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ABSTRACT 
We study a graphical approach to the concepts of  eigenvalue and eigenvector of a square matrix. This 

approach is based on an interactive computational environment created with Cabri Geometry II. The 
environment allows a simultaneous display of:  a) a square matrix A of size 2x2 or 3x3, b) an arbitrary vector v 
in IR2 or I R 3 and its image under the linear transformation defined by A and c) the graph of the characteristic 
polynomial P(λ) associated with A. The entries A as well as the coordinates of vector v can be directly (this is, 
on-screen) manipulated, so providing a method for a graphical analysis of  eigenvalues and eigenvectors of a 
given matrix. This exploration is guided by the graph of P(λ) 
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1. Introduction 
The concepts of eigenvalues and eigenvectors constitute an important topic for a first year course in 

Linear Algebra and it is, at the same time, a source of difficulties for students. Some of these 
difficulties could be relates with the diversity of mathematical objects in which these notions rest and 
in the almost exclusive use of algebraic symbols in the process of teaching. 

In this work we present a computational environment that uses graphical and numerical 
representations of a dynamic nature, designed with the purpose of facilitating the conversion among 
different representations of the same mathematical object. In the context of the theory of R. Duval [1] 
on Semiotic Representation of Registers, this conversion is a cognitive activity, needed to achieve a 
conceptual apprehension of the mathematical concepts. 

The idea to create a computational environment based on dynamical representations has been taken 
from Sierpinska [2], but the representations here used are different, because the purpose of this work is 
considerably more modest regarding the level of abstraction with which the concepts are discussed. 

We present the activities designed with Cabri Geometry II [3] to explore the concepts of eigenvalue 
and eigenvector of a square matrix and we describe the instructions to construct the files that are used. 
In the elaboration of these files we have tried to reduce to the minimum level the requisites on 
software needed to interact with them. 

 

2. Definitions and Calculations 
Even though the notions of eigenvalue and eigenvector can be defined in a more general way, in a 

first course in Linear Algebra the definitions can be presented as follows: If T is a linear 
transformation from IR n to IR n, defined by T(v)=Av, where A is a matrix of size nxn, then it is said that 
a vector v∈  IR n, v≠ 0, is a eigenvector of T if there exists a real number λ such that T(v)= λv. The 
number λ is called an eigenvalue of T. As it is usual, in this paper we will refer to λ as the eigenvalue 
of matrix A and to v as its corresponding eigenvector. 

From these definitions it is possible to go directly to the calculation of eigenvalues and 
eigenvectors of the linear transformation. But the procedure of algebraic calculations is not simple at 
all. The diversity of mathematical objects and algorithms involved sometimes makes it difficult for the 
student their reproduction, and this induces to memorization. Many of the errors made by students 
when performing the calculations could be explained in terms of the reduced attention that the 
teaching activity dedicates to the comprehension of the significance of the concepts, symbols and 
operations that are involved in these calculations. 

Figure 1 shows, in a schematic form, the concepts and operations that are involved in the 
calculation of eigenvalues and eigenvectors. (See [4]) 

 



 
Figure 1 

This procedure can be summarized as follows: 
1. Set the vector equation Av= λv, or, equivalently, (A−λI)v=0, where I denotes the identity 

matrix of size nxn; 
2. Write the vector equation (A−λI)v=0 as an homogeneous system of linear equations; 
3. Calculate and set equal to cero the determinant of the matrix A−λI to obtain the characteristic 

polynomial, P(λ); 
4. Calculate, or find approximated solutions to, the real solutions of P(λ), in case they exist. Each 

real root of P(λ) is a real eigenvalue; 
5. Find the set of non trivial solutions (subspace Si) for the homogeneous system of equations 

obtained in Step 2, for each real eigenvalue λi; 
6. Determine a base for each subspace Si. The vectors that constitute a base for Si are the 

eigenvectors corresponding to λi. 
 

3. The Context of the Teaching Activities 
The teaching approach described in this work is a part of a more general project, which pursues a 

reformulation of the teaching of the Linear Algebra course that is offered at the Universidad de 
Sonora, to science and engineering student. This reformulation combines the work in the classroom 
with the activities in a computational environment created with Cabri. The design of activities with 
Cabri is oriented by the two following general principles: 

1. The computational environment shall allow the interaction of the student with the 
representations provided by the computer to the extent of permitting the student to perform 
modifications, with the objectives of detecting behavioral patterns and of formulating conjectures on 
the represented objects an their characteristics; 

2. A first graphical approach to the mathematical concepts can be useful to create a more concrete 
base of significance, before examining these concepts in a more abstract level, and the manipulation 



performed by the student on graphical-dynamical representations can help in the construction in this 
base of signification. 

In the course on Linear Algebra, the immediate background to the topic discussed in this article is 
linear transformations, which more important properties are also explored with a computational 
environment similar to the one described here. 

  

4. The Computational Environment 
The environment that has been created with Cabri Geometry II allows the exploration of the 

concepts of eigenvalue and eigenvector for square matrices of sizes 2x2 and 3x3 and works with three 
simultaneous on-screen representations, namely: 

1. The graphical representation of v and of T(v), where v is a vector that can be directly 
manipulated, which, in turn, modifies vector T(v); 

2. The matrix A, whose entries can be varied, so modifying vector T(v) and the characteristic 
polynomial P(λ); 

3. The graphical representation of P(λ), which can be manipulated, not directly, but through the 
entries of matrix A. 

These representations allow the student to perform explorations at two levels: 
1. A vector v will be an eigenvector of A when v and T(v) are collinear. Then the objective 

consists in “dragging” vector v until this happens. Once such a vector v has been found, the student 
can calculate the magnitude (i.e., the absolute value) of the corresponding eigenvalue by dividing 
||T(v)|| by ||v||. Additionally, he/she can move v without changing its direction to verify that this motion 
does not alter the calculated eigenvalue. At this level the graph of the characteristic polynomial 
remains fixed and its real roots coincide with the found eigenvalues. 

2. By varying the entries of matrix A the student can look for eigenvalues and eigenvectors of 
other matrices. This allows the exploration of the behavior of eigenvalues and eigenvectors for some 
interesting matrices, as are, for example, diagonal, symmetric, triangular, singular, etc. 

 

5. The Teaching Activities 
The main activities performed by students at first level are related with the search of eigenvalues 

and eigenvectors. In the case of square matrices of size 2x2 the student has to rotate vector v, around 
the origin, in search of a vector v1 that is collinear with T(v1). Once vector v1 has been found the 
student is asked to drag it, keeping its direction unchanged, to conclude that, in the direction of v1, 
there are infinitely many vectors that are collinear with T(v1). All of these vectors are multiples of v1 
and, hence, it makes sense to choose one of them, v1 say, as a base for the subspace to which them 
belong.  

Since v and T(v) are collinear for every vector in the direction v1, then for every v1 there is a real 
number λ such that T(v1)=λv1. The student can now take any of these vectors and with the “Distance 
and Length" tool from the Cabri menu can calculate the norms of v1 and T(v1). Number λ is then the 
quotient between the norm of T(v1) and the norm of v1. This quotient has to be taken with positive sign 



if v1 and T(v1) have the same direction and with negative sign if they have opposite directions. Figure 

2 shows the eigenvector v1=c(1,1), c ≠0 corresponding to the eigenvalue λ=2 of matrix 
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Figure 2. An approximated eigenvector in IR2  

The calculations can be repeated for several of the vectors found in the direction of v1 in order to 

conclude that the number λ is the same for all such vectors. 

The construction in IR3 is manipulated in a slightly different way as compared with the one in IR2. 

These differences are related with the problem of representing a three-dimensional vector on a two 

dimensional screen. In IR2 the graphical search for collinearity between vectors v and T(v) is 

exhaustive, since in rotating vector v around the origin, the whole plane is “swept”. In IR3, however, 

the search is not that simple. According to the design of the construction, students have to combine 

two ways of moving vector v in order to detect collinearity: one of them on the point P and the other 

on the point v. Point v is the end point of the vector and point P is its orthogonal projection on XY 

plane. See Figure 3 for an approximated eigenvector of 
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Figure 3. An approximated eigenvector in IR3 

 

Since vectors v and T(v) in IR3 may seem to be collinear without actually being, the environment 
shows on-screen the measure of the angle θ between v and T(v) as a guide that orients the search. With 
this resource, the aim is to find a vector v such that the angle θ is either 0° o 180°. Given that Cabri 
does not provides a direct way for calculating the norm of a vector in IR3, the environment also 
includes the coordinates of v and T(v) in order to facilitate the calculation of ||v|| and ||T(v)||. With 
these quantities, the student can obtain the absolute value of the corresponding eigenvalue. 

The exploration activities so far performed by students belong to what we have called Level 1 
Explorations. Once familiarized with the calculations of eigenvalues and eigenvectors in this 
environment the student is asked to answer some questions, the answer of which requires changing the 
level of exploration activities. These questions are of the following type: 

a) If the characteristic polynomial of a matrix A has no real roots, how many eigenvectors can A 
have? 

b) What is the relation among the eigenvectors of a symmetric matrix? 
c) How many eigenvalues does a singular matrix have? 
d) How many eigenvectors does a singular matrix have? 
e) If a matrix A is diagonal, how are the entries of A related to its eigenvalues? 
f) If the characteristic polynomial of a matrix A has a real root of multiplicity two, how many 

eigenvectors can A have? 
g) If the diagonal entries of a diagonal matrix A are all the same, how many eigenvectors does A 

have? 
In order to answer these questions has to try several matrix entries and pay attention to the 

graphical behavior of P(λ). All the questions involve activities belonging to Level 2 and they have 
turned out to be more difficult to answer as compared with those formulated at Level 1. 

 

 
 



6. Conclusions 
Students have been able to successfully perform the activities proposed in this environment and 

they have shown interest in the topic. The different answers given by students have generated a fruitful 
discussion about the meaning that the topics under study acquire in this environment. However, the 
supervision of the professor has turned out to be very important to give the activity the proper 
orientation, particularly on those areas where difficulties have been detected. 

Some of these difficulties are the following: 
1. Students have had problems to identify negative eigenvalues, partly because in this case the 

collinearity of v and T(v) is not always clear in the environment and partly because sometimes they 
find it difficult to identify the effect of multiplying a vector times a negative number. 

2. They have found it difficult to explain what happens with eigenvalues and eigenvectors for 
singular matrices and they have requested for help in this case to identify on-screen the eigenvector 
that corresponds to a zero eigenvalue. 

3. In the last question, sometimes it has been hard for students to get the conclusion that the 
eigen-subspace has dimension 2. 

 
These difficulties have been directly observed during the teaching development. A more detailed 

analysis on the achievements and difficulties to move from one register of semiotic representation to 
another that shall be based on the written answers given by students is in progress. Given the diversity 
of representations and registers that the teaching design involves, this analysis has not been simple at 
all. 

 
Appendix: Instructions to construct the Cabri File to work  
                   in IR 2  
In this appendix the Cabri instructions to generate the environment in IR2 are given. The 

construction in IR3 is similar. 
1. With the “Show Axes” tool ask Cabri to plot a set Cartesian coordinates. Refer to this system as 

System I. 
2. Draw an arbitrary “Vector” on the origin of coordinates. 
3. With the “Label” tool denote with v the end point of the vector. 
4. With the “Numerical Edit” tool write four numbers in a 2x2 matrix look-like configuration. 

These numbers will represent the matrix A associated with the linear transformation T(v)=Av. Figure 4 

shows matrix 



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A , with a=1.5, b=1.8, c=2.2 and d=1.2. 



 
Figure 4: A detailed aspect of the construction in IR2  

 

5. Use the “Calculate” tool to compute the coordinates of vector Av and drag each of the 
corresponding coordinates from the calculator to the Cabri screen. 

6. With the “Measurement Transfer” tool project the first coordinate of vector Av to the X axis and 
the second coordinate to the Y axis. Mark with a “Point” the corresponding projections. 

7. Draw a “Perpendicular Line” to X axis through the point determined on this axis in Step 6 and 
then draw a “Perpendicular Line” to the Y axis through the corresponding point. 

8. Draw the “Intersection Point” between the two perpendicular lines obtained in Step 7 and call Av 
this point. 

9. Draw a vector from the origin of coordinates to point Av. If (x, y) denote the coordinates of 
vector v then the coordinates of Av will be (1.5x+1.8y, 2.2x+1.2y).  

10. Using the “New Axes” tool draw another system of coordinates. Refer to this system as System 
II. Fix the origin of System II sufficiently far away from the origin of System I. 

11. Use the “Point on Object” tool to select an arbitrary point S on the X axis of System II. With 
the “Equations and Coordinates” tool ask Cabri for the coordinates of this point in System II. Draw a 
“Perpendicular Line” to X axis (of System II) passing through S. 

12. Use the entries of matrix A (see Step 4) to calculate the number P(λ)=(a−λ)(d−λ)−cb, taking λ 
as the abscissa of point S. 

13. “Drag” the number obtained in Step 12 from the calculator to the Cabri screen. 
14. Use the “Measurement and Transfer” tool to project P(λ) into the Y axis of System II. Draw a 

“Perpendicular Line” to Y axis through the point determined by P(λ) on the Y axis. 
15. Draw the “Intersection Point” between the perpendicular lines obtained in Steps 11 and 14. Call 

L such point. 
16. Ask Cabri for the “Locus” of L when S moves along X axis of System II. This Locus is the 

graph of the characteristic polynomial P(λ) of A. See Figure 4. 
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