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Abstract. In this paper, for a small parameter ε > 0, we consider the Cahn-Hilliard/Allen-Cahn equation in

dimensions d = 1, 2, 3 as introduced in [8], with weights δ(ε) > 0, µ(ε) ≥ 0 on the Cahn-Hilliard and Allen-Cahn

operators, respectively. This equation corresponds to the model B/A of critical dynamics, where ε is the order of
the width of the transition layers developed during the phase separation of a binary alloy. We apply a rescaled in

ε algebraically stable Runge-Kutta-SAV extrapolated time-discrete method in the sense of [1], which is adjusted

properly for our problem. The discrete energy as in the continuous case is proven decaying, and optimal order
error estimates are derived. The scheme is further discretized in space by piece-wise quadratic finite elements

and implemented by 1D and 2D numerical simulations. These simulations are the first for the mixed problem

and reveal thus, especially in the multi-dimensional case, the very interesting solution’s transitional profile in
the context of phase separation. The transition layers seem to change significantly depending on the selection

of the weights, as rigorously proven so far only in 1D in [8].

1. Introduction

1.1. The ε-dependent Cahn-Hilliard/Allen-Cahn equation. Letting ε > 0 be a small positive parameter,
we consider the mixed problem for the Cahn-Hilliard and Allen-Cahn operators which is given as follows

ut = −δ(ε)∆
(
ε2∆u− f(u)

)
+ µ(ε)(ε2∆u− f(u)), x ∈ D, t > 0,

u(x, 0) = u0(x; ε), x ∈ D,

∂u

∂ν
=

∂∆u

∂ν
= 0 on ∂D.

(1.1)

Here, D is a bounded domain in Rd, d = 1, 2, 3, while the nonlinearity f(u) = F ′(u), is the derivative of a
double equal-well potential; a typical example, to be used throughout this manuscript, is f(u) = u3 − u, for a
potential F (u) := 1

4 (u
2 − 1)2. The ε-dependent weights satisfy

(1.2) δ(ε) > 0, µ(ε) ≥ 0.

The existence and regularity properties of (1.1) in dimensions d = 1, 2, 3 have been analyzed in [21]. There,
for the equivalent system representation for u, and v that defines the chemical potential, it has been proven
that if the initial condition u0 is in H1(D) then for any T > 0 there exists a unique regular solution (u, v) in
C([0, T ];H1(D))× L2([0, T ];H1(D)), while when u0 ∈ H2(D) then u belongs to C([0, T ];H2(D)) which is the
critical space for the combined model. Higher regularity can be then derived as in [12] by differentiating in space
the equation, for sufficiently smooth initial condition. We also refer to the stochastic version of the problem with
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a non-smooth multiplicative space-time noise, cf. [7]; the authors proved local existence, uniqueness, and path-
regularity in dimensions d = 1, 2, 3, global existence when d = 1, and for d = 2, 3 existence of maximal solutions.
In [6], for the same stochastic problem and d = 1, existence of a density has been derived through Malliavin
calculus. Recently, in [8], D.C. Antonopoulou, G. Karali and K. Tzirakis studied for d = 1 the dynamics of
the ε-dependent Cahn-Hilliard/Allen-Cahn equation of (1.1) within a neighborhood of an equilibrium of N
transition layers. The spectrum of the linearized operator was estimated, and wide families of weights δ(ε), µ(ε)
were identified for which the dynamics are stable and rest exponentially small in ε.

Remark 1.1. The initial and boundary value problem (1.1) is not mass-conserving when µ(ε) > 0, as the mass
defined by

∫
D u(x, t)dx changes in time. This is not the case for the Cahn-Hilliard equation (µ(ε) := 0), where

due to the Neumann b.c. it holds that
∫
D u(x, t)dx =

∫
D u(x, 0)dx for all t > 0. However, in [8] the authors

considered the problem (1.1) for d = 1 and µ(ε) > 0, in the interval D := (0, 1), and imposed mass conservation

by replacing the 4th boundary condition uxxx(1, t) = 0 by the non-local condition
∫ 1

0
u(x, t)dx =

∫ 1

0
u(x, 0)dx,

∀t > 0. This problem was proven well-posed and was approximated in the mass-conserving manifold of [9, 10]
which was initially implemented for the Cahn-Hilliard equation, and then applied with certain modifications in
[4] for the stochastic Cahn-Hilliard equation.

Remark 1.2. Let δ(ε), µ(ε) satisfy (1.2), and additionally the spectral condition

(1.3) ε2µ(ε) ≥ C̃1δ(ε),

for some C̃1 > 0 independent of ε. In [8], (1.3) was derived by the analysis of the spectrum of the linearized

operator, and C̃1 was determined. Moreover, under (1.2), (1.3), the authors therein constructed a stable ap-
proximation of the solution of (1.1) to the non mass-conserving manifold of static solutions of the Allen-Cahn
equation; this manifold has been defined and analyzed in [11]. When δ(ε) = 1, µ(ε) = c0ε

−2, which satisfies
(1.3), it has been proven in higher dimensions that the sharp interface limit as ε → 0+, a curve, or a surface for
d = 2 or d = 3, respectively, is evolving by velocity proportional to its mean curvature, [20]. This limiting profile
has essentially the same qualitative behaviour with the Allen-Cahn equation limit problem where the velocity is
equal to the mean curvature.

Let u(x, t) be the solution of (1.1). A simple rescaling by setting z = xε−1, r = tµ(ε), and v(z, r) := u(x, t),
yields that ∇u = ε−1∇v, ∆u = ε−2∆v, ∆2u = ε−4∆v, and thus ∆(f(u)) = ε−2∆(f(v)), while ut = µ(ε)vr.
Therefore, v satisfies the combined problem

vr = − δ(ε)

µ(ε)ε2
∆(∆v − f(v)) + (∆v − f(v)).

When δ(ε)
µ(ε)ε2 = O(1) and u0(zε) = v(z, 0) is independent of ε then v is independent of ε and so u, εk∇ku,

k ∈ N are upper bounded uniformly in ε. If δ(ε)
µ(ε)ε2 ≪ 1 then the Allen-Cahn operator is dominant; such a result

has been proven rigorously in [8] in dimensions one. In particular, mass-conservation classifies the dynamically
stable mixed problem into two main categories. The non mass-conserving solution (i.e., the solution of (1.1)
with µ > 0) is close to Allen-Cahn where due to the stability condition µ dominates δ, or, when the mass is
conserved, close to the Cahn-Hilliard solution where δ dominates µ. In higher dimensions the problem is open.
As a first step, in this work we aim to investigate numerically this behaviour in dimensions d = 1, 2, 3.

Equation (1.1) is a gradient flow with respect to an ε-weighted metric for the problem’s free energy functional
(defined by (2.5)), [8]; for some very interesting recent results on SAV formulations for gradient flows see in
[25, 26, 27]. The SAV approach was initially proposed by J. Shen, J. Xu, and J. Yang in [26], and had so far a
successful application in developing energy-stable schemes for several dissipative systems, e.g., [25, 27, 24, 13].
Motivated by the extrapolated RK-SAV methods of G. Akrivis, B. Li and D. Li in [1], which stand as linearized
versions with extrapolation of the RK methods of [18], we approximate the problem (1.1). We introduce a linear
combination of linearized Runge-Kutta schemes with general weights δ(ε) > 0, µ(ε) ≥ 0. Optimal order error

estimates (O(τ q−
1
2 ), q ≥ 2) are established for the RK nodes in H2 due to the presence of the 4th order operator

(δ > 0). In [1] this estimate was of order O(τ q−
3
2 ) since there only the Allen-Cahn equation was analyzed where

δ = 0. We also carefully treat the constants of the error bounds in ε. When µ = 0 the Cahn-Hilliard equation
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is covered by our error analysis. The scheme, and the 1D and 2D experiments presented at the last section are
the first for the mixed problem. As the simulations show, the transitional profile of the two different phases
seems to change, being closer to this of the Allen-Cahn or this of the Cahn-Hilliard equation, depending on the
order of the weights δ(ε), µ(ε) in ε.

For various numerical schemes on Cahn-Hilliard or Allen-Cahn equations and their rigorous error analysis we
refer, for example, to [1, 14, 15, 16, 17, 23, 3, 2, 5]. We stress that ε-dependent approximations for such equations
are very sensitive to rounding errors when ε ≪ 1 which is the physical problem’s scale. In [16, 17, 3, 2, 5] the
authors analyzed the ε-dependent problems for ε small, where the equations are stated near the sharp-interface
limit, and estimated the error bounds coefficients by constants of negative polynomial order in ε.

1.2. The physical problem. In the study of surface processes, combinations of Cahn-Hilliard and Allen-
Cahn equations arise as phase-field models of microstructural evolution at the mesoscale regime. When the
parameter ε is sufficiently small they approximate sharp-interface limits of free surface problems. Such equations
model two surface processes taking place simultaneously for example catalysis, chemical vapor deposition and
epitaxial growth that typically involve transport and chemical reaction of precursors in a gas phase. Unconsumed
reactants and radicals adsorb onto the surface of a substrate where processes like surface diffusion, reactions
and desorption back to the gas phase occur. The Cahn-Hilliard operator corresponds to mass conservative
phase separation and surface diffusion, while the Allen-Cahn operator relates to phase transition and stands as
a diffuse interface model for antiphase boundary coarsening.

In [22], the mesoscopic models are derived from microscopic lattice models in the local mean field limit
where the interaction potential range becomes infinite. At the microscopic level dynamic Ising type systems are
employed which are defined on an n-dimensional lattice. At each lattice site an order parameter is allowed to
take the values 0 and 1 describing vacant and occupied sites respectively. In the classical Ising model, the order
parameter at a lattice point x is referred to as spin σ(x). The energy H of the system is given by a Hamiltonian
H =

∑
x̸=y J(x, y)σ(x)σ(y) + h

∑
σ(x), where h corresponds to an external field, and J is the interparticle

potential which is assumed to be even, rapidly decaying at infinity, and nonnegative i.e., the interactions are
attractive. The assumption that J is nonnegative implies that clusters of particles are energetically preferred
to totally disordered structures, while it yields the mathematical condition δ(ε) > 0 imposed at (1.1) on the
weight of the Cahn-Hilliard operator. In this context, the microscopic mechanisms involved in the mesoscopic
model are the spin-flip and the spin-exchange. A spin-flip at the site x is a spontaneous change in the order
parameter, 1 is converted to 0 and vice versa. Physically this mechanism describes the desorption of a particle
from the surface to the gas phase and conversely the adsorption of a particle from the gas phase to the surface.
A spin-exchange between the neighboring sites x and y is a spontaneous exchange of the values of the order
parameter at x and y, this mechanism describes the diffusion of a particle on a flat surface.

At large space/time scales and for long range potentials, the small scale random fluctuations of the Ising
systems are suppressed and a deterministic pattern dominates. The mesoscopic local mean field equation
describing the diffusion/spin-exchange mechanism combining the spin flip/exchange simultaneous mechanisms,
Arrhenius adsorption/desorption dynamics, Metropolis surface diffusion, and a simple unimolecular reaction is
given by, cf. [22],

(1.4) ut = D∇ ·
[
∇u− βu(1− u)∇Jm ∗ u

]
+

[
kαp(1− u)− kdu exp(−βJd ∗ u)

]
− kru,

where u denotes the surface coverage of the adsorbed species, Jd and Jm are the interparticle potentials for
surface desorption and migration, D is the diffusion constant, β is the inverse temperature, kr, kd, kα denote
respectively the reaction, desorption, and adsorption constants, p is the partial pressure of the gaseous species,
while the parameters kα, kd stem from the Hamiltonian of the system.

In [22], the authors proposed a simplification of (1.4) which preserves its fundamental structure and can be
obtained after rescaling when kr = 0 and Jm = Jd = J

(1.5) ut = −D∆(∆u− f(u)) + ∆u− f(u),

where the Cahn-Hilliard term corresponds to surface diffusion, while the Allen-Cahn term to adsorption/desor-
ption. The ε-dependent Cahn-Hilliard/Allen-Cahn equation of (1.1) can be derived from (1.5) after further
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rescaling in ε. It has been first introduced in [20] in order to describe the long-time behavior of large clusters
when ε ≪ 1, for weights δ = O(1) and µ = ε−2.

1.3. The Scalar Auxiliary Variable (SAV) approach. Notice that the b.c. ∂νu = ∂ν∆u = 0 yield that
∂νu = ∂ν(ε

2∆u− f(u)) = 0 on ∂D, since f(u) = u3 − u. Thus, the initial and boundary value problem (1.1) is
written in the equivalent form given by

ut = −δ(ε)∆
(
ε2∆u− r(u)W (u)

)
+ µ(ε)(ε2∆u− r(u)W (u)), x ∈ D, 0 < t ≤ T,

u(x, 0) = u0(x; ε), x ∈ D, ∂νu = ∂ν(ε
2∆u− f(u)) = 0 on ∂D,

(1.6)

where the operators r, W are given by

(1.7) r(u) := r(u(·, t)) :=
(∫

D
F (u(x, t))dx+ E0

)1/2

, W (u) := W (u(x, t), t) := f(u)r(u)−1,

for E0 > 0 an arbitrary constant. As used in [1], it holds that

∂tr(u) =
1

2

(∫
D
F (u(x, t))dx+ E0

)−1/2(∫
D
F ′(u)utdx+ 0

)
=

1

2
(W (u), ut).(1.8)

The SAV approach consists of stating the gradient flow-type problem (1.1) as a system for (u, r), given by
(1.6)-(1.7), and then construct energy-stable numerical schemes in order to approximate u, r.

1.4. Main results and contributions. In this paper, we introduce a novel class of efficient fully-discrete
numerical schemes for the ε-dependent Cahn-Hilliard/Allen-Cahn problem (1.1). Section 2 is devoted to the
construction of the SAV formulation for the time discretization of the equivalent to (1.1) system (1.6)-(1.7). The
scheme is given by a coupled linear elliptic system for the internal stages of an algebraically stable linearized RK
method with weights δ(ε), µ(ε), i.e., (2.2), (2.3), and the direct formulae (2.4) for the discrete approximations
of u and r(u). The energy of (1.1) defined by (2.5) is decaying, [8], we prove that the discrete energy given
through the numerical solution by (2.7) is decaying as well, cf. Theorem 2.1. In Section 3, we present the
error analysis of the time-discrete RK method where we state the error equations and prove Theorem 3.1. A
fully-discrete space-time scheme of piece-wise quadratic finite elements coupled with (2.2), (2.3), and (2.4) is
introduced at Section 4, and is implemented by a series of 1D and 2D numerical simulations.

The main contributions of the present paper are summarized as follows:

• Theorem 2.1 shows the unconditional energy-stability of the semi-discrete scheme, fact that justifies the
SAV approach. Such results are proven by combining algebraically stable Runge-Kutta methods with
extrapolation and using the recently developed SAV formulation.

• We present the rigorous and quite challenging error analysis of the semi-discrete scheme. By Theorem
3.1, we obtain the optimal error estimates (3.15) in L2, and in H2 when the RK internal stages are
considered, by using the consistency error, a priori estimates of the discrete scheme, and by determining
carefully the appearing coefficients in ε. When µ(ε) = 0, this result covers the SAV formulation error
analysis of the 4th order Cahn-Hilliard case which was not presented in [1]. Our estimates hold for
sufficiently small step-size τ of the RK nodes, with bounds depending on ε, δ(ε), µ(ε).

• In Section 4, we present an effective implementation of the fully-discrete scheme where the Runge-Kutta
internal stages Un,j , Rn,j , and the Runge-Kutta endpoints Un+1, Rn+1 can be obtained directly; see
in Section 4.1. where the fully-discrete system is written in matrix form. In contrast, in previous
implementations of SAV-type numerical schemes, one needs to introduce a temporary variable and then
decouple the system, cf. [26] and the papers cited therein.

• The numerical scheme, its error analysis, and the simulations are the very first numerical results in the
literature of the mixed CH/AC problem. In Section 4, we confirm numerically the optimal error, and as
expected the decay of the discrete energy. We also investigate the numerical solution for various weights
to observe that when δ ≫ µ the solution is closer to this of the Cahn-Hilliard, while when δ ≪ µ closer
to this of the Allen-Cahn equation.

• As the 2D simulations show, the transition layers seem to change significantly depending on the selection
of δ(ε), µ(ε) and their order in ε. This was proven rigorously only in dimensions d = 1 in [8].
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2. SAV-type semi-discrete formulation for the CH/AC

2.1. The Runge-Kutta numerical scheme in time. Let a uniform partition of the time interval [0, T ],
t0 = 0 < t1 < · · · < tN = T , with stepsize τ = T/N , and let tn,i := tn + ciτ , i = 1, . . . , q, n = 0, . . . , N − 1 be
the Runge-Kutta nodal points. Here, we consider the RK method given by the tableau

a11 · · · a1q c1
...

...
...

aq1 · · · aqq cq
b1 · · · bq

where there exists A−1 for A := (aij)
q
i,j=1, bi > 0 for i = 1, . . . , q, ci ̸= cj for all i ̸= j, while the matrix

(2.1) M = (mij)
q
i,j=1, mij := biaij + bjaji − bibj ,

is positive semidefinite, and so the RK method as introduced in [1] is algebraically stable.
For given stages un−1,i, i = 1, . . . , q, let uτ

n−1(t) be the Lagrange interpolation polynomial of degree at most
q − 1 at the points (tn−1,i, un−1,i) ∈ R2, for i = 1, . . . , q. We also define, for any i = 1, . . . , q, Iτn−1un,i :=
uτ
n−1(tn,i), and denote by Iτn−1u(t) the Lagrange interpolation polynomial of degree at most q− 1 at the points

(tn−1,i, u(tn−1,i)) ∈ R2, for i = 1, . . . , q.
Given the approximations un, rn, and un−1,i, i = 1, . . . , q, we define the coupled linear elliptic system of

equations for the internal stages (un,i, wn,i, rn,i), i = 1, . . . , q, given by the following linearized RK method

u̇n,i = δ(ε)∆wn,i − µ(ε)wn,i in D,

wn,i = −ε2∆un,i + rn,iW (Iτn−1un,i) in D,

un,i = un + τ

q∑
j=1

aij u̇n,j in D,

∂νun,i = ∂νwn,i = 0 on ∂D,

(2.2)

and

ṙn,i =
1

2
(W (Iτn−1un,i), u̇n,i), rn,i = rn + τ

q∑
j=1

aij ṙn,j .(2.3)

We shall consider sufficiently smooth initial data so that the system is solvable and u̇n,i belongs to H2(D), and
thus un,i ∈ H6(D).

The values un+1, rn+1 are then calculated by the direct formulae

un+1 = un + τ

q∑
i=1

biu̇n,i, rn+1 = rn + τ

q∑
i=1

biṙn,i.(2.4)

2.2. Discrete energy decay. The relevant to the scaling of the standard Allen-Cahn operator ε2∆u− f(u),
free energy functional is defined as follows

(2.5) E(u) :=

∫
D

(ε2|∇u|2

2
+ F (u)

)
dx.

A direct calculation, see in [8], yields the free energy decreasing property for the initial and boundary value
problem (1.6) (or of the equivalent (1.1)), since δ(ε) > 0 and µ(ε) ≥ 0, i.e.,

∂E(u)

∂t
= −δ(ε)∥∇

(
ε2∆u− f(u)

)
∥2 − µ(ε)∥ε2∆u− f(u)∥2 ≤ 0.(2.6)

Let us consider the discrete version of the energy as introduced in [1], defined for our problem by

(2.7) Eτ [un, rn] :=
ε2

2
∥∇un∥2 + |rn|2 − E0.

The discrete energy decay is proven by the next Main Theorem.
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Theorem 2.1. Suppose that the Runge-Kutta method satisfies (2.1) and is thus algebraically stable. Then, the
discrete energy given by (2.7) is decaying, i.e.,

(2.8) Eτ [un+1, rn+1] ≤ Eτ [un, rn], ∀ 0 ≤ n ≤ N − 1.

Proof. By [1] (cf. (3.2) therein), due to the positive semidefiniteness of the matrix M given by (2.1), it holds
that

(2.9) ∥∇un+1∥2 ≤ ∥∇un∥2 + 2τ

q∑
i=1

bi(∇u̇n,i,∇un,i).

By (2.2), and using that ∂νun,i = 0 on ∂D, we obtain

(wn,i, u̇n,i) = −(∆ε2un,i, u̇n,i) + (rn,iW (Iτn−1un,i), u̇n,i) = (ε2∇un,i,∇u̇n,i) + (rn,iW (Iτn−1un,i), u̇n,i),

which gives that

(ε2∇un,i,∇u̇n,i) = (u̇n,i, wn,i − rn,iW (Iτn−1un,i)).(2.10)

By using (2.10) in (2.9), we get

(2.11) ∥∇un+1∥2 ≤ ∥∇un∥2 + 2τε−2

q∑
i=1

bi(u̇n,i, wn,i − rn,iW (Iτn−1un,i)).

Obviously it holds that (cf. (3.4) of [1])

(2.12) |rn+1|2 ≤ |rn|2 + τ

q∑
i=1

birn,i(W (Iτn−1un,i), u̇n,i).

Relations (2.11) and (2.12), and the first equation of (2.2), yield

ε2

2
∥∇un+1∥2 + |rn+1|2 ≤ ε2

2
∥∇un∥2 + τ

q∑
i=1

bi(u̇n,i, wn,i − rn,iW (Iτn−1un,i))

+ |rn|2 + τ

q∑
i=1

birn,i(W (Iτn−1un,i), u̇n,i) =
ε2

2
∥∇un∥2 + |rn|2 − τδ(ε)

q∑
i=1

bi∥∇wn,i∥2

− τµ(ε)

q∑
i=1

bi∥wn,i∥2 ≤ ε2

2
∥∇un∥2 + |rn|2,

(2.13)

where we used the Neumann b.c. of wn,i, that δ(ε) > 0, µ(ε) ≥ 0, and that τ, bi > 0.
Inequality (2.13), by substracting E0, gives the discrete energy decay property (2.8). □

3. Error analysis

3.1. The error equations. Let u be the solution of (1.6) and un,i, rn,i the solutions of (2.2) and (2.3). We
define the error terms

en := u(·, tn)− un for n = 0, . . . , N, and

en,i := u(·, tn + ciτ)− un,i, ėn,i := u̇∗
n,i − u̇n,i for n = 0, . . . , N − 1, i = 1, . . . , q,

(3.1)

and

ηn := r(u(·, tn))− rn for n = 0, . . . , N, and

ηn,i := r(u(·, tn + ciτ))− rn,i, η̇n,i := ṙ∗n,i − ṙn,i for n = 0, . . . , N − 1, i = 1, . . . , q.
(3.2)

In the above, u̇∗
n,i is defined by

u̇∗
n,i :=δ(ε)∆ũn,i − µ(ε)ũn,i,(3.3)

for

ũn,i :=− ε2∆u(·, tn + ciτ) + r(u(·, tn + ciτ))W (Iτn−1u(·, tn + ciτ)),(3.4)
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and

u(·, tn + ciτ) = u(·, tn) + τ

q∑
j=1

aij u̇
∗
n,j + εn,i,

∂νu(·, tn + ciτ) = ∂ν∆u(·, tn + ciτ) = ∂ν ũn,i = 0 on ∂D,

(3.5)

while, as in (4.2), (4.3) of [1], ṙ∗n,i is defined by

ṙ∗n,i :=
1

2
(W (Iτn−1u(·, tn + ciτ)), u̇

∗
n,i), r(u(·, tn + ciτ)) = r(u(·, tn)) + τ

q∑
j=1

aij ṙ
∗
n,j + dn,i,(3.6)

for i = 1, . . . , q, and

u(·, tn+1) = u(·, tn) + τ

q∑
i=1

biu̇
∗
n,i + εn+1, r(u(·, tn+1)) = r(u(·, tn)) + τ

q∑
i=1

biṙ
∗
n,i + dn+1,(3.7)

where we introduced the quantities εn,i, εn+1, dn,i, dn+1 which are the resulting consistency errors.
Therefore, by substraction the next error equations follow for any i = 1, . . . , q

ėn,i =δ(ε)∆ẽn,i − µ(ε)ẽn,i,(3.8)

ẽn,i :=− ε2∆en,i + ηn,iW (Iτn−1un,i) + r(u(·, tn + ciτ))
[
W (Iτn−1u(tn + ciτ))−W (Iτn−1un,i)

]
,(3.9)

en,i = en + τ

q∑
j=1

aij ėn,j + εn,i, ∂νen,i = ∂ν ẽn,i = 0 on ∂D.(3.10)

Moreover, as in (4.18), (4.19) of [1], we have

η̇n,i =
1

2

(
W (Iτn−1u(tn + ciτ))−W (Iτn−1un,i), u̇

∗
n,i

)
+

1

2
(W (Iτn−1un,i), ėn,i),

ηn,i = ηn + τ

q∑
j=1

aij η̇n,j + dn,i,
(3.11)

for i = 1, . . . , q, and

en+1 = en + τ

q∑
i=1

biėn,i + εn+1, ηn+1 = ηn + τ

q∑
i=1

biη̇n,i + dn+1.(3.12)

Then (cf. (4.21), (4.22) of [1]), it follows that

(3.13) ∥en+1∥2 = ∥en + τ

q∑
i=1

biėn,i∥2 + 2(εn+1, en + τ

q∑
i=1

biėn,i) + ∥εn+1∥2.

3.2. The estimates. In this section, we prove the next Main Theorem.

Theorem 3.1. Let the initial condition u0 of the continuous problem (1.1) be smooth enough, and let

∥e1∥2 + |η1|2 + τ

q∑
i=1

bi∥e0,i∥2 ≤ cτ2q,

∥e0,i∥H2(D) ≤ τ, ∀ 1 ≤ i ≤ q,

(3.14)

it holds that

∥em+1∥+ |ηm+1| ≤ cτ q, ∀ 0 ≤ m ≤ N − 1,

∥em,i∥H2(D) ≤ cτ q−
1
2 ≤ τ, ∀ 1 ≤ m ≤ N, 1 ≤ i ≤ q,

(3.15)

when τ is small enough, for any q ≥ 2 and c a constant independent of τ .
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Proof. Due to the positive semidefiniteness of M , by (3.13) we have

(3.16) ∥en + τ

q∑
i=1

biėn,i∥2 ≤ ∥en∥2 + 2τ

q∑
i=1

bi(ėn,i, en,i − εn,i).

Using that ∂ν ẽn,i = ∂νen,i = 0 on ∂D, we obtain by (3.8), and by (3.9)

(ėn,i, en,i − εn,i) = −δ(ε)ε2∥∆en,i∥2 + δ(ε)(∇ẽn,i,∇εn,i) + µ(ε)ε2(∇en,i,∇εn,i)− µ(ε)ε2∥∇en,i∥2

+ δ(ε)
(
ηn,iW (Iτn−1un,i) + r(u(·, tn + ciτ))

[
W (Iτn−1u(tn + ciτ))−W (Iτn−1un,i)

]
,∆en,i

)
− µ(ε)

(
ηn,iW (Iτn−1un,i) + r(u(·, tn + ciτ))

[
W (Iτn−1u(tn + ciτ))−W (Iτn−1un,i)

]
, en,i

)
+ µ(ε)

(
ηn,iW (Iτn−1un,i) + r(u(·, tn + ciτ))

[
W (Iτn−1u(tn + ciτ))−W (Iτn−1un,i)

]
, εn,i

)
≤− 1

2
δ(ε)ε2∥∆en,i∥2 − µ(ε)ε2∥∇en,i∥2 +

1

2
[δ(ε)ε−2 + µ(ε) + µ(ε)ε−3]

∥∥∥ηn,iW (Iτn−1un,i)

+ r(u(·, tn + ciτ))
[
W (Iτn−1u(tn + ciτ))−W (Iτn−1un,i)

]∥∥∥2
+

1

2
µ(ε)ε3∥en,i∥2 +

1

2
µ(ε)∥εn,i∥2 + δ(ε)(∇ẽn,i,∇εn,i) + µ(ε)ε2(∇en,i,∇εn,i).

(3.17)

At this point we state an induction argument, analogous to the argument in [1]: let 1 ≤ m ≤ N , and let

(3.18) ∥en−1,i∥H2(D) ≤ τ, for all i = 1, . . . , q, and for any n ≤ m.

The above condition at n = 1 will be imposed on the scheme. This condition, as the H2 norm bounds L∞ when
d = 2, 3 and obviously when d = 1, gives that

(3.19) ∥en−1,i∥L∞(D) ≤ c, for all i = 1, . . . , q, and for any n ≤ m.

The previous, and the locally Lipschitz property of W (cf. in [1] (4.23), (4.24)) yield the upper bound

(3.20)
∥∥∥ηn,iW (Iτn−1un,i) + r(u(·, tn + ciτ))

[
W (Iτn−1u(tn + ciτ))−W (Iτn−1un,i)

]∥∥∥2 ≤ c|ηn,i|2 + c∥en−1,i∥2.

Remark 3.2. In general the constants in (3.20) depend on ε. However, if the upper bounds of ∥u0∥∞, E(u0)
are independent of ε as ε → 0, and for layered initial data so that for small times the solution u stays close
to u0 with ε-independent L∞ bounds, then both c of (3.20) are independent from ε. This is true since r(u)
is bounded by a constant independent of ε (due to the decreasing energy 2d term), while from the induction
hypothesis ∥un−1,i∥L∞ ≤ max

t
∥u∥L∞ + c ≤ c, which yields ∥W (Iτn−1un,i)∥ ≤ c for c independent of ε.

By (3.20) and (3.17), we obtain

(ėn,i,en,i − εn,i) ≤ −1

2
δ(ε)ε2∥∆en,i∥2 − µ(ε)ε2∥∇en,i∥2 + c[δ(ε)ε−2 + µ(ε)ε−3]

[
|ηn,i|2 + ∥en−1,i∥2

]
+

1

2
µ(ε)ε3∥en,i∥2 +

1

2
µ(ε)∥εn,i∥2 + δ(ε)(∇ẽn,i,∇εn,i) + µ(ε)ε2(∇en,i,∇εn,i)

≤− 1

2
δ(ε)ε2∥∆en,i∥2 −

1

2
µ(ε)ε2∥∇en,i∥2 + c[δ(ε)ε−2 + µ(ε)ε−3]

[
|ηn,i|2 + ∥en−1,i∥2

]
+

1

2
µ(ε)ε3∥en,i∥2 +

1

2
µ(ε)∥εn,i∥2 +

1

2
µ(ε)ε2∥∇εn,i∥2 + δ(ε)(∇ẽn,i,∇εn,i).

(3.21)
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The consistency error εn,i satisfies for any i = 1, . . . , q

u(·, tn + ciτ) =u(·, tn) + τ

q∑
j=1

aij u̇
∗
n,j + εn,i = u(·, tn) + τ

q∑
j=1

aijut(·, tn,j)

− τ

q∑
j=1

aijδ(ε)r(u(·, tn + cjτ))∆[W (u(·, tn + cjτ))−W (Iτn−1u(·, tn + cjτ))]

+ τ

q∑
j=1

aijµ(ε)r(u(·, tn + cjτ))[W (u(·, tn + cjτ))−W (Iτn−1u(·, tn + cjτ))] + εn,i.

Due to the Neumann b.c. of u, ∆u, and using that ∇(W (v)) = f ′(v)∇vc(t) and ∆(W (v)) = (6v|∇v|2+3v2∆v−
∆v)c(t), and that the Lagrange polynomial preserves the Neumann b.c. of u, ∆u, we have

∂νut = ∂νW (u) = ∂νW (Iτn−1u) = ∂ν∆(W (u)) = ∂ν∆(W (Iτn−1u)) = 0 on ∂D.

Therefore, we get

(3.22) ∂νεn,i = 0 on ∂D.

So, by the above and (3.9), we have

δ(ε)(∇ẽn,i,∇εn,i) = −δ(ε)(ẽn,i,∆εn,i) = −δ(ε)
(
− ε2∆en,i + ηn,iW (Iτn−1un,i)

+ r(u(·, tn + ciτ))
[
W (Iτn−1u(tn + ciτ))−W (Iτn−1un,i)

]
,∆εn,i

)
.

(3.23)

By (3.23) and (3.21), we get

(ėn,i,en,i − εn,i) ≤ −1

4
δ(ε)ε2∥∆en,i∥2 −

1

2
µ(ε)ε2∥∇en,i∥2 + c[δ(ε)ε−2 + µ(ε)ε−3][

|ηn,i|2 + ∥en−1,i∥2
]
+

1

2
µ(ε)ε3∥en,i∥2 +

1

2
µ(ε)∥εn,i∥2 +

1

2
µ(ε)ε2∥∇εn,i∥2 + 2δ(ε)ε2∥∆εn,i∥2.

(3.24)

Using (3.24) in (3.16), we arrive at

∥en+τ

q∑
i=1

biėn,i∥2 ≤ ∥en∥2 + 2τ

q∑
i=1

bi(ėn,i, en,i − εn,i) ≤ ∥en∥2 −
1

2
δ(ε)ε2τ

q∑
i=1

bi∥∆en,i∥2

− µ(ε)ε2τ

q∑
i=1

bi∥∇en,i∥2 + c[δ(ε)ε−2 + µ(ε)ε−3]τ

q∑
i=1

bi|ηn,i|2 + c[δ(ε)ε−2 + µ(ε)ε−3]τ

q∑
i=1

bi∥en−1,i∥2

+ µ(ε)ε3τ

q∑
i=1

bi∥en,i∥2 +
1

2
τ

q∑
i=1

bi

[
2µ(ε)∥εn,i∥2 + 2µ(ε)ε2∥∇εn,i∥2 + 8δ(ε)ε2∥∆εn,i∥2

]
.

(3.25)

Having estimated the first term of (3.13), we proceed to estimate the rest of the right-hand side.
Recall from (3.7) that u(·, tn+1) = u(·, tn) + τ

∑q
i=1 biu̇

∗
n,i + εn+1. So, we have

u(·, tn) =u(·, tn) + τ

q∑
i=1

biu̇
∗
n,i + εn+1 = u(·, tn) + τ

q∑
i=1

biut(·, tn,i)

− τ

q∑
i=1

biδ(ε)r(u(·, tn + ciτ))∆[W (u(·, tn + ciτ))−W (Iτn−1u(·, tn + ciτ))]

+ τ

q∑
i=1

biµ(ε)r(u(·, tn + ciτ))[W (u(·, tn + ciτ))−W (Iτn−1u(·, tn + ciτ))] + εn+1,

which yields as in (3.22) that

(3.26) ∂νεn+1 = 0 on ∂D.
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Moreover, recall that ∂ν ẽn,i = 0 on ∂D. Applying integration by parts and the previous b.c. together with
(3.26), and by using (3.8) when replacing ėn,i, we get

2(εn+1, en + τ

q∑
i=1

biėn,i) + ∥εn+1∥2 = 2(εn+1, en) + 2δ(ε)τ
(
∆εn+1,

q∑
i=1

biẽn,i

)
− 2µ(ε)τ

(
εn+1,

q∑
i=1

biẽn,i

)
+ ∥εn+1∥2

≤2τ∥εn+1/τ∥∥en∥+ 2δ(ε)τ
(
∆εn+1,

q∑
i=1

biẽn,i

)
− 2µ(ε)τ

(
εn+1,

q∑
i=1

biẽn,i

)
+ ∥εn+1∥2.

(3.27)

Replacing now ẽn,i by (3.9), since ∂νen,i = 0 on ∂D, and due to (3.20), we get

2(εn+1, en + τ

q∑
i=1

biėn,i) + ∥εn+1∥2 ≤ 2τ∥εn+1/τ∥∥en∥

+ 2δ(ε)τ
(
∆εn+1,

q∑
i=1

bi

[
− ε2∆en,i + ηn,iW (Iτn−1, un,i)

+ r(u(·, tn + ciτ))
(
W (Iτn−1u(tn + ciτ))−W (Iτn−1un,i)

)])
− 2µ(ε)τ

(
εn+1,

q∑
i=1

bi

[
− ε2∆en,i + ηn,iW (Iτn−1, un,i)

+ r(u(·, tn + ciτ))
(
W (Iτn−1u(tn + ciτ))−W (Iτn−1un,i)

)])
+ ∥εn+1∥2,

and so,

2(εn+1, en + τ

q∑
i=1

biėn,i) + ∥εn+1∥2 ≤ 2τ∥εn+1/τ∥∥en∥+
1

4
δ(ε)ε2τ

q∑
i=1

bi∥∆en,i∥2

+
1

2
µ(ε)ε2τ

q∑
i=1

bi∥∇en,i∥2 + c[δ(ε) + µ(ε)]τ

q∑
i=1

bi|ηn,i|2 + c[δ(ε) + µ(ε)]τ

q∑
i=1

bi∥en−1,i∥2

+ cδ(ε)ε2τ∥∆εn+1∥2 + cµ(ε)ε2τ∥∇εn+1∥2 + ∥εn+1∥2.

(3.28)

Collecting all the terms, and by (3.13), (3.25) and (3.28), for ε < 1, we arrive at

∥en+1∥2 ≤∥en∥2 −
1

4
δ(ε)ε2τ

q∑
i=1

bi∥∆en,i∥2 −
1

2
µ(ε)ε2τ

q∑
i=1

bi∥∇en,i∥2

+ c[δ(ε)ε−2 + µ(ε)ε−3]τ

q∑
i=1

bi|ηn,i|2 + c[δ(ε)ε−2 + µ(ε)ε−3]τ

q∑
i=1

bi∥en−1,i∥2

+ µ(ε)ε3τ

q∑
i=1

bi∥en,i∥2 +
1

2
τ

q∑
i=1

bi

[
2µ(ε)∥εn,i∥2 + 2µ(ε)ε2∥∇εn,i∥2 + 8δ(ε)ε2∥∆εn,i∥2

]
+ 2τ∥εn+1/τ∥∥en∥+ cδ(ε)ε2τ∥∆εn+1∥2 + cµ(ε)ε2τ∥∇εn+1∥2 + ∥εn+1∥2.

(3.29)

By the second equation of (3.12), we have

|ηn+1|2 ≤ (1 + cτ)|ηn + τ

q∑
i=1

biη̇n,i|2 + (1 + cτ−1)|dn+1|2.(3.30)
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The second equation of (3.11) and the algebraic stability of the Runge-Kutta method yield

|ηn + τ

q∑
i=1

biη̇n,i|2 ≤|ηn|2 + 2τ

q∑
i=1

bi|η̇n,i|2 + τ

q∑
i=1

bi|ηn,i|2 + τ

q∑
i=1

bi|dn,i|2.(3.31)

We observe now that W (v) = f(v)c(t) and thus, ∇(W (v)) = c(t)f ′(v)∇v, which gives, for v := Iτn−1u(·, tn,i),
∇(W (Iτn−1u(·, tn,i)) = c(t)f ′(Iτn−1u(·, tn,i))∇(Iτn−1u(·, tn,i)). By the definition of Iτn−1u(·, tn,i) which is imple-
mented by extrapolation in t by using the values un−1,i for i = 1, . . . , q, and due to the Neumann b.c. of u(·, tn,i)
on ∂D for all n, i, it follows that the Neumann b.c. is satisfied as well by Iτn−1u(·, tn,i), and therefore

(3.32) ∂ν(W (Iτn−1u(·, tn,i))) = 0 on ∂D.

The same argument follows for ∂ν∆(W (Iτn−1u(·, tn,i))) due to the Neumann condition of ∆u, i.e.,

(3.33) ∂ν∆(W (Iτn−1u(·, tn,i))) = 0 on ∂D.

We use the first equation of (3.11), we apply integration by parts and use the b.c. (3.32), (3.33), and the
Neumann b.c. of ẽn,i, ∆ẽn,i to arrive at

|η̇n,i|2 ≤ c
∥∥∥W (Iτn−1u(tn + ciτ))−W (Iτn−1un,i)

∥∥∥2 + c(W (Iτn−1un,i), ėn,i)
2 ≤ c∥en−1,i∥2

+ c(W (Iτn−1un,i), ėn,i)
2 = c∥en−1,i∥2 +H+ c(W (Iτn−1u(·, tn,i)), ėn,i)2 = c∥en−1,i∥2 +H

+ c[(∆(W (Iτn−1u(·, tn,i))), δ(ε)ẽn,i)− (W (Iτn−1u(·, tn,i)), µ(ε)ẽn,i)]2

≤c∥en−1,i∥2 +H+ c[δ(ε)2 + µ(ε)2]ε4∥en,i∥2 + c[δ(ε)2 + µ(ε)2]|ηn,i|2 + c[δ(ε)2 + µ(ε)2]∥en−1,i∥2,

(3.34)

for H := c(W (Iτn−1un,i) − W (Iτn−1u(·, tn,i)), ėn,i)2. In the above, we integrated two times by parts the term
ε2∆en,i stemming from (∆(W (Iτn−1u(·, tn,i))), δ(ε)ẽn,i), and from (W (Iτn−1u(·, tn,i)), µ(ε)ẽn,i) after we replaced
ẽn,i by (3.9), and then used (3.20). Here we need initial data smooth enough in space (in H6(D)) so that
∥∆2(W (Iτn−1u(·, tn,i)))∥2, ∥∆(W (Iτn−1u(·, tn,i)))∥2 are bounded by c = c(ε) in general. In this way we reduced
the norms at the right and only the L2 norm of en,i appears, which will be bounded summed by ∥en∥ and higher
order terms in τ including ∆en,i, see (3.45) and the preceding inequality there.

We use now (3.34) in (3.31), and obtain

|ηn+τ

q∑
i=1

biη̇n,i|2 ≤ |ηn|2 + cτ

q∑
i=1

bi

[
[1 + δ(ε)2 + µ(ε)2]∥en−1,i∥2

+H+ [δ(ε)2 + µ(ε)2]ε4∥en,i∥2 + [δ(ε)2 + µ(ε)2]|ηn,i|2
]
+ τ

q∑
i=1

bi|ηn,i|2 + τ

q∑
i=1

bi|dn,i|2.
(3.35)

So, (3.35) and (3.30) yield for τ < 1

|ηn+1|2 ≤(1 + cτ)|ηn|2 + cτ

q∑
i=1

bi

[
[1 + δ(ε)2 + µ(ε)2]∥en−1,i∥2 +H+ [δ(ε)2 + µ(ε)2]ε4∥en,i∥2

+ [δ(ε)2 + µ(ε)2]|ηn,i|2
]
+ cτ

q∑
i=1

bi|ηn,i|2 + cτ

q∑
i=1

bi|dn,i|2 + (1 + cτ−1)|dn+1|2.
(3.36)
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Adding (3.36) and (3.29), we get

∥en+1∥2 + |ηn+1|2 +
1

4
δ(ε)ε2τ

q∑
i=1

bi∥∆en,i∥2 +
1

2
µ(ε)ε2τ

q∑
i=1

bi∥∇en,i∥2 ≤

∥en∥2 + (1 + cτ)|ηn|2 + c[δ(ε)ε−2 + µ(ε)ε−3]τ

q∑
i=1

bi|ηn,i|2 + c[δ(ε)ε−2 + µ(ε)ε−3]τ

q∑
i=1

bi∥en−1,i∥2

+ µ(ε)ε3τ

q∑
i=1

bi∥en,i∥2 +
1

2
τ

q∑
i=1

bi

[
2µ(ε)∥εn,i∥2 + 2µ(ε)ε2∥∇εn,i∥2 + 8δ(ε)ε2∥∆εn,i∥2

]
+ 2τ∥εn+1/τ∥∥en∥+ cδ(ε)ε2τ∥∆εn+1∥2 + cµ(ε)ε2τ∥∇εn+1∥2 + ∥εn+1∥2

+ cτ

q∑
i=1

bi

[
[1 + δ(ε)2 + µ(ε)2]∥en−1,i∥2 + [δ(ε)2 + µ(ε)2]|ηn,i|2

]
+ cτ

q∑
i=1

bi|ηn,i|2

+ cτ

q∑
i=1

bi|dn,i|2 + (1 + cτ−1)|dn+1|2 + cτ

q∑
i=1

biH+ c[δ(ε)2 + µ(ε)2]ε4τ

q∑
i=1

bi∥en,i∥2 =: A,

(3.37)

A ≤(1 + cτ)∥en∥2 + (1 + cτ)|ηn|2 + c[1 + δ(ε)ε−2 + µ(ε)ε−3 + δ(ε)2 + µ(ε)2]τ

q∑
i=1

bi|ηn,i|2

+ c[1 + δ(ε)ε−2 + µ(ε)ε−3 + δ(ε)2 + µ(ε)2]τ

q∑
i=1

bi∥en−1,i∥2 + µ(ε)ε3τ

q∑
i=1

bi∥en,i∥2

+
1

2
τ

q∑
i=1

bi

[
2µ(ε)∥εn,i∥2 + 2µ(ε)ε2∥∇εn,i∥2 + 8δ(ε)ε2∥∆εn,i∥2

]
+ cτ∥εn+1/τ∥2 + cδ(ε)ε2τ∥∆εn+1∥2 + cµ(ε)ε2τ∥∇εn+1∥2 + ∥εn+1∥2

+ cτ

q∑
i=1

bi|dn,i|2 + (1 + cτ−1)|dn+1|2 + cτ

q∑
i=1

biH+ c[δ(ε)2 + µ(ε)2]ε4τ

q∑
i=1

bi∥en,i∥2.

(3.38)

Remark 3.3. The next consistency error estimate holds true

(3.39) ∥εn+1∥H2(D) + |dn+1|+ τ

q∑
i=1

(∥εn,i∥H2(D) + |dn,i|) ≤ cτ q+1.

The proof of the above is analogous to this of Lemma 4.1 of [1] proven for the Allen-Cahn equation. However,
due to the 4-th order CH/AC equation we considered, H2(D) consistency estimates are needed for the error
analysis. These follow if we assume smooth enough initial data, resulting in a regular solution. More specifically,
the expansions in Lemma 4.1 of [1] involve time derivatives of the continuous problem solution. By using there
H2(D) norms in place of H1(D) yields the result.

By (3.39), we obtain

1

2
τ

q∑
i=1

bi

[
2µ(ε)∥εn,i∥2 + 2µ(ε)ε2∥∇εn,i∥2 + 8δ(ε)ε2∥∆εn,i∥2

]
+ cτ∥εn+1/τ∥2 + cδ(ε)ε2τ∥∆εn+1∥2

+ cµ(ε)ε2τ∥∇εn+1∥2 + ∥εn+1∥2 + cτ

q∑
i=1

bi|dn,i|2 + (1 + cτ−1)|dn+1|2 ≤ cτ2q+1.

(3.40)
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Due to the bound (3.40), (3.38), and (3.37), for J := 1 + δ(ε)ε−2 + µ(ε)ε−3 + δ(ε)2 + µ(ε)2, we arrive at

∥en+1∥2 + |ηn+1|2 +
1

4
δ(ε)ε2τ

q∑
i=1

bi∥∆en,i∥2 +
1

2
µ(ε)ε2τ

q∑
i=1

bi∥∇en,i∥2 ≤ A ≤ (1 + cτ)∥en∥2

+ (1 + cτ)|ηn|2 + cJ τ

q∑
i=1

bi|ηn,i|2 + cJ τ

q∑
i=1

bi∥en−1,i∥2 + µ(ε)ε3τ

q∑
i=1

bi∥en,i∥2 + cτ2q+1 + cτ

q∑
i=1

biH

+ c[δ(ε)2 + µ(ε)2]ε4τ

q∑
i=1

bi∥en,i∥2.

(3.41)

We use now the second equation of (3.11), i.e., ηn,i = ηn + τ
∑q

j=1 aij η̇n,j + dn,i, which yields that

|ηn,i|2 ≤ c|ηn|2 + cτ2
( q∑

j=1

aij η̇n,j

)2

+ c|dn,i|2 ≤ c|ηn|2 + cτ2
q∑

j=1

|η̇n,j |2 + c|dn,i|2.

So, by (3.34) and the above, we get

|ηn,i|2 ≤c|ηn|2 + cτ2
q∑

j=1

|η̇n,j |2 + c|dn,i|2 ≤ c|ηn|2 + cτ2
q∑

i=1

biH+ cτ2[δ(ε)2 + µ(ε)2]ε4
q∑

j=1

∥en,j∥2

+ cτ2[δ(ε)2 + µ(ε)2]

q∑
j=1

|ηn,j |2 + cτ2[1 + δ(ε)2 + µ(ε)2]

q∑
j=1

∥en−1,j∥2 + c|dn,i|2.
(3.42)

Therefore, by the estimate (3.39) it follows that

τ

q∑
i=1

bi|ηn,i|2 ≤ cτ |ηn|2 + cτ3
q∑

i=1

biH+ cτ3[δ(ε)2 + µ(ε)2]ε4
q∑

i=1

∥en,i∥2 + cτ3[δ(ε)2 + µ(ε)2]

q∑
i=1

|ηn,i|2

+ cτ3[1 + δ(ε)2 + µ(ε)2]

q∑
i=1

∥en−1,i∥2 + cτ

q∑
i=1

bi|dn,i|2 ≤ cτ |ηn|2 + cτ3[δ(ε)2 + µ(ε)2]ε4
q∑

i=1

∥en,i∥2

+ cτ3[δ(ε)2 + µ(ε)2]

q∑
i=1

|ηn,i|2 + cτ3[1 + δ(ε)2 + µ(ε)2]

q∑
i=1

∥en−1,i∥2 + cτ3
q∑

i=1

biH+ cτ2q+1.

(3.43)

So, for τ < G(δ(ε), µ(ε), ε) small enough, (3.43) and (3.41) give

∥en+1∥2+|ηn+1|2 +
1

8
δ(ε)ε2τ

q∑
i=1

bi∥∆en,i∥2 +
1

2
µ(ε)ε2τ

q∑
i=1

bi∥∇en,i∥2

≤(1 + cτ)∥en∥2 + (1 + cτ)|ηn|2 + c[1 + δ(ε)ε−2 + µ(ε)ε−3 + δ(ε)2 + µ(ε)2]τ

q∑
i=1

bi∥en−1,i∥2

+ µ(ε)ε3τ

q∑
i=1

bi∥en,i∥2 + cτ

q∑
i=1

biH+ c[δ(ε)2 + µ(ε)2]ε4τ

q∑
i=1

bi∥en,i∥2 + cτ2q+1

≤ (1 + cτ)∥en∥2 + (1 + cτ)|ηn|2 + c[1 + δ(ε)ε−2 + µ(ε)ε−3 + δ(ε)2 + µ(ε)2]τ

q∑
i=1

bi∥en−1,i∥2

+ µ(ε)ε3τ

q∑
i=1

bi∥en,i∥2 + cτ

q∑
i=1

bi∥en,i∥2 + cτ∥en∥2 + c[δ(ε)2 + µ(ε)2]ε4τ

q∑
i=1

bi∥en,i∥2 + cτ2q+1,

(3.44)
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where we used that ėn,i ≤ cτ−1
∑q

j=1(∥en,j −en∥+∥εn,j∥) ([1]), which yielded by the induction hypothesis that

cτ
∑q

i=1 biH ≤ cτ
∑q

i=1 bi∥en,i∥2 + cτ∥en∥2 + cτ2q+1. By (3.10) (as in [1] after (4.30)), we have

q∑
i=1

∥en,i∥2 ≤ c∥en∥2 + cτ

q∑
i,j=1

aij(ėn,j , en,i) + c

q∑
i=1

∥εn,i∥2 = c∥en∥2 + cτ

q∑
i,j=1

aij

(
δ(ε)∆

[
− ε2∆en,j

+ ηn,jW (Iτn−1un,j) + r(u(·, tn + cjτ))
[
W (Iτn−1u(tn + cjτ))−W (Iτn−1un,j)

]]
, en,i

)
− cτ

q∑
i,j=1

aij

(
µ(ε)

[
− ε2∆en,j + ηn,jW (Iτn−1un,j) + r(u(·, tn + cjτ))

[
W (Iτn−1u(tn + cjτ))−W (Iτn−1un,j)

]]
, en,i

)
+ c

q∑
i=1

∥εn,i∥2

where we used (3.8) and (3.9). Integration by parts and using that r(u), ηn,j are independent of x, and since
∂ν∆en,i = ∂νen,i = ∂ν(W (Iτn−1u(tn + cjτ))) = ∂ν(W (Iτn−1un,j)) = 0 on ∂D then yields

q∑
i=1

∥en,i∥2 ≤ c∥en∥2 + cτ

q∑
i,j=1

aij

(
δ(ε)

[
− ε2∆en,j + ηn,jW (Iτn−1un,j) + r(u(·, tn + cjτ))

[
W (Iτn−1u(tn + cjτ))

−W (Iτn−1un,j)
]]
,∆en,i

)
− cτ

q∑
i,j=1

aij

(
µ(ε)

[
− ε2∆en,j + ηn,jW (Iτn−1un,j) + r(u(·, tn + cjτ))

[
W (Iτn−1u(tn + cjτ))−W (Iτn−1un,j)

]]
, en,i

)
+ c

q∑
i=1

∥εn,i∥2 ≤ c∥en∥2 + cτ

q∑
i=1

[δ(ε)ε2 + δ(ε)2 + ε4]∥∆en,i∥2

+ cτ

q∑
i=1

(|ηn,i|2 + ∥en−1,i∥2) + cτ

q∑
i=1

µ(ε)2∥en,i∥2 + c

q∑
i=1

∥εn,i∥2

where we used (3.20). Therefore, we get for G := µ(ε)ε3 + 1 + [δ(ε)2 + µ(ε)2]ε4

Gτ
q∑

i=1

bi∥en,i∥2 ≤ cG
[
τ∥en∥2 + τ2

q∑
i=1

[δ(ε)ε2 + δ(ε)2 + ε4]∥∆en,i∥2

+ τ2
q∑

i=1

(|ηn,i|2 + ∥en−1,i∥2) + τ2
q∑

i=1

µ(ε)2∥en,i∥2 + cτ2q+1
]
,

(3.45)

where we used (3.40) and that bi > 0. By (3.45), and by (3.43) as bi > 0, and for τ < M(δ(ε), µ(ε), ε) small
enough, we bound

(µ(ε)ε3 + 1 + [δ(ε)2 + µ(ε)2]ε4)τ

q∑
i=1

bi∥en,i∥2

by the existing terms in (3.44) apart from 1∥en∥2. This gives for some c1(ε) > 0 (never vanishing for any δ > 0,
µ ≥ 0)

∥en+1∥2+|ηn+1|2 +
1

16
δ(ε)ε2τ

q∑
i=1

bi∥∆en,i∥2 +
1

2
µ(ε)ε2τ

q∑
i=1

bi∥∇en,i∥2 + c1(ε)τ

q∑
i=1

bi∥en,i∥2

≤(1 + cτ)∥en∥2 + (1 + cτ)|ηn|2 + c1(ε)τ

q∑
i=1

bi∥en−1,i∥2 + cτ2q+1.

(3.46)

By taking maximum for 1 ≤ n ≤ m and using (3.14), then (3.15) is derived. This completes the induction for
q ≥ 2 for τ < min{c(ε)−2, 1} for c = c(ε) this of the estimate (3.15). The smallness of c(ε) is independent of m,
[1]. □

Remark 3.4. As in (4.34) of [1], ∥ėn,i∥ ≤ cτ q−
3
2 , while by (3.8), (3.9) and since δ, µ are non-negative we get

∥∇ẽn,i∥2 ≤ c∥ėn,i∥2. Using then (3.42), we obtain ∥ẽn,i∥H2(D) ≤ cτ q−
3
2 , ∀ 1 ≤ n ≤ N , 1 ≤ i ≤ q.
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Remark 3.5. Since ∂νen,i = ∂ν∆en,i = 0 on ∂D, we have ∥en,i∥H2(D) ∼ ∥en,i∥+∥∆en,i∥, and thus for µ(ε) = 0
(Cahn-Hilliard case) (3.15) is valid. When δ(ε) = 0 (Allen-Cahn case) the Laplacian term is missing at (3.46);
we refer to [1] for the derivation of an O(τ q−3/2) H2-estimate there.

Remark 3.6. A rescaling u(x, t) → v(z, r) as presented at the introduction, and for δ(ε)
µ(ε)ε2 = O(1), would have

led to optimal order numerical approximations for v(z, r), z ∈ D, r ∈ (0, T ), with τ(r) = O(1) (ε-independent),
and subsequently of u(x, t), but there only for any x such that |x| ≤ cε, and any t ≤ cµ(ε)−1. In case of the

Allen-Cahn dominance ( δ(ε)
µ(ε)ε2 ≪ 1) the order of convergence in ε of the 2d of (3.15) would approximate the

Allen-Cahn reduced order.

4. Numerical experiments

In this section, we construct a fully-discrete space-time scheme, and then present the results of a series of
numerical experiments for the ε-dependent Cahn-Hilliard/Allen-Cahn problem (1.1) for various choices of the
weights δ(ε), µ(ε).

4.1. The fully-discrete scheme. As in [1], the linearized RK method defined by (2.2), (2.3), (2.4) will be
applied on a spatially semi-discrete scheme of conforming piece-wise quadratic finite elements, which is given
as follows: Let Sh = span{φ1, . . . , φJ}, h < 1, be the finite element space on D, we seek uh(x, t), wh(x, t) ∈ Sh,
and R(t) ∈ R such that(

uh,t, vh
)
= δ(ε)

(
∇wh,∇vh

)
+ µ(ε)

(
wh, vh

)
, ∀vh ∈ Sh,(

wh, vh
)
= −ε2

(
∇uh,∇vh

)
−R

(
Wh(uh), vh

)
, ∀vh ∈ Sh, Rt =

1

2

(
Wh(uh), uh,t

)
,

where
(
·, ·
)
denotes the L2(D) inner product, and Wh

(
uh

)
:= f(uh)

( ∫
D F (uh)dx+ E0

)−1/2
.

Let

uh =

J∑
i=1

ui(t)φi, wh =

J∑
i=1

wi(t)φi, U := [u1(t), . . . , uJ(t)]
T , V := [w1(t), . . . , wJ(t)]

T .

Then, the above equations can be rewritten as

AUt = δ(ε)BV + µ(ε)AV, AV = −ε2BU −RF(U), Rt =
1

2
F(U)TUt,

for

A :=
[(
φj , φi

)]
J×J

, B :=
[(
∇φj ,∇φi

)]
J×J

, F(U) =
[(
Wh(uh), φ1

)
, . . . ,

(
Wh(uh), φJ

)]T
.

By substituting V in the first equation of the above, we obtain

Ut = −ε2
(
δ(ε)A−1BA−1B + µ(ε)A−1B

)
U −R

(
δ(ε)A−1BA−1 + µ(ε)A−1

)
F(U) := M1U +M2F(U)R

Rt =
1

2
F(U)TUt =

1

2
F(U)TM1U +R

1

2
F(U)TM2F(U),

(4.1)

where M1 := −ε2
(
δ(ε)A−1BA−1B + µ(ε)A−1B

)
and M2 :=

(
δ(ε)A−1BA−1 + µ(ε)A−1

)
.

We shall use q-stage (q = 2, 3, 4) Gauss methods to construct the corresponding linearized Runge-Kutta
methods, which we name as q-stage linearized Gauss methods. Then, we use the derived linearized Gauss
scheme in order to solve numerically (4.1).

Let 0 = t0 < t1 < · · · < tN = T be a uniform partition of the interval [0, T ] with step size τ = T/N . Let also

Un ≈ U(tn), Rn ≈ R(tn), Un,i ≈ U(tn + ciτ), Rn,i ≈ R(tn + ciτ), i = 1, . . . , q.
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The fully discrete scheme is defined, for any 1 ≤ n ≤ N , by

Un,i = Un + τ

q∑
j=1

aij

(
M1Un,j +M2F(Iτn−1Un,j)Rn,j

)
, i = 1, . . . , q,

Rn,i = Rn + τ

q∑
j=1

aij(
1

2
F(Iτn−1Un,j)

TM1Un,j +Rn,j
1

2
F(Iτn−1Un,j)

TM2F(Iτn−1Un,j)), i = 1, . . . , q,

Un+1 = Un + τ

q∑
i=1

bi

(
M1Un,i +M2F(Iτn−1Un,i)Rn,i

)
,

Rn+1 = Rn + τ

q∑
i=1

bi(
1

2
F(Iτn−1Un,i)

TM1Un,i +Rn,i
1

2
F(Iτn−1Un,i)

TM2F(Iτn−1Un,i)),

(4.2)

where aij , bi, ci for i, j = 1, . . . , q are the coefficients of the Gauss methods given in [19], and for n = 0, U0,i,
R0,i i = 1, . . . , q, U1, R1, are computed by the standard Gauss methods.

Remark 4.1. Note that F(Iτn−1Un,j) in the above equation is known at the time tn, while the first two formulae
in (4.2) are linear with respect to Un,i, Rn,i, i = 1, . . . , q. Therefore, Un,i, Rn,i, i = 1, . . . , q can be obtained
directly. Then, we substitute Un,i, Rn,i, i = 1, . . . , q into the last two formulae in (4.2), and compute Un+1, Rn+1.

4.2. Simulations. Let us select the ε-weights by

I. δ(ε) = 1, µ(ε) = 8ε−2, II. δ(ε) = ε2, µ(ε) = ε−1, III. δ(ε) = ε−1, µ(ε) = ε2, IV. δ(ε) = 1, µ(ε) = 1.

We also define the discrete energy by

E(uh,n, rh,n) =

∫
D

ε2

2
|∇uh,n|2dx+ r2h,n − E0,

for uh,n, rh,n the fully discrete approximations of u, r.

4.2.1. 1D Runs. We consider first the one dimensional ε-dependent Cahn-Hilliard/Allen-Cahn problem (1.1),
posed in D := (−3, 3), and layered initial condition

u(x, 0) := tanh
( x√

2ε

)
, x ∈ D,

for a mesh size h := 0.05.
We first examine the accuracy of the proposed methods. The 2, 3, 4-stage linearized Gauss methods are used

for the Case II, with ε = 0.1. Here, the numerical solution u∗
h, with sufficiently small time step τ = 10−4,

is chosen as the solution of reference. We then compute the L2-norm errors ∥uh,n − u∗
h∥L2 at T = 1. The

numerical results are shown in 4.2.1, from which we can clearly see that the q-stage linearized Gauss methods
have q-th order accuracy. These are consistent with the theoretical results of the paper.

Table 1. L2-norm errors and convergence rates of the q-stage linearized Gauss methods.

τ
q = 2 q = 3 q = 4

∥uh,n − u∗
h∥L2 rate ∥uh,n − u∗

h∥L2 rate ∥uh,n − u∗
h∥L2 rate

1/200 2.9928e-06 - 4.5974e-08 - 6.0506e-10 -

1/400 7.5863e-07 1.98 6.1901e-09 2.89 3.7672e-11 4.01

1/800 1.9005e-07 2.00 8.0325e-10 2.95 2.3515e-12 4.00

1/1600 4.6746e-08 2.02 1.0198e-10 2.98 1.6339e-13 3.85

We apply the 2-stage linearized Gauss method. Figure 4.1 presents the evolution of E(uh,n, rh,n) which
decays, as well as the numerical solutions, for weights defined by Case IV, with ε = 0.1 , 0.01 , 0.001, which
clearly illustrates that the proposed methods are energy-stable. For all other Cases I-III the results were similar,
and the numerical solutions seemed to converge to the step function ±1, as in Case IV.
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Figure 4.1. Evolutions of the energy (top) and the solutions (bottom) in Case IV with ε = 0.1,
ε = 0.01, ε = 0.001 (from the right to the left) using 2-stage linearized Gauss methods with
stepsize τ = 10−4, 10−5, 10−6, respectively.

4.2.2. 2D Runs. We consider the two dimensional problem (1.1), posed in D := (0, 1) × (0, 1), and initial
condition

u(x, y, 0) = cos(πx) cos(πy), (x, y) ∈ D,

for the mesh sizes hx, hy := 0.1.
We investigate first the accuracy of the proposed scheme. The 2, 3, 4-stage linearized Gauss methods are

used to approximate the problem with weights defined in Case II with ε = 0.01. Here, we use the numerical
solution u∗

h with small step size τ = 10−5 as the solution of reference and we compute the L2-norm error at
T = 0.1. These numerical results are listed in 4.2.2. From the table, one can see that the q-stage linearized
Gauss methods have convergence orders q.

Table 2. L2-norm errors and convergence orders of q-stage linearized Gauss methods

τ
q = 2 q = 3 q = 4

∥uh,n − u∗
h∥2 rate ∥uh,n − u∗

h∥2 rate ∥uh,n − u∗
h∥2 rate

1/1000 5.8366e-04 - 2.1095e-05 - 5.5372e-07 -

1/2000 1.5272e-04 1.93 2.6069e-06 3.02 3.2353e-08 4.10

1/4000 3.8991e-05 1.97 3.2353e-07 3.01 1.9542e-09 4.05

1/8000 9.8070e-06 1.99 4.0266e-08 3.01 1.2006e-10 4.02

1/16000 2.4172e-06 2.02 5.0051e-09 3.01 7.4468e-12 4.01

The evolution of the discrete energy E(uh,n, rh,n), and the numerical solutions for weights defined by all the
four Cases I-IV, with ε = 0.1, 0.01, 0.001, by using the 2-stage extrapolated Gauss methods, are presented in
Figures 4.2, 4.3 respectively. The discrete energy is decaying for all cases. As we can observe the evolution of
the numerical solutions for Case I, and Case II is similar to this of Allen-Cahn equation. For Case III, and
Case IV, the evolution is closer to this of Cahn-Hilliard equation; see Figure 4.4 for a comparison, where the
numerical solutions of Cahn-Hiliard and Allen-Cahn equations are presented.

When ε = 10−1, which is a rather large value, in Cases I, II, one of the phases rapidly vanishes, while for

the Cases III, IV, the problem seems static. In Cases I where δ(ε)
µ(ε)ε2 = O(1), and II where δ(ε) ≪ µ(ε)ε2 as

ε → 0, for smaller values of ε the evolution slows down. Layer generation and annihilation is observed for
ε = 10−2, 10−3 in the cases III, IV where δ(ε) ≫ µ(ε)ε2 as ε → 0.
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Figure 4.2. Left: Evolutions of the energy and snapshots of the solutions. Left: Case I with
ε = 0.1, ε = 0.01, ε = 0.001, with stepsize τ = 10−4, 10−6, 10−8, respectively. Right: Case II
with ε = 0.1, ε = 0.01, ε = 0.001, with stepsize τ = 10−2, 10−3, 10−4, respectively.
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Figure 4.3. Evolutions of the energy and snapshots of the solutions. Left: Case III with
ε = 0.1, ε = 0.01, ε = 0.001, with stepsize τ = 10−4, 10−7, 10−8, respectively. Right: Case IV
with ε = 0.1, ε = 0.01, ε = 0.001, with stepsize τ = 10−3, 10−5, 10−7, respectively.

For our final set of runs, we considered (1.1), posed in D := (−1, 1)× (−1, 1), with a layered initial condition
near ±1

u(x, y, 0) = tanh
( 1√

2ε
min{

√
(x+ 0.3)2 + y2 − 0.3,

√
(x− 0.3)2 + y2 − 0.25}

)
, (x, y) ∈ D,
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Figure 4.4. Left: Cahn-Hilliard case with σ(ε) = 1, µ(ε) = 0, for ε = 0.0001, and τ = 10−5.
Right: Allen-Cahn case with σ(ε) = 0, µ(ε) = 1, for ε = 0.1, and τ = 10−1.

and hx, hy := 0.1. Such ε-dependent layered initial data are selected when evolution is observed after the
so-called time of layer generation where the different layers of ε-dependent width have been formed around the
two phases of the binary alloy with concentrations u = ±1.

The numerical solutions with 2-stage extrapolated Gauss methods for Cases I, II, III, IV are presented in the
next Figures 4.5, 4.6. There, the evolution seems to be influenced by the selection of weights and the smallness
of ε, τ , with Case IV presenting the slowest transitional change for ε = 10−3 and τ = 10−7. Moreover, when
ε = 10−1, in all cases and in very short times one phase survives (red) while the second phase (blue) evolves
rapidly towards concentration values near the first (light blue).

Figure 4.5. Numerical solutions. Left: Case I with ε = 0.1, ε = 0.01, ε = 0.001, and
τ = 10−4, 10−6, 10−8 (from top to bottom), respectively. Right: Case II with ε = 0.1, ε = 0.01,
ε = 0.001, and τ = 10−2, 10−3, 10−4 (from top to bottom), respectively.

Figure 4.6. Numerical solutions. Left: Case III with ε = 0.1, ε = 0.01, ε = 0.001, and
τ = 10−4, 10−7, 10−8 (from top to bottom), respectively. Right: Case IV with ε = 0.1, ε = 0.01,
ε = 0.001, and τ = 10−3, 10−5, 10−7 (from top to bottom), respectively.
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