Ordinary Differential Equations

Final exam 11/1/2023. Instructor: Grigoris Fournodavlos

Total points: 13. Maximum grade: 10. Duration: 2,5 hours.

Problem 1 (2 points) True or False? Justify your response:

- (i) The IVP y' = |y|, $y(0) = y_0$, has a unique solution defined near t = 0.
- (ii) The unique solution to the IVP $y' = y^{\frac{1}{2}}$, y(0) = 0, is the zeroth one.
- (iii) Let f(y) be locally Lipschitz in \mathbb{R} . Then the IVP y' = f(y), y(0) = 1 has a global solution.
- (iv) Let f(y) be locally Lipschitz in \mathbb{R} and let y be the solution to the IVP y' = f(y), $y(t_0) = y_0$, with maximal domain of definition (a,b), which is also bounded. Then $(a,b) = \mathbb{R}$.

Problem 2 (2 points) Let f(y) be Lipschitz in all of \mathbb{R} , ie. $|f(y_2) - f(y_1)| \leq C|y_2 - y_1|$ for all $y_1, y_2 \in \mathbb{R}$, and let $y : [0, T) \to \mathbb{R}$, T > 0, be the solution to the IVP y' = f(y), $y(0) = y_0$. Show that

- (i) $\sup_{t \in [0,T)} |y(t)|$ is finite. [Hint: Use Gronwall's inequality.]
- (ii) The solution y(t) extends to $[0, +\infty)$.

Problem 3 (2 points) (i) Find the general solution to the system

$$\vec{y}' = A\vec{y}, \qquad A = \begin{bmatrix} -4 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & -1 & 2 \end{bmatrix}.$$

(ii) Choose three linearly independent solutions and show that their Wronskian is constant.

Problem 4 (2 points) The flow $\vec{\varphi}(t, \vec{\xi})$ of a vector field $\vec{v}(\vec{y})$ solves the IVP

$$\vec{y}^{\,\prime} = \vec{\nu}(\vec{y}), \qquad \vec{y}(0) = \vec{\xi}$$

and the integral curve that passes through $\vec{\xi}$ at t = 0 is given by $\vec{\varphi}(\cdot, \vec{\xi})$.

- (i) Compute the flow of $\vec{v}(\vec{y}) = (2y_2, 8y_1)$, where $\vec{y} = (y_1, y_2)$.
- (ii) Show that for $\vec{\xi} = (1,0)$ the corresponding integral curve is a hyperbola.

Problem 5 (2,5 points) Find the bifurcation values for the family of equations

$$y' = (y - \mu)(y^2 - 4y + 3), \qquad \mu \in \mathbb{R},$$

the equilibrium points, the stability/instability of the latter, and draw the phase diagrams for the different values of μ .

Problem 6 (2,5 points) (i) Find the equilibrium points of the system

$$\begin{cases} y_1' = y_1^3 - y_1 + \frac{1}{2}y_2^2 \\ y_2' = y_2(y_1^2 - \frac{1}{2}y_1) \end{cases}$$

and study their stability via the linearization. (1,5 points)

(ii) Show that (0,0) is a Lyapunov stable equilibrium point. (1 point)