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ABSTRACT 
This paper discusses the implications of research on undergraduate calculus learning for calculus teaching 
practice. In particular, this paper addresses the challenges of using research results and adapting instructional 
materials in diverse classroom settings, and aligning research-based conceptions of teaching with practice. In 
a previous research study, the author investigated students’ use of physics experiences and concepts as they 
construct calculus concepts in an interdisciplinary calculus and physics course. The results of this study 
suggest that students frequently draw upon physics experiences and concepts as they develop understandings 
of average rate of change, but that students less frequently make use of physics experiences as they develop 
understandings of derivative and antiderivative. In addition, other researchers have alluded to the importance 
of prior physics experiences on students’ conceptualization of the average rate of change concept (e.g. 
Nemirovsky & Noble, 1997). However, implications of these research results for calculus teaching practice 
have received little attention. The combination of the author’s research findings and those of other 
researchers suggest four major implications for calculus teaching practice. Research results: 1. Modify pre-
existing instructional design theory. 2. Influence the design of classroom activities and development of 
learning sequences. In particular, research provides information about the potential mismatch between the 
experiences students bring with them to the classroom and teachers’ assumptions about students’ past 
experiences. 3. Influence how the teacher conceptualizes the role of the students in the classroom 
community. 4. Alter the role of technology in the classroom. The results of the author’s previous research as 
well as other research results are discussed relative to these four outcomes for undergraduate calculus 
teaching practice. 



1.  Introduction 
This paper discusses how the results of recent research on calculus learning inform new ways of 

teaching undergraduate calculus.  The broad question that this paper discusses is: What do we 
know about the learning of calculus and how does that knowledge inform calculus teaching?  
Specifically, this paper presents a discussion of recent research on the role of physics 
understanding in the learning of calculus concepts and the implications of research for the calculus 
curriculum.  This paper is divided into two sections and reflects the continuum of research 
informing practice and practice informing research.  The first part of this paper describes research 
that grew out of the author’s evaluation of an interdisciplinary calculus/physics program (practice 
informing research).  The second part of this paper discusses the implications for practice of the 
results of the research described in the first part of the paper, along with other recent research in 
this area (research informing practice).   

 

2. The role of Physics in Students’ Conceptualizations of   
    Calculus Concepts 
Background and Purpose 

Students’ understanding of calculus concepts lays a foundation for their future study of 
advanced mathematics, science, and engineering courses.  The idea of change – both how things 
change and the rate at which things change – plays a particularly important role in students’ 
conceptualizations of calculus concepts.  Students must understand the concept of rate of change in 
order to understand the derivative and differential equations.  Furthermore, students must 
understand the idea of total change to understand the integral.  Finally, students must understand 
the relationship between rate of change and total change in order to understand the relationship 
between derivatives and integrals outlined by the Fundamental Theorem of Calculus. 

In order to grasp abstract ideas of rate of change, students might rely on physical interpretations 
of change (Nemirovsky, Tierney, & Ogonowski, 1992).  Students may have encountered some of 
the underlying calculus concepts informally in everyday life; thus students often enter the calculus 
classroom with some intuition about concepts such as rate of change and derivative (Nemirovsky & 
Rubin, 1992; Nemirovsky & Noble, 1997).  Furthermore, many students experience the 
mathematical concepts of average rate of change, derivative, and integral in physics classes as they 
study concepts such as motion, force, and electricity.   

Physics, a typical introductory course for most engineering, science, and mathematics students, 
provides a context for which students can study change in a concrete setting.  Research has shown 
that mathematics understanding enhances the learning of physics concepts (Hudson & McIntire, 
1977; Champagne, Klopfer et al., 1980), and more recent research has begun to examine how 
physics understanding affects the learning of calculus concepts (Thompson, 1994; Marrongelle, 
2001).   

During the late 1990’s the National Science Foundation of the United States of America funded 
several initiatives aimed at exploiting connections between mathematics and other disciplines at the 
undergraduate level.  One such project, which took place at a large, public research university in 



the Northeast, integrated the curriculums of differential and integral calculus and introductory 
calculus-based physics (NSF-DUE 9752650).  The integrated Calculus/Physics program was 
offered to first-year students as an alternative to enrolling in separate calculus and physics classes.  
The program was developed during the spring and summer of 1998 and first offered to students 
during the fall of 1998.  The Calculus/Physics program development was informed by recent 
research in the areas of calculus and physics learning (c.f. McDermott, 1984; Ferrini-Mundy & 
Graham, 1994), ideas from the work in Cognitively Guided Instruction (Greeno, 1997), and 
research in the area of problem-solving (Larkin, 1980; Schoenfeld, 1985; Arcavi, Kessel, Meira, & 
Smith, 1998).  

The ordering of the calculus and physics topics contributes greatly to the integrated nature of the 
curriculum.  The curriculum is designed for the students to see the applicability of the calculus as 
they learn it and conversely that they have all the mathematics they need to solve physics problems.  
In order to coordinate the calculus and physics topics in the class, the presentation of calculus 
topics was reordered.  The four basic threads of calculus (function, continuity, derivative, and 
integral) are discussed first for polynomial functions only and then again for other classes of 
functions (logarithmic, exponential, trigonometric) as they arise in the physics curriculum.  This 
reordering of the calculus curriculum allows for the presentation of the physics and calculus 
content in a more unified way and gives the mathematics a rich context.   

The author began examining students’ learning in this context in her role as an evaluator of the 
calculus/physics program.  As part of the evaluation of the Calculus/Physics program, the author 
conducted clinical interviews with students enrolled in the Calculus/Physics class and student 
enrolled in a traditional1 calculus course.  An analysis of the clinical interview data uncovered 
differences between the manner in which Calculus/Physics students and traditional calculus 
students approached average rate of change and derivative tasks.  The Calculus/Physics students 
tended to use physics terminology and concepts as they solved average rate of change and 
derivative tasks.  The traditional calculus students, who were either concurrently enrolled in a 
physics class or had completed a physics class, tended to rely on their memorization of 
mathematical formulas and processes as they solved average rate of change and derivative tasks.  
The Calculus/Physics students seemed to make more connections to their knowledge of physics as 
they solved the average rate of change and derivative tasks than the traditional students.  

Research Question and Theoretical Perspective  
As a result of her work evaluating the Calculus/Physics program, the author designed a research 

study to investigate the question: How do students draw upon physics concepts to inform their 
understanding of rate of change, derivative, and integral?  The study was guided by the basic 
constructivist view that knowledge is constructed through a process of experience and reflective 
abstraction (Noddings, 1990).  The consequence of holding a constructivist perspective is the 
assumption that mathematics is built from human activity; thus students informally experience 
mathematical ideas in their day-to-day, culturally situated experiences.   

The theory of transitional tools was employed as a means to analyze and discuss role of physics 
in the students’ constructive activity Nemirovsky and Noble (1997) put forth the notion of 

                                                                 
1 ‘Traditional’ is used here to describe those students who were not enrolled in the integrated 
Calculus/Physics program at the university.   



transitional tools as part of their emerging psychological perspective that allows for the analysis of 
an individual’s constructive activity by challenging the convention that any given object or picture 
must reside either inside or outside a person’s mind. By rejecting the notion that a visualization 
must be either internal or external, Nemirovsky and Noble (1997) overcome the common difficulty 
that arises from the need to describe whether a visual image is internal or external to the student. 
Transitional tools are experiences or objects in the environment that both separate the learner from 
another physical object and strengthen his/her understanding of the object using mathematical 
contexts such as symbols and graphs. For example, a student who talks about the motion of a cart 
on a track to help him/her conceptualize properties of the derivative is using the cart and track as 
transitional tools. Note that the cart and track are tools that reside both internally (in the student’s 
memory of the cart’s motion on the track) and externally (the physical existence of the cart and 
track).  

Recent Research in Calculus Learning  
Much of the research on calculus learning has shown that students are able to successfully carry 

out methods of differentiation and integration but sometimes lack the conceptual underpinnings 
necessary to explain procedures, work though problems using multiple strategies, and make 
connections between concepts (Orton, 1983; Vinner, 1989; Ferrini-Mundy & Graham, 1994).  
Throughout the literature, researchers have alluded to the importance of prior experiences on 
students’ conceptualizations of calculus concepts (Thompson, 1994; Nemirovsky & Noble, 1997; 
Noble, Nemirovsky, Tierney, & Wright, 1998).  These experiences refer to both mathematical and 
non-mathematical episodes and situations encountered both in and out of the classroom.  
Additionally, some researchers have stressed the need for investigations into the effects of 
introducing substantial physical examples and applications in the calculus course (Ferrini-Mundy 
& Graham, 1991).   

More recently, Ricardo Nemirovsky has undertaken a number of projects aimed at investigating 
the effects of physical graphing devices on students’ calculus learning.  Nemirovsky, Tierney, & 
Wright (1998) found that students will broaden their use of motion graphing devices as they 
become more familiar with the graphing devices.  Steve Monk, Ricardo Nemirovsky, and Paul 
Wagoner have developed a set of computer controlled interactive physical devices.  The devices 
enable students to explore calculus concepts in a physical context.  Underscoring these projects is 
the assumption that students’ physics experiences and knowledge will shape how and what they 
learn.   

Methodology 

Over a two-semester period, eight first-year students enrolled in the Calculus/Physics program 
participated in this study.  Students were invited to participate in this study based on their reported 
backgrounds in mathematics and physics.  The goal of the participant selection was to generate a 
sample of students whose range in abilities spanned the abilities represented in the 
Calculus/Physics class.  Seven males and one female participated in the study.  The gender balance 
in the study reflected the gender balance in the Calculus/Physics class.   

This study utilized a multiple case study design with analysis by and across cases. Data sources 
included: four audio taped, task-based interviews with each student; classroom participant-
observation; and photocopies of students’ class notes, in-class activities, homework assignments, 



and examinations.  The interview tasks were designed to help reveal students’ ways of thinking 
about average rate of change, derivative, and integral.  All of the interviews were transcribed and 
all data was coded into categories using micro-analytic and constant comparison methods (Strauss 
& Corbin, 1998).   

Transcripts of the students’ initial interviews were selected as the primary data source for the 
microanalysis since these were the earliest pieces of data collected.  It was necessary to conduct a 
microanalysis on early pieces of data in order to generate a scheme by which to classify the ways in 
which the students used physics as they solved calculus problems.  The classification scheme was 
further tested and refined with data collected later in the year.  The classification scheme will be 
discussed in more detail in the following section.  

A within-case analysis of each student was conducted in order to test the stability of the 
classification scheme that emerged during the microanalysis.  The classification scheme (See Table 
1) was used to analyze transcript episodes, students’ homework assignments, classroom activities, 
and examinations.  Selected pieces of the data were re-coded by three independent raters to check 
for inter-rater reliability.  

Results 
The results of this study indicate that when students used physics as transitional tools, they used 

physics in one of four (not necessarily disjoint) ways: Contextualizers, Example -Users, Mis-Users, 
and Language-Mixer (see Table 1).  

 

Physics Use Description 

Contextualizer 
Student works and talks through calculus problems as if it were a 
physics problem.  Majority of technical vocabulary used to solve 
problem is physics terminology.  There is evidence that student is 
thinking about the problem in terms of physics.   

Example-User 

Student uses physics examples to justify solutions to problems or to 
help make sense of part of the problem.  Actual problem at hand is 
solved using mathematical concepts.  Student does not submerge the 
problem in a physics context.  Majority of technical vocabulary is 
mathematical terminology.  

Mis-User 
Student’s use of physics misconceptions interferes with student’s 
solution to the problem.  Student uses physics misconception to 
incorrectly solve the problem at hand. 

Language-Mixer 

Student intersperses physics and calculus terminology as he/she solves 
problem.  Student does not immerse problem in physics context or use 
physics examples to justify solutions or help make sense of problem.  
Rather, student intermingles physics and mathematical language as 
he/she solves the problem.  

Non-User Student does not use physics concepts to language to solve calculus 
problems. 

Table 1: Physics Use Classification Scheme 

 

 



Contextualizers show evidence of immersing calculus problems in a physical context in order to 
solve them. Example-Users use physics examples to justify solutions to calculus problems or help 
make sense of part of a problem, but do not show evidence of immersing the problem in a physical 
context. Mis-Users allow physics misconceptions to interfere with the solution to calculus 
problems. Language-Mixers intersperse mathematics and physics terminology as they solve 
calculus problems but show no evidence of using physics other than a communication tool. 
Another interesting finding is that students frequently used physics concepts as transitional tools to 
construct meaningful conceptualizations of average rate of change but less frequently drew upon 
physics concepts as transitional tools to aid in their understanding of derivative and integral.  

A discussion of the implications of these research findings for teaching and curriculum 
development will be presented in the next section. The results of the research study described 
above, as well as the results of previously reported research have been synthesized in order to 
identify areas of possible modification in undergraduate teaching practice and curriculum 
development. 

 

3.  Implications for Practice 
A number of observations arise here that suggest implications for calculus teaching practice and 

curriculum development.   
1. Instructional design theory should reflect the notion that students build their mathematical 

understanding from human activity.  Students often encounter calculus concepts through 
participation in physical situations in their environments.  The ‘human’ aspect of calculus concepts 
is often ignored in the design of calculus course.  Instructional design theory needs to incorporate 
students’ prior experiences with calculus concepts.   

For example, the instructional design theory of Realistic Mathematics Education is rooted in 
Freudenthal’s interpretation of mathematics as a “human activity” (Freudenthal, 1991). From this 
perspective, students should learn mathematics by mathematizing subject matter from realistic 
situations (i.e. from context problems or from mathematically real objects for students) and by 
mathematizing their own mathematical activity. As a global, guiding theory, Realistic Mathematics 
Education provides a framework for considering the use of context problems and the role of 
mathematization in the learning process. 

2.  Curriculum changes should be made to address the close connection between calculus and 
physics as well as students’ reliance on physics to help them make sense of calculus concepts.  
While integrating calculus and physics in a single course is not always possible or appropriate, the 
physical context of calculus cannot be ignored.  The calculus curriculum should reflect that 
students’ experiences with physics are valued and an important part of the learning process.  
Currently, many calculus textbooks continue to use physical examples only as ‘applications’ of 
calculus or as a follow-up to discussions about calculus concepts.  Physics concepts and examples 
should be used to initiate discussions about calculus concepts, especially in calculus classes 
designed for science and engineering students.  Drawing on students’ previous experiences with 
physics will help students create more meaningful conceptualizations of calculus concepts.  This 
suggestion should not lead to the exclusion of other calculus applications from the curriculum, such 
as biology, business, and economics.  Because the results of the current research project were based 



on data collected from students with a predisposition to physics, further research is necessary to 
determine if the results of the present study are generalizable to a larger student population.  
Specifically, future research should investigate the effects of a physics-based approach to calculus 
on students majoring in such areas as business, economics, and biology.   

3.  Students’ previous experiences and knowledge should actively shape the classroom learning 
environment.  The research on calculus learning underscores the idea that “calculus students will 
actively formulate their own theories, build their own connections, and readily construct meaning 
for problem situations” (Ferrini-Mundy & Graham 1994, p. 43).  Thus, the calculus curriculum 
should be informed by the experiences and knowledge that students bring with them to the 
classroom.  In particular, students must be afforded opportunities to link their past experiences with 
physical phenomena to calculus concepts.  Students should be given opportunities to share their 
experiences with and knowledge about calculus concepts, validating the student’s role as a learner.  
Additionally, as students discuss their experiences and knowledge, they will begin to consider 
calculus concepts from multiple perspectives.     

4.  The role of technology in the classroom should be under continual modification.  Students in 
the present study used motion detectors, graphical interfaces, and graphical software to create, 
analyze, and explore properties of derivative and anti-derivative functions.  The use of such 
technological learning tools, while standard in many physics laboratories, has only recently been 
explored in mathematics classrooms (Nemirovsky, Tierney, & Wright, 1998; Huetinck, 1992).  
Motion detectors allow students to visually, audibly, and kinesthetically engage with calculus 
concepts.  However, using motion detectors and related hardware and software requires additional 
funds and space for students to move about the classroom.  Not every school or classroom can 
accommodate technology such as motion detectors.  New technological advances as well as web-
based programs are allowing for easier interactions with powerful teaching tools similar to the 
motion detector.  As new technological tools are made available, educators need to consider their 
appropriate use in the classroom.   

 

4.  Summary and Conclusions 
The combination of the author’s research findings and those of other researchers suggest four 

major implications for calculus teaching practice. Research results suggest: 1. The modification of 
pre-existing instructional design theory. 2. Influence the design of classroom activities and 
development of learning sequences. In particular, research provides information about the potential 
mismatch between the experiences students bring with them to the classroom and teachers’ 
assumptions about students’ past experiences. 3. Influence how the teacher conceptualizes the role 
of the students in the classroom community. 4. Alter the role of technology in the classroom. 
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