
ON THE EFFECT OF USING AUTOMATED REASONING IN
TEACHING DISCRETE MATHEMATICS

Mohammed ALMULLA
Department of Mathematics and Computer, Kuwait University

P. O. Box 5969 Safat, 13060, Kuwait
e-mail: almulla@sci.kuniv.edu.kw

Hans LOEPER
Department of Mathematics and Computer, Kuwait University

P. O. Box 5969 Safat, 13060, Kuwait
e-mail: loeper@sci.kuniv.edu.kw

ABSTRACT

Programs that reason are playing an increasing role in teaching mathematics at the under-
graduate level. This paper is concerned with teaching topics in discrete mathematics for
computer science students. It aims to increase the likelihood of using computer programs to
understand, represent, and solve problems with the help of automated reasoning. Topics of
the course ”Discrete Mathematics in Computer Science” include logic, set theory, relations
and graphs as well as counting techniques. It is the authors’ view that computer scientists
must have substantial training in using discrete mathematics if they are to understand these
topics and use them well.

1 Introduction

The field of automated reasoning is concerned with the ability of computer programs
to reason about a given knowledge and deduce a new one. A number of automated
reasoning programs (tools) can provide great assistance in solving a wide variety of
problems, answering open questions, designing hardware circuits, and verifying correct-
ness of theorems’ proofs. Such tools are rich enough to be used in teaching computer
science students various mathematical concepts. These concepts include problem repre-
sentation (in first-order predicate calculus), quantification, simplification, substitution,
splitting hard cases into smaller solvable ones, proof justification, and different ways of
deduction like resolution and factoring.

The effectiveness of the automated reasoning programs is amply demonstrated by
examining their role in answering open questions, designing and/or validating the design
of logic circuits, verifying the correctness of proofs and programs, and constructing
bases for domains which students need to understand before working vigorously on
those domains.

An analysis to general problem solving leads to the identification of three types of
problems: numerical, data-processing, and reasoning. Some problems depend on some
combination of the three for a solution to be found. Although, most problem-solving
programs currently in use focus on the first two types, there do exist programs that
reason. Some of these programs are of commercial value, while others are either share-
ware or freeware. Examples of such programs are OTTER (McCune 1994), GANDALF
(Tammet 1997) , SETHEO (Moser et al. 1997), and THEO (Newborn 1997). Except
the last one, all of the above examples are freeware and can be obtained from the In-
ternet. Any of these programs can be given some axioms and a statement to be shown
correct.

The strength of a computer program that is capable of reasoning depends on how
the problem being solved is represented, the completeness of rules employed to draw
conclusions, and on the effectiveness of the strategies used to control the reasoning
process. These three areas - representation, inference rule, and strategy - are key issues
to students learning discrete mathematics.

2 Mathematical System: Axioms, Definitions, and
Theorems

With respect to representation, first-order predicate calculus give computer science
students the skills needed not only to understand and work on theorems, but also to
write computer programs in order to verify the correctness of their proofs. Usually,
computer applications deal with finite discrete sets of data items such as arrays and
files. Notice that even the set of real numbers is finite in the digital world, because of the
limited accuracy of their internal computer representation. Therefore, it is important
to show the relationship between the notations used in first-order predicate calculus
and their equivalent program codes. For example, let the universe of discourse be the
finite discrete set U = {x1, x2, . . . , xn}.

• ∀x[x ∈ U ⇒ p(x)]

The Scope of x starts with the quantifier, therefore x is local in the function for all.
The predicate p(x) is passed as a parameter to the function for all. T PF is of type
pointer to a function with the profile (x: in U) return BOOLEAN;

function for_all(p:in T_PF)return BOOLEAN is
begin
for x in U loop
if not p(x)
then return FALSE;

end if;
end loop;
return TRUE;
end for_all;

• Similarly, ∃x[x ∈ U ∧ p(x)]

function for_some(p:in T_PF) return BOOLEAN is
begin
for x in U loop
if p(x)
then return TRUE;

end if;
end loop;
return FALSE;
end for_some;

The program code that checks if one and only one element x that belongs to the
discrete set of data items U satisfies a specific predicate p(x) is given next.
∃!x[x ∈ U ∧ p(x)]⇔ ∃x[x ∈ U ∧ p(x) ∧ ∀y[y ∈ U ∧ y 6= x⇒ ¬p(y)]]
Programming the above well-formed formula suggests nesting a new predicate as

shown below:
∃x[x ∈ U ∧ p(x) ∧ q(x, p)], where q(x, p)⇔ ∀y[y ∈ U ∧ y 6= x⇒ ¬p(y)]].
Note: scope of y is local, bound to q, whereas x and p are free in q.

function for_one(p:in T_PF) return BOOLEAN is
begin
for x in U loop
if p(x) and q(x,p)
then return TRUE;

end if;
end loop;
return FALSE;
end for_one;

function q(x:in U; p:in T_PF) return BOOLEAN is
begin
for y in U loop
if y/=x and p(y)
then return FALSE;

end if;

end loop;
return TRUE;
end q;

or by substitution of the body of the function q for the call of q(x, p) in the function
for one:

function for_one(p:in T_PF) return BOOLEAN is
begin
for x in U loop
if p(x)
then for y in U loop

if y/=x and p(y)
then return FALSE;

end if;
end loop;
return TRUE;

end if;
end loop;
return FALSE;
end for_one;

The above presented examples suggest combining the theoretical course Discrete
Mathematics for Computer Science with hand-on programming experience in the form
of laboratory work associated with the course.

3 Background

In the course ”Discrete Mathematics in Computer Science”, the students usually prac-
tice modelling combinatorial puzzles as well as mathematical theories by using the
first-order predicate calculus, and then by transforming these models into correspond-
ing computer programs (as shown above) that solve these puzzles. Some of the existing
programs employ domain-dependent knowledge in their aim to model the reasoning
process. While other programs hope to achieve the same objective by using domain-
independent systems for modelling the puzzles. As an example, in this paper we model
the theory of natural numbers and ask to prove the commutative property of addition.

The difficulty and/or complexity of mathematics should encourage students to use
the assistance of automated reasoning programs. These programs can help in prov-
ing theorems, checking proofs, developing conjectures, and answering open questions
in various domains such as number theory, set theory, group theory, ring theory, field
theory, and lattice theory (McCharen et al. 1976; Wos et al. 1991). Other involved do-
mains include combinatory logic, finite semigroups, Robbin’s algebra, and equivalential
calculus (Wos 1993; Wos 1988). Subsequently, many problem sets were developed for
the purpose of underlying the theory behind those domains; for instance, the Stickel
Test Set (Stickel 1988), the Quaife sets (Quaife 1992a; Quaife 1992b; Quaife 1991),
the seventy-five theorems for testing automatic theorem provers (Pelletier 1986), and
the TPTP problem set (Sutcliffe 1997). In this paper, we present as an example a
fundamental system of well-structured theorems in elementary number theory based on

the axioms provided by G. Peano in 1889, and which gave raise to the Peano Arith-
metic. Our theorems range from quite trivial to moderately difficult. A refutation was
obtained for each theorem in the system by THEO.

4 The Peano Axioms

This section illustrates how the program THEO proves the commutative law of addition.
But first, we need to formalize the Peano axioms in first-order predicate logic. We will
compare the proof obtained with the one usually given to students in classrooms. We use
two primitive function symbols: 0() to denote the constant zero (note that a constant
is a function with no parameters), and the successor function s. The predicate symbol
N represents the set of natural numbers and the predicate symbol EQ means equal.
The logical operation OR is represented by the symbol | and the logical operation NOT
is represented by the symbol ∼. The fifth Peano axiom is concerned with the induction
principle. Anything follows a semicolon ; is considered as a comment.

;;;;;;;;;;;;;;;;;;;;;;;;;;; Peano Axioms ;;;;;;;;;;;;;;;;;;;;;;;;;

A1: N(0())

A2: ~N(x) | N(s(x)) ; N(x) --> N(s(x))

A3: ~N(x) | ~EQ(0(),s(x)) ; N(x) --> ~EQ(0(),s(x))

A4: ~EQ(s(x),s(y)) | EQ(x,y) ; EQ(s(x),s(y)) --> EQ(x,y)

A5: ~EQ(x,y) | EQ(s(x),s(y)) ; EQ(x,y) --> EQ(s(x),s(y))

The axioms A4 and A5 indicate that the successor s is a one-to-one function. The
equality relation EQ is an equivalence relation. This adds three extra axioms to the
system.

;;;;;;;;;;;;;;;;;;;;;;;;;; Equality Relation ;;;;;;;;;;;;;;;;;;;;;

A6: EQ(x,x) ; (x=x)

A7: ~EQ(x,y) | EQ(y,x) ; (x=y)-->(y=x)

A8: ~EQ(x,y) | ~EQ(y,z) | EQ(x,z) ; (x=y)&(y=z)-->(x=z)

Addition is defined by structural recursion as follows:

{∀x : x+ 0 = x} ∧ {∀x, y : x+ s(y) = s(x+ y)}

The above well-formed formulae, defining addition over natural numbers, are con-
verted into the first-order predicate clauses in order to introduce the definition to the
theorem prover. The conversion algorithm can be found in (Newborn 1997).

;;;;;;;;;;;;;;;;;;;;;;;;; Addition Axioms ;;;;;;;;;;;;;;;;;;;;;;;;

A9: +(x,y,A(x,y)) ; Closure property

A10: +(x,0(),x) ; x + 0 = x

A11: ~+(x,y,z) | ~+(x,s(y),u) | EQ(s(z),u) ; x+s(y) = s(x+y)

A12: ~+(x,y,z) | ~+(x,y,u) | EQ(z,u) ; Uniqueness property 1

A13: ~+(x,y,z) | +(x,y,u) | ~EQ(z,u) ; Uniqueness property 2

Next, we compare the difference between the proof of the commutative law of
addition given to students in class (hand-written proof) with that of the theorem
prover. Note that the hand-written proof requires the use of associative law of ad-
dition: m+ (n+ p) = (m+ n) + p.

Hand-written Proof:
m + s(n) = s(m + n) by definition of addition,
n + s(m) = s(n + m) by definition of addition,
since s(n) = 1 + n
We have: m + s(n) = m + (1 + n) = (m + 1) + n by associative law
Thus, m + s(n) = s(m) + n
Which means s(m + n) = s(n + m) as stated above
m + n = n + m. by Peano Axiom A4 QED.

The proof obtained by THEO’s is given next:

Theorem:CommAddition.thm

Given axioms:

1# N0
} Peano

2# ~Nx Nsx }
} Axioms

3: ~EQxy EQsxsy

4: ~EQsxsy EQxy

5# ~Nx ~EQ0sx

6: EQxx

} Equality
7 >~EQxy EQyx }

} Axioms
8 >~EQxy ~EQyz EQxz

9 >+xyAxy

10: +x0x

11 >EQsxy ~+zsuy ~+zux } Addition
} Axioms

12: EQxy ~+zux ~+zuy

13 >~EQxy ~+zux +zuy

14: +0xx } 0 + x = x

15 >~+axy +xay } assume a+x = x+a for some constant a

16 >+abc } let a+b=c, where a, b,& c are constants

17 >+sabd } let s(a)+b=d

18 >+bsad } and b+s(a)=d

Negated conclusion:

19S>+sasbk } assume s(a)+s(b)=k

20S>+sbsal } and s(b)+s(a)=l

21S>~EQkl } prove that k = l by contradiction

Inferred clauses: Proof: 25: (21a,8c) ~EQkx ~EQxl
26: (25a,7b) ~EQxl ~EQxk
27: (26a,11a) ~EQsxk ~+yszl ~+yzx
28: (27c,15b) ~EQsxk ~+ysal ~+ayx
29: (28b,20a) ~EQsxk ~+asbx
30: (29b,9a) ~EQsAasbk

31: (18a,11b) EQsxd ~+bax
32: (31b,15b) EQsxd ~+abx
33: (32a,7a) EQdsx ~+abx
34: (33a,13a) ~+abx ~+yzd +yzsx
35: (34b,17a) ~+abx +sabsx
36: (35a,16a) +sabsc

37: (16a,11c) EQscx ~+asbx
38: (37b,9a) EQscAasb
39: (38a,13a) ~+xysc +xyAasb
40: (39b,11c) EQsAasbx ~+yzsc ~+yszx
41: (40c,19a) EQsAasbk ~+sabsc
42: (41a,30a) ~+sabsc
43: (42a,36a) []

To begin, the top line is the name of the theorem. The given axioms follow next
and then the negated conclusion. Clauses in the proof are printed next. Following each
clause number is a :

> to denote the clause is used in the proof.
to denote the clause is eliminated during the simplification phase.
S to denote the clause is derived from the negated conclusion.
Each inferred clause is either a binary resolvent or a binary factor. In the former

case, the parents of the clause are printed out and then the clause. For example, the
first clause in the above proof:

25: (21a,8c) ~EQkx ~EQxl

is clause number 25, it was derived by resolving the first literal ”a” of clause number 21
with the third literal ”c” of clause number 8. Clause 43 is the NULL clause (denoted
by []).

5 Conclusion

In addition to providing evidence that automated reasoning has made rigorous con-
tributions in the theoretical foundation of mathematics, the presented work identifies
its significance in teaching computer science students various skills needed in discrete
mathematics. As it gives students the ability to express knowledge and test its correct-
ness by writing computer programs and analyze their execution time. This is a good
opportunity for combining theory with practice while teaching mathematics that can
be expressed in first-order predicate calculus.

Acknowledgement: The authors would like to thank Monty Newborn (the author
of THEO) for his continuous efforts in working on the field.

REFERENCES

-Hutter, D. 1992. Synthesis of induction orderings for existence proofs. 12th CADE, LNCS,
Springer.
-McCharen, J., Overbeek, R., & Wos, L. 1976. Problems and experiments for and with auto-
mated theorem-proving programs. IEEE Transactions on Computers, C-25 (8).
-McCune, W. 1994.] Otter 3.0 Reference Manual and Guide. Technical Report ANL-94/6.
Argonne National Laboratory, Argonne, Illinois.
-Mendelson, E. 1987. Introduction to Mathematical Logic. Third Edition, Wadsworth &
Brooks, Cole Advanced Books & Software, Pacific Grove, California.
-Newborn, M. 1997. The Great Theorem Prover. Version 3.0, Newborn Software.
-Moser M., Ibens O., Letz R., Steinbach J., Goller C., Schumann J., & Mayr K. 1997.
SETHEO and E-SETHEO: The CADE-13 Systems, Journal of Automated Reasoning 18(2),
pp.237-246.
-Pelletier, F. J.1986. Seventy-five problems for testing automatic theorem provers. Journal
of Automated Reasoning, 2 (1): 191-216.
-Quaife, A. 1992a. Automated deduction in Von Neumann-Bernays-Gödel set theory. Journal
of Automated Reasoning, 8 (1): 91-147.
-Quaife, A. 1992b. Automated Development of Fundamental Mathematical Theories. Kluwer
Academic Publishers.
-Quaife, A. 1991. Unsolved problems in elementary number theory. Journal of Automated
Reasoning, 7 (1): 97-118.
-Stickel, M. 1988. A Prolog technology theorem prover: implementation by extended Prolog
compiler. Journal of Automated Reasoning, 4: 353-380.

-Sutcliffe, G. & Suttner, C. 1997. The TPTP (Thousands of Problems for Theorem Provers)
Problem Library for Automated Theorem Proving.
http://www.cs.jcu.edu.au/ftp/pub/research/tptp-library/ReadMe-v2.1.0. -Tammet T. (1997).
Gandalf, Journal of Automated Reasoning 18 (2), pp.199-204.
-Wos, L. 1993. Automated reasoning answers open questions. Notices of the AMS 1: 15-26.
-Wos, L., & McCune, W. 1991. Automated theorem-proving and logical programming: a
natural symbiosis. Logic Programming, 11 (1): 1-53.
-Wos, L. 1988. Automated Reasoning: 33 Basic Research Problems. Englewood Cliffs, New
Jerzy, Prentice-Hall.
-Yu, Y. 1990. Computer proofs in group theory. Journal of Automated Reasoning, 6: 251-286.

