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ABSTRACT

This paper extends the study of social interaction patterns as a means to characterize mathematics learning to the
learning and teaching of mathematics at the undergraduate level. We present here the analysis of teaching
episodes from a discrete mathematics course to document the change in social and sociomathematical norms
over the course of one semester. First, the instructor established the social norm that students justify, explain and
share with their peers their thinking and solution processes. We show how the instructor of the course
established an expectation for explanation and justification, and how students’ interactions developed in
accordance to this normative understanding through the semester. That is, we trace students’ development from
the passive acceptance of the instructor’s authority to the expectation that students become contributors to the
class and that they all share common understandings. We then shift our focus to the sociomathematical norms —
normative interactions specific to mathematics. We discuss the development of students” explanations from the
procedural level to ones that are grounded in deeper conceptual understandings. We finally link the shift in the
aforementioned social and sociomathematical norms in students’ interactions to the development of students’
ability to reason deductively.



Introduction

Schoenfeld argued that “mathematics is an act that is socially constructed and socially transmitted”
(1992, p. 335). As such, it is governed by a set of norms; an etiquette for what is deemed appropriate
behavior by members of the mathematics community. These can be social rules, that is, the ways in which
members of the community interact and exchange ideas — rules that are not specific to mathematics but may
characterize the behavior of members of other fields (e.g., historians). There is also a set of mathematical,
or sociomathematical rules, that is, rules that are specific to the field of mathematics, such as what
constitutes a proof (Cobb, Wood, Yackel, McNeal, 1992; Yackel & Cobb, 1996). While the second set of
rules are explicit in the field, the first set can be very implicit. And yet, one may argue that social norms
constitute the broad basis upon which the mathematical norms are constituted.

In recent years, we have witnessed a renewed interest in this social facet of mathematics and a growing
tendency in studying social interaction patterns as a means to characterize mathematics learning (e.g.,
Yackel, 2001). Yet, little work has been done at advanced levels; the bulk of the research in this area has
been conducted in elementary and secondary school classrooms (Cobb & Bauersfeld, 1995; Cobb, Yackel
& Wood, 1992). In this paper we join the efforts of Yackel, Rasmussen and King (2000) to extend these
analyses to the learning and teaching of mathematics at the undergraduate level using data from a
classroom teaching experiment in discrete mathematics. We document the development of social and
sociomathematical norms regarding explanation and justification over the course of one semester, and we
discuss how these norms were constituted in this specific case.

First, we focus on the social norm that students publicly explain their thinking and solutions and try to
make sense of other students’ thinking. We show explicitly how the instructor of the course established an
expectation for explanation and justification, and how students’ interactions developed in accordance to this
normative understanding through the semester. That is, we trace students’ development from the passive
acceptance of the instructor’s authority to the expectation that students become active contributors to the
class and that they all share common understandings. We then shift our focus to the sociomathematical
norms — interactions specific to mathematics. We discuss the development of students’ explanations from
the procedural and empirical level to ones that are grounded in deeper conceptual understandings within the
context of the course. Finally, we discuss the social interactions with respect to reformed instruction in
advanced mathematics classrooms.

Methodology

Participants for the study were a group of 50 undergraduate mathematics students enrolled in a two-
semester, first-year course on discrete mathematics emphasizing mathematical argumentation and proof.
The course was taught by one of the two investigators, while the other investigator collected data. For
homework assignments and reference purposes, the course used a broad text on discrete mathematics
(Grimaldi, 1999). A typical class section begun with a problem introduced by the instructor followed by
student group work. Students were encouraged to ask each other questions and help each other clarify
concepts and problem requirements. The small group work was usually alternated with whole class
discussion of students’ approaches, thinking and questions. Throughout the course there was a concerted
focus on both written and verbal expression of student thinking. Implicitly the instructor worked towards



establishing the social norms that students are expected to explain their reasoning, to try to make sense of
each other’s explanations, and to challenge each other’s reasoning and justifications.

Each class was videotaped and attention was paid to both the instructor’s actions and the students’
reactions, including the students’ interactions when working in groups. In analyzing the data, our first goal
was to demonstrate the use and change of social and sociomathematical norms in the classroom over time.
In order to document these, we analyzed transcripts of classroom discourse data according to its function
and pattern (Potter & Wetherall, 1987), using each speaker’s turn as the basic unit of analysis. We focused
our coding on the forms of explanation and justification used by students. This required detailed coding of
verbatim transcripts, with the meaning of each speaker’s turn interpreted within the context of the larger
conversation. Additionally, students were presented with written assessments, at the beginning and end of
each semester. These assessments were analyzed to identify shifts in students’ proof schemes (Harel &
Sowder, 1998) and each student’s own competency in justifying and proving.

Social Norms

Students were initially surprised by and even resistant toward the social norm that they explain their
thinking and try to make sense of other students’ thinking. It became apparent that the instructor’s
expectations that students explain publicly their thinking ran counter to the students’ earlier experiences of
mathematics work. Students felt uncomfortable engaging in explanations of their thinking and even lacked
the language to do so. They were initially hesitant to challenge their classmates’ thinking and acknowledged
that they did not know how to explain why their solutions worked. However, as the semester progressed,
students got accustomed to engaging in explanations and justifications. Here, we present excerpts from two
different episodes in the course from two different points in time, that sharply contrast social norms
regarding student explanation and making sense of each other’s thinking. In the first case that took place
during the second week of the semester, students did not feel the obligation to explain their thinking nor did
they expect to make sense of other students’ explanations, despite the instructor’s urge to do so. In the
second case the students felt obliged to do so, without prompting from the instructor.

First episode (second week). The class was introduced to combinations and permutations — students
were asked to find the number of different combinations of pastries one can purchase from a bakery. The
instructor prompted students to “think of their thinking” and to question each other’s approaches and
arguments implicitly letting students know that there is an expectation that they will engage in this question
and share their reasoning. Further, students were asked to work in groups. The following was the
interaction among Isabelle and Josh:

Isabelle: What did you do?
Josh: You multiply them all out and you get 10x9%8x. . ...
Isabelle: Oh, OK.

The level of discussion described in this short episode among Isabelle and Josh is illustrative of the
discussions that took place among almost all groups; when students were asked to work in groups and to
collaborate in solving the problem while making sure they question each other’s thinking, they, instead,
tended to ask each other (or the instructor) for a method to solve the problem or for an answer—a procedural
approach to problem solving—and accepted each other’s solutions without further questioning. In the few



cases where a student asked another student for further clarification or explanation for his answer or
approach, the response often was “it worked for me

",

Second episode (seventh week). The class was discussing rational and irrational numbers and students
were asked to consider the square root of 2, and to show it is irrational. As usual, the instructor prompted
students to question each other’s approaches and arguments. The following is the interaction among Jared,
Daniel, and Mike while thinking about the problem in a whole class discussion:

Jared: Iset V2 =p/q. Thenl...

Daniel: What are p and q?

Jared: Two integers

Daniel: Any integers?

Jared: Two integers

Daniel: If it’s not any integers, then it’s not true for all cases, and then someone can come up
with a case where it fails and your argument is gone.

Mike: To me, the important thing to remember is that \2 is written as a specific ratio, not

any p/q. We are trying to show it can’t be rational....

In contrast to the first episode where students hesitated to challenge each other, during the second
episode, students expected their classmates to explain their reasoning. After Jared started sharing his
thoughts, Daniel, without prompting from the instructor, asked for further explanation — what numbers was
Jared considering in his proof. Jared clarified, but Daniel prompted for more — a sincere attempt to
understand Jared’s reasoning. Notice, however, that the interaction was not a dialogue among two naturally
inquisitive students; Mike joined the discussion in an attempt to clarify the argument further. Mike’s
language further suggested that the argument was a collective one; he pointed that “we are trying to show it
can’t be rational” (emphasis added), it was no longer Daniel’s attempt to show that the square root of 2 is
irrational, it was an argument embraced by the class. It was, from that point on, the class’ responsibility to
clarify for each member of the community and to ensure that each member shares the ownership and
understanding of the argument.

Overall, this episode illustrates how the students had advanced during the course of semester in their
ability to debate with their peers. Furthermore, they had overcome their initial resistance towards public
argumentation and had developed the expectation that others explain their reasoning to the class. The two
social norms, that students were expected to explain their reasoning and that they were expected to try and
make sense of other students’ thinking were gradually constituted throughout the semester. Such
discussions are essential in students’ mathematical development and in the development of the classroom as
a community of learners.

Sociomathematical Norms

We showed that as the semester progressed, students got accustomed to engaging in explanations and
justifications. Furthermore, the quality in students’ explanations and their capacity to express their
mathematical thinking in increasingly formalized ways changed substantially over time. Students’
arguments gradually shifted from empirical and procedural to deductive and conceptual. As students
advanced in their ability to argue, they also raised their expectations as to what counts as a strong
mathematical argument; while during the first weeks of class the instructor’s request for explanation often



resulted in a description of the procedure that a student used or the listing of several examples, a few weeks
later students attempted to explain the generality of the argument. We argue that students acted in
accordance with the normative understanding that they were expected to explain, but they also established
sociomathematical norms that are very specific in the mathematics community as to what constitutes an
acceptable explanation in mathematics

Once again, we discuss the two episodes in the course that were presented in the previous section to
contrast social norms regarding student explanation. We now discuss these same episodes from a different
standpoint; students’ growth in their use of mathematical arguments.

First episode (second week). In the first episode presented in the previous section, Josh shares his
solution with Isabelle. Isabelle’s question “what did you do” is a prompt for a procedure that will produce
an answer and that is precisely what Josh has to offer — a guide that will lead her to the correct solution to
the problem. Josh did not see the need to give a conceptual explanation (why one should multiply out all
the numbers) and Isabelle, in turn, was satisfied with the procedure and did not see the need to prompt for
an explanation. The discussion among Isabelle and Josh once again illustrates the quality of the arguments
that were exchanged among students during the first few weeks of the semester — students exchanged
procedural explanations and recipes for solutions that appeared to produce correct answers.

Second episode (seventh week). In this episode, Jared started to share his approach to showing that the
square root of 2 is irrational, but was interrupted by Daniel who questioned the generality of Jared’s use of
integers. Finally, Mike attempted to help Daniel in understanding the proposed solution. Their
mathematical argument seems to be in determining the meaning of ‘p’ and ‘q’, specifically, whether they
represent a fixed but unknown pair of integers, or whether they represent any two arbitrary integers. The
excerpt shown in the previous section illustrates that the students acted in accordance with their own
understanding in explaining their thinking and making sense of each other’s thinking and it attests to the
existence of classroom and sociomathematical norms by which such conversations can occur. Such
discussions are essential in students’ mathematical development and in the development of the classroom as
a community of learners. In particular, we claim that classroom discussions such as this helps to build a
habit of mind whereby students internalize public argumentation in ways that facilitate private proof
construction.

We take shifts in student responses to one proof problem given on two occasions as part of the evidence
for this claim. The problem was administered on the first day of class, before any instruction occurred, and
9 weeks later on a mid-term assessment. For purposes of interpreting the quantitative results, we provide
one possible “correct” solution.

PROBLEM: Prove that the sum of an even number and an odd number is always odd.

POSSIBLE SOLUTION: Let x be even and y be odd. They x = 2m and y = 2n+1, for
integers mand n. Thenx +y=2m + 2n + 1 = 2(m+n) + 1 = 2k + 1, where k=m+n is an
integer. But 2k+1 is odd, by definition, so x + y is odd. Thus the sum of an even number and
an odd number is always odd.

The problem described above was given to students as part of an individual pre-assessment at the beginning
of the semester, and as part of a mid-term assessment. We do note, however, that students worked in pairs
during the mid-term assessment. While this arrangement certainly contributed to the success students had
with this problem, it also illustrates the type of socio-mathematical norms that had evolved in the



classroom, norms that we take to be critical for the development of students’ capacity to build proofs. Even
so, the results clearly indicate significant gains in students’ responses. Table 1 shows a summary of student

solutions to this problem.

Pre-Test (individual)

(50 responses)

Mid-Test (paired)
(51 responses)

Correct proofs
completely correct

almost correct (minor error)
Total correct proofs

Incorrect proofs:

1 out of 50 (2%)

1 out of 50 (2%)

34 out of 51 (67%)
13 out of 51 (25%)
47 out of 51 (92%)

Used examples as a “proof” 26 out of 50 (52%) 2 out of 51 (4%)
Used illogical reasoning 10 out of 50 (20%) 2 out of 51 (4%)
Looked at a narrow case 10 out of 50 (20%) 2 out of 51 (4%)
No attempt made 7 out of 50 (14%) 0 out of 51 (0%)
Total incorrect proofs 49 out of 50 (98%) 4 out of 51 (8%)

Table 1. Summary of student responses.

Only one person (2%) gave either a correct or essentially correct proof on the first attempt, while 92%
of the class gave correct (67%) or essentially correct (25%) proofs on the second attempt. In addition, 52%
of students on the first attempt used examples to ‘prove’ the conjecture, while only 4% of students used this
as a strategy on the second attempt. Moreover, there was a significant increase in students’ level of
formalization, particularly, their capacity to express their thinking in increasingly formal ways via symbolic
language. Only 16% of respondents on the pre-test used some form of symbolization, whether correctly or
incorrectly (otherwise, if students attempted a proof, they used everyday language). On the mid-test, 94%
of students expressed their proof or proof attempts symbolically in a manner similar to the possible solution
given here.

Concluding Remarks

This study adds to the literature on the nature of cognitive and social dimensions of mathematics
instruction and learning at the university level. We presented here some examples on the nature of social
and sociomathematical norms that support the learning of mathematics in a discrete mathematics classroom.
Our results suggest that college mathematics classrooms can potentially function as communities of
learners, in which students engage in sense-making and meaning-making. In this respect, this study supports
the work of Yackel, Rasmussen and King (2000), in that, over time, students’ attitudes develop from the
passive acceptance of the instructor’s authority to the expectation that students become active contributors
to the class and that they all share common understandings.

The significance of this work for mathematics reform at the university level is that it provides a different
perspective to view and analyze mathematics learning that complements the work of mathematicians and
mathematics educators who have focused primarily on the individual cognitive aspects of advanced
mathematics learning (e.g., Dubinsky, 1992; Harel & Sowder, 1998). We are suggesting a shift towards the
study of social processes as a way to understand students’ development. As we continue to examine the
cognitive and social dimensions of mathematics learning in college classes, it is important that we look
deeper into the interconnections of social and cognitive development.
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