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ABSTRACT 
The historical development of Mathematics and Physics suggests that: 
(a) Mathematics and Physics have always been closely interwoven, in the sense of a “two-ways 

process”: 
•  Mathematical methods are used in Physics. That is, Mathematics is not only the “language”of 
Physics (i.e. the tool for expressing, handling and developing logically physical concepts and theories), 
but also, it often determines to a large extent the content and meaning of physical concepts and theories 
themselves. 
•  Physical concepts, arguments and modes of thinking are used in Mathematics. That is, Physics is, not 
only a domain of application of Mathematics, providing it with problems “ready-to-be-solved” 
mathematically by already existing mathematical tools. It also provides, ideas, methods and concepts 
that are crucial for the creation and development of new mathematical concepts, methods, theories, or 
even whole mathematical domains.    

(b) Any distinction between Mathematics and Physics, seen as general attitudes towards the 
description and understanding of an (empirical, or mental) object, is related more to the point of view 
adopted while studying particular aspects of this object, than to the object itself. 

Points  (a) and (b) imply that: 
(c) Any treatment of the history of Mathematics independent of the history of Physics is necessarily 

incomplete (and vice versa). 
(d) By accepting the importance of the historical dimension in education, the relation between 

Mathematics and Physics should not be ignored in teaching these disciplines. 
It is possible to illustrate the above points with the aid of many important examples, which can also 

be didactically relevant by following a historical-genetic teaching approach. In this paper, we illustrate 
this qualitatively by means of three examples (at the same time surveying author’s work in this area in 
the last few years): 

- The possibility to introduce and/or illustrate important geometrical and algebraic concepts on the 
basis of  Relativity Theory. 

- The complex, deep interconnections between Differential Equations, (Functional) Analysis and 
Quantum Mechanics. 

- The physical origin of many basic concepts and theorems of the theory of Dynamical System and 
of Ergodic Theory. 
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1. Introduction 
The present paper rests on the following two points: 

(a) The appreciation by many mathematicians, mathematics educators and historians of the 
significance of the introduction of a historical dimension in Mathematics Education (ME). 
(b) The well-known fact that there has been a close interrelation between Mathematics and 
Physics throughout their historical development. 
Both points can have a lasting effect on the way Mathematics is taught and learned. In what 
follows, I will elaborate on (a) and (b), connecting them and illustrating them by means of 3 
examples at the university level. Details can be found in the literature; hence the present paper 
is also a survey of author’s work in this area in the last few years.  

1.1. Comments on (a): At least implicitly, the way Mathematics is presented and/ or 
taught reflects a philosophical and epistemological point of view about the nature of 
Mathematics. In particular, that Mathematics is conventionally presented deductively reflects 
a point of view, according to which Mathematics is simply a collection of axioms, definitions, 
theorems, and proofs, that is, only the results of the mathematical activity. As a consequence, 
Mathematics is supposed to evolve more or less by a linear accumulation of new results (cf. 
Lakatos 1976, pp.1-2). Hence, what is essential is to learn these results in their final 
“polished” form. Such a point of view has a lasting effect on what parts of Mathematics 
should be taught and how this should be done (Schoenfeld 1992, p.341). This is particularly 
evident at the university level, given that there, it is often tacitly taken for granted that once 
the student has made his/her choice to study (either “pure”, or “applied”) Mathematics, he/she 
has to learn it independently of the way it is presented. 

However, in this way it is not appreciated that Mathematics is a human enterprise, hence 
that “doing Mathematics” is an equally important aspect of Mathematics itself that should not 
be left out (cf. Grugnetti, Rogers et al. 2000, §§ 2.2.2, 2.3.3). On the contrary, there is an 
ever-increasing agreement that helping students to become aware of the evolutionary nature 
of Mathematics may lead them to a deeper and more solid understanding of Mathematics. 

Therefore, if Mathematics is conceived, not only as a collection of logically complete 
finished products, but also as the process by which these products are conceived, formulated, 
developed and justified, it becomes clear that a historical dimension in teaching and learning 
Mathematics is helpful, or even necessary. Actually, history makes clear that the deductive 
organization of any mathematical domain is a posteriori (i.e. once this domain is sufficiently 
mature). At the same time, history provides a natural framework for helping students to 
become aware of Mathematics in the making. Introducing a historical dimension into ME has 
important advantages that cannot be analyzed here (see Tzanakis, Arcavi et al.2000, §7.2 for a 
comprehensive analysis), and can be done in a variety of ways depending on several factors, 
like the emphasis one wants to put on the subject taught, the level of education etc (see 
Tzanakis, Arcavi et al. 2000, §§7.3, 7.4). I will focus on two advantages only.  

- History constitutes an important resource of relevant questions, problems and 
expositions, valuable both in terms of their content and their potential to motivate, interest 
and engage the student. Thus, historically inspired exercises, problems, or small research 
projects, may stimulate the student’s interest and contribute to enhance curriculum alongside 
those exercises and problems, which may seem ‘artificially’ designed. In this way, aspects of 
the historical development of a subject include “real” Mathematics, so that they become part 



of the student’s “working knowledge”. Consequently, history in ME no longer appears as 
something alien to “Mathematics proper”, but forms an integral part of it.  

- History reveals interrelations among different mathematical domains, or, of Mathematics 
with other disciplines and suggests that mathematical activities and results may be 
interdependent. Thus, integration of history in teaching may help to interrelate domains, 
which at first glance appear unrelated. It also provides the opportunity to appreciate that 
fruitful research in a scientific domain does not stand in isolation from similar activities in 
other domains. On the contrary, it is often motivated by questions and problems coming from 
apparently unrelated disciplines and often, having an empirical basis. This is especially true 
for Physics and leads us to point (b) mentioned above. 

1.2. Comments on (b): What has been said above about the role of history in teaching and 
learning Mathematics is equally valid for Physics as well (Tzanakis & Thomaidis 2000). On 
the other hand, as it has already been mentioned, history shows clearly the close, 
interconnected development of Mathematics and Physics, which cannot be ignored in 
teaching and learning these disciplines, in view of what has been said in §1.1. This close 
interrelation can be seen in two different, but complementary perspectives: 

(1) From a historical point of view, there are 3 different ways by which Mathematics and 
Physics are interrelated, influencing each other (Tzanakis 2000): 
(a) Physical theories and the appropriate mathematical framework evolve in parallel, often as 
the result of the work of the same persons. This is the case of the foundations of infinitesimal 
calculus and of classical mechanics in the 17th century, mainly through the work of Newton 
and Leibniz; or, the parallel development of vector analysis and of electromagnetic theory in 
the second half of the 19th century, mainly by Maxwell, Gibbs and Heaviside (Crowe 1967). 
(b) New mathematical theories, concepts or methods are formulated in order to solve already 
existing physical problems, or to provide a solid foundation to methods and concepts of 
Physics. The emergence of the basic ideas of classical Fourier analysis, through the study of 
heat conduction constitutes a typical example. Dirac’s introduction of his delta function in 
quantum mechanics, and its later clarification in the context of the theory of generalized 
functions is a more recent example (Lützen 1982, ch.4, part 2)1. Finally, the introduction in 
the second half of the 19th century of Boltzmann’s ergodic hypothesis in classical statistical 
mechanics led to the foundations of ergodic theory in the 1920’s and 1930’s through the work 
of G. Birkhoff, J. von  Neumann and E. Hopf (Sklar 1993, ch.5; see also section 3.3. here). 
(c) The formulation of a mathematical theory precedes its physical applications. Its use is 
often made after the corresponding physical problems naturally indicate the necessity of an 
appropriate mathematical framework. A famous example is Einstein’s work on the 
foundations of the general theory of relativity in the period 1907-1916, on the basis of 
riemannian geometry and tensor analysis developed in the second half of the 19th and early 
20th centuries, mainly by Riemann, Christoffel, Ricci and Levi-Civita (Pais 1982, ch.12). 
Another example is provided by the fact that on the basis of spectroscopic data, Heisenberg 
realized in 1925 that atomic magnitudes have the algebraic structure of (infinite dimensional) 
complex matrices and he was thus led to the formulation of matrix mechanics (Mehra & 
Rechenberg 1982 ch.3; see also section 3.2 here). 

                                                           
1 Of course, it is well known that the delta function appeared much earlier, in the 19th century in the 
work of many mathematicians and physicists, in a number of equivalent forms (Lützen 1982, ch.4, 
§34). 



 These examples are indicative of the intimate relation between Mathematics and Physics 
and lead us to look at this relation from another perspective (Tzanakis 2001) 

(2) From an epistemological point of view Mathematics and Physics are much closer to 
each other than it is usually thought: 

(a) Mathematics and Physics have always been closely interwoven, in the sense of a “two-
ways process”: 

•Mathematical methods are used in Physics. By this I mean that not only Mathematics is 
the “language” of Physics (i.e. the tool for expressing, handling and logically developing 
physical concepts and theories), but also it often determines to a large extent the content and 
meaning of physical concepts and theories themselves.  

• Physical concepts, arguments and modes of thinking are used in Mathematics. Thus, 
Physics not only constitutes a reservoir of problems “ready-to-be-solved” mathematically (i.e. 
a domain of application of already existing mathematical tools), but it also provides ideas, 
methods and concepts that are crucial for the creation and development of new mathematical 
concepts, methods, theories, or even whole mathematical domains.  

(b) Any distinction between Mathematics and Physics, seen as general attitudes towards 
the description and understanding of an object2, is related more to the point of view adopted 
while studying particular aspects of this object, than to the object itself. 

The general characteristics of the relation between Mathematics and Physics described in 
(1) and (2) above can be integrated into teaching in several different ways. In the next 
sections I will illustrate the above points in terms of 3 different examples and with the aid of 
what may be called a historical-genetic approach  

 

2. A Historical-Genetic Approach 
As already mentioned in the previous section, a historical dimension can be introduced 

into teaching in several ways that have been discussed elsewhere, depending on several 
factors (Fauvel & van Maanen 2000). The discussion here is confined to what may be called a 
historical-genetic approach, presented in more detail in the literature (Tzanakis, Arcavi et al 
2000, Tzanakis 2000, Tzanakis & Thomaidis 2000). 

It is an approach adopting the point of view that a subject should be taught, only after the 
learner has been motivated enough to do so by means of questions and problems, which the 
teaching of the subject may answer (cf. Toeplitz 1963, Edwards 1977). In other words, the 
subject to be taught should acquire a necessary character for the learner, so that he/she can 
appreciate its significance in clarifying particular issues and in answering specific problems. 
This character of necessity of the subject constitutes the central core of the meaning to be 
attributed to it by the learner. Therefore, such an approach emphasizes less the way of using 
theories, methods and concepts, and more the reasons for which these theories, methods and 
concepts provide answers to specific problems and questions, without however disregarding 
the “technical” role of mathematical knowledge.  

It is clear that such a point of view is not restricted to Mathematics only. In particular it is 
equally applicable to Physics (Tzanakis & Coutsomitros 1988, Tzanakis & Thomaidis 2000). 
For both disciplines, a historical perspective offers interesting possibilities for a deep, global 
understanding of the subject, according to the following general scheme: 

                                                           
2 By this term I mean not only concrete, empirically conceived objects, but also mental objects like 
concepts, questions, problems etc. 



(1) The teacher has a basic knowledge of the historical evolution of the subject, so that he/she 
is able to identify the crucial steps of this historical evolution and appreciate their 
significance. These steps consist of key ideas, questions and problems, which opened new 
research perspectives and enhanced the development of the subject. 
(2) (Some of) these crucial steps, are reconstructed, by explicitly, or implicitly integrating 
historical elements, so that these crucial steps become didactically appropriate. 
(4) Many details of these reconstructions are incorporated into exercises, problems, small 
research projects and more generally, didactical activities that give the opportunity to the 
learner to acquire technical skills and a better sense of the concepts and methods used. For 
instance, one may use sequences of historically motivated problems of an increasing level of 
difficulty, such that each one presupposes (some) of its predecessors. Their form may vary 
from simple exercises of a more or less “technical” character, to open questions which 
presumably should be tackled as parts of a particular study project to be performed by groups 
of students. 

This general scheme forms the basis of what can be called a historical-genetic approach 
and seems to have distinct advantages that have been analysed in the references given above. 
Here we add only a few comments: 

One may argue, that an obvious possibility to use history in the presentation of a 
mathematical and/or physical subject is to retrace its historical evolution. However, the 
formulation of the problems which led to its birth, and are presented today as part of modern 
Mathematics and/or Physics, would be too advanced for the learners, or may look completely 
foreign to them. Usually, its strictly historical presentation, in which all the fine details of the 
historical development are given, is not didactically appropriate, even at the university level. 
This is due to the fact that the historical evolution of a scientific domain, contrary to what is 
sometimes naively assumed, is almost never straightforward and cumulative. On the contrary, 
it is rather complicated, involving periods of stagnation and confusion, in which prejudices 
and misconceptions exist and it is greatly influenced by the more general cultural milieu, in 
which this evolution takes place. Moreover, the conceptual framework and the mathematical 
terminology and notation vary from one period to another. Finally, the didactical, social and 
cultural conditions of the students today are very different from the corresponding conditions 
in which mathematicians, who created and developed the subject under consideration, were 
living. Hence, strictly respecting the historical order makes the understanding of the subject 
more difficult (Thomaidis & Tzanakis preprint).  

Therefore, integrating history in teaching Mathematics and/or Physics, should mean that a 
historically motivated thinking framework for the learner has been created, in which various 
aspects of the mathematical subject under consideration can be illustrated. In this respect, the 
crucial steps of the historical evolution of the subject are didactically important because 
whether or not a step in the historical evolution is crucial, is judged a posteriori. In other 
words, such a step is crucial exactly because it opened new research paths, it clarified the 
meaning of new knowledge, it suggested the most convenient and clear formulation of this 
knowledge and in general it enhanced the development of the subject. Therefore, such a step 
in the historical evolution is in principle didactically relevant. 

It is in the above perspective that I will comment in the next section on three specific 
examples, which at the same time illustrate the deep, continuous and multifarious interrelation 
between Mathematics and Physics. 

 



3. Examples 
3.1 Algebra, Geometry and Relativity Theory 
Einstein laid the foundations of the Theory of Relativity in two seminal papers. In 1905 he 

presented the Special Relativity Theory (SR) and after many years of intensive work and 
unsuccessful attempts, in 1916, he arrived at a new theory of gravitation, the General 
Relativity Theory (GR), in a long paper where he presented both its physical foundations and 
the mathematical methods to be used (both papers are reprinted in Sommerfeld 1952).3 
Although his papers were fairly complete, and full of fundamental consequences, both 
theories were developed further by many others in the next years.  

Today, SR is a standard subject in undergraduate curricula for Physics students, whereas 
an introductory course in GR is usually addressed to postgraduate, or advanced graduate 
Physics (and occasionally, Mathematics) students. However, basic aspects of both GR and SR 
that played an important role in the development of new Mathematics, and enhanced the 
development of our understanding of physical phenomena, can be presented at a much earlier 
stage as an illustration of this new Mathematics and their place in the scientific edifice (both 
inside and outside Mathematics). This can be done by following an approach inspired by 
history, along the lines suggested in the previous section. 

Some crucial historical elements4:   
(a) SR is based on the so-called Lorentz transformations (LT) that gives the 

transformations between inertial coordinate systems. Einstein gave the derivation of these 
transformations in 1905 using the basic principles of SR, namely, the Principle of Special 
Relativity (the laws of Physics are invariant under a coordinate transformation between 
inertial systems, i.e. systems moving with constant velocity with respect to each other) and 
the Principle of the constancy of the light speed (light has the same speed in all inertial 
systems, whether or not the source is moving). His derivation is elementary and appeals very 
much on physical intuition and some tacit assumptions (about the homogeneity of space).  

(b) Others (Voigt in 1887, Larmor in 1900, Lorentz in 1899 and 1904) have derived the 
LT earlier as a consequence of the search for the coordinate transformations that leave 
unaltered Maxwell’s equations in electrodynamics. By the end of the 19th century, it had been 
realized that these were the transformations between inertial systems, as a consequence of the 
famous Michelson-Morley experiment (and other similar ones).   

(c) Poincaré in 1904 derived the LT by following a more mathematically oriented 
approach. He explicitly used the group structure of the sought transformations and determined 
their general form, as well as, fundamental consequences of SR, like the relativistic law of 
velocity addition. 

(d) In 1908, in a seminal lecture (reprinted in Sommerfeld 1952), Minkowski introduced 
the concept of spacetime and revealed the rich geometrical content implicit to Einstein’s 1905 
paper on SR. This was the crucial step, without which GR could not have been developed. 

(e) In his conceptual analysis of the physical and mathematical foundations of GR, Weyl 
(in 1918) argued that its basic physical principles imply that spacetime has the structure of a 
conformal rather than a (pseudo)riemannian manifold (i.e. only ratios of infinitesimal 
                                                           
3 Perhaps it is less known that Hilbert arrived almost simultaneously to the field equations of the theory 
by following a different route. I will not touch upon Hilbert’s contribution here (for a detailed study see 
Mehra 1973, Pais 1982 §14(d)). I simply mention that Hilbert knew Einstein’s struggle for a new 
theory of gravitation and approached the subject from a different point of view. 
4 More historical details and references to the original literature can be found in Tzanakis 1999. 



spacetime distances have a meaning, not the infinitesimal distances themselves; Weyl 
1918/1952, p.204). As a consequence, he considered that the physically relevant basic 
geometrical structure of spacetime is not its (pseudo)metric. To proceed further, he argued 
that the basic structure is parallelism (i.e. the existence of a connection), an important concept 
introduced in 1917 by Levi-Civita and Hessenberg (Weyl 1918/1952, p.202). In this way, 
Weyl was led to introduce and study the first example of what later became known as gauge 
theory and gauge transformations (Weyl 1918/1952, Weyl 1921/1952, section 16). 

It is beyond the scope of this paper to give a detailed epistemological analysis of points 
(a)-(e), which supports the claims made in §1.2. This will be done implicitly, by commenting 
on the didactical relevance of (a)-(e) along the lines of section 2. 

(1) It is possible to derive the LT in two dimensions (one spatial and one temporal) by 
following Minkowski’s key ideas: (i) the introduction of the concept of spacetime as a natural 
idea implied by Einstein’s 1905 analysis of the relative character of simultaneity of events 
and (ii) its immediate consequence that the constancy of the light speed trivially implies that 
the sought transformation leaves invariant the so-called light cone (i.e. the surface on which 
light signals lie).  

This derivation uses elementary matrix algebra and proceeds in close analogy with the 
determination of the form of plane rotations in analytic geometry: Rotations conserve the 
Euclidean distance x2+y2 in the xy plane, whereas LT conserve the Minkowski 
(pseudo)distance x2- y2 (which is zero on the light cone, y being the time coordinate). For 
details see Tzanakis 1999, section 3.  

(2) Strictly speaking, conservation of the light cone implies only that the transformations 
are conformal, a fact whose significance seems to have been appreciated first by Weyl (see 
(e) above). It is more advanced, especially in 4 dimensions, to show that in the context of SR 
these conformal transformations are indeed isometries of the Minkowski (pseudo)distance if 
we assume that they map straight lines to straight lines, a consequence of the validity of 
Newton’s law of inertia in SR. This derivation may constitute a small project, which can 
proceed along the lines of Poincaré, using explicitly the group structure of the transformations 
sought. A number of fundamental consequences of SR can be obtained in this way (velocity 
addition, length contraction etc), at the same time illustrating important abstract concepts, like 
group, commutativity, pseudo-Euclidean structure, conformal transformations etc. (for details 
and references to the original literature see Tzanakis 1999).  

(3) Conformal transformations in the special case of similarities can be also introduced 
naturally by looking for the symmetry group of Maxwell’s equations. It is a nice example to 
consider this problem for both the Laplace and the wave equation and to arrive at the 
orthogonal and the Lorentz group of transformations respectively. This is in fact the idea 
behind the pre-relativistic derivations of the LT by Larmor and Lorentz (papers reprinted in 
Schaffner 1972, part II, sections 9 and 11 and in Sommerfeld 1952, paper II; see also 
Whittaker 1951, pp.31-33). This point can be used in connection with (1) above, in the sense 
that they are dual to each other.    

(4) Conventionally, parallelism and the concept of a connection on a differentiable 
manifold are introduced in a rather abstract and unnatural way. Weyl’s geometrical 
interpretation of the basic physical principle of GR, namely the Equivalence Principle (all 
bodies in free fall in an infinitesimal region of spacetime have the same acceleration), leads to 
a natural definition of parallelism that is equivalent to its modern abstract definition (see (e) 



above and Siu et al. 2000, §8.4.8). The proof can be structured as a sequence of exercises in 
tensor algebra and differential geometry. 

(5) On the other hand, Weyl’s analysis, mentioned in (e), led him, to consider that 
spacetime has a conformal rather than a metric structure, to identify the conformal factor with 
the electromagnetic potential (a physically wrong but mathematically fruitful idea!-see just 
below) and to introduce the concept of gauge transformation. It was the first, very early 
attempt to develop what much later came to be known as a gauge field theory, especially in 
connection with gauge invariance of electrodynamics. The similarities stressed by Weyl 
between the geometrical concepts of GR and the dynamical concepts of electromagnetism 
were elaborated later and led to important developments in differential geometry and its 
relation to Physics, namely, the theory of connections and of fibre bundles and the 
formulation of gauge field theory (Pais 1982 pp.339-340, Cao 1997 §9.1). Although this is a 
rather advanced subject, Weyl’s procedure can provide a natural introduction to concepts and 
methods, which are equally used by mathematicians and physicists and which play an equally 
important role in pure Mathematics and in Theoretical Physics.  

3.2 Differential Equations, (Functional) Analysis and Quantum Mechanics 
It is well known that since Newton’s time, differential equations have always been one of 

the main links between Mathematics and Physics, leading to important developments both in 
analysis and in the concise and fruitful formulation of physical theories. It is perhaps less 
known that many important concepts of functional analysis originated in the study of quantum 
theory (QT) and conversely, that it was only through its concepts and methods that a deep 
understanding of atomic phenomena became possible. 

Below, I outline only a few, but fundamental points of this really complex, continuous and 
deep interrelation that has been so fruitful both mathematically and physically.      

Some crucial historical elements5:   
(a) Already in the 18th century it was realized that there is a close formal similarity 

between Fermat’s principle of least time in geometrical optics, and Maupertuis’ principle of 
least action in classical mechanics. In the 1830’s, on the basis of this similarity, Hamilton 
formulated the two disciplines in a unified way and developed a general method for solving 
1st order partial differential equations (PDE) that became central in the formulation and 
solution of mechanical problems as well (Hamilton-Jacobi method). 

(b) About 90 years later, Hamilton’s ideas stimulated de Broglie to take the 
aforementioned formal similarity as an indication of a deeper relation between mechanical 
and optical phenomena and to predict the wave nature of atomic particles. Schrödinger, in 
turn, further elaborated this idea, and arrived in 1926 to the formulation of wave mechanics. 

(c) In the 1920’s, atomic physics was a complicated mixture of classical mechanics and 
electrodynamics with additional semi-empirical rules and heuristic arguments. People were 
trying hard to develop models of atomic phenomena and to understand their mathematical 
structure. Heisenberg in 1925 developed a kind of algebraic manipulation of atomic 
quantities, in analogy with Fourier series operations, the novel idea being that in this 
manipulations, the Fourier frequencies and coefficients were doubly indexed as a 
consequence of the so-called Ritz combination principle in atomic spectroscopy. It was 
immediately realized by Born that Heisenberg’s calculus was just the algebra of (infinite, in 
                                                           
5 References to the original literature and to secondary sources can be found in Tzanakis, 1998, 2000, 
2001. 



general) matrices. This led to matrix mechanics, the first formulation of modern quantum 
mechanics (QM). 

(d) After Schrödinger’s formulation of wave mechanics in 1926, physicists were puzzled 
by the existence of two conceptually and mathematically very different theories of atomic 
phenomena (matrix mechanics and wave mechanics), which nevertheless gave identical, 
empirically correct results. Schrödinger himself and von Neumann tackled the problem. Both 
showed that the two theories were mathematically equivalent. Von Neumann’s approach was 
more rigorous and led him to introduce for the first time the concept of an abstract (separable) 
Hilbert space, to show that all such spaces are isomorphic and to resolve the puzzle by 
making clear that the two physical theories were based on two different, but isomorphic such 
spaces (l2 and L2(R) respectively).              

Points (a)-(d) can be integrated into teaching in a number of ways, depending on the 
course given, its emphasis, the time available etc. I will give some possibilities below, in 
which the emphasis is on Mathematics, rather than Physics: 

(1) The least action principle and the principle of least time, constitute natural examples of 
variational principles, leading to mathematically interesting and physically relevant equations, 
the Hamilton-Jacobi equation, which is central in classical mechanics, and the so-called 
eikonal equation of optics. On the other hand, they are generic examples, in the sense that it is 
possible through them to establish a general result in the theory of PDE’s: the solution of a 1st 
order PDE is equivalent to the solution of a system of first order ODE’s, the so-called 
Hamilton’s system of the associated canonical equations (Courant & Hilbert 1962 section 
II.9, Gel’fand & Fomin 1963 section 23). As it is well known, this result is of central 
importance both in the theory of differential equations and in mechanics. In fact, one can 
proceed very close to Hamilton’s and Jacobi’s approaches to illuminate the subject from two 
different, but important view points (Dugas 1988, part IV, ch.VI, Klein 1928/1979, pp.182-
196). 

(2) Schrödinger’s elaboration of Hamilton’s mathematically unified treatment of classical 
mechanics and geometrical optics mentioned above, was based on arguing by analogy: If 
classical mechanics is mathematically similar to   geometrical optics, and  since geometrical  

 
  Geometrical Optics                         By analogy                                Classical Mechanics 
 
 
 
 
                                           Hamilton’s unified treatment                     
                                    
                                                Schrödinger’s basic idea 
 
approximation                                                                                      approximation 
 
Wave Optics                                                                                (New) Wave Mechanics 
                                                         By analogy           
 

Figure 1: A schematic representation of Schrödinger’s reasoning by analogy 
 



optics is an approximation to wave optics, perhaps classical mechanics as well is an 
approximation to a wave mechanics, which is similar to wave optics in the same sense that 
classical mechanics is similar to geometrical optics. In this way, Schrödinger’s equation 
results as the mechanical equivalent of the wave equation, schematically given in figure 1. 

This derivation can be presented in relation with (1) above (for a detailed treatment, see 
Tzanakis 1998). This is a characteristic example that makes clear the important role of 
analogy as a mode of reasoning of great heuristic value (for a detailed discussion both in 
Mathematics and in Physics, see Tzanakis & Kourkoulos 2000, §2). Another such example is 
provided by Heisenberg’s approach described in (c) above and schematically represented in 
figure 2 (see also Heisenberg’s own account in Heisenberg 1949/1930, appendix, which can 
be used for didactical purposes in a slightly restructured form, as well as, his original paper 
reprinted in van der Waerden 1967, paper 12).  

 
Classical quantities q, p                                                          Quantum quantities q, p 
                                                                                                Looking for a      
  Fourier representation                                                          New representation because of 
Single index frequencies                                                        Double index frequencies 
        νk = kω                                                                                             νnm 

                                                                                                   obeying Ritz principle            
     νk  + νl = νk+l                                                                                                 νnl  + νlm = νnm 
                                                                                                                                                                         

 
By analogy 

q(t) = ∑∑∑∑ qk exp(i νkt)                                                                      q(t) ∼∼∼∼  (qnm exp(i νnmt) 
 
 

Operations 
 

By analogy 
p+q             (pk+qk) exp(i νkt)                                               p+q         (pnm+qnm) exp(i νnmt) 
 
 
pq               (∑∑∑∑l pl qk-l) exp(i νkt)                                           pq         (∑∑∑∑l pnl qlm) exp(i νnmt) 

By analogy 
+ 

Ritz Principle 
                                                                                           Hence, pq ≠≠≠≠ qp which leads to 

Heisenberg’s uncertainty relations! 
 

Figure 2: A schematic representation of Heisenberg’s reasoning by analogy 
 
Although analogy seems to play a central role as a discovery pattern both in Mathematics 

and in Physics, no enough attention is usually given to it in teaching. These examples are 
important in this respect as well.  

(3) Many of the basic concepts of functional analysis can be motivated in a natural way 
(i..e. avoiding logical gaps), in the context of questions and problems of atomic Physics. The 
concept of an abstract Hilbert space mentioned in (d) above is a characteristic one. 
Schrödinger’s formal proof of the equivalence of matrix and wave mechanics may serve as a 



general motivation to look for a more rigorous proof. This in turn leads to appreciate the 
significance of the existence of a (complete) orthonormal basis and the various equivalent 
conditions (e.g. Parseval’s relation). Von Neumann’s approach is very clear and can be 
followed closely (von Neumann 1932). Other examples can also be given, like the concepts of 
a hermitian and of aunitary operator and their generalization, a normal operator, the concept 
of spectrum and important theorems associated with these concepts that followed as a result 
of von Neumann’s work on the foundations of QM (for more details, see Tzanakis 2000 
§3.4). 

3.3. Statistical Mechanics, Dynamical Systems and Ergodic Theory       
A somewhat more advanced example, which shows the deep and fruitful influence that 

Physics can exert on the development of new mathematical concepts, methods and theories is 
provided by the historical development of statistical mechanics and ergodic theory. Only 
some aspects of this subject are briefly discussed below. 

Some crucial historical elements:   
(a) Implicit to the work of Boltzmann (in 1871, 1884, 1887) and Maxwell (in 1878), is 

what later became known as the ergodic hypothesis, a desired basic property of the systems 
with a large number of degrees of freedom studied in statistical mechanics: The phase space 
trajectory of a mechanical system passes through every point of its energy surface.6 If this 
conjecture were true, the phase space average of any quantity would coincide with its time 
average along the trajectory of the system. This was an utterly important conclusion in the 
foundations of statistical mechanics. It was gradually realized that this hypothesis leads to 
contradictions on the basis of important mathematical theorems according to which space-
filling curves cannot be smooth as required in (statistical) mechanics (Sagan 1994). In an 
attempt to overcome this obstacle, the Ehrenfests in 1912 distinguished the ergodic hypothesis 
from the quasi ergodic hypothesis, according to which the phase space trajectory of the 
system is a dense subset of the energy surface, hoping that the latter could offer a better 
foundation of statistical mechanics (Ehrenfest & Ehrenfest 1912/1990 §10 and note 98). 

(b) The formulation of the quasi ergodic hypothesis and the significance in the context of 
statistical mechanics of the coincidence of phase space and time averages (what in fact later 
was taken as the definition of an ergodic system), were the basic motivations for the 
important investigations of Birkhoff, von Neumann and Hopf that led to the proof of the first 
ergodic theorems. It was a crucial starting point for the development of what later became 
known as ergodic theory (Sklar 1993, §5.II.1, Farquhar 1964 ch.3).  

(c) The stability of the solar system was an old problem investigated by many great 
mathematicians since the 18th century. It was a main motivation for the study of periodic 
motions in N-body systems and more generally in dynamical systems and it strongly 
influenced the development of the qualitative theory of differential equations, especially 
through Poincaré’s work on celestial mechanics and Birkhoff’s investigations on general 
dynamical systems that paved the way to the development of the modern theory of dynamical 
systems (Poincaré 1957, Birkhoff  1927; for a short review, see Moser 1973, §§ I.1, I.2). 

                                                           
6 It is not clear to what extent Boltzmann and Maxwell thought of this hypothesis as a fundamental 
element of statistical mechanics (Boltzmann 1954, pp.11-12 and footnote on p.297). Apparently, it was 
the Erhenfests’ review of 1912 that stressed the importance of the ergodic and quasi-ergodic 
hypotheses and the difficulties inherent to them (Ehrenfest & Ehrenfest 1912/1990).  



(d) The existence of (quasi) periodic motions of dynamical systems was an important 
problem systematically investigated by Poincaré in connection with the stability of the solar 
system and more generally with the N-body problem. Kolmogorov made significant progress 
in 1954, by proving the existence of such motions under quite general conditions and contrary 
to what one would expect if dynamical systems were ergodic (see (b) above). Kolmogorov’s 
ideas were elaborated by others, especially Siegel, Arnold and Moser7 and led to a 
revitalization of classical mechanics in the last 40 years, by fruitfully combining concepts and 
methods of such diverse fields like measure theory, differential equations, topology and 
differential geometry. Conversely, new, essentially physical, concepts, like ergodicity, mixing 
property and entropy of a dynamical system etc, were introduced that further enhanced the 
development of ergodic theory and dynamical system theory, into an interdisciplinary domain 
that touches upon many diverse areas of pure and applied mathematics and theoretical 
physics; e.g. probability and measure theory, differential topology, number theory, statistical 
mechanics, fractal geometry etc.         

Ergodic theory and the theory of dynamical systems are certainly advanced topics and at 
most an introduction to their basics can be incorporated in an undergraduate curriculum. Even 
the definition of its most basic concepts, like an abstract dynamical system or ergodicity, are 
rather technical and require some knowledge of various areas of Mathematics (e.g. measure 
theory, differential geometry, topology etc). My main point is that even these basics cannot be 
grasped properly if their introduction is decontextualized as it is usually done. On the 
contrary, their introduction in the proper context in which they have naturally appeared 
historically, namely, in connection with specific, difficult and physically important problems, 
can greatly enhance their understanding.  

(1) Most of the basic concepts of ergodic theory have a deep physical meaning and were 
introduced in an effort to understand specific physical problems. Thus, ergodicity of a 
dynamical system (in the sense of the coincidence of phase space and time averages), its 
entropy, the mixing property etc can be motivated by the ergodic problem in statistical 
mechanics (see (a) and (b) above) and Boltzmann’s probabilistic definition of (macroscopic) 
entropy of a physical system in terms of microscopic quantities. 

(2) The importance of the ergodic hypothesis in statistical mechanics constitutes a natural 
(but of course, not the only) framework for discussing the interesting and independent subject 
of space filling curves (e.g. Peano’s curve) and the associated deep problems of the definition 
of the concept of dimension, especially in connection with the fascinating concept of a fractal 
and its relation to ergodic characteristics of specific dynamical systems (see e.g. Falconer 
1990, ch.13). 

(3) The significance of the stability of the solar system is self-evident, even in a general 
cultural context. A historical introduction to this subject, in which the nature of problems and 
achievements are explained without proof, is helpful (cf. (c) above). If students appreciate the 
difficulty of these problems and their physical importance, they can also appreciate better 
why one has to work out and understand in detail the dynamical behaviour of many, 
somewhat artificial, low dimension systems. 

(4) For a long time classical mechanics was considered as a dead research domain. It 
served only as a subject for introducing basic mathematical methods of Physics, or as a first 

                                                           
7 Kolmogorov 1954/1978, Arnold & Avez 1967, Siegel & Moser 1971, Moser 1973 are the standard 
references containing the basic theoretical concepts, mathematical tools and results. See Sklar 1993, 
§5.II.3. 



step of a theory that one had to overcome in order to understand phenomena beyond the 
everyday world (in the atomic or astronomical scale). This picture has changed in the last 40 
years, at least as far as research is concerned (cf. (d) above). This came as a result of two 
different, but dual in character and interconnected lines of research: (i) On the one hand, there 
was a struggle for understanding the ergodic properties of specific physical systems. Often, 
this was done in the hope to show that in some sense ergodic systems are the majority of 
physically relevant multidimensional systems, hence that dynamical motions are mainly non-
periodic for systems with many degrees of freedom. (ii) On the other hand, there has always 
been a continuous interest in and research on the stability of motion of specific dynamical 
systems and the determination of (quasi) periodic trajectories. For a long time it was believed 
that this could be true for systems with a few degrees of freedom. We now know that none of 
the beliefs underlying research along (i), or (ii) is strictly true (there are low dimension 
ergodic systems and “a lot of” periodic motions in systems with many degrees of freedom). 
This is a fascinating development in Mathematics, some elements of which can be given to 
our students, illustrating (i) and (ii) above by means of elementary examples taken from such 
diverse fields like classical mechanics, riemannian geometry, or number theory. 

 

4. Final Remarks 
All three examples support points (a), (b) in §1.2.(2), although lack of space does not 

allow a detailed epistemological analysis in support of these points. At the same time, the 
basic historical facts presented for each example, constitute a natural framework for 
introducing new mathematical concepts and methods and by linking them to mathematically 
relevant and physically important questions and problems, which may serve as a meaningful 
motivation for students. They can be adapted so that they become didactically appropriate and 
they can form the basis for the development of teaching sequences in which many technical 
details are incorporated in the form of exercises, problems and small research projects. Details 
can be found in the given references. 
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