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ABSTRACT 
The course “Introduction to Mathematical Logic” (32 h lectures + 32 h exercises + 56 h independent work) 
is compulsory at the Faculty of Mathematics and Informatics of the University of Tartu. In 1987-1991, we 
designed four programs for the exercises: Truth-Table Checker, Formula Manipulation Assistant, Proof 
Editor and Turing Interpreter. As result, we transferred 70% of the exercises to the computer class. The 
blackboard-based practical training was preserved for predicate logic. In the subsequent years we added one 
more program for truth-values of predicate formulas. The main benefit of the first round of computerization 
was the acquisition of real skills in two areas: Turing machine programming and proof construction. At the 
same time, rejection of blackboard exercises reduced the possibility of assigning to students small but 
important questions concerning new topics.  
In 1998, we decided to use a test administration system APSTest to introduce tutorial-type support for 
lectures. After each 1-2 lectures, a test comprising 10-15 questions is available in the faculty network. The 
test has randomly selected questions and can be solved a number of times; before the beginning of the next 
lecture, however, the students shall have achieved at least a 75% success rate. The weekly duty to keep 
oneself up to date with theoretical material has reduced the dropout rate and improved the average grade 
results.  
The paper describes:  
- Test system APSTest and our test structure, 
- Intent of questions for different types of lecture topics,  
- The use of different types of questions,  
- Eligibility of test-type questions for the different parts of the course,  
- Some conclusions about the students’ learning strategies drawn on the basis of the data saved in the 
database,  
- Topics and questions proving to be more difficult, 
- Changes made over time in test management.  
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1. Introduction 
For any course of lectures to be efficient, it is necessary that the students familiarize themselves 

with the material already covered by doing independent work. Written exercises used in teaching 
mathematical subjects do not satisfy the need fully, for they usually deal with technical problems 
requiring a longer solution. The computerization of exercises may even aggravate the problem, for 
the problems and questions that the existing software is incapable of addressing may be 
disregarded altogether. An introductory course of mathematical logic has some qualities that 
increase the need for tutorial-type work. The course introduces a large number of new but 
relatively simple concepts. Concepts, formulas, canonical forms, rules, etc. are created by 
interrelated groups. The elements of a group develop fairly similar relationships with one other as 
well as with other objects. Consequently, only a small part of them are analysed in lectures and 
textbooks while the remaining part is left to the students themselves to prove by analogy, or 
sometimes even to discover and invent on their own.  

This article describes the use of computerised tests to support the weekly independent work 
required for the learning of the theoretical material contained in the introductory course of 
Mathematical Logic taught at the Faculty of Mathematics and Informatics of the University of 
Tartu. During a semester, the students independently take 10-12 tests in the computer class. The 
tests are generated from a databank currently containing approximately 500 questions. The system 
has been used for three years, which allows us to evaluate both the questions and their effect on the 
learning of the discipline.  

Part 2 of the article gives an overview of the essence of the course as well as the problem-
solving software created in previous years. Part 3 describes some features of the test 
administration package APSTest used in the work, and our organization of tests. Part 4 describes 
the questions used in the tests and examines the topics of the course they cover. Part 5 investigates, 
on the basis of the data stored in the database, students’ working strategies in doing tests, including 
inappropriate behavioural patterns. Part 6 evaluates the current situation in the implementation of 
the system. In comparison with (Croft, Danson, Dawson & Ward , 2001), our experiment is more 
directed to knowledge and less to skills.  

 

2. The course and computerised exercises 
The course Introduction to Mathematical Logic has been on the curriculum of the Faculty of 
Mathematics and Informatics of the University of Tartu for some time already. The course is 
compulsory, and most of the students take it in the spring term of their second year. 70-90 students 
usually attend the course. The discipline has been planned to consist of 32 hours of lectures, 32 
hours of workshops and 56 hours of independent work. The lecture themes of the course are 
presented in Table 1.  

In 1987-1991, we designed four computer programs for doing exercises: Truth-Table Checker, 
Formula Manipulation Assistant, Proof Editor and Turing Interpreter (Prank 1991). The main 
purpose of the work was to create problem-solving environments for two difficult domains – 
Formal Proofs and Turing Machines. In addition, the two first mentioned programs were designed 
for computerising the main problem types contained in the first chapter of the course. As a result, 
we transferred 70% of the exercises to the computer class. The blackboard-based practical training 
was restricted to predicate logic.  



  

 
Introduction to Mathematical Logic  

Lectures (16 ×××× 2h)  
 
I. Propositional Logic (Model theory)  
1. Introduction. Sentences, truth-values, propositional connections, formulas, truth-tables.  
2. Tautologies, satisfiability, logical equivalence. Main equivalences.  
3. Expressibility by {&, ¬}, {∨, ¬}, {⊃, ¬}. Normal forms and their properties.  

II. Predicate Logic (Model Theory)  
4. Predicates, quantifiers. Validity of formulas for finite models, N, Z, R.  
5. Signature, first-order language, interpretation, expressibility.  
6. Tautologies, logical equivalence. Main equivalences. Prenex form.  
7. Proofs of main equivalences.  

III. Axiomatic Theories.  
8. Introduction. Axioms and rules of propositional calculus. Examples of the proofs.  
9. Consistence. Implications for proof-building.  
10. Completeness of propositional calculus.  
11. Predicate calculus. Examples of the proofs. Consistence. Completeness (without proof).  
12. First-order axiomatic theories. Group theory. Formal arithmetic.  

IV. Algorithm Theory  
13. Introduction: Concrete algorithms and algorithm theory. Turing Machine. Computing 

numerical functions on TM.  
14. Operations with TM (composition, branching).  
15. Enumeration of TM. Halting problem.  
16. Overview of decidability problems in mathematics and computer science.  

 
Table 1. Themes of Lectures  

 

 
Figure 1. A class-assigning question with student’s and correct answer. 



  

In the subsequent years, we have made small improvements to our programs, and renewed the 
user interface. In addition, we added a new program for exercises on the interpretations of 
predicate formulas. The computerisation of exercises indeed contributed to the learning of the 
central concepts of the last two chapters, rendering the concepts less abstract through their 
practical use. At the same time, however, the students’ interest in computer exercises tended to 
eclipse the deeper meaning of the discipline, for the learning of which the exercises were created 
in the first place. There arose a need to find a better balance between the lecture material and the 
exercises in students’ work.  

 

3. The test system APSTest and our test structure 
In 1998, the test administration package APSTest was created as one of the software projects 
within the state-funded programme aimed at the computerization of Estonian schools. A 
characteristic feature of APSTest is the availability of a large number of question types:  

1) Yes/no questions,  
2) Multiple-choice questions (in a list or between the words of a text),  
3) Marking questions (in a list or between the words of a text),  
4) Matching questions,  
5) Class assigning questions (Figure 1),  
6) Grouping questions,  
7) Sequencing questions,  
8) Filling the blanks (with free input or using multiple-choice),  
9) Short-answer questions,  
10) Numerical questions.  
The program enables to vary many characteristics of tests and to compile tests for different 

purposes. APSTest saves the following data for each try: the time (beginning and duration), the 
points scored and the success rate, the number of correct, nearly correct and incorrect answers, the 
questions asked, the time spent on each question and the answers given. Using queries, the teacher 
can then build tables concerning the data of interest to him. It allows the teacher to relatively 
simply draw conclusions about both the work done by a particular student and the level of skills 
mastered in different domains of the discipline, as well as to pass judgements on the level of 
questions and the general characteristics of the tests. APSTest runs under Windows. The data can 
be stored in different SQL-based database systems.  

Following the launch of the APSTest package, we decided to test its applicability to providing 
tutorial-type support to lectures. Within the space of a few years, the following test structure has 
developed. After each 1-2 lectures, a test of 10-15 questions is put out. It can be solved in the 
computer classes of the Faculty. A test contains randomly selected questions, and it can be solved 
several times; before the beginning of the next lecture, however, the students shall have achieved 
at least a 75% success rate. The time for doing a weekly test is not limited. For finding answers, 
the students are advised to examine the lecture notes and the respective literature. Cooperation 
between students is also allowed. Thus, two or three students doing tests on adjacent computers 
while consulting with each other and studying their lecture notes is a regular sight in computer 
classes. The average grade for the tests accounts for 10% of the total grade for the course. At the 
end of a semester, a summary test is conducted on the entire material (approximately 30 
questions), which also accounts for 10% of the total grade. 

  



  

4. The questions 
This part of the article describes the questions: for what purpose and for what topics of the 

course they were composed and in what form they were presented. In the two first chapters of the 
course, each lecture introduces no less than whole series of new concepts. Thereafter, a lecture 
usually deals with just a few characteristic cases for each issue; the rest of the material needs to be 
learned by the students themselves using analogy. The students need to learn and memorize tens of 
equivalences binding different logical operations and quantifiers as well as a number of derivation 
rules and proof strategies. The best method of mastering this knowledge is exercises where 
concepts, formulas and other things need to be compared with each another and applied. First steps 
in this work can be presented as test questions applicable to achieving different educational aims.  

1. The definitions of new concepts formalize certain ideas about sentences, truth-values, proofs, 
algorithms, etc. Test questions can be used to make the students think about what we have actually 
postulated and what choices we have made. Let us give an example of a question about the 
concept of sentence:  
Many hypotheses of unknown validity have been formulated in mathematics.  
What is the mathematicians’ attitude towards such sentences?  

1) They do not have any truth- value; therefore they are not sentences.  
2) They actually have a logical value, and the fact that we do not know it is not important.  
3) They can be considered sentences in terms of Propositional Calculus if their logical value is 

established.  
2. Questions concerning the exact wording of definitions, rules, etc. can be asked using 

multiple-choice blank filling. This is particularly appropriate when several similar concepts, 
equivalences, etc. are being studied.  

3. After a concept (formula, rule) has been introduced, the students can use test questions for 
training its execution in direct (1-2-step) applications.  
Which of the following figures can be the exponent of 3 in the Gödel number of command of the 
Turing Machine? 0/1/2/3/4/5  
Figure 1 shows a quite difficult class-assigning question concerning the universal quantifier.  

4. Some test questions are also applicable to comparing similar and interrelated concepts 
(formulas, equivalences) and finding relationships between them. In addition, they facilitate the 
distinguishing of valid principles from their invalid analogues:  
Mark the pairs of equivalent formulas:  
∀x(A(x)&B(x)) ≡ ∀xA(x)&∀xB(x) ?   ∀x(A(x)∨B(x)) ≡ ∀xA(x)∨∀xB(x) ? 
∀x(A(x)⊃B(x)) ≡ ∀xA(x)⊃∀xB(x) ?    ∀x(A(x)~B(x)) ≡ ∀xA(x)~∀xB(x) ? 

5. Some questions are also applicable to giving concrete examples of the relationships between 
mathematical logic and other branches of mathematics:  
Mark the operations on the set of rational numbers that are applicable to interpreting some binary 
functional symbol f(x,y):  
x+y, x-y, x⋅ y, x: y, x y  

6. Students with only a superficial acquaintance with a certain problem contained in the course 
(such as manipulation to normal form) know in general what operations need to be performed for 
solving the problem. Sequencing questions are applicable to inquiring them about the sequence of 
steps in an algorithm as well.  

7. Matching questions are applicable to building formulas from the “prescribed material”:  
Express the formula ∀xR(x,y)⊃P(y) in prenex form, matching the necessary strings and symbols 
with numbers 1, 2, 3, … and leaving the rest unpaired:  



  

∀x, ∃x, ∀y, ∃y, R(x,y), P(y), (, ), ⊃     
1, 2, 3, 4, 5, 6, 7  

8. Watching the students solve proof problems led us to the idea of supporting proof building 
by test questions on the “local” problem. While building the proof tree from root to leaves, it is 
possible to apply some rules to the sequence under construction in such a way as to generate a 
sequence above the line that is not valid and therefore cannot be proved. Insofar as predicate logic 
is concerned, the program is unable to diagnose the errors, and if the student does not notice his 
error himself, he will try to solve an insoluble problem from that point on. To direct attention to 
the possible effects of the steps, we gathered material concerning the mistakes actually made in the 
solutions, and, after examining other possible proof tasks in predicate logic, added a large number 
of questions concerning analogous situations. One example is given in Figure 2. 

Let us now examine the use of weekly tests on different parts of the course. The first two 
chapters of the course deal with the introduction of the languages of Propositional Logic and 
Predicate Logic, their interpretations, main equivalences, inferences, different canonical forms, 
etc., their simple applications and their relationships to different domains of mathematics. 
Accordingly, test-type questions are very suitable for achieving many educational aims on these 
themes. Therefore, abundant use of questions is made in teaching the material of the first six 
lectures. The bulk of the more voluminous exercises (problems based on truth-tables, formula 
manipulation and the logical value of predicate formulas in concrete interpretations) are solved in 
computer class during workshops or as independent work. Blackboard-based workshops are used 
for expressing propositions through formulas and doing exercises on inference and equivalence 
proof/disproof.  

In the chapter on axiomatic theories, the number of questions to be tackled is much smaller. 
The rules of Grentzen-type Propositional Calculus and Predicate Calculus are introduced and 
argued. The bulk of the lecture time is spent on the proof of the properties of the systems. The 
building of formal proofs is virtually the only type of tasks solved in classrooms. We have special 
software for that. The first test is conducted on the material taught at the first lecture of the chapter 
and it covers the general concepts and rule properties. At the end of the chapter, two tests are 
solved, where problems of step selection described under Item 8 are supplemented with those 
dealing with the properties of quantifier rules and concrete first-order theories.  

In a similar manner, the chapter on algorithm theory has been built around one central concept. 
In workshops, Turing machines are constructed for calculating various numerical functions using 
unary and binary codes. Two tests are solved, of which the first one is built primarily on the 
material presented in the introduction while the second deals with the specifics of the enumeration 
of Turing machines.  

As concerns the types of the questions used, the current database of approximately 500 
questions contains marking questions (42%) and class assigning questions (41%), along with 
multiple-choice and matching questions (both 5%), numerical and short-answer questions (both 
more than 2%), and all the remaining types (each less than 1%). Such a distribution of types is 
apparently attributable to the authors’ intention to support theoretical learning and provide 
questions on comparison, evaluation and classification promoting the making of generalizations 
rather than just ask for the facts. In the opinion of the author of this paper, such a distribution also 
testifies to the functionality of the implementation of class assignment questions as a separate type 
in the test system.  

 



  

 
 

Figure 2. A question on possible steps in the proof 
 

 
 

 
 

Figure 3. Questions on the comparison of formulas proved to be difficult 
 

5. Students’ working strategies and results. Changes in  
    the organization of tests 
First of all, we must speak about a few problems that arose upon the launch of the test system. 

Technically, these concern exactly the free use of the test system where tests can be solved for an 
unlimited number of times.  

The author composed the first weekly tests of exercises in such a manner that after giving an 
incorrect answer the student was able to press a button and see the correct answer. However, the 
students started to look up and write down the correct answers before solving the tests (at that 
time, the number of parallel questions was still fairly small). Thus, we had to disable the correct 
answer feature, and the students then need to work on their lecture notes in order to understand 
their errors.  

Next, the students discovered that it is possible to run several copies of APSTest on the same 
computer at the same time. Running several “trial copies” alongside the “main copy”, they were 



  

able to try several variants for answering a question, until the program acknowledged one of them 
as true. The programmers then had to improve the programme to deny them this opportunity.  

Based on the analysis of the database, we have discovered different strategies used by students 
for taking tests allowing an unlimited number of tries.  

1. The most noticeable were the students who set the goal of achieving a 100% or nearly a 
100% success rate. Stronger students usually needed 1-3 tries for that. They carefully considered 
each question of each try, spending an average of 0.5-2 minutes per question. Quick reply was 
only given to relatively simple questions as well as those whose answer was known from a 
previous try. Occasional bulkier questions took them 3-4 minutes to complete. Some students 
solved a test 3-4 times even after they had already achieved the maximum score. Their intention 
was to obtain a better knowledge of the entire material by answering the different variants of the 
questions. Such an approach, which requires approximately one hour per week, might be 
considered optimal. For instance, at the spring semester of 2001, 31 students out of 89 had scored 
a 95% or a better success rate in at least 8 tests out of 10. More than one half of these students 
have a behavioural pattern similar to that described under this item. At all semesters, the number 
of students scoring a maximum result is smaller at the beginning and increases with subsequent 
tests; however, this is mainly due to the students taking more tries.  

2. Some students looked through a test once or twice without answering any questions before 
actually doing it. By doing this, they found out which themes of the lecture were represented in the 
questions and which were not. After that, they read the lecture notes and then scored a try.  

3. A small number of students (less than 10) only tried to solve each test once and made no 
attempts to score the maximum points. They only took another try if they did not succeed in hitting 
the required 75% mark. Of that number, the students who were stronger often scored a result that 
was quite close to the maximum.  

4. For students who were weaker than average, it took 5-8 tries to achieve the desired result. 
Very few of them took a break to examine the lecture notes after an unsuccessful try. Usually, they 
started a new attempt immediately after they finished the previous one. Due to the large number of 
tries, they had already memorized some questions by the time they reached the last tries. The 
tables in the database show that they worked through the last tries mechanically, with the time 
spent on answering being less than half a minute per questions; in multiple-choice questions it was 
often just a couple of seconds.  

5. There were also students who regularly took 15-20 tries per test. It took them at least three 
hours. Apparently, they tried to do the test without scrutinizing the theory, giving an incorrect 
answer to even rather simple questions. Often, such students broke off the test after a weak score 
from the first questions and started from the beginning again. After a while, they had memorized 
the correct answers to all the variants of the first questions yet a subsequent set of questions led 
them to new break offs. As a result, they more or less memorized the answers to the first themes, 
until it sufficed for achieving the 75% success rate. The last themes of the material, however, were 
practiced less than the previous ones. In most cases, these students displayed no change of strategy 
over the course of the semester. 

  

6. Analysis of the current situation 
The experience gleaned from the three academic years has shown that the tests provide support 

for students in learning the course. The students have rated the use of computer tests as positive in 
both informal conversations and formal questionnaires. The need to do tests requires periodical 



  

work on lecture notes, which, in turn, improves understanding at subsequent lectures. There has 
been a decrease in the number of students who drop out from the course towards the end of a 
semester for having done too little work during the first months. Furthermore, even the leading 
students of the course admit that they have plenty of food for brain racking in the tests.  

From the teacher’s perspective, the tests provide us with a means allowing us to secure, without 
much extra work, that the students are familiar with the material of the previous lecture before they 
start to learn a new one. On the other hand, it is a means that allows us to obtain feedback on the 
learning of both individual questions and comprehensive themes. The investigation of the answers 
of current tests has allowed us to add an item on the spot or explain a question that has remained 
obscure. A fairly efficient means of discovering the most difficult themes of the entire course is an 
analysis of incorrect answers found in the summary tests of about twenty most successful students. 
The most difficult theme of the tests was the set of questions added in the last year for evaluating 
the suitability of possible steps in concrete proof-building situations (see 4.8). Even better students 
made fairly many mistakes here, which did not disappear even in the summary test. Questions on 
the comparison of formulas in predicate logic also proved difficult (Figure 3). Besides the themes 
posing difficulties, the summary tests also reveal occasional weaker answers that point to certain 
gaps in lectures/study aids or to differences in the approach of different workshop groups.  

The themes and the organization of tests have steadied; we have a bank of questions for 
generating a reasonable number of parallel variants. To discourage the mechanical solving of tests, 
the author is currently considering the imposition of a limit to the number of tries or the linking of 
the effective score to the number of the try. However, we do not consider taking very complex 
measures. Even in their current form, the tests provide students with enough opportunities and 
motivation for reasonable work.  
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