for which well-posedness is known.

While the totally geodesic case handled in [8] verifies the geometric uniqueness property, it does not
verify geometric completeness, in the sense that, it obviously cannot be used to reconstruct all globally
hyperbolic vacuum solutions of the Einstein equations with a timelike boundary, since the boundary
conditions have no freedom. The umbilic case that we study here is similar, it verifies geometric uniqueness
but not geometric completeness.

In the recent [11], Friedrich proves that the gauge introduced in [12] verifies geometric completeness.
This work also provides an alternative proof to ours in the totally geodesic case. In fact, the strategy of
[11] can also be extended to recover the umbilic case that we treat here. Interestingly, the proof of [11],
for the totally geodesic case, relies on the Friedrich-Nagy [12] gauge and formulation of the IBVP and
the a posteriori resolution of a hyperbolic system tangential to the boundary. By comparison, the proof
that we provide here relies on the simpler wave gauge and is more direct, but of course it is not clear a
priori whether our formulation can be used to study other boundary conditions.

In the Anti-de-Sitter setting, the geometric uniqueness and completeness problems admits one solution:
in [10], Friedrich proved that one can take the conformal metric of the boundary as boundary data, which
is a geometric condition independent of any gauge. Even in the Anti-de-Sitter setting, it is actually
possible to formulate other boundary conditions, such as dissipative boundary conditions, for which one
knows how to prove well-posedness, however, with a formulation of the boundary conditions that is gauge
dependent and thus, such that we do not know whether geometric uniqueness holds or not.

1.3 The initial value problem for umbilic boundary

Recall that a hypersurface T in a Lorentzian manifold (M, g) is said to be umbilic if the first and second
fundamendal forms (H,χ) of T verify

χ = λH, (1.4)

for some constant λ ∈ R. We refer to (1.4) as the λ-umbilic boundary condition and say that T is
λ-umbilic. Such hypersurfaces occur for instance in black hole spacetimes possessing a photon sphere,
such as the Schwarzschild spacetime and the generalizations introduced in [5].

Our main result concerning the IBVP can be formulated as follows.

Theorem 1. Let (Σ, h, k) be a smooth initial data set for the Einstein vacuum equations, such that Σ is
a 3-manifold with boundary ∂Σ = S. Also, let λ ∈ R. For a smooth function ω defined on S, we assume
that the corner conditions (see Section 3) corresponding to the λ-umbilic boundary condition hold on S.

1See also [4, 6] for extensions and other proofs of well-posedness in the Anti-de-Sitter case.
2To be more precise, the boundary data in [1] relies on an auxiliary wave map equation akin to generalized wave

coordinates. This introduces a geometric framework to address the IBVP, albeit for the Einstein equations coupled to the
auxiliary wave map equation.
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Then, there exists a smooth Lorentzian manifold (M, g) solution to the Einstein vacuum equations with

boundary ∂M = Σ̂ ∪ T such that

1. there exists an embedding ψi of Σ onto Σ̂ with (h, k) coinciding with the first and second fundamental
form of the embedding,

2. T ∩ Σ̂ = ψi(S) and T is a timelike hypersurface emanating from i(S) at an angle ω ◦ [ψ−1
i ]|ψi(S)

relative to Σ̂,

3. T is λ-umbilic,

4. geometric uniqueness holds: given any other solution (M′, g′) verifying 1, 2 and 3, (M, g) and
(M′, g′) are both extensions3 of yet another solution verifying 1, 2 and 3.

Remark 1. The IBVP has also been studied in the related case of the Ricci flow. In particular, a result
analogous to Theorem 1 holds in this case [19]. In the recent work [20], it is shown, thanks mainly to the
parabolic regularization of the equations, that any initial Riemannian metric with boundary can in fact be
evolved by the Ricci flow such that the boundary becomes instantaneously umbilic for positive time. This
is in sharp contrast with the case of Theorem 1, where, due to the hyperbolic nature of the equations,
the corner conditions must hold initially (see in particular Remark 2 below). We also refer to [21] for
additional results on the IBVP for Ricci flow with different boundary conditions.

1.4 Approach to local well-posedness

We set up the IBVP with umbilic boundary in a wave coordinates gauge. As we show in Proposition
1, under appropriate conditions on the coordinate system (t, xA, x) ∈ [0, T ] × UA × [0, ε], such that in
particular T corresponds to x = 0 and Σ to t = 0 (see Section 2.1), the reduced IBVP with umbilic
boundary for the components of the metric, in a neighborhood of a point on S, takes the form (see
Section 1.6 for our index notation):

gαβ∂α∂βgµν = Qµν(∂g, ∂g),

gxt = gxA = 0, on T ,
∂xgij = 2λ(gxx)

1
2 gij , ∂xgxx = 6λ(gxx)

3
2 , on T ,

g00 = −Φ2+vpv
p, g0p = vp, gpq = hpq, ∂0gpq = −2Φkpq + Lvhpq, on Σ,

∂0g00 = −4vpΦ∂pΦ + 2vp∂p(vqv
q) + Φ2(hpq − Φ−2vpvq)(2Φkpq − Lvhpq), on Σ,

∂0g0p = −vq(2Φkpq − Lvhpq − ∂qvp + ∂pvq)− Φ∂pΦ + 1
2∂(vqv

q)
− 1

2Φ2(hrs − Φ−2vrvs)∂phrs, on Σ,

(1.5)

in the case where Σ is orthogonal to T (see [14]). Here Φ, vp are the initial lapse and shift vector field,
vp = hpqv

q, with n = Φ−1(∂t − v) being the future unit normal to Σ, and L the Lie derivative operator.
The initial conditions for the time derivatives of g00, g0p are such that the wave coordinates condition
Γµ = 0 is valid on Σ. The first set of boundary conditions in (1.5) is gauge, induced by our choice
of coordinates (see Section 2.1), while the second set of Robin type boundary conditions for gij , gxx is
induced by the λ-umbilic boundary condition (1.4).

Remark 2. In order for the initial configurations to be consistent with the λ-umbilic boundary condition
(1.4) and the compatibility conditions (see Section 3), we cannot choose the coordinates to be initially
Gaussian, but we must instead allow for non-trivial initial lapse and shift vector field Φ, vp : UA × [0, ε].
Indeed, in view of the boundary conditions, Φ, vp = gpqv

q must verify

∂xg00 = 2λ(gxx)
1
2 g00 ⇔ ∂xΦ = 2λ(gxx)

1
2 Φ on S,

∂xg0p = 2λ(gxx)
1
2 g0p ⇔ ∂xvp = 2λ(gxx)

1
2 vp on S.

Hence, after prescribing their values on S, the boundary conditions and the higher order compatibility
conditions of Section 3 imply that the derivatives of Φ, vp are fixed at all orders on S, if one wants
to construct smooth solutions. Note that the value of g03 = gxt on S is forcibly zero so that the first

3Recall that (M, g) is an extension of (M′′, g′′), if there exists an isometric embedding ψ : M′′ → M, preserving
orientation, such that ψ ◦ i′′ = i and ψ ◦ ψ′′

t = ψt, where i′′ : Σ → M′′, ψ′′
t : B → M′′ are the embeddings of the initial

hypersurface and timelike boundary into M′′ respectively.
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boundary condition in (1.5) is initially verified. In the totally geodesic case, λ = 0, the Gaussian choice
Φ = 1, vp = 0 on Σ is permitted.4

Remark 3. The IBVP (1.5) contains 10 boundary conditions for the 10 metric components gxi, gij , gxx,
i, j = 0, 1, 2, and we are a priori not allowed to impose additional conditions. In some previous works
concerning the IBVP in wave coordinates, the wave coordinates condition Γi = 0 was part of the boundary
conditions, such that they could be propagated by the equations (see [16]). In our case, we do not impose
Γi = 0 on the boundary, instead, the boundary conditions for the propagation of the gauge are derived
from the umbilic condition, see Section 4.

Once we have formulated the IBVP for the Einstein vacuum equations with umbilic boundary as the
reduced system (1.5), local well-posedness follows by standard theory and the domain of dependence
property. Indeed, it amounts to solving (1.5) locally near a point on the boundary S. This is based on
deriving standard energy estimates. The only part which requires some attention is how to treat the
arising boundary integrals for the components gij , gxx that satisfy Robin type boundary conditions. We
recall how to derive such energy estimates for the wave equation with boundary in the appendix.

1.5 Overview

In Section 2, we present the set-up for the initial boundary problem with umbilic boundary. In particular,
we introduce the wave coordinates that we will work with and the boundary conditions for the reduced
system. In Section 3, we review the derivation of the corner conditions for an umbilic boundary. Section
4 is devoted to the recovery of the Einstein equations, and in particular, the derivation of the boundary
conditions for the gauge from the umbilic boundary condition. The key observation here is that the
momentum constraint for the umbilic timelike boundary T is automatically satisfied, see Lemma 1.
Finally, in Appendix A, we briefly review the energy estimates for the wave equation with Robin boundary
conditions which lead to the well-posedness of the IBVP for the reduced system (1.5).

After recovering the full Einstein vacuum equations (1.1) and the umbilic condition (1.4) from the
solution to (1.5), see Propositions 1, 2, the geometric uniqueness statement in Theorem 1 follows in a
straightforward way from the homogeneity of the umbilic condition (1.4) and its geometric nature, thus,
completing the proof of Theorem 1.

Acknowledgements. We would like to thank M.T. Anderson for many interesting discussions on

the subject, in particular, for forwarding us E. Witten’s question on the IBVP with umbilic boundary,

which led us to write this paper. Both authors are supported by the ERC grant 714408 GEOWAKI,

under the European Union’s Horizon 2020 research and innovation program.

1.6 Notations

We use Einstein’s summation for repeated upper and lower indices. Greek indices α, β, γ, µ, ν range over
{0, 1, 2, 3} and refer to the spacetime coordinates (t, xA, x), A = 1, 2, with x0 = t, x3 = x. Latin indices
i, j, l,m range over {0, 1, 2} and refer to the coordinates (t, xA). These are used for the components of
tensors that are tangential to the timelike boundary T . Latin indices p, q, r range over {1, 2, 3} and refer
to the coordinates (xA, x) or (yA, y), which are also used for the components of tensors tangential to the
initial hypersurface Σ.

2 Setting up the IBVP with umbilic boundary in wave coordi-
nates

Let (M, g) be an 3 + 1 dimensional Lorentzian manifold with boundary T ∪ Σ, where Σ is a Cauchy
hypersurface in the sense of [14] and T is a timelike boundary with outgoing unit normal N . We assume
that the boundary T is umibilic, i.e. the second fundamental form χ of T verifies (1.4), for some constant
λ ∈ R. In particular, the mean curvature of T is constant

trχ = 3λ,

4For Φ, it is clear that Φ = 1 on Σ is incompatible with the requirement ∂xΦ = 2λ(gxx)
1
2 Φ in the λ 6= 0 case. However,

in order to see the incompatibility of the initial choice vp = 0 on Σ, one needs to check the higher order compatibility
conditions on S, cf. Section 3. One can easily verify this, for example, by examining the second order compatibility
conditions of g01, g02. Hence, one cannot have a classical C2 solution with initial zero shift vector field. It might be possible
though to obtain a weak solution.

4



where the trace is taken relative to the induced metric H on T . We assume for simplicity that Σ is
orthogonal to T . The general case where Σ intersects T at an arbitrary angle ω can be reduced to the
orthogonal one by first solving the standard initial value problem in a domain of dependence region and
then choosing a new Cauchy slice orthogonal to the boundary, see [8, Section 3.2] for an example of such
a reduction.

2.1 The choice of coordinates

Recall that on a globally hyperbolic manifold with boundary (see [14]), the wave equation

�gψ = 0,

with initial data on Σ and either Dirichlet or Neumann boundary conditions on T is well-posed. This
follows from standard energy estimates and the domain of dependence property.

Let yA, y, A = 1, 2 be local coordinates on the Cauchy hypersurface Σ defined in a neighborhood of a
point on S, such that y is a boundary defining function of S and ∂y is normal to TS (e.g. the h-distance
from S):

y ≥ 0, {y = 0} = S, ∂y ∈ TΣ ∩ (TS)⊥.

Also, let ε > 0 be small enough such that the range of (yA, y) contains a set UA× [0, ε], where UA is some
open set of R2.

In [0, T ]× UA × [0, ε] ⊂M, we consider coordinates (xα) = (t, xA, x), A = 1, 2, such that

� The wave coordinates condition is verified

�gx
γ = 0 ⇔ gαβΓγαβ = 0.

� t, xA verify the homogogeneous Neumann boundary conditions N(t) = N(xA) = 0 on T .

� x verifies the Dirichlet boundary condition x = 0 on T .

� On the initial hypersurface Σ, t = 0 and (xA, x) = (yA, y).

� With respect to the future normal n to Σ, n(t) = Φ−1 and n(xA) = −Φ−1vA, and n(x) = −Φ−1v3

on Σ, where Φ, vp : UA × [0, ε]→ R are functions of our choice, consistent with T being λ-umbilic,
see Remark 2.

Each coordinate function t, xA, x, A = 1, 2 verifies a wave equation with either homogeneous Dirichlet
or Neumann boundary data and so they are well-defined. Moreover, at least in a sufficiently small
spacetime neighborhood of the corner S, x is a boundary definining function of T , and (t, xA, x) forms a
local coordinate system.

Remark 4. By our choice of coordinates, N = (gxx)−
1
2 ∂x. This is in particular valid initially, since

x = y on Σ. Of course, the wave coordinates xγ must satisfy higher order compatibility conditions on
S, given that they are defined by the above boundary value problem. These are actually implied by the
corresponding compatibility conditions for the metric components gµν , (2.8), (2.9), and the higher order
ones computed in Section 3 below. Indeed, in Section 4 we show that a solution to the reduced system
(2.3) is also a solution to the Einstein vacuum equations. Hence, by the formulas (2.1)-(2.2) it follows
that the vanishing of the derivatives of the variables gαβΓγαβ on S, ie. the compatibility conditions for
the wave coordinates xγ , is equivalent to the vanishing of the corresponding derivatives of the reduced
equations on S, that is, the compatibility conditions for gµν .

2.2 The reduced equations with the induced initial and boundary conditions

Recall that for any Lorentzian manifold (M, g),

Ricµν(g) = −1

2
gαβ∂α∂βgµν +

1

2
Qµν(∂g, ∂g) +

1

2
(∂µΓν + ∂νΓµ) , (2.1)

where Qµν(∂g, ∂g) is a quadratic form in ∂g, with coefficients that are rational functions of g, and

Γµ = gµγg
αβΓγαβ . (2.2)
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Proposition 1. Consider the region [0, T ]× [0, ε]×UA ⊂M, covered by the wave coordinates (t, x, xA),
for some T > 0, as defined in Section 2.1. Then the IBVP for the Einstein vacuum equations with
λ-umbilic boundary reduces to the system of equations and initial/boundary conditions (1.5).

Moreover, given a solution to (1.5), it follows that {x = 0} = T is λ-umbilic and the wave coordinates
condition for the coordinate x, Γx = 0, is verified on the boundary.

Proof. In view of (2.1) and our choice of coordinates in Section 2.1, the Einstein vacuum equations (1.1)
reduce to the system of wave equations:

gαβ∂α∂βgµν = Qµν(∂g, ∂g). (2.3)

Initial data for the metric. These are derived based on the standard 3+1 decomposition of the
Einstein equations, relative to a time slicing having a general lapse and shift vector field, see for example
[15, Chapter 5] for more detailed computations. From our choice of initial data for the wave coordinates,
the following initial conditions hold

g00 = −Φ2 + vpv
p, g0p = vp, gpq = hpq, ∂tgpq = −2Φkpq + Lvgpq, on Σ, (2.4)

where hpq, kpq are the components of the first and second fundamental form of Σ in the (yA, y) coordinate
system. As a consequence, the components of the inverse metric equal

g00 = −Φ−2, g0p = Φ−2vp, gpq = hpq − Φ−2vpvq, on Σ.

The initial conditions for ∂tg0µ are derived, as usual, from the fact that the wave coordinates condition
Γµ = 0 is verified on Σ:

0 = Γ0 = g0γg
αβΓγαβ = gαβ(∂αgβ0 −

1

2
∂0gαβ)

0 =− 1

2
Φ−2∂0g00 + g0p∂0gp0 + gp0∂pg00 −

1

2
gpq∂0gpq − g0p∂0g0p

0 =− 1

2
Φ−2∂0g00 − Φ−2vp∂p(Φ

2 − vqvq) +
1

2
(hpq − Φ−2vpvq)(2Φkpq − Lvhpq)

∂tg00 =− 4vpΦ∂pΦ + 2vp∂p(vqv
q) + Φ2(hpq − Φ−2vpvq)(2Φkpq − Lvhpq) (2.5)

and

0 = Γp = gαβ(∂αgβp −
1

2
∂pgαβ)

0 =− Φ−2∂0g0p + g0q∂0gqp + gq0∂qg0p −
1

2
g00∂pg00 − g0q∂pg0q −

1

2
grs∂pgrs

0 =− Φ−2∂0g0p − Φ−2vq(2Φkpq − Lvhpq) + Φ−2vq∂qvp −
1

2
Φ−2∂p(Φ

2 − vqvq)

− Φ−2vq∂pvq −
1

2
(hrs − Φ−2vrvs)∂phrs

∂tg0p =−vq(2Φkpq − Lvhpq − ∂qvp + ∂pvq)− Φ∂pΦ +
1

2
∂(vqv

q)− 1

2
Φ2(hrs − Φ−2vrvs)∂phrs (2.6)

Boundary conditions for the shift vector field. From the definition of the coordinates in Section
2.1, we have the boundary conditions

gxt = 0, gxA = 0, on T , (2.7)

which amounts to saying that the shift vector field gxi∂i of the constant x-hypersurfaces, i ranging in
{t, A} (see Section 1.6), vanishes on the boundary T = {x = 0}.5

Boundary conditions for umbilic boundary. The induced metric on the boundary T takes the form

H = gttdt
2 + 2gtAdx

Adt+ gABdx
AdxB ,

and the components of the second fundamental form are given by

χij = g(D∂i∂j , N),

5This is not to be confused with the shift vector field vp of the constant t-hypersurfaces.
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where N = −(gxx)−
1
2 ∂x is the outgoing unit normal to T .

At x = 0, we have

χij = −1

2
(gxx)−

1
2 (∂igjx + ∂jgix − ∂xgij) =

1

2
(gxx)−

1
2 ∂xgij .

Hence, the λ-umbilic condition (1.4) implies the Robin type boundary conditions

∂xgij = 2λ(gxx)
1
2 gij , on T . (2.8)

In turn, the wave coordinates condition Γx = 0, evaluated along the boundary, gives

0 = gxγg
ijΓγij + gxγg

xxΓγxx = −1

2
gij∂xgij +

1

2
gxx∂xgxx = −3λ(gxx)

1
2 +

1

2
gxx∂xgxx.

Hence, we obtain another Robin type boundary condition for gxx:

∂xgxx = 6λ(gxx)
3
2 , on T . (2.9)

Notice that the derivations for (2.7), (2.9) are reversible, for a solution to (1.5). Therefore, the last
part of the proposition is also confirmed.

3 Higher order compatibility conditions with umbilic boundary

Apart from the boundary conditions (2.7), (2.8), (2.9), the initial data (2.4)-(2.6) must also satisfy
compatibility conditions at all higher orders on the boundary of the initial hypersurface, ∂Σ = S. These
are found by iteratively applying the differential operator (2.3) to the boundary conditions and evaluating
the resulting expression at x = 0. We first illustrate the procedure in an abstract way. Let BC be the
boundary condition operator for gµν , ie. BCgµν = 0. Then we compute

gαβ∂α∂β(BCgµν) = [gαβ∂α∂β ,BC]gµν + BC(gαβ∂α∂βgµν) = [gαβ∂α∂β ,BC]gµν + BC[Qµν(∂g, ∂g)]

On the other hand, expanding the wave operator in the LHS, evaluating the resulting expression at x = 0,
and using the boundary condition for gµν gives

gαβ∂α∂β(BCgµν)
(2.7)
= gxx∂x∂x(BCgµν) + gij∂i∂j(BCgµν) = gxx∂x∂x(BCgµν), at x = 0,

since ∂i, ∂j are tangential to the boundary. Hence, the next order compatibility condition for the initial
datum of gµν reads:

∂x∂x(BCgµν) = gxx[gαβ∂α∂β ,BC]gµν + gxxBC[Qµν(∂g, ∂g)], at x = 0.

Setting BC(n)gµν = 0 to be the compatibility condition of gµν of order n, BC(1) := BC, and repeating the
above procedure, we obtain

BC(n+1)gµν := ∂x∂x(BC(n)gµν)− gxx[gαβ∂α∂β ,BC(n)]gµν − gxxBC(n)[Qµν(∂g, ∂g)] = 0, (3.1)

as the n+ 1 order compatibility condition at x = 0.
Note that we can compute all derivatives of gµν on Σ, in terms of the initial conditions (2.4)-(2.6),

using the reduced equations (2.3), so the above conditions are well-defined at the level of the initial data.
As an example, the boundary condition (2.7) for the metric components gxi results in the following

compatibility conditions at x = 0:

∂x∂xgxi = gxxQxi(∂g, ∂g),

∂x∂x∂x∂xgxi =− gxxglm∂l∂m[gxxQxi(∂g, ∂g)] + gxx[gαβ∂α∂β , ∂x∂x]gxi + gxx∂x∂x[Qxi(∂g, ∂g)]

etc.

For the Robin type boundary conditions (2.8), (2.9), at x = 0, we have

∂x∂x∂xgij = ∂x∂x(2λg
1
2
xxgij)− gxx∂x(gαβ)∂α∂βgij + gxx∂x[Qij(∂g, ∂g)]− 2λgxxg

αβ∂α∂β(g
1
2
xxgij)

∂x∂x∂xgxx = ∂x∂x(6λg
3
2
xx)− gxx∂x(gαβ)∂α∂βgxx + gxx∂x[Qxx(∂g, ∂g)]− 6λgxxg

αβ∂α∂β(g
3
2
xx)

etc.

The above RHSs could be further simplified by plugging in (2.3) whenever the wave operator gαβ∂α∂β
acts on a single metric component, after applying chain rule to each term.
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3.1 Compatibility conditions at the level of the geometric initial data

The higher order compatibility conditions (3.1), for the reduced IBVP with umbilic boundary (1.5),
translate to compatibility conditions for h, k on S, by using the form of the initial configurations (2.4)-
(2.6). According to Remark 2, purely spatial derivatives of g0β can be written as functions of hxx and its
derivatives. If additionally a time derivative acts on g0β , then the corresponding term can be expressed
in terms of hpq, kpq and their derivatives, replacing Φ, vp and with hxx according to Remark 2. This way
(3.1) can be rewritten purely in terms of the components of the geometric initial data for the Einstein
vacuum equations, and their derivatives at all orders, expressed in the coordinate system (xA, x) or
(yA, y).

4 Propagation of the gauge

Consider a solution to the reduced IBVP (1.5). According to Proposition 1, {x = 0} = T is λ-umbilic
and the wave coordinates condition for x is verified on the boundary:

Γx = 0, on T . (4.1)

4.1 The momentum constraint

The following well-known fact, which follows directly from the umbilic condition (1.4), is key to the
propagation of the wave gauge. Indeed, it holds irrespectively of (M, g) verifying the Einstein vacuum
equations, and thus, it is applicable to the solutions obtained from the reduced IBVP (1.5).

Lemma 1. The momentum constraint

∂itrχ−∇jχji = 0 ⇔ Ricαi(g)Nα = 0,

is automatically satisfied for an umbilic boundary.

Proof. It is a direct consequence of the twice contracted Codazzi equations, restricted to the boundary:

Ricαi(g)Nα = ∂itrχ−∇jχji, on T ,

where ∇ is the Levi-Civita connection of H. Since χ = λH, for some λ ∈ R, trχ is constant and ∇
annihilates χ, confirming the conclusion.

4.2 An IBVP for Γµ with homogeneous Dirichlet/Neumann conditions

In order to prove that a solution to the reduced IBVP (1.5), we need to propagate the wave gauge.
For the initial value problem, this is done by observing that the components Γµ, given by (2.2), satisfy
a system of wave equations with trivial initial data. For the IBVP, to propagate the vanishing of Γµ,
homogeneous boundary conditions are also required. Since we are not allowed to impose any further
boundary conditions, these will have to be induced from the umbilic condition (1.4).

Proposition 2. Let g be a solution to the reduced IBVP (1.5) in [0, T ]×UA× [0, ε]. Then the components
Γµ satisfy the IBVP

gαβ∂α∂βΓµ + Lαβµ (∂g)∂αΓβ = 0, in [0, T ]× UA × [0, ε],

Γx = ∂xΓi = 0, on T ,

Γµ = ∂0Γµ = 0, on Σ,

(4.2)

where Lαβµ (∂g) is linear in ∂g. In particular, the Γµ’s vanish in a domain of dependence region.

Proof. Given a solution to the reduced equations (2.3), from the formula (2.1) of the Ricci tensor, we
have

Ricµν(g) = ∂µΓν + ∂νΓµ, (4.3)

where Γµ is defined via (2.2). Taking the divergence of (4.3) with respect to µ and using the twice
contracted second Bianchi idendity, we obtain a linear system of wave equations for Γµ as in (4.2).
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By virtue of the initial conditions (2.5)-(2.6), and the validity of the constraint equations (1.2)-(1.3)
initially, it holds Γµ = ∂tΓµ = 0 on Σ.

On the other hand, in view of the umbilic condition and Lemma 1, Ricxi(g) = 0 on the boundary,

since N = −(gxx)−
1
2 ∂x. Thus, using the validity of (4.1), the identity (4.3) with indices x and i gives the

homogeneous Neumann boundary conditions:

∂xΓi = 0, on T ,

as asserted.

A The wave equation with Robin boundary conditions

Consider the following IBVP for the linear wave equation �gφ = 0,
N(φ) = Rφ, on T ,
φ = f0, n(φ) = f1, on Σ.

(A.1)

on a globally hyperbolic manifold (M, g), having a Cauchy hypersurface Σ with future unit normal
n = Φ−1(∂t − v) and a timelike boundary T with outgoing unit normal N .

In the application to (1.5), the coefficient R appearing in the boundary conditions is a given power of

gxx, as in (2.8), (2.9), since N = −(gxx)−
1
2 ∂x. Note that the covariant wave operator �g = gαβ∂α∂β −

gαβΓγαβ∂γ does not change the form of the reduced equations (2.3). We merely consider it here for
convenience in employing the divergence theorem below.

The local well-posedness of the IBVP (A.1) is based on a standard energy estimate that we here
briefly recall.

Proposition 3. Assume that (M, g) is a Lorentzian manifold with timelike boundary T and consider a
compact domain of dependence region D containing a neighborhood of a point on the boundary, foliated
by Cauchy hypersurfaces Σt, with Σ0 = Σ. Let (t, xA, x) be a coordinate chart that covers D, such that x
is a boundary defining function of T . Also, let φ be a solution to (A.1). Then, for any t ≥ 0, we have∫

Σt

(
|∂φ|2 + φ2

)
volΣt

≤ Ct
∫

Σ

(
|∂φ|2 + φ2

)
volΣ.

where the constant Ct depends on the C1(D) norms of g,R.

Proof. Consider the energy momentum tensor

Tαβ [φ] = ∂αφ∂βφ−
1

2
gαβg

µν∂µφ∂νφ.

Let T0β [φ] = T [φ](∂t, ∂β) and define the energy at time t as

E(t) :=

∫
Σt

T [φ](∂t, nΣt
)volΣt

+ CR

∫
Σt

φ2volΣt
, (A.2)

for some constant CR depending on the C0(D) norms of g,R, where nΣt
is the future unit normal to Σt.

A standard application of the divergence theorem to the vector field Tα0 [φ] = gαβT0β [φ], in the domain
of dependence region considered, allows to estimate E(t) by its time integral, the initial data, and the
boundary terms:

E(t) ≤E(0) + C

∫ t

0

E(s)ds+

∫
x=0, 0≤s≤t

√
−HT0β [φ]NβdsdxA

=E(0) + C

∫ t

0

E(s)ds+

∫
x=0, 0≤s≤t

√
−H∂tφRφdsdxA,

where
√
−H denotes the induced volume form on the boundary and where we have discarded the flux

term from the null boundary of the domain of dependence region, since it always has a favorable sign.
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The last term above can be absorbed in the energy by integrating by parts in ∂t and then using trace
inequality: ∫

x=0, 0≤s≤t

√
−H∂tφRφdsdxA = −

∫
x=0, 0≤s≤t

1

2
∂t(
√
−HR)φ2dsdxA

+

∫
{x=0}∩Σs

1

2

√
−HRφ2dxA

∣∣∣∣s=t
s=0

≤ C

∫ t

0

E(s)ds+DR

∫
Σt

φ2volΣt + CE(0),

Choosing CR large enough in (A.2) to begin with, we deduce that

E(t) ≤ CE(0) + C

∫ t

0

E(s)ds.

Thus, the desired energy estimate follows by Grönwall’s inequality.
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