A note on the Hansen-Mullen conjecture for self-reciprocal irreducible polynomials

Theodoulos Garefalakis, Giorgos Kapetanakis

Department of Mathematics and Applied Mathematics, University of Crete, Voutes Campus, 70013, Heraklion, Greece

Abstract

In this note, we complete the work in [Finite Fields Appl., 18(4):832–841, 2012] by using computer calculations to prove that for odd \(q \), there exists a monic self-reciprocal irreducible polynomial of degree \(2n \) over \(\mathbb{F}_q \), with any of its first (hence any of its last) \(\lfloor n/2 \rfloor \) coefficients arbitrarily prescribed, with a couple of genuine exceptions.

Keywords: Self-reciprocal polynomials, Hansen-Mullen conjecture

2010 MSC: 12E05, 12E10, 11T06

Let \(\mathbb{F}_q \) denote the finite field of \(q \) elements. The famous Hansen-Mullen [6] conjecture states that there exists a monic irreducible polynomial of degree \(n \) over \(\mathbb{F}_q \) with its \(k \)-th coefficient prescribed to \(a \), unless \(k = a = 0 \) or \(q \) even, \(n = 2 \), \(k = 1 \), and \(a = 0 \). Hansen and Mullen proved their conjecture for \(k = 1 \).

Wan [7] proved that the conjecture holds, for \(q > 19 \) or \(n \geq 36 \) and Ham and Mullen [5] proved the remaining cases with the help of computers. Those cases have also been settled theoretically by Cohen and Prešern [2, 3].

In [4], the existence of self-reciprocal irreducible monic polynomials with prescribed coefficients, over \(\mathbb{F}_q \) for odd \(q \), was considered. It was shown that if

\[
q^{n-k-1} \geq \frac{16}{5} k(k + 5) + \frac{1}{2},
\]

then there exists a monic self-reciprocal irreducible polynomial of degree \(2n \) over \(\mathbb{F}_q \) with its \(k \)-th coefficient arbitrarily prescribed. As a corollary of this, it was also shown that if \(k \leq n/2 \), then there exists a monic self-reciprocal irreducible polynomial of degree \(2n \) over \(\mathbb{F}_q \) with its \(k \)-th coefficient arbitrarily prescribed, unless \((q, n) \) is one of the 271 pairs of possible exceptions, see [4, Table 1], all lying within the range \(q < 839 \) and \(n < 27 \).
For the purposes of this note, a program was written in Sage, which searched the remaining cases one-by-one. The Sage file of this program is available at http://www.math.uoc.gr/~gkapet/hm/hm-source.sws and its results are available at http://www.math.uoc.gr/~gkapet/hm/hm-results.txt. These calculations combined with the results of [4] imply the following theorem.

Theorem 1. Let q be an odd prime power and \mathbb{F}_q the finite field of q elements. There exists a self-reciprocal irreducible monic polynomial over \mathbb{F}_q, of degree $2n$, with its k-th coefficient prescribed to $a \in \mathbb{F}_q$, unless

1. $q = 3$, $n = 3$, $k = 1$ and $a = 0$ or
2. $q = 3$, $n = 4$, $k = 2$ and $a = 0$.

Remark. As the computer results indicate, the two exceptions described above are genuine.

Acknowledgement

This work was funded by the University of Crete’s research grant No. 3744.

References

