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ABSTRACT

Led by the idea that “. . . using a graphing calculator to zoom in functions is one of the best
ways of seeing local linearity” (Hughes-Hallet, Gleason et al. 1994), we discuss here the role of
new technology in teaching and understanding mathematics and present a complete “route to
derivatives”, which is particularly suitable for undergraduate teaching. Starting with a formal
definition of the tangent to a graph we are led to the fundamental theorem of calculus. The
basic definition (the slope of the tangent) relies on graphic concepts, like screen resolution and
pixels’ dimensions, so, essentially, it’s “limit–free”. The fundamental theorem of calculus is
presented in a discretized version, showing that the trapezoidal rule for areas and the central
difference formula for the tangents’ slopes are, in a sense, inverse one to each other. At an
higher level, we can note that the central difference rule can be applied to solve numerically
differential equations. Everything has been implemented on an intermediate graphic calculator
(actually the TI–82, TI–83 and TI–83 Plus), and carried out in the last three years on a total
population of about 750 students of life sciences, pharmacy and chemistry, aged 18–19, from
two different universities in Italy. As a result we noticed a substantial improvement of low-
ranked and middle-ranked students. We present also the project a “teacher bank”, consisting
of TI–GraphLink compatible files containing related programs and data, and more advanced
teaching tools as Mathematica notebooks and QuickTime movies, especially generated by
TI–8∗ screenshots.
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antiderivative.



1 Does technology change mathematics?

In recent years, technology has changed and will continue to change our ideas about
two central pillars of mathematics: definitions and proofs. Recent advances, like the
celebrated and controversial proof by Haken and Appel of the Four Color Theorem,
made us a little bit confused on these very basic fundamentals of mathematics. Actually,
we do not believe that there exists a possible objective verification of the mathematical
rigor. However, in our opinion, these remarks on the rigor of a mathematical proof
should concern only professionals in mathematics. Especially at the undergraduate
level, we often have to ask ourselves: it is necessary to proof everything? In our opinion,
the italian mathematician Bruno de Finetti gave the answer some 60 years ago: “I don’t
see why the beginner should check whether there is a mistake, which eluded everyone
before him” (de Finetti 1944). In many situations, the direct verification in few cases,
or even better, a random check that we can make with a simple pocket calculator will
prove more efficient than a series of lectures. If teachers in mathematics share such
an opinion, the way we teach will change radically, especially if our role is to teach to
students that will not pursue studies in mathematics.

In this respect, we are in a position common to many math teachers; we have to
decide whether it is preferable to abandon a formal rigorous proof that has no chance of
convincing or instead to present convincing arguments that are not a legitimate proof.
Consider Rolle’s theorem for instance. If we provide the students with a rigorous proof,
our best students can probably repeat every single step in front of us, while other
students may forget a single step and be stumped. Will our students bet a reasonable
amount of their money on the validity of the theorems proven this way? To bet requires
some conviction, most probably a simple picture will rise the stakes.

2 Can we use technology to convince?

New technology has made available to everyone high quality graphics. We are not
referring here to graphics in mathematics, but to the kind of graphics that we meet in
everyday life: DVD’s, Videogames, electronic encyclopedias, the Web, advertising on
TV and so on. People’s minds are used to “scan” images and “record” sounds, more than
to read. Images convey ideas on the spot. Obviously, images are not to be confounded
with the full message, but they are extremely helpful and fast. In mathematics, pictures
on the blackboard have always accompanied formal proofs for illustrative purposes to
make the students get the idea. Good teacher also needed to be good drawers. With
the help of suitable software, we have now the chance to present beautiful images in
two or in three dimensions; and as a bonus we can create and present graphics in
motion (i.e. animations). Also, the use of colors gives us an additional dimension. If we
use graphics, we are using a language that students capture easily because is their own
language and more important, if images are well conceived, the students’ understanding
really improves, and their attention span is longer. Moreover, when we need to present
some subject that may already be familiar to most of the students (this is a quite
typical situation), we are able to do this in a non-traditional way that is either more
fascinating or more funny. We also have to remember that “mathematical images” can
be surprising even if we are perfectly familiar with the subject. Mandelbrot himself,



while seeing the first pictures of his famous set, thought of a software problem. So
the Mandelbrot’s set on screen was different from Mandelbrot’s set in the mind of the
“creator”. To persuade a student of a theorem using a graphic calculator is the most
recent possibility of a long educational path, where often the figure has been of some
support to the formal proof.

There are also other situations where new technology helps to create understanding,
without resorting to graphics. Think for instance to all simulation processes like the ones
which appears in Montecarlo methods: a simple graphic calculator can “throw” a pair
of dice thousands of times and count how many times the dice add to 4. Similarly, we
can “throw” with a calculator thousands of random points in a rectangle and estimate
the area of a complicated plane figure, thus unveiling a mathematical world hidden if we
just use pen and paper. In such cases, experimentation is necessary and the opportunity
of having a pocket laboratory opens a new world of mathematical investigations to the
students.

Finally, we should not forget the possibility of using dedicated software like cabri
to teach geometry, and to use sensors, interfaces and graphical calculators to realize a
classroom physics laboratory.

3 The re–definition of the derivative

Coming to the main subject, we will show that the technology available on a simple
graphic calculator, via the Zoom In function, allows a complete re–styling of the defini-
tion of derivative. In order to define the derivatives as the limit of the Newton quotient,
we are forced to introduce the concept of limit. The definition of the derivative as the
limit of the Newton quotient introduces some additional problem: students are led to
think of the tangent line as something which requires as an intermediate step a secant
line “in motion” (rotation) around the fixed tangency point and with the other near
intersection moving always on the same side of the tangency point; students thus lose
the “bilateral” character of the derivative.

On the other hand, graphic calculators put in the hand of every student the Zoom In

function which allows the student to view the graph of a function under a microscope:
“. . . using a graphing calculator to zoom in functions is one of the best ways of seeing
local linearity” (Hughes-Hallet, Gleason et al. 1994, p. viii).

From these ideas, we can see the need for a definition of the derivative which

• do not require the secant line as an intermediate step

• is consequently “limit–free”.

The idea of teaching derivatives without worrying too much about limits appeared first
with a convincing support in the Seventies in “A First Course in Calculus” by Serge
Lang (Lang 1973). In this textbook, Lang defined the derivative in a classical way but
restricted himself to an introduction of the limit theory in a substantially axiomatic way,
based on algebraic rules, on the squeezing theorem, and on the direct assignment of the
limits of the constant and the identity function. The first true limit–free definition of the
derivative appears in 1981 in the “Calculus Unlimited” book by Jerrold E. Marsden and
Alan Weinstein (Marsden & Weinstein 1981). The authors used the order relationship
to formalize the idea that the tangent line is the unique line not transversal to the graph



of the function (in other words any line with bigger or smaller slope “cut” in a definite
way the graph of the function). In the above-mentioned “Calculus”, the idea is still
to get rid of the limit and the use of the zoom is proposed at an intuitive level. With
respect to Marsden and Weinstein’s idea, we have today the technological advantage to
be able to realize everything on a pocket calculator.

We want now to formalize the fact that, with a sufficiently good “microscope”, the
graph of a derivable function, appears to be straight. On an initial intuitive level, we
may say that the tangent line to the graph of y = f(x) at the point P = (x0, f(x0)) is
the straight line which is graphically the same as the graph of the function y = f(x)
if we zoom in the graph enough around the point P , provided that this line remains
the same even by taking a series of zooms in sub-windows, and this for every possible
resolution of the actual display.

For instance, suppose we use a calculator whose display corresponds to a grid of
200 × 100 pixels. Let us center the window at the point P and select the window
parameters:

Xmin = x0 − d

Xmax = x0 + d

Ymin = f(x0) − d

Ymax = f(x0) + d

The vertical dimension of the pixel is therefore d/50, and therefore, if the graph of
y = f(x) is graphically identified with the graph of y = r(x) = f(x0) + m(x − x0), we
will have:

| f(x) − {f(x0) + m(x − x0)} | ≤ (1/50) d

At the leftmost (x = Xmin = x0 − d) and rightmost (x = Xmax = x0 + d) points on the
screen we will have

| f(x)− {f(x0) + m h} | ≤ (1/50) |h| (3.1)

for |h| = d. Requiring this to happen for every sub-window, (3.1) is the same as to
ask that it is true for every h with |h| ≤ d. Finally, if we want this to be hardware
independent and to be true for every possible resolution of the display, we will have to
replace 1/50 with a positive ε “arbitrarily small”. The derivative is then naturally the
slope of the tangent line.

In a formal way, a function y = f(x) is derivable at the point x0 if there exists a
number m (the slope to the tangent line to the graph of f at the point P = (x0, f(x0)))
such that, for all ε > 0 (no matter what the resolution of the display is) there exists
a d > 0 (we find a graphic window P with half-width d) such that for every h with
|h| ≤ d (in that window and in every sub-window), we have

| f(x)− {f(x0) + m h} | ≤ ε |h|
(the graph of y = f(x) become blurred with that of a straight line, namely the tangent
line at P ). Experts can recognize here the Fréchet notion of differential.

Starting from such a definition, it is possible to construct a complete and very
“friendly” expository theory of derivatives, which uses a graphic calculator (see Inver-
nizzi, Rinaldi et al. 2000) as a main resource. Our proposal has various important
feature:



• Any graphic calculator allows viewing the definition of the derivative by simply
zooming a function. If we assume a standard zoom factor 4×, by taking a sequence
of four successive zooms we have a magnification factor 256. It is like having a
microscope 256× which is enough to graphically straighten a derivable function
with no pathology. Naturally it is impossible to straighten in this graphical way
functions with corners: corners are in fact invariant under the zoom operation.
See Fig. 1 and Fig. 2 (screenshots from the TI–83 Plus display).

• We can get a numerical estimate of the slope of the tangent line; it is in fact
reasonable to approximate the tangent line in (x, f(x)) with a line which intersect
the graph of the function slightly on the left and on the right of the given point,
that is with the line through the points (x − h, f(x − h)) and (x + h, f(x + h)).
See Fig. 3. In other words we can set

f ′(x) ≈ f(x + h) − f(x − h)

2h

The last formula is the central difference formula, which despite its simplicity has a very
good performance. The numerical value of a derivative is usually approximated on a
pocket calculator by such a formula (command nDeriv on TI, or d/dx on casio, etc.).
But we will see in next section that the central difference formula (on which essen-
tially we develop the idea of tangent) is also very useful to discuss ordinary differential
equations, the simplest of which is y′(x) = f(x), linked to the fundamental theorem of
calculus. The same ideas applied to an ODE like y′(x) = f(x, y(x)) would lead to a
2–step implicit integration scheme, which is especially suitable to study on a graphic
calculator typical 2D systems (where the closed orbits tend early to break under Euler
method based on the Newton quotient).

4 What’s about y′(x) = f(x)?

To complete (even at an elementary educational level) the exposition of the differential
calculus in a limit–free way we have to find a way to present the fundamental theorem
of calculus. While it is difficult to trace a graph of the integral function on which
to execute a sequence of zooms, in order to justify the theorem, we can resort to the
programming capabilities of the calculator, to provide a discrete version of the theorem
which will receive an unconditional approval in the classroom.

To “find” the antiderivative y(x) of a function f(x) (forgetting the existence prob-
lem) let us write the discrete analog

y′(x0) ≈ f(x0)

y′(x1) ≈ f(x1)

y′(x2) ≈ f(x2)

y′(x3) ≈ f(x3)

. . . . . . . . .

y′(xn) ≈ f(xn)

where the xk’s (k = 0, 1, . . . , n) represent a tabulation with step size h of the interval
[a, b] on which we wish to solve the problem at hand, and x0 = a, xn = b.



Let us approximate the derivative y′(x) through the central difference formula (and
with the left and right Newton formula at the endpoints):

y(x1) − y(x0) ≈ h · f(x0)

y(x2) − y(x0) ≈ 2h · f(x1)

y(x3) − y(x1) ≈ 2h · f(x2)

y(x4) − y(x2) ≈ 2h · f(x3)

. . . . . . . . .

y(xn) − y(xn−2) ≈ 2h · f(xn−1)

y(xn) − y(xn−1) ≈ h · f(xn)

After some obvious simplifications, we discover that

y(b) ≈ y(a) +
h

2
· {f(x0) + 2f(x1) + 2f(x2) + . . . + 2f(xn−1) + f(xn)}

i.e. that having estimated the derivative of y(x) via the central difference formula, once
these values are known, the function y(x) can be reconstructed using the trapezoidal
rule: at an intuitive level, the central difference formula and the trapezoidal rule are
inverse operations to each other. We think that such an approach is at least equally
acceptable at the undergraduate level than the standard “proof” of the fundamental
theorem. Our students will work more often with tables of experimental data, like time
series, than with pre-cooked formal expressions defining integrable functions. So to
prove something once in a while in a discrete way is also more instructive to them and
provides them with instruments that they can possibly use in their professional life.

5 Conclusions

Everything has been implemented on an intermediate graphic calculator (actually the
TI–82, TI–83 and TI–83 Plus), and carried out for last three years on a total population
of about 750 students of life sciences, pharmacy and chemistry, aged 18-19, from two
different universities in Italy. We observed a substantial improvement of low-ranked
and middle-ranked students (with respect to previous non technology-based teaching),
meaning that a significative percentage of E’s and D’s moved to C. We’re referring here
to the European Credit Transfer System classification. In other words, we observed a
substantial rise in the basic mathematical skills of the less gifted students, not accom-
panied by a simultaneous drop of the level of the best students. In practice, the number
of students who fail the exam reduced in a quite remarkable way. We also noticed a
strong improvement in the ability of the students to recognize mathematical aspects in
other disciplines.

As a final remark, we think that many resources should be shared among teachers.
In this direction, we strongly endorse the project of a “teacher bank”, consisting of TI–
GraphLink compatible files containing related programs and data, and more advanced
teaching tools as Mathematica notebooks and QuickTime movies, especially generated
by TI–8∗ screenshots. For a concrete example see:
http://www.dsm.univ.trieste.it/∼inverniz/quicktime/zoom.mov.
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6 Figures

Figure 1: Definition and graph of the function f(x) = (6x + 4)/(3x + 5). Notice that
the definition avoids the drawing of the vertical asymptote.



Figure 2: Graph of the function f(x) = (6x + 4)/(3x + 5) and a sequence of zoom 4×
realized on the TI–83 Plus near x0 = −0.5. The number in the right upper corner refers
to which branch of the function the cursor is on.

Figure 3: Secant to the function f(x) = (6x + 4)/(3x + 5) near x0 = −0.5 illustrating
the central difference formula.


