

USING COMPUTERISED TESTS AS SUPPORT FOR TUTORIAL-TYPE

LEARNING IN LOGIC

Rein PRANK
University of Tartu

Institute of Computer Science
Liivi Str 2, 50409 Tartu, Estonia

e-mail: prank@cs.ut.ee

ABSTRACT
The course “Introduction to Mathematical Logic” (32 h lectures + 32 h exercises + 56 h independent work)
is compulsory at the Faculty of Mathematics and Informatics of the University of Tartu. In 1987-1991, we
designed four programs for the exercises: Truth-Table Checker, Formula Manipulation Assistant, Proof
Editor and Turing Interpreter. As result, we transferred 70% of the exercises to the computer class. The
blackboard-based practical training was preserved for predicate logic. In the subsequent years we added one
more program for truth-values of predicate formulas. The main benefit of the first round of computerization
was the acquisition of real skills in two areas: Turing machine programming and proof construction. At the
same time, rejection of blackboard exercises reduced the possibility of assigning to students small but
important questions concerning new topics.
In 1998, we decided to use a test administration system APSTest to introduce tutorial-type support for
lectures. After each 1-2 lectures, a test comprising 10-15 questions is available in the faculty network. The
test has randomly selected questions and can be solved a number of times; before the beginning of the next
lecture, however, the students shall have achieved at least a 75% success rate. The weekly duty to keep
oneself up to date with theoretical material has reduced the dropout rate and improved the average grade
results.
The paper describes:
- Test system APSTest and our test structure,
- Intent of questions for different types of lecture topics,
- The use of different types of questions,
- Eligibility of test-type questions for the different parts of the course,
- Some conclusions about the students’ learning strategies drawn on the basis of the data saved in the
database,
- Topics and questions proving to be more difficult,
- Changes made over time in test management.

KEYWORDS: Mathematical Logic, Computer Assisted Assessment

1. Introduction
For any course of lectures to be efficient, it is necessary that the students familiarize themselves

with the material already covered by doing independent work. Written exercises used in teaching
mathematical subjects do not satisfy the need fully, for they usually deal with technical problems
requiring a longer solution. The computerization of exercises may even aggravate the problem, for
the problems and questions that the existing software is incapable of addressing may be
disregarded altogether. An introductory course of mathematical logic has some qualities that
increase the need for tutorial-type work. The course introduces a large number of new but
relatively simple concepts. Concepts, formulas, canonical forms, rules, etc. are created by
interrelated groups. The elements of a group develop fairly similar relationships with one other as
well as with other objects. Consequently, only a small part of them are analysed in lectures and
textbooks while the remaining part is left to the students themselves to prove by analogy, or
sometimes even to discover and invent on their own.

This article describes the use of computerised tests to support the weekly independent work
required for the learning of the theoretical material contained in the introductory course of
Mathematical Logic taught at the Faculty of Mathematics and Informatics of the University of
Tartu. During a semester, the students independently take 10-12 tests in the computer class. The
tests are generated from a databank currently containing approximately 500 questions. The system
has been used for three years, which allows us to evaluate both the questions and their effect on the
learning of the discipline.

Part 2 of the article gives an overview of the essence of the course as well as the problem-
solving software created in previous years. Part 3 describes some features of the test
administration package APSTest used in the work, and our organization of tests. Part 4 describes
the questions used in the tests and examines the topics of the course they cover. Part 5 investigates,
on the basis of the data stored in the database, students’ working strategies in doing tests, including
inappropriate behavioural patterns. Part 6 evaluates the current situation in the implementation of
the system. In comparison with (Croft, Danson, Dawson & Ward , 2001), our experiment is more
directed to knowledge and less to skills.

2. The course and computerised exercises
The course Introduction to Mathematical Logic has been on the curriculum of the Faculty of
Mathematics and Informatics of the University of Tartu for some time already. The course is
compulsory, and most of the students take it in the spring term of their second year. 70-90 students
usually attend the course. The discipline has been planned to consist of 32 hours of lectures, 32
hours of workshops and 56 hours of independent work. The lecture themes of the course are
presented in Table 1.

In 1987-1991, we designed four computer programs for doing exercises: Truth-Table Checker,
Formula Manipulation Assistant, Proof Editor and Turing Interpreter (Prank 1991). The main
purpose of the work was to create problem-solving environments for two difficult domains –
Formal Proofs and Turing Machines. In addition, the two first mentioned programs were designed
for computerising the main problem types contained in the first chapter of the course. As a result,
we transferred 70% of the exercises to the computer class. The blackboard-based practical training
was restricted to predicate logic.

Introduction to Mathematical Logic

Lectures (16 ×××× 2h)

I. Propositional Logic (Model theory)
1. Introduction. Sentences, truth-values, propositional connections, formulas, truth-tables.
2. Tautologies, satisfiability, logical equivalence. Main equivalences.
3. Expressibility by {&, ¬}, {∨, ¬}, {⊃, ¬}. Normal forms and their properties.

II. Predicate Logic (Model Theory)
4. Predicates, quantifiers. Validity of formulas for finite models, N, Z, R.
5. Signature, first-order language, interpretation, expressibility.
6. Tautologies, logical equivalence. Main equivalences. Prenex form.
7. Proofs of main equivalences.

III. Axiomatic Theories.
8. Introduction. Axioms and rules of propositional calculus. Examples of the proofs.
9. Consistence. Implications for proof-building.
10. Completeness of propositional calculus.
11. Predicate calculus. Examples of the proofs. Consistence. Completeness (without proof).
12. First-order axiomatic theories. Group theory. Formal arithmetic.

IV. Algorithm Theory
13. Introduction: Concrete algorithms and algorithm theory. Turing Machine. Computing

numerical functions on TM.
14. Operations with TM (composition, branching).
15. Enumeration of TM. Halting problem.
16. Overview of decidability problems in mathematics and computer science.

Table 1. Themes of Lectures

Figure 1. A class-assigning question with student’s and correct answer.

In the subsequent years, we have made small improvements to our programs, and renewed the
user interface. In addition, we added a new program for exercises on the interpretations of
predicate formulas. The computerisation of exercises indeed contributed to the learning of the
central concepts of the last two chapters, rendering the concepts less abstract through their
practical use. At the same time, however, the students’ interest in computer exercises tended to
eclipse the deeper meaning of the discipline, for the learning of which the exercises were created
in the first place. There arose a need to find a better balance between the lecture material and the
exercises in students’ work.

3. The test system APSTest and our test structure
In 1998, the test administration package APSTest was created as one of the software projects
within the state-funded programme aimed at the computerization of Estonian schools. A
characteristic feature of APSTest is the availability of a large number of question types:

1) Yes/no questions,
2) Multiple-choice questions (in a list or between the words of a text),
3) Marking questions (in a list or between the words of a text),
4) Matching questions,
5) Class assigning questions (Figure 1),
6) Grouping questions,
7) Sequencing questions,
8) Filling the blanks (with free input or using multiple-choice),
9) Short-answer questions,
10) Numerical questions.
The program enables to vary many characteristics of tests and to compile tests for different

purposes. APSTest saves the following data for each try: the time (beginning and duration), the
points scored and the success rate, the number of correct, nearly correct and incorrect answers, the
questions asked, the time spent on each question and the answers given. Using queries, the teacher
can then build tables concerning the data of interest to him. It allows the teacher to relatively
simply draw conclusions about both the work done by a particular student and the level of skills
mastered in different domains of the discipline, as well as to pass judgements on the level of
questions and the general characteristics of the tests. APSTest runs under Windows. The data can
be stored in different SQL-based database systems.

Following the launch of the APSTest package, we decided to test its applicability to providing
tutorial-type support to lectures. Within the space of a few years, the following test structure has
developed. After each 1-2 lectures, a test of 10-15 questions is put out. It can be solved in the
computer classes of the Faculty. A test contains randomly selected questions, and it can be solved
several times; before the beginning of the next lecture, however, the students shall have achieved
at least a 75% success rate. The time for doing a weekly test is not limited. For finding answers,
the students are advised to examine the lecture notes and the respective literature. Cooperation
between students is also allowed. Thus, two or three students doing tests on adjacent computers
while consulting with each other and studying their lecture notes is a regular sight in computer
classes. The average grade for the tests accounts for 10% of the total grade for the course. At the
end of a semester, a summary test is conducted on the entire material (approximately 30
questions), which also accounts for 10% of the total grade.

4. The questions
This part of the article describes the questions: for what purpose and for what topics of the

course they were composed and in what form they were presented. In the two first chapters of the
course, each lecture introduces no less than whole series of new concepts. Thereafter, a lecture
usually deals with just a few characteristic cases for each issue; the rest of the material needs to be
learned by the students themselves using analogy. The students need to learn and memorize tens of
equivalences binding different logical operations and quantifiers as well as a number of derivation
rules and proof strategies. The best method of mastering this knowledge is exercises where
concepts, formulas and other things need to be compared with each another and applied. First steps
in this work can be presented as test questions applicable to achieving different educational aims.

1. The definitions of new concepts formalize certain ideas about sentences, truth-values, proofs,
algorithms, etc. Test questions can be used to make the students think about what we have actually
postulated and what choices we have made. Let us give an example of a question about the
concept of sentence:
Many hypotheses of unknown validity have been formulated in mathematics.
What is the mathematicians’ attitude towards such sentences?

1) They do not have any truth- value; therefore they are not sentences.
2) They actually have a logical value, and the fact that we do not know it is not important.
3) They can be considered sentences in terms of Propositional Calculus if their logical value is

established.
2. Questions concerning the exact wording of definitions, rules, etc. can be asked using

multiple-choice blank filling. This is particularly appropriate when several similar concepts,
equivalences, etc. are being studied.

3. After a concept (formula, rule) has been introduced, the students can use test questions for
training its execution in direct (1-2-step) applications.
Which of the following figures can be the exponent of 3 in the Gödel number of command of the
Turing Machine? 0/1/2/3/4/5
Figure 1 shows a quite difficult class-assigning question concerning the universal quantifier.

4. Some test questions are also applicable to comparing similar and interrelated concepts
(formulas, equivalences) and finding relationships between them. In addition, they facilitate the
distinguishing of valid principles from their invalid analogues:
Mark the pairs of equivalent formulas:
∀x(A(x)&B(x)) ≡ ∀xA(x)&∀xB(x) ? ∀x(A(x)∨B(x)) ≡ ∀xA(x)∨∀xB(x) ?
∀x(A(x)⊃B(x)) ≡ ∀xA(x)⊃∀xB(x) ? ∀x(A(x)~B(x)) ≡ ∀xA(x)~∀xB(x) ?

5. Some questions are also applicable to giving concrete examples of the relationships between
mathematical logic and other branches of mathematics:
Mark the operations on the set of rational numbers that are applicable to interpreting some binary
functional symbol f(x,y):
x+y, x-y, x⋅ y, x: y, x y

6. Students with only a superficial acquaintance with a certain problem contained in the course
(such as manipulation to normal form) know in general what operations need to be performed for
solving the problem. Sequencing questions are applicable to inquiring them about the sequence of
steps in an algorithm as well.

7. Matching questions are applicable to building formulas from the “prescribed material”:
Express the formula ∀xR(x,y)⊃P(y) in prenex form, matching the necessary strings and symbols
with numbers 1, 2, 3, … and leaving the rest unpaired:

∀x, ∃x, ∀y, ∃y, R(x,y), P(y), (,), ⊃
1, 2, 3, 4, 5, 6, 7

8. Watching the students solve proof problems led us to the idea of supporting proof building
by test questions on the “local” problem. While building the proof tree from root to leaves, it is
possible to apply some rules to the sequence under construction in such a way as to generate a
sequence above the line that is not valid and therefore cannot be proved. Insofar as predicate logic
is concerned, the program is unable to diagnose the errors, and if the student does not notice his
error himself, he will try to solve an insoluble problem from that point on. To direct attention to
the possible effects of the steps, we gathered material concerning the mistakes actually made in the
solutions, and, after examining other possible proof tasks in predicate logic, added a large number
of questions concerning analogous situations. One example is given in Figure 2.

Let us now examine the use of weekly tests on different parts of the course. The first two
chapters of the course deal with the introduction of the languages of Propositional Logic and
Predicate Logic, their interpretations, main equivalences, inferences, different canonical forms,
etc., their simple applications and their relationships to different domains of mathematics.
Accordingly, test-type questions are very suitable for achieving many educational aims on these
themes. Therefore, abundant use of questions is made in teaching the material of the first six
lectures. The bulk of the more voluminous exercises (problems based on truth-tables, formula
manipulation and the logical value of predicate formulas in concrete interpretations) are solved in
computer class during workshops or as independent work. Blackboard-based workshops are used
for expressing propositions through formulas and doing exercises on inference and equivalence
proof/disproof.

In the chapter on axiomatic theories, the number of questions to be tackled is much smaller.
The rules of Grentzen-type Propositional Calculus and Predicate Calculus are introduced and
argued. The bulk of the lecture time is spent on the proof of the properties of the systems. The
building of formal proofs is virtually the only type of tasks solved in classrooms. We have special
software for that. The first test is conducted on the material taught at the first lecture of the chapter
and it covers the general concepts and rule properties. At the end of the chapter, two tests are
solved, where problems of step selection described under Item 8 are supplemented with those
dealing with the properties of quantifier rules and concrete first-order theories.

In a similar manner, the chapter on algorithm theory has been built around one central concept.
In workshops, Turing machines are constructed for calculating various numerical functions using
unary and binary codes. Two tests are solved, of which the first one is built primarily on the
material presented in the introduction while the second deals with the specifics of the enumeration
of Turing machines.

As concerns the types of the questions used, the current database of approximately 500
questions contains marking questions (42%) and class assigning questions (41%), along with
multiple-choice and matching questions (both 5%), numerical and short-answer questions (both
more than 2%), and all the remaining types (each less than 1%). Such a distribution of types is
apparently attributable to the authors’ intention to support theoretical learning and provide
questions on comparison, evaluation and classification promoting the making of generalizations
rather than just ask for the facts. In the opinion of the author of this paper, such a distribution also
testifies to the functionality of the implementation of class assignment questions as a separate type
in the test system.

Figure 2. A question on possible steps in the proof

Figure 3. Questions on the comparison of formulas proved to be difficult

5. Students’ working strategies and results. Changes in
 the organization of tests
First of all, we must speak about a few problems that arose upon the launch of the test system.

Technically, these concern exactly the free use of the test system where tests can be solved for an
unlimited number of times.

The author composed the first weekly tests of exercises in such a manner that after giving an
incorrect answer the student was able to press a button and see the correct answer. However, the
students started to look up and write down the correct answers before solving the tests (at that
time, the number of parallel questions was still fairly small). Thus, we had to disable the correct
answer feature, and the students then need to work on their lecture notes in order to understand
their errors.

Next, the students discovered that it is possible to run several copies of APSTest on the same
computer at the same time. Running several “trial copies” alongside the “main copy”, they were

able to try several variants for answering a question, until the program acknowledged one of them
as true. The programmers then had to improve the programme to deny them this opportunity.

Based on the analysis of the database, we have discovered different strategies used by students
for taking tests allowing an unlimited number of tries.

1. The most noticeable were the students who set the goal of achieving a 100% or nearly a
100% success rate. Stronger students usually needed 1-3 tries for that. They carefully considered
each question of each try, spending an average of 0.5-2 minutes per question. Quick reply was
only given to relatively simple questions as well as those whose answer was known from a
previous try. Occasional bulkier questions took them 3-4 minutes to complete. Some students
solved a test 3-4 times even after they had already achieved the maximum score. Their intention
was to obtain a better knowledge of the entire material by answering the different variants of the
questions. Such an approach, which requires approximately one hour per week, might be
considered optimal. For instance, at the spring semester of 2001, 31 students out of 89 had scored
a 95% or a better success rate in at least 8 tests out of 10. More than one half of these students
have a behavioural pattern similar to that described under this item. At all semesters, the number
of students scoring a maximum result is smaller at the beginning and increases with subsequent
tests; however, this is mainly due to the students taking more tries.

2. Some students looked through a test once or twice without answering any questions before
actually doing it. By doing this, they found out which themes of the lecture were represented in the
questions and which were not. After that, they read the lecture notes and then scored a try.

3. A small number of students (less than 10) only tried to solve each test once and made no
attempts to score the maximum points. They only took another try if they did not succeed in hitting
the required 75% mark. Of that number, the students who were stronger often scored a result that
was quite close to the maximum.

4. For students who were weaker than average, it took 5-8 tries to achieve the desired result.
Very few of them took a break to examine the lecture notes after an unsuccessful try. Usually, they
started a new attempt immediately after they finished the previous one. Due to the large number of
tries, they had already memorized some questions by the time they reached the last tries. The
tables in the database show that they worked through the last tries mechanically, with the time
spent on answering being less than half a minute per questions; in multiple-choice questions it was
often just a couple of seconds.

5. There were also students who regularly took 15-20 tries per test. It took them at least three
hours. Apparently, they tried to do the test without scrutinizing the theory, giving an incorrect
answer to even rather simple questions. Often, such students broke off the test after a weak score
from the first questions and started from the beginning again. After a while, they had memorized
the correct answers to all the variants of the first questions yet a subsequent set of questions led
them to new break offs. As a result, they more or less memorized the answers to the first themes,
until it sufficed for achieving the 75% success rate. The last themes of the material, however, were
practiced less than the previous ones. In most cases, these students displayed no change of strategy
over the course of the semester.

6. Analysis of the current situation
The experience gleaned from the three academic years has shown that the tests provide support

for students in learning the course. The students have rated the use of computer tests as positive in
both informal conversations and formal questionnaires. The need to do tests requires periodical

work on lecture notes, which, in turn, improves understanding at subsequent lectures. There has
been a decrease in the number of students who drop out from the course towards the end of a
semester for having done too little work during the first months. Furthermore, even the leading
students of the course admit that they have plenty of food for brain racking in the tests.

From the teacher’s perspective, the tests provide us with a means allowing us to secure, without
much extra work, that the students are familiar with the material of the previous lecture before they
start to learn a new one. On the other hand, it is a means that allows us to obtain feedback on the
learning of both individual questions and comprehensive themes. The investigation of the answers
of current tests has allowed us to add an item on the spot or explain a question that has remained
obscure. A fairly efficient means of discovering the most difficult themes of the entire course is an
analysis of incorrect answers found in the summary tests of about twenty most successful students.
The most difficult theme of the tests was the set of questions added in the last year for evaluating
the suitability of possible steps in concrete proof-building situations (see 4.8). Even better students
made fairly many mistakes here, which did not disappear even in the summary test. Questions on
the comparison of formulas in predicate logic also proved difficult (Figure 3). Besides the themes
posing difficulties, the summary tests also reveal occasional weaker answers that point to certain
gaps in lectures/study aids or to differences in the approach of different workshop groups.

The themes and the organization of tests have steadied; we have a bank of questions for
generating a reasonable number of parallel variants. To discourage the mechanical solving of tests,
the author is currently considering the imposition of a limit to the number of tries or the linking of
the effective score to the number of the try. However, we do not consider taking very complex
measures. Even in their current form, the tests provide students with enough opportunities and
motivation for reasonable work.

REFERENCES
- Croft A.C., Danson M., Dawson B.R., Ward J.P., 2001, “Experiences of using computer assisted
assessment in engineering mathematics”, Computers & Education, 37, 53-66
- Prank, R., 1991, “Using Computerised Exercises on Mathematical Logic”. Informatik-Fachberichte, vol.
292, Berlin: Springer, 34-38.

