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Motivation Group actions and ivariant polynomials

• By Fq we denote the finite field of q elements, where q is a prime
power. Let A =

( a b
c d

)
∈ GL(2, q) and F ∈ Fq[X]. We define

A ◦ F = (bX + d)deg(F)F
(

aX + c
bX + d

)
.

It is clear that the above defines an action of GL(2, q) on Fq[X].

• We define the following equivalence relations for A,B ∈ GL(2, q) and
F,G ∈ Fq[X].

A ∼ B ⇐⇒ ∃C ∈ GL(2, q) such that A = C−1BC,
A ∼q B : ⇐⇒ A = λB, for some λ ∈ F∗

q and

F ∼q G : ⇐⇒ F = λG, for some λ ∈ F∗
q
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Motivation Group actions and ivariant polynomials

• For A ∈ GL(2, q) and n ∈ N, we define

IA
n := {P ∈ In | [A ◦ P] = [P]},

where In stands for the set of monic irreducible polynomials of degree
n over Fq.

• Recently, the estimation of the cardinality of IA
n has gained attention

(Garefalakis 2010, Stichtenoth-Topuzoğlu 2011, Reis 2017).
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Motivation Prescribed coefficients

A famous result in the study of the distribution of polynomials over Fq is
the following.

Theorem (Hansen-Mullen irreducibility conjecture)
Let a ∈ Fq, n ≥ 2 and fix 0 ≤ j < n. There exists an irreducible polynomial
P(X) = Xn +

∑n−1
k=0 pkXk ∈ Fq[X] with pj = a, except when

1 j = a = 0 or

2 q is even, n = 2, j = 1, and a = 0.
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Motivation Prescribed coefficients

• The latter had been conjectured by Hansen and Mullen 1992.

• It was initially proved for q > 19 or n ≥ 36 by Wan 1997,

• while Han and Mullen 1998 verified the remaining cases by computer
search.

• Several extensions to these results have been obtained (e.g. Cohen
2005, Cohen-Pres̆ern 2006, Garefalakis 2008, Fan 2009,
Panario-Tzanakis 2011).

• While most authors use a variation of Wan’s approach, recently new
methods have emerged (Ha 2016, Pollack 2013, Tuxanidy-Wang 2017).
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Motivation Prescribed coefficients

• One special class of polynomials are self-reciprocal polynomials, that is
polynomials such that FR := ( 0 1

1 0 ) ◦ F = F, where FR is called the
reciprocal of F.

• The problem of prescribing coefficients of such irreducible polynomials
has been investigated (Garefalakis 2010, Garefalakis-Kapetanakis 2012,
Garefalakis-Kapetanakis 2014).

• Nonetheless, a description of the coefficient of the polynomials of IA
n

has not yet been investigated for arbitrary A.
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Motivation Prescribed coefficients

Here are the results of a quick experiment for q = 3.

A = ( 1 0
2 1 ) A = ( 2 0

1 1 ) A = ( 2 0
0 1 )

X6 + X4 + X3 + X2 + 2X + 2 X6 + 2X3 + 2X2 + X + 1 X6 + 2X2 + 1
X6 + X4 + 2X3 + X2 + X + 2 X6 + X4 + 2X2 + 2X + 2 X6 + X4 + 2X2 + 1

X6 + 2X4 + X3 + 2X + 1 X6 + 2X4 + 1
X6 + 2X4 + X3 + X2 + X + 2 X6 + 2X4 + X2 + 1

Table: The set IA
6 for different A.
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Motivation Prescribed coefficients

• Here, we confine ourselves to the case when A ∈ GL(2, q) is
lower-triangular.

• We distinguish two cases: when A ∈ GL(2, q) has one eigenvalue and
when A has two eigenvalues.

• The conditions, whether a certain coefficient of some F ∈ IA
n can or

cannot take any value in Fq are provided.

• For the former case we prove sufficient conditions for the existence of
polynomials of IA

n that indeed have these coefficients.
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One eigenvalue Characterization

If A has one eigenvalue, then

[A] =

{
[( 1 0

0 1 )] , or

[( 1 0
α 1 )] , for some α ∈ F∗

q.

The first situation is already settled. For the second case, we have that that
A ◦ F ∼q F ⇐⇒ F(X) ∼q F(X + α) ⇐⇒ F(X) = F(X + α). The
polynomials with this property are called periodic. We prove that the
following characterizes those polynomials explicitly.

Lemma

Let α ∈ F∗
q . Some F ∈ Fq[X] satisfies F(X) = F(X + α) if and only if there

exist some G ∈ Fq[X] such that F(X) = G(Xp − αp−1X).
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One eigenvalue Characterization

It is now clear that we need the following theorem.

Theorem (Agou, 1977)
Let q be a power of the prime p, α ∈ Fq and P ∈ In. The composition
P(Xp − αp−1X) is irreducible if and only if Tr(pn−1/α

p) ̸= 0, where Tr
stands for the trace function Fq → Fp.

So, the monic irreducible periodic polynomials are those of the form
Q(X) = P(Xp − αp−1X), for some P ∈ In such that Tr(pn−1/α

p) ̸= 0. So,
the m-th coefficient of Q, where 0 ≤ m ≤ pn, is

qm =
∑

max (0,n−m)≤i≤n−⌈m/p⌉
i≡m−n (mod (p−1))

γipR
i ,

that is a linear expression of some of the µ+ 1 low-degree coefficients of
the reciprocal of P, where µ is the largest number such that γµ ̸= 0.
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One eigenvalue Characterization

Regarding µ, observe that

1 it is possible for such µ to not exist (for example when m = np − 1 and
p > 2) and

2 if µ = 0 or 1, then the value of qm has to be a given combination of pR
0

and pR
1 , but since neither of them is chosen arbitrarily, it can only take

certain values.

So, from now on we assume that µ exists and µ ≥ 2.
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One eigenvalue Preliminaries

We define to the following map

σ : Gµ → Fq, H 7→
∑

max (0,n−m)≤i≤µ
i≡m−n (mod (p−1))

γihi,

where Gµ := {f ∈ Fq[X] | deg(f) ≤ µ, f0 = 1}. We will need to correlate
the inverse image of σ with a set that is easier to handle. The following,
serves that purpose.

Proposition (Garefalakis-Kapetanakis, 2012)

Let κ ∈ Fq. Set F ∈ Gµ with fi := γi−1γ
−1
µ for 0 < i < µ and

fµ := γ−1
µ (γ0 − κ). The map

τ : Gµ−1 → σ−1(κ), H 7→ HF−1 (mod Xµ+1)

is a bijection.
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One eigenvalue Preliminaries

The following summarizes our observations.

Proposition

Let κ ∈ Fq and 0 ≤ m ≤ (p − 1)n. If m,n and p are such that there exist
some i with ⌈m/p⌉ ≤ i ≤ min (m,n − 1) and i ≡ m (mod (p − 1)) and
there exists some P ∈ Jn such that Tr(p1/αp−1) ̸= 0 such that P ≡ HF−1

(mod Xµ+1) for some H ∈ Gµ−1, then there exists some Q ∈ Ipn, such that
Q(X) = Q(X + α) and qm = κ.

Giorgos Kapetanakis (Sabancı) Coefficients of invariant irreducible polynomials Antalya Algebra Days XIX - May 2017 13 / 26



One eigenvalue Characters and character sums

We define the following weighted sum

w :=
∑

H∈Gµ−1

Λ(H)
∑

P∈Jn, ψ(P) ̸=1
P≡HF−1 (mod Xµ+1)

1,

where F is the polynomial defined earlier and Λ is the von Mangoldt
function. Clearly, if w ̸= 0 we have our desired result.
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One eigenvalue Characters and character sums

• Let M be a polynomial of Fq of degree ≥ 1. The characters of the group
(Fq[X]/MFq[X])∗are called Dirichlet characters modulo M.

• Let U := (Fq[X]/Xµ+1Fq[X])∗. Furthermore, set

ψ : U → C∗, F 7→ exp(2πiTr(f1/(f0αp))/p)

and notice that for P ∈ Jn (where P ∈ Jn ⇐⇒ PR ∈ In),
Tr(p1/αp) = 0 ⇐⇒ ψ(P) ̸= 1.

• Notice that ψ is also a Dirichlet character modulo Xµ+1, while it is
clear that ord(ψ) = p.
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One eigenvalue Characters and character sums

Proposition

Let χ and ψ be Dirichlet characters modulo M, such that ord(ψ) = p and
χ(F∗

q) = 1.

1 If χ ̸∈ ⟨ψ⟩, then

∣∣∣∣∣∑ P∈In
ψ(P)̸=1

χ(P)
∣∣∣∣∣ ≤ 2(p−1)

pn · (deg(M)qn/2 + 1),

2 If χ ∈ ⟨ψ⟩∗, then

∣∣∣∣∣∑ P∈In
ψ(P)̸=1

χ(P)
∣∣∣∣∣ ≤ πq(n)

p + 2p−3
pn · (deg(M)qn/2 + 1).

3 If χ = χ0, then

∣∣∣∣∣∑ P∈In
ψ(P)̸=1

χ(P)
∣∣∣∣∣ ≥ (p−1)πq(n)

p − p−1
pn · (deg(M)qn/2+1),

Where πq(n) stands for the number of monic irreducible polynomials of
degree n over Fq.
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One eigenvalue Completion of the proof

By adjusting Wan’s approach to our case, we prove that a sufficient
condition for our desire result is

qn/2(q(µ−1)/2 − 4µ) +
4µ

q − 1
≥

2µqµ
(
4µ+

1

2qµ/2
+

4µ

qµ +
1

2µq(µ+1)/2(q − 1)

)
.

The above is satisfied for q ≥ 67 for all 2 ≤ µ ≤ n/2. It is also satisfied for
n ≥ 26 for all q and 2 ≤ µ ≤ n/2.
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One eigenvalue Completion of the proof

Theorem
Let [A] = [( 1 0

α 1 )] ∈ PGL(2, q), n′ ∈ Z and α ̸= 0, then In′ = ∅ ⇐⇒ p ∤ n′.
Suppose n′ = pn, fix 0 ≤ m ≤ pn and for max(0,n − m) ≤ i ≤ n − ⌈m/p⌉
set

γi :=

{( n−i
m−n+i

p−1

)
(−α)p−n+i, if i ≡ m − n (mod (p − 1))

0, otherwise

and let µ be the maximum i such that γi ̸= 0. In particular, µ ≤ n − ⌈m/p⌉.
1 If µ does not exist, then pm = 0 for all P ∈ IA

n′ .

2 If µ = 0, then pm = γ0 for all P ∈ IA
n′ .

3 If µ = 1, then for all P ∈ IA
n′ , we have that pm = γ0 + γ1κ for some

κ ∈ Fq with Tr(κ/αp) ̸= 0. Conversely, there exists some P ∈ IA
n′ such

that pm = γ0 + γ1κ for all κ ∈ Fq with Tr(κ/αp) ̸= 0.

4 If 2 ≤ µ ≤ n/2, there exists some P ∈ IA
n′ such that pm = κ for all

κ ∈ Fq, given that q ≥ 65 or n ≥ 26.
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Two eigenvalues Characterization

If A has two distinct eigenvalues, then [A] ∼ [B], where B = ( α 0
0 1 ) for some

α ∈ F∗
q . It is clear that F ∈ Fq[X] satisfies

B ◦ F ∼q F ⇐⇒ F(X) ∼q F(αX). First, we prove.

Lemma
Let α be an element of F∗

q of multiplicative order r. A polynomial F ∈ Fq[X]
satisfies F(X) ∼q F(αX) if and only if there exists some G ∈ Fq[X] and
k ∈ Z≥0 such that F(X) = XkG(Xr).

It is clear now that the elements of IB
n′ should be of the form P(Xr), for some

P ∈ In. The below characterizes the irreducibility of such compositions.

Theorem (Cohen, 1969)
Let P ∈ In and r be such that gcd(r, q) = 1, the square-free part of r divides
q − 1 and 4 ∤ gcd(r, qn + 1), then P(Xr) is irreducible if and only if
gcd(r, (q − 1)/e) = 1, where e is the order of (−1)np0.
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Two eigenvalues Characterization

• The irreducibility of P(Xr) depends solely on the choice of p0.
• It is known that we have exactly ϕ(r)(q − 1)/r choices for p0. We
denote this set by C, while the primitive elements of Fq are in C.

• Notice that we already have enough to prescribe the coefficients of the
polynomials in IB

n′ .

Our next step is to move to the case of arbitrary A.
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Two eigenvalues Characterization

The lemma below provides a correlation between IC
n′ and ID

n′ , if [C] ∼ [D].

Lemma
Suppose that [C], [D] ∈ PGL(2, q) such that [C] ∼ [D], then map

ϕ : (IC
n′/ ∼q) → (ID

n′/ ∼q), [F] 7→ [U ◦ F],

where U ∈ GL(2, q) is such that [D] = [UCU−1], is a bijection.

Before proceeding, we observe that the above combined with what we
already know about IB

n′ imply that IA
n′ ̸= ∅ ⇐⇒ r | n′, so from now on we

assume that n′ = rn. Moreover, by utilizing the above bijection, given that
[A] ∼ [B], we can write any coefficient of Q ∈ IA

n′ , as a linear expression of
the coefficients of some P′ ∈ IB

n′ . In particular, since both A and B are
lower-triangular, there exists some U =

( a 0
c d

)
∈ GL(2, q) such that

Q = U ◦ P′.
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Two eigenvalues Characterization

It follows that the m-th coefficient of Q is

qm =

n−⌈m/r⌉∑
i=0

δipn−i,

i.e. a linear expression of the high-degree coefficients of P, where P is such
that P′(X) = PR(Xr). Further, we define µ as the largest i such that δi ̸= 0
and r | i. If such µ does not exist, then qm = 0. If µ = 0, then qm = δ0c for
any c ∈ C. So, from now we assume that µ ≥ 1.
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Two eigenvalues Completion of the proof

With the latter in mind, we fix some c ∈ C and seek irreducible polynomials
of degree n with p0 = c that satisfy

∑µ
i=0 δipi = cκ for some κ ∈ Fq. Next,

we fix σ : Gµ → Fq, H 7→
∑µ

i=0 δihi and set

w :=
∑

H∈Gµ−1

Λ(H)
∑
P∈In

P≡cHF−1
c (mod Xµ+1)

1.

It is now clear that if w ̸= 0, then there exists some P ∈ In with p0 ∈ C that
satisfies

∑µ
i=0 δipi = κc, which in turn implies the existence of some

Q ∈ IA
n′ with qm = κ.
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Two eigenvalues Completion of the proof

• Working as before, we get the following condition.

qn/2 ≥ 2n(µ+ 1)q(µ+1)/2 +
q

q + 1
.

• This is satisfied for all 1 ≤ µ ≤ n/2 for n ≥ 5 and q ≥ 31 and for
n ≥ 47 and arbitrary q.
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Two eigenvalues Completion of the proof

Theorem
Let [A] ∈ PGL(2, q) be such that [A] ∼ [( α 0

0 1 )] for some α ∈ Fq of order
r > 1 and 0 ≤ m ≤ n′. First, IA

n′ ̸= ∅ ⇐⇒ r | n′, so assume n′ = rn. Further,
set C := {x ∈ Fq | gcd(r, (q − 1)/ord(x)) = 1}. If [A] = [( α 0

0 1 )], then for
any P ∈ IA

n′ , pi = 0 for all r ∤ m and p0 ∈ C, while for any κ ∈ Fq there exists
some P ∈ IA

n′ with pm = κ for any m ̸= 0, r | m, while the same holds for
m = 0 and κ ∈ C. If [A] ̸= [( α 0

0 1 )], compute a, c, d ∈ Fq such that
[A] = [UBU−1], where B = ( α 0

0 1 ) and U =
( a 0

c d
)
and for

0 ≤ i ≤ n − ⌈m/r⌉, set δi :=
(
(n−i)r

m
)
amc(n−i)r−mdir. Let

µ := max{j : δj ̸= 0}. In particular µ ≤ n − ⌈m/r⌉.
1 If µ does not exist, then pm = 0 for all P ∈ IA

n .

2 If µ = 0, then for all P ∈ IA
n′ , we have that pm = δ0c for some c ∈ C.

Conversely, there exists some P ∈ IA
n′ with pm = δ0c for all c ∈ C.

3 If 0 < µ < n/2 then there exists some P ∈ IA
n′ with pm = κ for all

κ ∈ Fq, given that n ≥ 5 and q ≥ 31 or n ≥ 47.
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Thank You!
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