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The undergraduate curriculum in differential equations has undergone important 
changes in favor of the visual and numerical aspects of the course primarily 
because of recent technological advances. Yet, research findings that have analyzed 
students’ thinking and understanding in a reformed setting are still lacking. This 
paper discusses an ongoing developmental research effort to adapt the instructional 
design perspective of Realistic Mathematics Education (RME) to the teaching and 
learning of differential equations at Ewha Womans University. The RME theory 
based on the design heuristic using context problems and modeling was developed 
for primary school mathematics. However, the analysis of this study indicates that a 
RME design for a differential equations course can be successfully adapted to the 
university level. 
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During the past decades, there has been a fundamental change in the objectives and nature of 
mathematics education, as well as a shift in research paradigms. The changes in mathematics 
education emphasize learning mathematics from realistic situations, students’ invention or 
construction solution procedures, and interaction with other students or the teacher. This shifted 
perspective has many similarities with the theoretical perspective of Realistic Mathematics 
Education (RME) developed by Freudenthal (1973, 1991). The RME theory focuses on guided 
reinvention through mathematizing and takes into account students’ informal solution strategies 
and interpretations through experientially real context problems. The heart of this reinvention 
process involves mathematizing activities in problem situations that are experientially real to 
students. It is important to note that reinvention is a collective, as well as individual activity, in 
which whole-class discussions centering on conjecture, explanation, and justification play a crucial 
role. In the reinvention approach, researchers build upon the work that has been done on 
symbolizing and modeling in primary-school mathematics (Treffers, 1991; Gravemeijer, 1994, 
1999. Can the framework that was developed for primary school mathematics be adapted to teach 
differential equations in collegiate mathematics?  

For three decades, international comparisons of mathematics achievement have favored primary 
and secondary students in Korea (Husen, 1967; McKnight, Travers, Crosswhite, & Swafford, 
1985a and 1985b; Horvarth, 1987; U.S. Department of Education, 1997a, 1997b). For instance, 
Korean eighth grade students ranked second among 41 different nations on the Third International 
Mathematics and Science Study (TIMSS) (U.S. Department of Education, 1996). Superficially, it 
appears as if Korean students possess advance mathematical knowledge and skills when compare 
to other students of the same age in different countries. Lew (1999) and Kwon (2002) argued, 
however, that most Korean students seem quite unable to relate their well-developed manipulative 
skills to realistic context problems to the real-world situations, as secondary mathematics lessons 
in Korea put much emphasis on computation and algorithm skills. Korean students, however, are 
the only students who have difficulties adapting their mathematical knowledge to real-world 
situations. Lack of students’ understandings of real-world situations and the characteristic of 
mindless, symbolic manipulation in differential equations has also been noted by a number of 
mathematicians (e.g., Boyce, 1994; Hubbard, 1994). The question then becomes how do 
instructors teach students differential equations in such a meaningful way as to foster students’ 
mathematical growth. RME may give a perspective for conceptualizing this teaching of differential 
equations since realistic context problems play an essential role from the start and also the point of 
departure is that context problems can function as anchoring points for the reinvention of 
mathematics by students themselves (Gravemeijer & Doorman, 1999). Such a reinvention process 
in RME will be paved with realistic context problems that offer students opportunities for 
progressive mathematizing in differential equations. From the RME perspective, students should 
learn mathematizing subject matter from realistic situations in differential equations.      

The overall purpose of this study is to examine the developmental research efforts to adapt the 
instructional design perspective of RME to the teaching and learning of differential equations in 
collegiate mathematics. A differential equations course, highlighting reinvention through 
progressive mathematization, didactical phenomenology and emergent models design heuristics, 
was developed. Informed by the instructional design theory of RME and capitalizing on the 
potential of technology to incorporate qualitative and numerical approaches, this paper offers an 
approach for conceptualizing the learning and teaching of differential equations that is different 
from the traditional approach.  



  

Theoretical Orientation 
Realistic Mathematics Education  

RME is rooted in ‘mathematics as a human activity,’ and the underlying principles are guided 
reinvention, didactical phenomenology, and emergent models. These principles are based on 
Freudenthal’s philosophy which emphasizes reinvention through progressive mathematization 
(Fredenthal, 1973, 1991). In RME, context problems are the basis for progressive mathematization, 
and through mathematizing, the students develop informal context-specific solution strategies 
from experientially realistic situations (Gravemeijer & Doorman, 1999). Thus, it is necessary for 
the researchers who adapt the instructional design perspective of RME to utilize contextual 
problems that allow for a wide variety of solution procedures, preferably those which considered 
together already indicate a possible learning route through a process of progressive 
mathematization. 

Three guiding heuristics for RME instructional design should be considered (Gravemeijer, Cobb, 
Bowers, & Whitenack, 2000). The first of these heuristics is reinvention through progressive 
mathematization. According to the reinvention principle, the students should be given the 
opportunity to experience a process similar to the process by which the mathematics was invented. 
The reinvention principle suggests that instructional activities should provide students with 
experientially realistic situations, and by facilitating informal solution strategies, students should 
have an opportunity to invent more formal mathematical practices (Freudenthal, 1973). Thus, the 
developer can look at the history of mathematics as a source of inspiration and at informal solution 
strategies of students who are solving experientially real problems for which they do not know the 
standard solution procedures yet (Streefland, 1991; Gravemeijer, 1994) as starting points. Then the 
developer formulates a tentative learning sequence by a process of progressive mathematization. 

 The second heuristic is didactical phenomenology. Freudenthal (1973) defines didactical 
phenomenology as the study of the relation between the phenomena that the mathematical concept 
represents and the concept itself. In this phenomenology, the focus is on how mathematical 
interpretations make phenomena accessible for reasoning and calculation. The didactical 
phenomenology can be viewed as a design heuristic because it suggests ways of identifying 
possible instructional activities that might support individual activity and whole-class discussions 
in which the students engage in progressive mathematization (Gravemeijer, 1994). Thus the goal 
of the phenomenological investigation is to create settings in which students can collectively 
renegotiate increasingly sophisticated solutions to experientially real problems by individual 
activity and whole-class discussions (Gravemeijer, Cobb, Bowers & Whitenack, 2000). RME’s 
third heuristic for instructional design focuses on the role which emergent models play in bridging 
the gap between informal knowledge and formal mathematics. The term model is understood in a 
dynamic, holistic sense. As a consequence, the symbolizations that are embedded in the process of 
modeling and that constitute the model can change over time. Thus, students first develop a 
model-of a situated activity, and this model later becomes a model-for more sophisticated 
mathematical reasoning (Gravemeijer & Doorman, 1999).  

RME’s heuristcs of reinvention, didactical phenomenology, and emergent models can serve to 
guide the development of hypothetical learning trajectories that can be investigated and revised 
while experimenting in the classroom. A fundamental issue that differentiates RME from an 
exploratory approach is the manner in which it takes account both of the collective mathematical 
development of the classroom community and of the mathematical learning of the individual 
students who participate in it. Thus, RME is aligned with recent theoretical developments in 



  

mathematics education that emphasize the socially and culturally situated nature of mathematical 
activity. 

Traditional and Reform-Oriented Approaches in Differential Equations  
Traditionally, students who take differential equations in collegiate mathematics are dependent 

on memorized procedures to solve problems, follow a similar pattern of learning in precalculus 
mathematics, and follow model procedures given in the textbook or by a teacher. Also, the search 
for analytic formulas of solution functions in first order differential equations is the typical starting 
point for developing the concepts and methods of differential equations. This traditional approach 
emphasizes finding exact solutions to differential equations in closed form, i.e., the dependent 
variable can be expressed explicitly or implicitly in terms of the independent variable. However, in 
reality, when modeling a physical or realistic problem with a differential equation, solutions are 
usually inexpressible in closed form. Therefore, as Hubbard (1994) pointed out, there is a 
dismaying discrepancy between the view of differential equations as the link between mathematics 
and science and the standard course on differential equations. 

The teaching of differential equations has undergone a vast change over the last ten years 
because of the tremendous advances in computer technology and the “Reform Calculus” 
movement. One of the first textbook promoting this reform effort was published by Artigue and 
Gautheron (1983). More recently, a number of textbooks reflecting on this movement have been 
written (e.g., Blanchard, Devaney, & Hall, 1998; Borelli & Coleman, 1998; Kostelich & 
Armbruster, 1997; Hubbard & West, 1997). Primary features of these reform-oriented textbooks 
are content-driven changes made feasible with advances in computer technology. Thus, these 
textbooks have decreased emphasis on specialized techniques for finding exact solutions to 
differential equations and have increased the use of computer technology to incorporate graphical 
and numerical methods for approximating solutions to differential equations (West, 1994).  

According to Boyce (1995), the primary benefit of incorporating computer technology in 
differential equations is the visualization of complex relationships that students frequently find too 
complicated to understand. For example, a typical differential equation, u’’+0.2u’+u=coswt, 
u(0)=1, u’(0)=0, can be easily executed with technology, and students can understand the behavior 
of the system by using technology to draw a three-dimensional plot as a function of both w and t. 
The main reasons to use computers in a differential equations course are that geometric 
interpretations of solutions through the use of computer software help students to understand basic 
concepts such as initial value problems, integral curves, direction fields and flows for dynamical 
systems (Lu, 1995). In addition, many concepts including phase portrait, stability, stable and 
unstable manifold, bifurcation and chaos can better be understood by introducing a computer 
program for teaching and learning. However, the current reform movement in differential 
equations emphasizes a combination of analytic, graphical, and numerical approaches from the 
start. Although different from traditional approaches to differential equations, this movement is 
quite similar to traditional approaches in the way in which conventional graphical and numerical 
methods are used as the starting point for students’ learning, as Rasmussen (1997, 1999) 
documented. Thus, as is the case with the traditional approach, students typically do not participate 
in the reinvention or creation of these mathematical ideas associated with graphical and numerical 
methods, the representation that conventionally accompany these ideas, and the methods 
themselves. The learning that occurred was characteristic of mindless graphical and numerical 
manipulation in the reform-oriented approach. In these respects, the learning demonstrates little 
improvement over traditional approaches where mindless symbolic manipulation was the prevalent 
mode of operation. 



  

The current curriculum-oriented reform movement in differential equations has some content-
based advantages. The approach being developed here seeks to build on and complement these 
positive aspects by adapting principled perspectives and approaches that have informed the re-
thinking of mathematics learning and teaching at the elementary and secondary level to the re-
thinking of mathematics learning and teaching of differential equations. 

Guided by the RME instructional design theory, students may participate in the reinvention of 
mathematical idea and methods that comprise a differential equations course. The emphasis on 
reinvention by no means implies that the instructor is a bystander in the learning process. In fact, 
the instructor’s role might even be more important in this approach than in the traditional 
dissemination approach to learning. For example, the instructor guides the construction of 
classroom social and sociomathematical norms (Yackel, Rasmussen, & King, 2000) that foster 
students’ reinvention and sophisticated mathematical reasoning in differential equations. Initial 
work (Trigueros, 2000; Yackel et al., 2000; Zandieh & McDonald, 1999) suggests that this 
perspective demonstrates some promise to foster students’ mathematics growth in differential 
equations. 

 

Project Classroom & Preliminary Analysis     

A classroom teaching experiment in an introductory course in differential equations was 
conducted during Fall 2001 at Ewha Womans University with a group of 43 students, most of 
whom were first-year undergraduate students majoring in mathematics education. Ewha Womans 
University has over 20,000 students and is one of the most prestigious schools in Korea. Ewha is 
also well-known for pre-service teachers education. Over 30% of newly employed in-service 
secondary mathematics teachers have graduated from Ewha Womans University.  

Data based on a methodology for determining the emergence of classroom mathematical 
practices were collected (Cobb, Stephen, McClain, Gravemeijer, 2001). Data from the teaching 
experiment consisted of videotapes of each class session, including the small group work; field 
notes made by the observers and the instructor; records of instructional activities and decisions, 
and copies of students’ work such as in-class work, homework assignments, weekly electronic 
journal entries and reflective portfolios. In addition, experimental curriculum materials as well as 
programs for the TI-92 calculator were developed. The materials were guided and informed by the 
RME instructional heuristic and were designed to help students to complete reinvention activities, 
which occur when students try to devise their own ways of working through a mathematical 
concept. 

In the typical collaborative learning environment of this project, the instructor poses a task, 
students work in groups of two to four students, and after most groups obtain initial ideas about the 
task, the class engages in a discussion of students’ approaches to the task. Whole-class discussions 
might continue for 10-15 minutes before another 5-10 minute segment of small group work took 
place. This cycle was typically repeated three to four times in a 75-minute class period. The nature 
of small group work was not for students to solve a specific problem but to analyze a question and 
develop reasons to support their thinking. Because of the continuous emphasis on reasoning, 
whole-class discussions resulted in the emergence of key concepts such as slope fields, phase lines, 
and bifurcation diagrams.  
                                                           
  In this paper, one of the themes emerging during this teaching experiment is exemplified with a sample 
from the data and preliminary analysis. Holistic data analysis and its implications to undergraduate 
mathematics education from the RME perspectives will be discussed during the presentation. 



  

Research on the design of primary school RME sequences has shown that the concept of 
emergent models can function as a powerful design heuristic (Gravemeijer, 1999). The following 
example illustrates the RME heuristic that refers to the role models can play in a shift from a 
model-of a situated activity to a model-for mathematical reasoning in the learning and teaching of 
differential equations. 

Suppose a population of Nomads is modeled by the differential equation dN/dt =f(N). 
The graph of dN/dt is shown below.  

 
  For the following values of the initial population, 
  What is the long-term value of the population?  
  Be sure to briefly explain your reasoning. 
  (1)N(0)=2, (2)N(0)=3, (3)N(0)=4, (4)N(0)=7 

 
 
 

 
 
 

The development from a model-of to a model-for can be illuminated by the four different levels 
of activity: situational, referential, general, and formal (Gravemeijer & Doorman, 1997; 
Gravemeijer, 1997). Each of these four different levels emerged during this teaching experiment.       

At the situational level, students’ interpretations and solutions depend on understanding how to 
act in the setting. For example, one participant named Jungsun was trying to figure out how to use 
the given differential equation to approximate the long-term value of the population for each initial 
population. This situation means that once she interpreted the differential equation as an 
experientially realistic context, she understood how to act in the setting. For this level, the TI-92 
graphing and symbolic calculator can play an essential role by allowing the slope field to emerge 
as an initial record of students’ reasoning and mathematical activities for their numerical 
approximations. Then it becomes a tool for fostering students’ reasoning about solution functions 
to differential equations (Figure 2).  

At the referential level, models-of is grounded in students’ understanding of pragmatic, 
experientially real settings. Students’ activities might be considered referential (that is, referring 
back to the discrete approximations) when they are initially acting with the slope field as if there is 
an indication of the differential equation at any conceivable point (Figure 3).  

 
    Figure 1. Graph of dN/dt. 

 



  

 
 

          
            Figure 3.  Jungsun’s solution graph. 

 
 

At the general level, models-for makes possible a focus on interpretations and solutions 
independent of situation-specific imagery. Students’ interpretations and responses to solution 
functions are no longer referring back to discrete approximations or specific solutions. Their 
activities involve holistically interpreting rates of change and solution functions (Figure 4). That is, 
students’ solutions involve simultaneous reasoning about individual solution functions, as well as 
collections of solution functions.  

At the formal level, students’ activities are often characterized by the formal use of conventional 
notation. This fact is a useful and important way to differentiate activity at the general level from 
activity at the formal level. For example, one student, Miju, uses a dynamic image of the phase 
line which differentiates activity at the general level from activity at the formal level, thus 
demonstrating that her reasoning regarding solution functions is at a higher level (Figure 5). 
 

 
Guided and informed by the RME instructional heuristic, students in the differential equations 

course first act in mathematical situations in progressively more formal ways where the model 

 

 
 

   

 
 
Figure 2. Slope field for dN/dt.   
  

 

 

Figure 5. Miju's phase line. 

 

 
 
 
 
 
 
 
 
 
 

    Figure 4. Rami's solution graphs. 



  

comes to the fore as a model-of a mathematical context. Then subsequently, the model changes so 
that it can begin to function as a model-for increasingly sophisticated ways of mathematical 
reasoning. 

 

Concluding Remarks 
The study of ordinary differential equations is essential for students in many areas of science 

and technology. Many useful and interesting phenomena in engineering and life sciences that 
continuously evolve in time can be modeled by ordinary differential equations. Therefore, it is 
very important for students to have a firm understanding of ordinary differential equations, their 
solutions, and the different kinds of qualitative behavior the systems of ordinary differential 
equations can exhibit. Several recent curriculum reform efforts in differential equations are 
decreasing the traditional emphasis on specialized techniques for finding exact solutions to 
differential equations and increasing the use of computing technology to incorporate qualitative 
and numerical methods of analysis. Yet, research findings (e.g., Habre, 2000; Rasmussen, 1997) on 
students’ thinking and understanding of differential equations are still minimal.  

Through conceptualizing RME perspectives to the learning and teaching of differential 
equations, this research illustrates that when students are engaged in instruction that supports 
reinventing conventional representations out of mathematizing experiences, slope fields and 
graphs of solution functions can and do emerge for their mathematical activities. Specifically, 
students in Korea might more readily adapt their well-developed manipulative skills to 
experientially real situations with the incorporation of the RME instructional design. Further this 
research demonstrates how emerging analyses of student thinking and symbol-use can be 
profitably coordinated to promote students’ sophisticated ways of reasoning with mathematical 
concepts in differential equations. Thus this paper suggests that an RME design for a differential 
equations course offers an alternative perspective for conceptualizing the learning and teaching of 
differential equations, even in undergraduate mathematics. This research also implies that 
researchers should consider, investigate, and adapt principled approaches that have been useful for 
reform in K-12 mathematics when conceptualizing the reform of undergraduate mathematics.  

Research in the teaching and learning of mathematics at the university level is a relatively recent 
and new phenomenon (Artigue, 1999); research in the teaching and learning of differential 
equations is even newer. The problems in undergraduate mathematics education are not easily 
solved by just writing or adopting new textbooks. The problems are related to the forms of 
students’ work, the modes of interaction between university teachers and students, and the 
methods and content which students are assessed. The perspectives reported in this study can 
complement the growing research base in the teaching and learning of differential equations in 
both practical and theoretical aspects.  
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