On the Hansen-Mullen Conjecture for Self-Reciprocal
Irreducible Polynomials

Giorgos N. Kapetanakis
(joint work with T. Garefalakis)

University of Crete

Fq10 – July 14, 2011
Motivation

Conjecture (Hansen-Mullen, 1992)

Let $a \in \mathbb{F}_q$, let $n \geq 2$ and fix $0 \leq j < n$. Then there exists an irreducible polynomial $F = X^n + \sum_{k=0}^{n-1} F_k X^k$ over \mathbb{F}_q with $F_j = a$ except when

- q arbitrary and $j = a = 0$;
- $q = 2^m$, $n = 2$, $j = 1$ and $a = 0$.

Theorem (Wan)

If either $q > 19$ or $n \geq 36$, then the Hansen-Mullen conjecture is true.

Theorem (Ham-Mullen)

The Hansen-Mullen conjecture is true.

What can we say about self-reciprocal polynomials?
Let q be a power of an odd prime p. Carlitz characterized self-reciprocal polynomials over \mathbb{F}_q.

Theorem (Carlitz)

If Q is a self-reciprocal monic irreducible polynomial over \mathbb{F}_q, then $\deg Q$ is even and $Q = X^n P(X + X^{-1})$ for some monic irreducible P, such that $\psi(P) = -1$, where $\psi(P) = (P|X^2 - 4)$, the Jacobi symbol of P modulo $X^2 - 4$. The converse also holds.

We denote $P = \sum_{i=0}^{n} P_i X^i$ and $Q = \sum_{i=0}^{2n} Q_i X^i$, and we compute

$$Q = X^n P(X + X^{-1}) = \sum_{i=0}^{n} P_i X^{n-i} (X^2 + 1)^i = \sum_{i=0}^{n} \sum_{j=0}^{i} \binom{i}{j} P_i X^{n-i+2j}.$$

For $1 \leq k \leq n$ the last equation implies that

$$Q_k = \sum_{\substack{0 \leq j \leq i \leq n \n \n-i+2j = k}} \binom{i}{j} P_i = \sum_{\substack{n-k \leq i \leq n \n k-n+i \in 2\mathbb{Z}}} \binom{i}{k-n+i} P_i j = \sum_{\substack{0 \leq j \leq k \n k-j \in 2\mathbb{Z}}} \binom{n-j}{k-j/2} P_{n-j}.$$
In order to express Q_k in terms of the low degree coefficients of some polynomial we define $\hat{P} = X^n P(4/X)$ and we prove.

Lemma

Let P be an irreducible polynomial of degree $n \geq 2$ and constant term 1. Then \hat{P} is a monic irreducible of degree n and $\hat{P}_i = 4^{n-i} P_{n-i}$. Further, $\psi(P) = -\varepsilon \psi(\hat{P})$, where

$$\varepsilon := \begin{cases} -1 & \text{if } q \equiv 1 \pmod{4} \text{ or } n \text{ is even.} \\ 1 & \text{otherwise.} \end{cases}$$

Using this result, if we let $Q = X^n \hat{P}(X + X^{-1})$, we have

$$Q_k = \sum_{0 \leq j \leq k, \ k-j \in 2\mathbb{Z}} \left(\binom{n-j}{k-j} \right) \hat{P}_{n-j} = \sum_{0 \leq j \leq k, \ k-j \in 2\mathbb{Z}} \left(\binom{n-j}{k-j} \right) 4^j P_j = \sum_{j=0}^k \delta_j h_j,$$

where $\delta_j := \begin{cases} \left(\binom{n-j}{k-j} \right) 4^j & \text{if } k-j \equiv 0 \pmod{2}, \\ 0 & \text{if } k-j \equiv 1 \pmod{2} \end{cases}$ and h a polynomial of degree at most k such that $P \equiv h \pmod{X^{k+1}}$.
Set $\mathbb{G}_k := \{ h \in \mathbb{F}_q[X] : \deg(h) \leq k \text{ and } h_0 = 1 \}$. For $1 \leq k \leq n$ we define

$$\tau_{n,k} : \mathbb{G}_k \to \mathbb{F}_q$$

$$h \mapsto \sum_{j=0}^{k} \delta_j h_j.$$

The following proposition summarizes our observations.

Proposition

Let $n \geq 2$, $1 \leq k \leq n$, and $a \in \mathbb{F}_q$. Suppose that there exist an irreducible polynomial P, with constant term 1, such that $\psi(P) = \varepsilon$ and $P \equiv h \pmod{X^{k+1}}$ for some $h \in \mathbb{G}_k$ with $\tau_{n,k}(h) = a$. Then there exists a self-reciprocal monic irreducible polynomial Q, of degree $2n$, with $Q_k = a$.

We prove a correlation of the inverse image of $\tau_{n,k}$ with \mathbb{G}_{k-1}.

Proposition

Let a, n, k as above and $f = \sum_{i=0}^{k} f_i X^i \in \mathbb{F}_q[X]$, with $f_0 = 1$ and $f_i = \delta_{k-i} \delta_{k-1}$, $1 \leq i \leq k-1$, and $f_k = \delta_{k}^{-1}(\delta_0 - a)$. Then the map $\sigma_{n,k,a} : \tau_{n,k}^{-1}(a) \to \mathbb{G}_{k-1}$ defined by $\sigma_{n,k,a}(h) = hf \mod X^{k+1}$ is a bijection.
Let $M \in \mathbb{F}_q[X]$ be a polynomial of degree at least 1 and χ a non-trivial Dirichlet character modulo M. The Dirichlet L-function associated with χ is defined to be

$$L(u, \chi) = \sum_{n=0}^{\infty} \left(\sum_{\substack{F \text{ monic} \backslash \deg(F) = n}} \chi(F) \right) u^n.$$

It turns out that $L(u, \chi)$ is a polynomial in u of degree at most $\deg(M) - 1$. Further, $L(u, \chi)$ has an Euler product,

$$L(u, \chi) = \prod_{d=1}^{\infty} \prod_{\substack{P \text{ monic irreducible} \backslash \deg(P) = d}} (1 - \chi(P)u^d)^{-1}.$$

Taking the logarithmic derivative of $L(u, \chi)$ and multiplying by u, we obtain a series $\sum_{n=1}^{\infty} c_n(\chi)u^n$, with

$$c_n(\chi) = \sum_{d|\ n} \frac{n}{d} \sum_{\substack{P \text{ monic irreducible} \backslash \deg(P) = n/d}} \chi(P)^d = \sum_{\substack{h \text{ monic} \backslash \deg(h) = n}} \Lambda(h)\chi(h),$$

where Λ stands for the von Mangoldt function.
Weil’s theorem of the Riemann Hypothesis for function fields implies the following.

Theorem (Weil)

Let $M \in \mathbb{F}_q[X]$ be non-constant and let χ be a non-trivial Dirichlet character modulo M.

1. Then

 $$|c_n(\chi)| \leq (\deg(M) - 1)q^{\frac{n}{2}}.$$

2. If $\chi(\mathbb{F}_q^*) = 1$, then

 $$|1 + c_n(\chi)| \leq (\deg(M) - 2)q^{\frac{n}{2}}.$$
Theorem (Garefalakis)

Let χ be a non-trivial Dirichlet character modulo X^{k+1}. Then the following bounds hold:

1. For every $n \in \mathbb{N}$, $n \geq 2$,
 $$\left| \sum_{\substack{P \text{ monic of degree } n \\ \psi(P) = -1}} \chi(P) \right| \leq \frac{k+5}{n} q^{\frac{n}{2}}.$$

2. For every $n \in \mathbb{N}$, $n \geq 2$, n odd,
 $$\left| \sum_{\substack{P \text{ monic of degree } n \\ \psi(P) = 1}} \chi(P) \right| \leq \frac{k+5}{n} q^{\frac{n}{2}}.$$
Based on the two previous theorems we prove.

Proposition

Let $n, k \in \mathbb{N}$, $1 \leq k \leq n$ and let χ be a non-trivial Dirichlet character modulo X^{k+1}, such that $\chi(F_q^*) = 1$, then

$$\left| \sum_{\deg(h)=n, \ h_0=1} \Lambda(h)\chi(h) \right| \leq 1 + k q^{\frac{n}{2}}, \text{ for } n \geq 1$$

and

$$\left| \sum_{P \text{ irreducible of degree } n, \ P_0=1, \ \psi(P)=\varepsilon} \chi(P) \right| \leq \frac{k+5}{n} q^{\frac{n}{2}}, \text{ for } n \geq 2,$$

where either $\varepsilon = -1$, or $\varepsilon = 1$ and n is odd.
Definition

Let n, k, a be as usual. Inspired by Wan’s work we introduce the following weighted sum.

$$w_a(n, k) = \sum_{h \in \tau_{n,k}^{-1}(a)} \Lambda(\sigma_{n,k,a}(h)) \sum_{P \text{ irreducible of degree } n} \sum_{\psi(P) = \varepsilon, P_0 = 1, P \equiv h \pmod{X^{k+1}}} 1.$$

It is clear that if $w_a(n, k) > 0$, then there exists some self-reciprocal, monic irreducible polynomial Q, of degree $2n$ with $Q_k = a$.
Let U be the subgroup of $(\mathbb{F}_q[X]/X^{k+1}\mathbb{F}_q[X])^*$ that contains classes of polynomials with constant term equal to 1.

- The set G_{k-1} is a set of representatives of U.
- The group of characters of U consists of those characters that are trivial on \mathbb{F}_q^*.

Using these and with the help of the orthogonality relations we get that

$$w_a(n, k) = \frac{1}{q^k} \sum_{\chi \in \hat{U}} \sum_{\substack{P \text{ irreducible of degree } n \leq k \leq \frac{q-1}{2} \text{ and } \psi(P) = \varepsilon, \ P_0 = 1}} \chi(P) \sum_{h \in \tau_{n,k}^{-1}(a)} \Lambda(\sigma_{n,k,a}(h)) \bar{\chi}(h).$$

We denote by g the inverse of f modulo X^{k+1} and we obtain

$$w_a(n, k) = \frac{1}{q^k} \sum_{\chi \in \hat{U}} \sum_{\substack{P \text{ irreducible of degree } n \leq k \leq \frac{q-1}{2} \text{ and } \psi(P) = \varepsilon, \ P_0 = 1}} \chi(P) \sum_{h \in \tau_{n,k}^{-1}(a)} \Lambda(\sigma_{n,k,a}(h)) \bar{\chi}(\sigma_{n,k,a}(h)g)$$

$$= \frac{1}{q^k} \sum_{\chi \in \hat{U}} \sum_{\substack{P \text{ irreducible of degree } n \leq k \leq \frac{q-1}{2} \text{ and } \psi(P) = \varepsilon, \ P_0 = 1}} \chi(P) \bar{\chi}(g) \sum_{h \in G_{k-1}} \Lambda(h) \bar{\chi}(h).$$
Separating the term that corresponds to χ_o, we have

\[
\left| w_a(n, k) - \frac{\pi_q(n, \varepsilon)}{q^k} \sum_{h \in \mathbb{G}_{k-1}} \Lambda(h) \right| \leq \frac{1}{q^k} \sum_{\chi \neq \chi_o} \sum_{\chi(P) = \varepsilon, \ P_0 = 1} \chi(P) \left| \sum_{h \in \mathbb{G}_{k-1}} \Lambda(h) \bar{\chi}(h) \right|,
\]

where $\pi_q(n, \varepsilon) = \# \{ P \in \mathbb{F}_q[X] : P \text{ monic irreducible of degree } n, \ \psi(P) = \varepsilon \}$.
We have that

\[
\sum_{h \in \mathbb{G}_{k-1}} \Lambda(h) = \sum_{m=0}^{k-1} \sum_{\deg(h) = m}^{\deg(h_0) = 1} \Lambda(h) = \sum_{m=0}^{k-1} q^m = \frac{q^k - 1}{q - 1}
\]

and (for \(\chi \neq \chi_0 \))

\[
\left| \sum_{h \in \mathbb{G}_{k-1}} \Lambda(h) \bar{\chi}(h) \right| \leq 1 + \sum_{m=1}^{k-1} (1 + kq^{m/2}) = k \frac{q^{k/2} - 1}{\sqrt{q} - 1}.
\]

Putting everything together, our inequality becomes

\[
\left| w_a(n, k) - \frac{q^k - 1}{q^k(q - 1)} \pi_q(n, \varepsilon) \right| \leq \frac{k(k + 5)}{n} \frac{(q^k - 1)(q^{k/2} - 1)q^{n/2}}{q^k(\sqrt{q} - 1)}.
\]
As mentioned before, if $w_a(n, k) > 0$, then there exists some self-reciprocal, monic irreducible polynomial Q, of degree $2n$, with $Q_k = a$. This fact and the last relation are enough to prove the following.

Theorem

Let $n, k \in \mathbb{N}$, $n \geq 2$, $1 \leq k \leq n$ and $a \in \mathbb{F}_q$. There exists a monic, self-reciprocal irreducible polynomial Q, of degree $2n$ with $Q_k = a$, if the following bound holds.

$$
\pi_q(n, \varepsilon) \geq \frac{k(k + 5)}{n} (\sqrt{q} + 1) q^{\frac{n+k}{2}}.
$$
Carlitz computed

\[\pi_q(n, -1) = \begin{cases} \frac{1}{2n} (q^n - 1) & \text{, if } n = 2^s, \\ \frac{1}{2n} \sum_{d|n \atop d \text{ odd}} \mu(d) q^{n/d} & \text{, otherwise.} \end{cases} \]

From this it is clear that

- if \(n \) is even, then \(\varepsilon = -1 \), thus \(\pi_q(n, \varepsilon) = \pi_q(n, -1) \) and
- if \(n \) is odd, then \(\pi_q(n, -1) = \frac{1}{2n} \sum_{d|n \atop d \text{ odd}} \mu(d) q^{n/d} = \frac{1}{2} \pi_q(n) \), thus

\[\pi_q(n, -1) = \pi_q(n, 1), \]

so, in any case \(\pi_q(n, \varepsilon) = \pi_q(n, -1) \). Furthermore Carlitz’s computation implies

\[\left| \pi_q(n, -1) - \frac{q^n}{2n} \right| \leq \frac{1}{2n} \frac{q}{q - 1} q^{n/3}. \]
This result, combined with the last Theorem, are enough to prove the following.

Theorem

Let \(n, k \in \mathbb{N}, n \geq 2, 1 \leq k \leq n, \) and \(a \in \mathbb{F}_q \). There exists a monic, self-reciprocal irreducible polynomial \(Q \), of degree \(2n \) with \(Q_k = a \) if the following bound holds.

\[
q^{\frac{n-k-1}{2}} \geq \frac{16}{5} k(k + 5) + \frac{1}{2}.
\]
Further research

- Can we get a better result?
- What can we say when q is even?
- Can we extend this method, in order to examine similar questions for other types of irreducible polynomials?
L. Carlitz.
Some theorems on irreducible polynomials over a finite field.

T. Garefalakis.
Self-reciprocal irreducible polynomials with prescribed coefficients.

K. H. Ham and G. L. Mullen.
Distribution of irreducible polynomials of small degrees over finite fields.

T. Hansen and G. L. Mullen.
Primitive polynomials over finite fields.

M. Rosen.
Number Theory in Function Fields.

D. Wan.
Generators and irreducible polynomials over finite fields.