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ABSTRACT 

The paper commences by reviewing some of the issues currently being raised with respect to the use of 
technology in undergraduate mathematics teaching and learning. Selected material from three research 
projects is used to address a series of questions. The questions relate to the use of symbolic manipulators in 
tertiary mathematics, to undergraduate student attitudes towards the use of computers in learning 
mathematics, and to outcomes of using technology in collaborative student activity in pre-university 
classrooms. Results suggest that teaching demands are increased rather than decreased by the use of 
technology, that attitudes to mathematics and to computers occupy different dimensions, and that students 
adopt different preferences in the way they utilise available resources. These outcomes are reflected back on 
the literature, and implications for teaching, learning, and research discussed. 
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1. Introduction 
In this paper I want to reflect on outcomes from three research projects that span the interface 

from senior school to undergraduate programs. The common elements in the programs are 
mathematics, students, and technology. The purpose is to describe findings from the selected 
research foci, and relate them to matters raised in the wider literature, and to implications for 
theory and practice. 

Papers addressing the use of technology in undergraduate mathematics make for interesting and 
varied reading. For example: 

•  The impact upon educational practice of powerful software like Mathematica has been less 
profound than optimists hoped or pessimists feared…tendency to begin by looking for electronic ways of 
doing the familiar jobs previously done by textbooks and lectures. (Ramsden, 1997). 

•  Of all the flaws in our mathematics training this seemed to us to be the most dangerous and 
insidious, for as we removed mathematics from our courses in response to ‘student failings’, the need for 
mathematics to do real science was in fact increasing…firstly there was the pious hope that a computer 
assisted approach would require less staff…problems arose from attempts to use Mathematica in two ways-
which were incompatible. Was software an arena for exploration of mathematical ideas, or a channel for 
their transmission? (Templer et al, 1998) 

•  There is growing evidence (in the UK and elsewhere) of a general decline in the mathematics 
preparedness of science and engineering undergraduates…one response has been to simply reduce the 
mathematics content and to rely on computer-based tools to do much of the mathematical 
computation…difficult questions (emerge) at the intersection of cognitive and epistemological domains; to 
what extent must the structure of mathematics be understood in order for it to be used effectively as a tool? 
(Kent & Stevenson, 1999) 

These excerpts canvass some of the challenging and problematic issues that are emerging in 
undergraduate mathematics education. The discussion that follows will raise issues associated with 
the use of symbolic manipulators as central agents for teaching and learning undergraduate 
mathematics; with affective characteristics of students using technology in undergraduate 
coursework; and with the use of technology in collaborative learning activity. The latter project 
has been implemented with pre-university school mathematics students as subjects. The qualities 
displayed by the students, and their approaches to learning have implications for the undergraduate 
programs in which they subsequently enrol.   

 

2. Background 
One fundamental component of any discussion of undergraduate learning is the composition 

and background of the student cohort. As noted above (Kent & Stevenson, 1999) the widening of 
secondary education, and curriculum decisions in relation to school mathematics, mean that the 
mathematical preparedness of entering undergraduates is perceived to be changing. Clearly this 
perception is impacting on course design and teaching approaches, in particular in the way that 
technology is utilised.  However a nostalgic review of the past should not obscure the reality that 
there were really no “good old days”. Studies addressing the (mis) understanding of basic concepts 
and procedures displayed by undergraduate mathematics students have been reported over a 
substantial period of time. Findings from these studies have a common theme viz. that the standard 
of performance of the ‘current’ student group is much lower than hoped for, given the investment 
of time and energy that has been directed towards the teaching and learning of mathematics over 
many years. 

Characteristics of flawed performance have been historically consistent over a quarter of a 
century: 



 

 
 
 

 

...After twelve years of schooling followed by two years of university, they had all but 
accepted the mindless mathematics that had been thrust upon them...Misconceptions, 
misguided and underdeveloped methods, unrefined intuition tend to remain assignments, 
corrections, solutions, tutorials, lectures and examinations notwithstanding. (Gray, 1975) 

 It appears that students have developed special purpose translation algorithms, which 
work for many text book problems, but which do not involve anything that could 
reasonably be called a semantic understanding of algebra.  (Clement et al., 1980) 

Weaker students suffered from the continued misinterpretation that algebra is a 
menagerie of disconnected rules to do with different contexts. (Tall & Razali, 1993) 

In attending module after module, students tended to ‘memory dump’ rather than to 
retain and build a coherent knowledge structure...Their presumed examination strategy 
resulted in such a fragile understanding that reconstructing forgotten knowledge seemed 
alien to many taking part. (Anderson et al, 1998) 

A common thread running through these studies is the powerful negative influence of 
fragmented learning, and the apparent absence of cognitive strategies to co-ordinate conceptual 
and procedural knowledge. The successive comments can be read as evidence supporting the 
constructivist paradigm, for students continue to carry mathematical ‘baggage’ and habits that 
inhibit the goals of instructors hoping to provide a fresh beginning in tertiary mathematics. Into the 
wake of this historical legacy, curriculum reforms and innovative teaching methods (often 
incorporating electronic technologies), have been injected as fountains of hope, at times 
accompanied by extravagant claims.   

  

3. Focus A: Computer-Based Undergraduate Programs 
The form of computer-based instruction varies widely, indicative of a range of beliefs among 

program designers and instructors - both about mathematics, and the nature of mathematics 
learning. Olsen (1999) discusses one of the most extensive examples of technology used to provide 
automated instruction. She describes (page 31) how politicians visiting Virginia Tech’s 
Mathematics Emporium, a 58 000 square foot (1.5-acre) computer classroom: 

see a model of institutional productivity; a vision of the future in which machines handle many 
kinds of undergraduate teaching duties-and universities pay fewer professors to lecture…On 
weekdays from 9 am to midnight dozens of tutors and helpers stroll along the hexagonal pods on 
which the computers are located. They are trying to spot the students who are stuck on a problem 
and need help.  

This program appears to be openly driven by economic rationalism, and an assumption that 
mathematics is something primarily to be delivered and consumed. By contrast Shneiderman et al 
(1998) describe a model, in which electronic classroom infrastructure is extensive and expensive. 
Courses are scheduled into electronic classrooms, following a competitive proposal process, 
requiring full use of an interactive, collaborative, multi-media environment. Active engagement 
with a variety of learning tools is highly valued here. 

In between the extremes occur a variety of models of instruction, concerned in varying degrees 
with factory production on the one hand, and student understanding and engagement on the other, 
and it is instructive to note comments from those describing the characteristics of such programs: 
here are some selections. 

Templer et al (1998) noted problems accompanying efforts to provide meaningful learning that 
were perceived to arise as a direct result of a symbolic manipulator (Mathematica) environment. 
They noted that typically having mastered the rudiments, the majority of students:  

 “began to hurtle through the work, hell bent on finishing everything in the shortest possible time.”  



 

 
 
 

 

The following comment, or a close relative, was noted as occurring frequently among the students: 
“I just don’t understand what I’m learning here. I mean all I have to do is ask the machine to solve the 

problem and it’s done. What have I learned?”  
Kent & Stevenson (1998) in elaborating on their concerns about student quality (see 

Introduction), question whether mathematical procedures can be learned effectively without an 
appreciation of their place in the structure of mathematics. They argue that unless some kind of 
breakdown in the functionality of some concept or procedure (say integration) is provoked, 
students do not focus on the essential aspects of that concept or procedure. On the other hand they 
observed that the demands for formal precision that a programming environment places on its user, 
serves both to expose any fragility in understanding, and to support the building and conjecturing 
required in the re (construction) of concepts by learners. This comment interfaces with a debate 
about whether computer technology should be employed following prior understanding of 
mathematical concepts and procedures (Harris, 2000), or as a means integral to the development of 
such understanding (Roddick, 2001). 

  Interesting comment has been made also about specific issues relating to the introduction of 
technology into mathematics learning settings. Templer et al (1998) noted that the screen 
dominated the attention of most (although not all) students, and that some balance needs to be 
struck between directing students from paper to screen, and vice-versa. A lack of symmetry was 
evident in that some students are reluctant to move from screen to text, whereas the move the other 
way is more flexibly undertaken. An interesting slant on the ‘how and when’ debate is provided by 
the observation that mathematical ‘tools’ are forged through use, in contrast to conventional tools 
that are first made and then used. This then calls into question a sequence that seeks first to master 
a tool and then apply it. Specifically whether training in a manipulator such as Mathematica, 
Derive, or Maple requires prior time and effort, or whether a careful design can enable 
mathematics to be learned and applied contiguously with increasingly sophisticated manipulator 
use? Clearly this matter is not yet resolved. 

3.1 Research Program 
The teaching programs that form the background for this section of research took place at the 

University of Queensland during the period 1997-2000. As mainstream courses located between 
the extremes described above they represent models that may be located comfortably within 
present university structures and resources. The programs involve the use of Maple in first year 
undergraduate teaching, and issues associated with implementation connect with those of other 
researchers as sampled above. In keeping with Kent & Stevenson (1998) there is interest in the 
range of questions raised by students as they work with the software, as well as in their 
performance. With Templer et al (1998) there is concern with the links between computer-
controlled processes and their mathematical underpinnings, noting the similarities and differences 
between the respective symbolism. This project had several aims, including the following:   

1. To classify the range of student-generated questions that emerge when learning of 
mathematical content interacts with a symbolic manipulator environment. 

2. To identify structural properties associated with the Maple environment that can 
be identified as linking task demand and student success. 

 
The research was conducted within first-year undergraduate mathematics courses taken by 

students studying mainly within Science and Engineering degree programs. As taught in 1999 and 
2000 the courses comprised a lecture series complemented by weekly workshops, in which 



 

 
 
 

 

approximately 40 students were timetabled into a laboratory containing networked computers 
equipped with Maple software. The lecture room was fitted with computer display facilities so 
Maple processing was an integral and continuing part of the lecture presentation. To support their 
workshop activity students were provided with a teaching manual (Pemberton, 1997), continually 
updated to contain explanations of all Maple commands used in the course, together with many 
illustrative examples. During laboratory workshops two tutors and frequently the lecturer also, 
were available to assist the students working on tasks structured through the provision of weekly 
worksheets. The students could consult with the lecturer during limited additional office hours, and 
unscheduled additional access to the laboratory was available for approximately 5 hours per week. 
The course was also available on the Web. Solutions to the weekly worksheets were provided 
subsequently.  

  The formal course assessment was constrained by departmental protocol and the availability 
of facilities. The major component comprised pen and paper exams at mid-semester and at end of 
semester (combined 80%). The balance consisted of Maple based assignments and a mark assigned 
on the basis of tutorial work (20%).  To succeed students needed to transfer their learning and 
expertise substantially from software supported environment to written format, which means that 
they must be able to develop understanding through the medium with which they work, while 
simultaneously achieving independence from it. This involves the ability to learn and maintain 
procedures that a Maple environment does not enforce, so that attention is focused on the 
relationship between the mathematical demands of tasks, and their representation in a Maple 
learningscape.   

3.2 Data sources 
The data for addressing these questions come from two sources. Tutors assigned to the Maple 

workshops were provided with diaries in which they entered, on a weekly basis, examples 
indicative of the range of questions raised by students in the course of their workshop activity. The 
second source of data was a test given 7 weeks after the program started. This test was a voluntary 
exercise, and comprised a series of questions to be addressed with the assistance of Maple in its 
laboratory context. It provided formative feedback to the students on their performance, and 
ranged from simple school level manipulations to new material introduced in the tertiary program.  
Sample questions are included in the appendix, together with their Maple solutions. The test was 
directly relevant to preparing for the formal assessment at the end of semester, for the procedures 
required were ones that the students need to be proficient with, irrespective of software support. 
The tests were analysed and marked by two of the course tutors using criteria designed by the 
researchers. For this purpose the quality or indeed presence of a final interpretation of graphical 
output was not taken into account, so that the correct/incorrect dichotomy was on the basis of 
Maple operations only.  On the basis of a review of the 250 (approx.) scripts submitted, it appeared 
that the first 16 questions had been attempted seriously by the whole group. For technical reasons 
two of these were deemed unsuitable for inclusion, so that responses to 14 questions formed the 
final data set. 

3.3 Regression Analysis  
Performance was analysed in terms of the influence of two categories labelled SYNTAX and 

FUNCTION respectively.  
SYNTAX: refers to the general Maple definitions necessary for the successful execution of 

commands. These include the correct use of brackets in general expressions, and common symbols 
representing a specific syntax different from that normally used in scripting mathematical 



 

 
 
 

 

statements (such as *, ^, Pi, g:=). 
FUNCTION: refers to the selection and specification of particular functions appropriate to the 

task at hand. Specific internal syntax required in specifying a function is regarded as part of the 
FUNCTION component, including brackets when used for this purpose. Complexity is represented 
by a simple count of the individual components required in successful operation. The way these 
definitions work is illustrated by applying them to the examples given in the appendix.    

 

Q2. SYNTAX:      Incidence of ^ [2] plus * [2]; total=4. 
 FUNCTION: General structural form of factor (argument); factor [1] plus ( ) [1] plus 

argument entry [1]; total=3. 
Q8. SYNTAX:       Incidence of ^ [1] plus *[2] plus ( ) [2] plus x1[1] plus := [1]; total=7. 

 FUNCTION:  General structural form of plot (function, domain); plot [1] plus ( ) [1]   plus , 
[1] plus function entry [1] plus domain entry [1] plus domain specification 
[1]; sub-total=6. 
General structural form of fsolve (function, domain); sub-total  [5] plus 
domain specification[1]; total =12. 

Q14. SYNTAX:    Incidence of*[2] plus ( ) [3]; plus y [1] plus: = [1]; total=7. 
  FUNCTION: General structural form of plot(function, domain); sub-total [5] plus 
                         domain specification [1]; 

                              General structural form of int(y, integ interval); sub-total [5] plus 
                              (subtraction) [1] plus integration interval specifications [2]; total=14. 

Similar pairs were assigned to each of the 14 questions in the sample. Our diagnostic approach 
involves scoring on a correct/incorrect basis, as we are not (in this analysis) concerned with 
apportioning partial credit as would be necessary if grading student performance. The success rate 
on the questions is given by the fraction of students (N~ 250) obtaining the correct answer. We can 
regard these as providing a measure of the probability of success of a student from this group on 
the respective questions. For the questions in the Appendix the respective values are 0.89, 0.26, 
and 0.14. A linear regression analysis was performed using these probabilities as measures of the 
dependent variable (success), and SYNTAX and FUNCTION as input variables (Tables 1 & 2). 

 
Table 1: Regression statistics 
Multiple R  0.8710 

R Square 0.7586 

Adjusted R Square 0.7148 

Standard Error 0.1419 
Observations 
  

14 

Table2: Regression Statistics cont 
 Coefficients Standard  

  Error 
t Stat P-value 

Intercept 1.0947 0.0961 11.383 2E-07 

SYNTAX -0.0482 0.0168 -2.874 0.015* 

FUNCTION -0.0396 0.0122 -3.246 0.008** 

  
According to this analysis both the SYNTAX (p<.05) and FUNCTION (p<.01) complexity 



 

 
 
 

 

measures contributed significantly to the task demand of the questions. 

3.4 Student-generated questions (question 2) 
 A total of over 1300 questions indicative of the range of concerns displayed by students in the 

2000 cohort when working mathematically in a Maple environment, was assembled from the tutor 
diaries. The categories were selected using a mix of empirical judgment, theoretical positioning, 
and the results of a pilot study in the previous year. The distribution is shown in Table 3.The 
number of questions per category varied from a maximum of 333 (24.6%) to a minimum of 29 
(2.2%). The number of questions in which some aspect of Maple was unequivocally involved 
exceeded 80%. 

 
 Table 3: Student Question Types 

Question Category  Percentage 
1. Identify problem caused by a typo (TYPO) 8.4% 

2. Resolve syntax error (SYN) 24.6% 

3. Problem with function choice (FCHCE) 4.2% 

4. Problem specifying function (FSPEC) 14.6 % 

5. Stuck on mathematics (STMATH) 14.9 % 

6. Procedurally stuck on Maple (STMAPLE) 19.5 % 

7. Interpreting aspects of output (INTOUT) 11.6 % 

 8. General procedural (PROC) 2.2 % 

  
 The patterns evident in Table 3 confirm that when students interact with mathematics through 

technology, questions are generated rapidly and their scope is vastly increased. We can identify at 
least four types of inquiry from the responses. Those that are simply procedural (what to do next); 
those that are mathematical in the traditional sense; those that are software related (syntax and 
symbols); and those that are generated by the interaction of mathematics with software (function 
choice and specification). The intensity and scope of student questioning has escalated in 
comparison with traditional practice classes, with software the major contributor through 
properties of fast processing, scope for formatting and specification errors, just plain knowledge 
blocks in bringing the mathematics and software together, together with student initiative in 
exploring. In examining the analysis relevant to the first question, it can be observed that while 
achieving more rapid and efficient closure to algorithmic procedures the use of Maple has not 
reduced the need for the mathematical attributes of understanding and attention to detail. We note 
this in the significant impact of the variables SYNTAX and FUNCTION on success rate. 
SYNTAX errors penalise those who lack sufficient care in expressing their work symbolically, 
while the demands imposed by FUNCTION are proportional to the principles and sophistication of 
the associated mathematics. On the other hand, for those students who possess conceptual 
understanding and due regard for precision, the Maple environment has provided a means to 
progress rapidly and successfully at a greater rate than could otherwise be achieved. Our 
conclusion to this point is that there is no ‘free lunch’ (indeed laboratory tutors are lucky to get 
lunch at all). The propensity of students to alter their approach to reduce the learning potential 
available to them is apparent. Properties arising from the mutual interaction of students, 



 

 
 
 

 

mathematics, and technology can support approaches extending beyond the models that still seem 
to motivate some proponents of automated learning – models with goals of doing faster and more 
cheaply that which was done formerly with blackboard, chalk, and paper. These are limited goals 
indeed. The present research contributes to this broader endeavour, both in terms of identifying 
and classifying student responses to laboratory activities, and in linking mathematical demand to 
the complexity of manipulator operations and task success.   
 

3. Focus B: Student attitudes to mathematics and  
    technology 

 While there have been enthusiastic claims for the positive impact of technology on the 
teaching and learning of mathematics, systematic evaluations of impact have been harder to 
access. And while the study of attitudes in mathematics learning has a substantial history, the 
relationship between attitude and performance is not clear-cut although positive correlations have 
often been noted between these characteristics. Early claims that affective variables can predict 
achievement (e.g. Fennema & Sherman, 1978) have been balanced by later comments (e.g. 
Schoenfeld, 1989) indicating that research does not give a clear picture of the direction of causal 
relationships. Ma & Kishor (1997) set out to assess the directional relationship between attitude 
and achievement but their meta-study was essentially correlational, so that the Tartre & Fennema 
(1995) comment that described confidence as the affective variable most consistently related to 
mathematics achievement is probably a safe summary of the position. 

More recent studies among tertiary students have continued to pose the direction of the 
relationship between attitude and performance as an open question. Thus while Tall & Razali 
(1993) argued that the best way to foster positive attitudes is to provide success, Hensel & 
Stephens (1997) concluded that “it is still not totally clear whether achievement influences attitude, 
or attitude influences achievement”. Shaw & Shaw (1997) noted that among engineering 
undergraduates the top performing students (at entry) had a much more positive attitude to 
mathematics, and lower performing students a commensurately negative one – again leaving the 
direction of causality open. 

The study of attitudes towards information technology (most frequently computers) has a 
shorter but more intensive history, probably because information technology, while newer, is 
pervasive in its permeation of curriculum areas. In considering attitudes to information technology 
among tertiary students it is useful to note that the disciplinary focus of target groups has tended to 
be in areas like Education, Psychology and Social Work. Reports involving mathematics students 
appear harder to come by, although some studies have included affective variables almost 
incidentally when evaluating general project outcomes (see below). It is this very breadth of 
discipline background, which has served to keep the investigation of attitudes to technology at a 
general level, appropriate to the majority who will not be called upon to use computers in the same 
technical sense as mathematics students working intensively with specialised software. 

The relevance of studying attitudes to technology in conjunction with those relating to 
mathematics is emphasised and reinforced by the increasing use of technological devices in 
mathematics instruction. Several studies refer incidentally to attitudinal impacts as well as 
proficiency measures and Mackie (1992) in an evaluation of computer-assisted learning in a 
tertiary mathematics course indicated six positive learning outcomes, three of which were related 
to attitudinal factors. Park (1993) in comparing a Calculus course (utilising Mathematica) with a 
conventionally taught program, found some improvement in disposition towards mathematics and 



 

 
 
 

 

the computer in the experimental group.  However Melin-Conjeros (1992), in comparing the 
performance of a group of Calculus students (equipped with limited access to Derive) with a 
control group, noted that the attitude of both groups decreased slightly. It has not been generally 
clear in the mathematically focused studies just which ‘attitudes’ have been affected by 
technology, as the reporting tends to be non-specific. By inference it appears that it is ‘attitude’ to 
mathematics that is referred to, and we are led to consider the implications of technology in 
impacting upon component attributes. The relationship between mathematics confidence and 
performance noted in the literature (whatever the direction of causality), means that the 
implications of a nexus between technology and mathematics needs specific research attention. 
The broad reporting of studies on the use of technology in mathematics instruction makes it 
difficult to disentangle whether reported affective outcomes are associated with changed attitudes 
to mathematics, or are linked directly to the technology.  So theoretically we are moved to ask 
about the interpretation of outcomes if students possess high mathematics confidence and 
motivation, but low computer confidence and motivation, and vice versa. And beyond this, 
whether structural changes in attitudes will occur as technology becomes more and more a part of 
the students’ life experience, past and present. The specific research purpose addressed here may 
be expressed as follows:  

To investigate the stability of attitude scales for use in programs in which computer 
technology is directed towards assisting undergraduate mathematics learning.    

4.1 The Attitude Scales 
Given the purpose of developing scales for use in settings involving interaction between 

technology and mathematics learning, the positions articulated by Hart (1989), Mandler (1989), 
and McLeod (1989, 1994) have proved helpful in fashioning approaches to the definition of terms 
and hence instrumentation. The distinction between an attitude and a belief is tenuous to a degree – 
an attitude focus has been sought by wording items so that the respondent is personally involved: 

e.g. I feel more confident of my answers with a computer to help me; rather than  
Computers help people to be more confident in obtaining answers. 
The students for whom the measures are designed are tertiary undergraduates in mathematics 

courses. They have made this a deliberate choice - whereby mathematics has been selected as both 
useful in pursuing career aspirations, and as a subject compatible with themselves as individuals. 
Hence while an overall monitoring interest in gender and usefulness has been maintained, these 
emphases, which have figured prominently in attitude studies among school students, (e.g. 
Fennema & Sherman, 1976), have not played a dominant role in the design. Two of the nine 
attributes (confidence and motivation) represented in the Fennema-Sherman formulation have been 
reflected in scale development, with appropriate items constructed for use by undergraduates. The 
choice of these attributes was influenced strongly by the total purpose of designing instruments for 
use when computer technology is used in the teaching/learning context. Confidence and motivation 
have been selected because of their extensive appearance in the literature for both mathematics and 
technology, and because of their potential for discriminating between attitudes when technology 
and mathematics interact. These four scales are designed to measure attitudes on both dimensions 
so that such differences can be identified and their implications noted. In particular the choice of 
confidence and motivation enables two circumstances of particular interest to be identified viz. 
situations where students hold strong positive feelings towards mathematics and negative feelings 
towards technology, and vice-versa.    

  A further scale measures the degree of interaction between mathematics and computers that 
students perceive they apply in learning situations. The interactive significance of the learning and 



 

 
 
 

 

instructional context has been emphasised in general (e.g. McLeod 1989). In a computer 
environment students may simply respond to the screen or be active in note making, summarising, 
and experimenting. Indeed they may choose not to utilise technology when it is available and 
relevant. The physical separation of the learning components; pen and paper, computer screen, and 
human brain adds a further dimension to the co-ordinating processes required for effective learning 
strategies.  The computer-mathematics interaction scale assesses the extent to which students bring 
their mathematical thinking into active inter-play with the computer medium. 

Within each scale the eight items were arranged randomly with half requiring the reversal of 
polarity at the coding stage. Students were asked for a measure of their agreement (or rejection) 
with respect to item wording on a Likert scale. The item groups were presented in such a way that 
the underlying constructs were unknown to the students. The scale items themselves were 
theoretically determined from the respective underlying constructs and from cognate literature.  
See (Galbraith & Haines, 1998,2000) and Galbraith, Haines & Pemberton (1999) for more details 
on developmental aspects of this work. 

4.2 Administration & Outcomes 
The instrument was given initially in October 1994 to 156 first year students on entry to 

courses in engineering, mathematics and actuarial science at City University, London, and 
subsequently to the corresponding cohorts in 1995 and 1996. At the University of Queensland, 
Australia the scales were administered to 170 entering engineering undergraduates in 1997, and to 
parallel groups in 1998 and 2000. For present purposes the 1994, 1997, and 2000 results have been 
selected to be representative across time and place.   

The responses have in fact displayed similar patterns across both place and time. Polarities have 
been adjusted so that a higher score means more of the property described by the scale label. 
Included below for sample scales, are the positively worded item(s) attracting the strongest 
support, and the negatively worded item(s) invoking the strongest rejection (L=London, 
B=Brisbane).  L942&B971&B001 means that the item was the second strongest choice of London 
’94 students, and the strongest choice of Brisbane ’97 students and Brisbane ’00 students etc. 

 
 
 
 
 
 
 
  
 
  
4.3 Scale reliabilities  
These were obtained for each scale as shown in Table 4. London data first followed by 
Brisbane data in brackets (1997), [2000].    
 

Table 4: Scale Reliabilities (Cronbach αααα) 
mathematics confidence 0.77 (0.85)[0.81] computer confidence  0.82 (0.88)[0.85] 
mathematics motivation 0.80 (0.84)[0.82] computer motivation  0.85 (0.86)[0.81] 
    comp/math interaction  0.70 (0.70)[0.71] 

mathematics confidence: I can get good results in mathematics (L941& B971&B002) 
*No matter how much I study, math is always difficult for me (L941& 
B971&B001)  

    computer confidence:    I am confident I can master any computer procedure that is   needed for 
my course (L941& B971&B001) 

  *As a male/female (cross out that which does not apply) I feel 
disadvantaged in having to use computers (L941& B971&B001) 

             * items whose polarities are reversed in calculating scale scores. 



 

 
 
 

 

The scales are coherent with reliabilities from strong to moderate. Internal scale statistics verify 
that all items contribute usefully to the respective constructs.  

4.4 Scale validity 
This rests primarily upon the theoretical base behind the construction of the scales. Additional 

structural evidence may be inferred from the sample items given above. For example the two items 
attracting the strongest responses for mathematics confidence (expecting good results, and 
rejecting that mathematics is difficult irrespective of effort), are both centrally to do with 
confidence. The coherence of the scale as indicated in the α value then supports the argument for 
validity without examining each additional item. Similar arguments apply to the other scales. 

4.5 Differences in Attitude to Mathematics and Computing 
A main purpose in this research has been to investigate the extent to which attitudes to 

computer use and to mathematics represent different inputs into technology based teaching 
contexts involving mathematics learning. In this section the student responses are analysed to 
address this issue further. London and Brisbane data indicated as in the previous table. 

 
Table 5:Inter-scale correlations  
 mconf Mmotiv cconf cmotiv cmint 
mconf  .47(.68)[.51] .29(.21)[.22] .14(.19)[-.04] .13(.16)[.04] 
mmotiv   .25(.23)[-.07] .29(.29)[.00] .35(.26)[.15] 
cconf    .71(.75)[.62] .61(.58)[.56] 
cmotiv     .68(.66)[.65] 
 
Table 5 displays correlations between the five scales. The entries indicate that for all three 

cohorts the confidence and motivation scales are strongly associated within mathematics, and 
within computing respectively. However they are less strongly associated across the areas, as 
shown by the weak correlation, for example, between mathematics confidence and computer 
confidence. The computer-mathematics interaction scale is more strongly associated with 
computer confidence and computer motivation scales than with the mathematical scales, 
suggesting that computer attitudes are more influential than mathematical attitudes in determining 
the level of active engagement with computer related activities in mathematical learning. A Factor 
Analysis using the five scales as input variables with a two-factor solution (using oblimin rotation 
(SPSS) following a principal components analysis) yielded the loadings shown in Table 6.  The 
two-factor solution confirms that the computer and mathematics related scales define different 
dimensions with computer properties dominant in the interaction scale.   

 
Table 6: Factor Pattern Matrix 
 Factor 1 Factor 2 

mconf .11(-.06)[.02] .55(.87)[.88] 
mmotiv .14(.03)[-.02] .85(.89)[.87] 
cconf .89(.89)[.84] -03(-.03)[.05] 
cmotiv .92(.90)[.89] -.05(.02)[-.11] 
cmint .80(.83)[.85] .13(.02)[.06] 

Percentage of variance 67.2(69.7)[75.3] 



 

 
 
 

 

With respect to the research question we note the properties independently confirmed among 
students from different cohorts at different times and in different locations. Two further potentially 
significant inferences emerge from this stability and robustness. Firstly the confirmation that 
attitudes to mathematics and computing occupy different dimensions (the respective factors are 
almost orthogonal), with interaction loading with the computer scales. Secondly, at least an interim 
conjecture regarding the following question. Given that students’ prior access to and experience 
with computers is continually increasing, will structural differences identified between 
mathematics and computer based affective responses diminish with time, or do they represent 
distinctive sets of characteristics with a permanent presence in computer-assisted mathematics 
learning? The data discussed here suggest the latter.   

A final point of interest is associated with the data plotted in Figure 1 which shows an item-by-
item plot of the differences between the means registered by females (F) and males (M) at the 
University of Queensland, using 2000 data. 

Figure 1. Gender differences on attitude scales (UQ 2000). 

The vertical bars delineate the five 8 item scales, which, reading from left to right, are 
Mathematics confidence, Computer motivation, Mathematics motivation, Computer confidence, 
and Mathematics-Computer interaction. It is clear that females score more highly on the 
mathematics scales, and males more highly on the computer scales suggesting a systematic gender 
difference exists. A similar pattern occurs within other data.  Both of these outcomes (robust scales 
and gender differences) suggest implications for the design and implementation of teaching 
programs that integrate computer-based activities into mathematics learning. 
 

4. Focus C: Technology augmented Collaborative   
    Learning  

For this third focus the context is changed and the notion of technology broadened to include 
graphical calculators and also peripheral devices such as viewscreens. Different criteria apply 
when we allow the purpose of technology in mathematics teaching and learning to widen. If we are 
concerned purely with mathematical versatility and power, and features such as screen resolution 
then a symbolic manipulator may be a preferred choice. If we value portability, accessibility, and 
continuous access to a more restricted but still substantial range of mathematical functions then 
graphical calculators provide advantages. This is particularly so if the learning environment is a 
research interest. In a comprehensive review of research on graphical calculator use (in the decade 
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to 1995), Penglase & Arnold (1996) noted a dearth of studies addressing learning environments 
and teaching approaches designed to maximise learning benefits. A subsequent review of research 
(Asp & McCrae, 2000) commented that this particular gap did not appear to have been seriously 
addressed, although substantial work on other aspects of graphical calculator use was noted. The 
teaching-learning environment remains an important context for examining alternative ways in 
which technologies, teachers, and students, combine in the pursuit of mathematical goals when 
these are not obscured by narrow definitions of desired outcomes.  

Sociocultural perspectives on learning emphasise the socially and culturally situated nature of 
mathematical activity, and view learning as a collective process of enculturation into the practices 
of mathematical communities. The classroom as a community of mathematical practice supports a 
culture of sense making, where students learn by immersion in the practices of the discipline. 
Rather than relying on the teacher or textbook as an unquestioned external authority, students in 
such classrooms are expected to defend and critique ideas by proposing justifications, explanations 
and alternatives. Collaborative practices are called for, and in considering alternative models 
Brandon (1999) has usefully pointed out that the ‘C’ in Collaborative Learning has been used 
ambiguously to refer to both co-operative based learning (group members share the workload); and 
collaboration-based learning (group members develop shared meanings about their work). While 
interrelated there is a clear difference in the respective emphases. Collaborative activity in this 
latter sense, is characterised by equal partners working jointly towards an end (Anderson, Mayer, 
& Kibby, 1995), as a co-ordinated activity directed towards construction and maintenance of 
shared meaning and understanding (Rochelle & Teasley, 1995). A key element is elaboration 
(Webb & Palincsar, 1996), through which students: provide specific examples to illustrate 
concepts; use multiple representations (charts, diagrams etc) to explain concepts; create and 
evaluate analogies; translate terms; provide detailed descriptions of how to perform tasks or 
illustrate differences between concepts; provide detailed justifications for their problem solving; or 
use observations and evidence to support opinions or beliefs. These characteristics of collaborative 
learning, that emphasise the social construction of knowledge and shared conceptions of problem-
based tasks, carry across as important elements in the design of computer based - supported 
collaborative learning (CSCL) as described by Brandon (1999). In generalising this property 
beyond computers to encompass technology in general we distance ourselves from models of ‘Co-
operative learning’ wherein members of a group of peers are assigned individual roles (e.g. 
recorder, checker) prior to structured group activity. In this model role assignment may interfere 
with group processes by overemphasising organisational tasks at the expense of learning 
processes. Role assignment effectively restricts the opportunity of individuals to engage with 
problems freely, and to use their knowledge in the widest and most relevant way. This is in 
fundamental conflict with the goals that motivate a community of scholars. 

 A central tenet of sociocultural theory is that human action is mediated by cultural tools, and is 
fundamentally transformed in the process (Wertsch, 1985). The rapid development of computer 
and graphical calculator technology provides numerous examples of how such tools transform 
mathematical tasks and their cognitive requirements.   

The approach then is predicated on three basic assumptions. 
1. Human action is mediated by cultural tools, and is fundamentally transformed in the 

process. 
2. The tools include technical and physical artefacts, but also concepts, reasoning, structures, 

symbol systems, modes of argumentation and representation. 



 

 
 
 

 

3. Learning is achieved by appropriating and using effectively cultural tools that are 
themselves recognised and validated by the relevant community of practice. 

 The approach is informed by a Vygotskian framework, that has moved beyond the most widely 
known interpretation of the Zone of Proximal Development (ZPD) as the distance between what a 
learner can achieve alone and what can be achieved with the assistance of a more advanced partner 
or mentor.  Two other representations are of particular relevance to our learning context. These are 
firstly the conceptualisation of the ZPD in egalitarian partnerships. This view of the ZPD, 
involving equal status relationships, argues that there is learning potential in peer groups, wherein 
students have incomplete but relatively equal expertise – each partner possessing some knowledge 
and skill but requiring the others’ contribution in order to make progress. In the research context 
this feature becomes relevant through the collaborative activity of students in bringing technology 
to bear on mathematical tasks with varying levels of individual technological and mathematical 
expertise. One advantage of these groups is that, when the teacher withdraws, the students are 
provided with the opportunity to own the ideas they are constructing, and to experience themselves 
and their partners as active participants in creating and testing personal mathematical insights. 

A second extension of the ZPD concept is created by the challenge of participating in a 
classroom culture constituted as a community of practice. Students as participants in a learning 
community are viewed as having partially overlapping ZPDs that provide a changing mix of levels 
of expertise that enables many different productive partnerships and activities to be orchestrated. 
(Brown et al., 1993; Brown & Campione, 1995) Through the establishment of a small number of 
repeated participation frameworks such as teacher-led lessons, peer tutoring, and individual and 
shared problem solving, students are challenged to move beyond their established competencies 
and adopt the language patterns, modes of inquiry, and values of the discipline. Such a classroom 
environment, representative of an active community of learners, is then augmented by the 
availability of technology as another agent in the search for powerful and meaningful 
mathematical learning and application. 

To elaborate then, technology is viewed as one of several types of cultural tools - sign systems 
or material artefacts - that not only amplify, but also re-organise, cognitive processes through their 
integration into the social and discursive practices of a knowledge community (Resnick, 
Pontecorvo & Säljö, 1997). The amplification effect may be observed when technology simply 
supplements the range of tools already available in the mathematics classroom, for example, by 
speeding tedious calculations or verifying results obtained by hand. By contrast, cognitive re-
organisation occurs when learners’ interaction with technology as a new semiotic system 
qualitatively transforms their thinking; for example, use of spreadsheets and graphing software can 
alter the traditional privileging of algebraic over graphical or numerical reasoning. Accordingly, 
learning becomes a process of appropriating cultural tools that transform the relationships of 
individuals to tasks as well as to other members of their community (Doerr & Zangor, 2000). 

 This conceptualisation of technology usage in mathematics classrooms differs in its emphasis 
in that, in addition to its contribution in addressing mathematical concepts and processes, it 
encompasses also the sociocultural dimension: interactions between teachers and students, 
amongst students themselves, and between people and technology, in order to investigate how 
different participation patterns offer opportunities for students to engage constructively and 
critically with mathematical ideas. That is, while technology may be regarded as a mathematical 
tool (amplifies capacity), or as a transforming tool (reorganises thinking), it may also be regarded 
as a cultural tool (changes relationships between people, and between people and tasks).   

 



 

 
 
 

 

5.1 Research procedures 
A team of researchers, comprising a mix of academics and teachers, has been investigating the 

potential of collaborative learning in mathematics at pre-university level for a number of years. 
The student subjects are serious students of mathematics, many of whom enrol in undergraduate 
degrees in science and engineering in the year following their participation in the study. One 
particular study followed a group of students during their final two years of secondary education. 
On average a lesson was observed and videotaped every one to two weeks, with more frequent 
classroom visits scheduled if a technology intensive approach to a topic was planned. Each student 
had permanent access to a graphical calculator and spreadsheets were available as a normal 
classroom resource. Audiotaped interviews with individuals and groups of students were 
conducted at regular intervals to illuminate factors such as the extent to which technology was 
contributing to the students’ understanding of mathematics, and how technology was changing the 
teacher’s role in the classroom. This data triangulated information obtained from analysis of 
videotapes and questionnaires. At the beginning of the course and at the end of each year students 
completed a questionnaire on their attitudes towards technology, its role in learning mathematics, 
and its perceived impact on the life of the classroom.   

The quality of mathematical exchanges is captured on the videotape record and is not reported 
in this paper. The interest here is in characteristics displayed as students work collaboratively, 
aided by technology, as a means towards collective and individual mathematical competence. 
While the most illuminating data are in the form of videotaped segments, featuring student and 
teacher discourse, (Goos et al., 2000) for present purposes we skip to a summary of some of the 
findings related to the learning characteristics identified. These have to do with the different ways 
in which students use technology, and see themselves in relation to it.  

5.2 Metaphors for technology use 
 Observations have led to the development of a descriptive taxonomy of sophistication with 

which students work with graphical calculators. This is expressed in terms of metaphor. 
 

Technology as Master. The student is subservient to the technology-a relationship induced by technological 
or mathematical dependence. If the complexity of usage is high, student activity will be confined to those 
limited operations over which they have competence. If mathematical understanding is absent, the student is 
reduced to blind consumption of whatever output is generated, irrespective of its accuracy or worth. 
Technology as Servant. Here technology is used as a reliable timesaving replacement for mental, or pen and 
paper computations. The tasks of the mathematics classroom remain essentially the same—but now they are 
facilitated by a fast mechanical aid. The user ‘instructs’ the technology as an obedient but ‘dumb’ assistant 
in which s/he has confidence.   
Technology as Partner. Here rapport has developed between the user and the technology, which is used 
creatively to increase the power that students have over their learning. Students often appear to interact 
directly with the technology (e.g. graphical calculator), treating it almost as a human partner that responds to 
their commands – for example, with error messages that demand investigation. The calculator acts as a 
surrogate partner as students verbalise their thinking in the process of locating and correcting such errors. 
Calculator or computer output also provides a stimulus for peer discussion as students cluster together to 
compare their screens, often holding up graphical calculators side by side or passing them back and forth to 
neighbours to emphasise a point or compare their working  
Technology as an Extension of Self. The highest level of functioning, in which users incorporate 
technological expertise as an integral part of their mathematical repertoire. The partnership between student 
and technology merges to a single identity, so that rather than existing as a third party technology is used to 
support mathematical argumentation as naturally as intellectual resources.   

Having constructed the taxonomy, through example and repeated observation the research team 
asked a group of students near the end of their course to reflect on its structure in relation to 
themselves as individuals. A selection of responses from the 2000 cohort is given below.  



 

 
 
 

 

 
� Master (M): because I often don’t understand how to use every specific function of the technology, 

thereby limiting my use of such technology. I often don’t know if I’ve used it correctly and as a 
consequence I can’t be sure if my answer is correct or not. 

� I think I’m between master and servant. I tell the calculator what to do sometimes but only stick to 
what I know usually. I don’t know exactly what it allows me to do, and if I haven’t been taught, I 
won’t look for it. 

� Servant (S): because I do not have enough knowledge of technology to be able to investigate new 
concepts. However I do regularly use it for familiar tasks purely as a time saver and to verify and 
check my answers. 

� Partner (P): Because my calculator has become my best friend. His name is Wilbur. Me and 
Wilbur go on fantastical adventures together through Maths land. I don’t know what I’d do without 
him. I love you Wilbur. 

� Extension of Self (ES): Because my calculator is practically a part of myself. It’s like my 3rd brain. I 
use it whenever it can help me do anything faster. 

 The student group had no problem reaching a personal decision and justifying it, and the 15 
responses from the Year 12 students produced the following distribution. M (1), M-S (1), S (7), P 
(2), ES (4).   

  Following the earlier choice of metaphor to describe the taxonomy of sophistication with 
which students may work with technology, observation and discussion then suggested that a 
similar taxonomy may be useful in classifying instructional uses of technology.    

Technology as Master 
Here the teacher is subservient to the technology, and is able to employ only such features as 

are permitted either by limited individual knowledge, or force of circumstance. This seems clearly 
the case in large-scale transmissive programs where, as described by Olsen (1999), helpers are 
reduced to assistants responding to students on the basis of what the software has generated, and to 
marking computer generated quizzes. Here course organisation forces the relationship. However 
this circumstance may also apply in classrooms where teachers have individual autonomy. As 
described by Stuve (1997), pressure to be seen to implement technology following ‘training’, 
results in implementation dominated by whatever basic skill has been acquired, without 
consideration of impact beyond the present.  

Technology as Servant   
Here the user may be knowledgeable with respect to the technology, but uses it only in limited 

ways to support preferred teaching methods (Thorpe, 1997). That is the technology is not used in 
creative ways to change the nature of activities in which it is used. For example just as a calculator 
can be restricted to the purpose of producing fast reliable answers to routine exercises, a 
viewscreen may be limited to providing a medium for a teacher to demonstrate output to the class 
as an alternative to chalkboard, or a computer to crunching numbers faster. 

Technology as Partner   
Here the user has developed ‘affinity’ with both the class and the teaching resources available. 

Technology is used creatively in an endeavour to increase the power that students collectively 
exercise over their learning, rather than exercising it over them (Templer et al., 1998). This can 
occur both in the use of mathematically based technology (calculators and computers), for the 
purpose of enhancing individual prowess, and in the use of communications technology to enhance 
the quality of class learning through sharing, testing, and reworking mathematical understandings. 
For example, instead of functioning as a transmitter of teacher input, a viewscreen may be a 
vehicle for engendering otherwise non-existent student participation or act as a medium for the 
presentation and examination of alternative mathematical conjectures.   



 

 
 
 

 

 Technology as an Extension of Self   
This is the highest level of functioning, in which powerful and creative use of both 

mathematical and communications technology forms as natural a part of a teacher’s repertoire as 
fundamental pedagogical skills and mathematical knowledge. Writing courseware to support and 
enhance an integrated teaching program would be an example of operating at this level. Successful 
use of the rich electronic classroom (Shneiderman et al., 1998) would appear to demand this kind 
of expertise. However, ironically, too much sophisticated technology may exact a price! The sheer 
volume of technological choice can reduce opportunities to explore fully creative uses of 
individually productive items. It is noted that these levels of operating are neither necessarily tied 
to the level of mathematics taught, nor to the sophistication of technology available. Simple 
mathematics and basic technologies are sufficient to provide a context for highly creative teaching 
and learning. Conversely, powerful computers and expensive infrastructure can be associated with 
programs that are limited in what they are able to achieve, or indeed attempt.   

 

6. Reflections 
It seems almost fatuous to say that (without further qualification) the term ‘technology assisted 

learning’ is effectively meaningless. Much has been written that belongs to the genre of ‘show and 
tell’ rather than to information carefully collected and rigorously scrutinised. Almost anything can 
be argued to have enjoyed some success, in some form, with someone, at some time. Over a 
decade ago James Fey surveyed developments in the use of technology in mathematics education 
to that date. In noting that there was no lack of speculative writing on the promise of revolution 
that would follow from the application of various calculating and computing tools, he drew 
attention to the paucity of data available to back extravagant claims. 

It is very difficult to determine the real impact of those ideas and development projects in the daily life of 
mathematics classrooms, and there is very little solid research evidence validating the nearly boundless 
optimism of technophiles in our field. (Fey, 1989) 

 It is bemusing to reflect that this comment seems as relevant today as it was over a decade ago, 
even if the questions have become more refined. The literature confirms the existence of diverse 
factors that impact on the development and testing of theoretical frameworks, and on the conduct 
of practice. Such factors include not only inter-product competition (competing brands and genres) 
that extends also to users, but competing educational philosophies with respect to the teaching and 
learning of mathematics, and institutional politics. 

It seems that one viewpoint of significance at all levels of debate, is whether technology is 
regarded primarily as a learning tool or a power tool.  If we see calculators and computers as 
power tools then we use them as a high tech means of accomplishing mathematical tasks more 
quickly, or attacking problems that are intractable without the technology. Either way their use in 
these ways is enabled by the expert knowledge base of the user. Some of the most incisive 
discussion in the literature concerns the debate about whether students need to understand the 
mathematics independent of the technology, or whether it can be learned through technology. This 
raises the question of using technology as a learning tool, and what this means for educational 
practice. Those who treat mathematics as something to be transmitted and consumed, and see 
technology essentially as a means to this end, ignore both the message of history and the evidence 
accumulating from studies that pay attention to the learning context (e.g. Templer et al, 1998; Kent 
& Stevenson, 1999). Our work inhabits but a small corner of this domain: however consistent 
observations have indicated that access to technology impacts not only on task requirements, but 



 

 
 
 

 

on the culture of the learning approach, and on ways in which students reposition themselves with 
respect to the technology, the task, and each other. The fact that pages of output can be generated 
when operating with software packages gives a misleading measure of learning productivity, and 
creates even further need to subject such output to quality control and follow-up. Ironically this 
requires additional human resources at a time when institutional managers are looking to 
technology to reduce this very thing. The point has been underlined (Olsen, 1999) following her 
description of the 1.5 acre budget driven automated instruction initiative at Virginia Tech.     

Instructional software issues are unlikely to be resolved quickly... If we want the software to help at 
all… it’s got to understand how students might misconceive what is presented to them--and to 
figure that out from the student’s response. And right now, only people do that well. (p. 35) 

The search for complexity measures for demands incurred in using Maple software, is an 
intended contribution to the ‘replacement’ debate - about the extent to which a student can adopt a 
black box mentality to software and focus on the purpose of a task. While results are preliminary 
they do not lend any support to the view that mathematics and technology are separable in the 
learning phase, and that technology essentially is a means to stronger mathematical capability 
among students.  Put another way, it cannot be assumed that students use technology as experts use 
a power tool even when provided with sufficient enabling information. If learning is to be achieved 
then technology’s role in initiating and consolidating understanding needs further intensive study 
and careful documentation. It is doubtful that enough of this is being done despite the plethora of 
projects using technology for instructional purposes. Studies such as Drijvers (2000) help to 
reinforce that obstacles arising when students work with computer algebra systems are generated 
by the interaction of mathematical and technological aspects. The idea then, of technology as 
simply a power tool to enable stronger mathematics, or as a replacement for transmissive models 
of teaching, is effectively rebutted by an increasing number of studies.   

 Work on attitudes has tended to be blurred by interactions between computers, calculators, and 
mathematics in programs involving technology-aided learning. Studies over many years have 
found that attitude and performance are related in school mathematics, although the direction of 
causality has been open to question. Several papers over the past five years have specifically made 
reference to attitude in relation to performance in undergraduate programs (e.g. Shaw & Shaw, 
1997; Hensel & Stevens, 1997). Suspicion that in technology aided learning settings, confidence 
and motivation (in mathematics and technology respectively) may occupy different dimensions has 
been consistently confirmed in our research. Furthermore the results appear to be stable with no 
change apparent over a period of six years using students in different locations. An anticipated 
softening of the technology data due to increasing access and experience with calculators and 
computers has not eventuated. Gender differences in attitudes to mathematics and computers 
respectively, favouring females for mathematics and males for computers raise additional issues 
for course design, when technology and mathematics are brought together in undergraduate 
programs.    

Studies on the impact of calculators and computers as cultural tools that change the nature of 
learning and relationships, as distinct from their agency as mathematical aids, promise to expand 
and challenge notions of what can be achieved in technology aided instruction. The emergence of 
different levels with which students see themselves using and interacting with calculators and 
computers also challenge approaches that see technology purely in terms of increasing 
mathematical power. Failure to recognise taxonomies of competence, preference, and confidence 
in using technologies increases the risk that inappropriate expectations and methods of instruction 
will drive course design and implementation. The risk that through unquestioned acceptance of a 



 

 
 
 

 

perceived authoritative source, a ‘tyranny of the text’ becomes replaced by a ‘tyranny of 
technology’ emphasises the role of the teacher as a custodian of mathematical values that must be 
continually articulated and embedded in instructional practices (Guin & Trouche, 1999). As the 
use of calculators and computers as cultural and mathematical tools in communities of practice 
approaches to learning become more prevalent in secondary education, there are implications for 
the design and implementation of undergraduate courses into which the students subsequently 
flow.                             

Finally, in order to make more systematic progress in evaluating quality and identifying 
problems we need to look at improving the relevance of research methods. It is probably fair to say 
that a substantial majority of us received research training within the scientific paradigm of the 
controlled experiment. Many have questioned its relevance in testing for outcomes of quality in 
educational settings-many more need to do so. What is valuable in knowing that approach A 
achieves statistically better results than approach B when both are terrible, and about 5% of 
variance is involved? Furthermore it is frequently not clear that the condition being ‘tested’ has 
been faithfully applied. Some unsuccessful attempts to replicate the success of Schoenfeld’s 
(1985) problem solving program with College students provide cases in point. Johnson & Fishbach 
(1992) and Lester et al., (1989) reported studies that foundered in their attempts to replicate the 
success of the teaching approach advanced by Schoenfeld. While these studies specifically 
implemented elements of that teaching program (in terms of strategies), they did not nurture and 
sustain the culture of “mathematics community” that was of equal or greater importance. In the 
former study, the College students, used to other methods of mathematics teaching, were 
uncomfortable with the learning approaches and setting. On the other hand, their teachers were 
uncomfortable with the teaching style required of them, which was substantially different from that 
developed over many years. No positive change was achieved over a ten-week period. In the latter 
study, two classes of primary year 7 students showed little ‘improvement’ in metacognitive control 
behaviours over the seven weeks of the trial.  These students had limited domain specific 
knowledge on which to draw, were reluctant to reflect on strengths and weaknesses, and 
inexperienced in the small group settings which formed a key part of the instructional program. 
Failure to establish a community of practice culture renders invalid attempts to evaluate the 
effectiveness of teaching strategies that necessarily draw from such a culture. Yet parallels to this 
failure, often compounded by inadequate reporting, torment study after study. This is quite apart 
from an increasing concern with ethical considerations that would question the integrity of studies 
that allocate a group of subjects to a ‘treatment’ believed to be inferior! The social context of the 
classroom is an inextricable component in the development of a community of practice. It becomes 
central therefore to locate identifiers by means of which the operation of such a community can be 
recognised, monitored and developed, and within which the achievements of teaching approaches 
can be assessed. Such methods involve establishing criteria against which to measure the quality of 
outcomes, for which purpose the use of videotapes, transcript analysis, and other methods of 
triangulation augment written data. Qualitative research methods and Grounded Theory 
approaches need to complement appropriate applications of quantitative methods more than they 
have so far managed to do. The development and implementation of rigorous research within a 
rich environment of outcomes is perhaps our greatest challenge in seeking to test and improve the 
effectiveness of instructional strategies involving technology. 

  I would like to record my appreciation for the inspirational work of colleagues as 
collaborators in various research projects: Chris Haines (City University, London: Mathematics); 



 

 
 
 

 

Mike Pemberton (University of Queensland: Mathematics); Merrilyn Goos and Peter Renshaw 
(University of Queensland: Education); and Vince Geiger (Hillbrook Anglican School).  
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Appendix 

Sample Questions 
(Questions in italics: Maple commands in bold: Maple output in ordinary type) 

Maple Solution 

!"factor(x^3-6*x^2+11*x-6); 
(x - 1) (x - 2) (x - 3) 

Maple Solution 

>  plot(x^2*sin(x)+x*cos(x),x=0..5); 

>  x1:=fsolve(x^2*sin(x)+x*cos(x),x=2..3); 
     x1 :=2.798386046 
**************************************************************** 
Q14. Plot  the graph of f(x) =  (x-1)(x-2)(x-3)  and use this to find the physical area under 
the graph from x= 1  to  x= 3. 
Maple Solution 

> y:=(x-1)*(x-2)*(x-3); 
!"plot(y,x=0..4); 

!"int(y,x=1..2)-int(y,x=2..3); 
!" 1/2 
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