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ABSTRACT 
This paper analyses the solving process of two undergraduate students on a non-routine mathematical 

problem. By comparing these students’ work, it can be observed that their processes suggest different 
approaches in relation to the way a solution was sought. One student followed a process in which his principal 
activities were centred on discovering those key ideas that would allow him to tackle the problem. The other 
seemed to be more focused on inventing a way of dealing with the situation and building a solution to the 
problem. Since in order to invent a solution some useful facts have to be first stated or discovered, it may be 
speculated that a process which aim is to invent is more flexible than a process which aim is to discover. 
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1. Introduction 
By analysing students’ problem solving activities and the (externalised) reasons behind their 

courses of action it may be possible to gain some insight into their assumptions about the nature of the 
solutions they are trying to achieve. It may be speculated that a student whose aim is to discover a 
solution believes that the solution is something that already exists and that his or her duty is to uncover 
it. On the other hand, a student whose aim is to invent a solution either does not believe that a solution 
is out there or believes that if this is the case s/he still can create her/his own solution. The objective of 
this paper is to discuss these different approaches and their implications to problem solving.  

 

2. Approaches to Mathematics and Problem Solving 
In relation to teaching mathematics, what is meant by “mathematics” (i.e., the view held towards 

mathematics) affects the way in which mathematical problems are presented and the way in which 
problem solving is conducted (Shoenfeld, 1992; Goldin, 1998). For instance, the definition-theorem-
approach to mathematics is a paradigm that has affected mathematics education by focusing attention 
to the logico-deductive activities carried out by the student (Davis and Hersh, 1986). Furthermore, 
studies related to what students believe is expected from them when doing mathematics suggest that 
they hold different views of what “doing mathematics” is about, and that this, in turn, affects their 
achievement (e.g., Alcock and Simpson, 2001; Hazzan, 2001). 

In the case of problem solving, it may be speculated that a solvers’ idea about the nature of 
mathematics may affect the way in which a solution is sought. For example, if a student holds a 
Platonist view of mathematics (see Hersh, 1997), his or her approach may suggest an attempt to 
discover those key entities required to solve the problem. On the other hand, if a student holds a view 
of mathematics as a human construction, his or her approach may be better defined by an attempt to 
“build” a solution. 

The purpose of this paper is not to show that the solving processes analysed here fall into a 
“Platonist” or into a “Constructivist” approach. The scope is more limited in the sense that the aim is 
to discuss two observed approaches in relation to solving a mathematical, non-routine problem. These 
approaches suggest different assumptions about the nature of the solution that is expected to be found, 
and this will also be discussed. 

 

3. Methodology 
The written work analysed here belongs to two students from a group that took part in a ten-week, 

problem-solving course. The course participants were all doing undergraduate degrees in maths, 
physics or computer sciences. The course was structured with the objective of introducing students to 
vocabulary and concepts that could help them reflect on their own solving processes and share their 
experiences (based on Mason, Burton and Stacey, 1985).  

During the course, students were required to solve problems and encouraged to develop a rubric for 
recording their ideas and experiences. As a final assignment, they had to choose one between two 
problems and were required to submit a script of their process. The solving processes discussed here 
correspond to this final assignment. 



  

Students’ solving processes (corresponding to the final assignment) were coded and the activities 
identified suggested two categories. On one side, some students’ processes suggested that their 
objective was to discover a solution to the problem. Alternatively, other processes suggested that the 
main objective was to create a solution to the problem. An analysis of Martin and Kyle’s solving 
processes is shown here in order to discuss these two categories identified. (Real names have been 
changed to ensure anonymity.) 

The problem. The problem that the students had to solve was stated in the following way: 
These rectangles [see Figure 1] are made from ‘dominoes’ (2 by 1 rectangles). Each of the 
large rectangles has a “fault line” (a straight line joining opposite sides). What fault-free 
rectangles can be made? 

 
     

 

  

 

                                     Figure 1 
The problem was open in the sense that it allowed students to decide whether they wanted to 

approach it by assuming that “no fault-free rectangles” could be made, or the opposite. Another 
characteristic of this problem was its geometric nature and thus the fact that students worked (as 
expected) with geometric representations. In general, Fault-Free rectangles (FFR henceforth) can be 
built if their dimensions are 5 by 6 or larger, and not equal to 6 by 6. 

 

4. General view of Martin and Kyle’s solution process 
In general terms, Martin’s process may be described by the exploration of three main ideas. Firstly, 

he analysed the idea of “blocking and extending” in order to explain why faults appeared and how they 
could be blocked in order to build FFRs. Secondly, he looked at the possible “building blocks” of 
rectangles made with 2 x 1 dominoes. In relation to this, first he tried to justify that, since the basic 
structures that compose rectangles made with dominoes are inevitably faulty, FFRs cannot be built. 
However, he later found a FFR and decided to use the argument of the basic structures to describe the 
composition of FFRs. Finally, Martin’s third idea was that of building a set of FFRs made of 3 x 2, 4 x 
2 and 1 x1 “dominoes”. From the latter approach, he expected to build a fault-free structure which 
“dominoes” could then be easily split and transformed into 2 x 1 dominoes. 

In Kyle’s case, his process is better described by three stages rather than by three basic ideas. 
Kyle’s first stage appeared to consist of a process of systematic specialisation aimed at building a 
FFR; the product of this stage was, actually, a FFR. The second stage can be defined as the analysis of 
the newly-built FFR and the development of a way of extending it by 2 units in either direction 
(horizontally or vertically) and keeping it faultless. Since the FFR found by Kyle had dimensions 6 x 
5, he showed that, by his method of extension, he could build any FFR with dimensions (6+2n) x 
(5+2n) with n = 1, 2, 3, … Finally, during the third stage of his process, Kyle aimed at answering the 
question of whether FFR with even by even dimensions could be made at all. In order to do this, he 
tried to build an even by even FFR by combining his initial systematic specialisation with the new idea 



  

of systematically increasing the dimensions of a rectangle. The result of this last approach is shown in 
the next section. 

It may be said that Martin’s general approach was to look for potential key ideas for tackling the 
problem and then to verify whether these ideas were useful or not. On the other side, Kyle’s key ideas 
seemed to have emerged from a process of experimenting with particular aspects of the problem and 
trying to make use of the results of this analysis. In Kyle’s case, the results from one stage usually 
constituted the key ideas for the next stage. As for Martin, the different ideas explored were more or 
less independent. 

 

5. Martin and Kyle’s different approaches 
Martin’s solution process 
As said before, Martin’s solving process seemed to be guided by the exploration of three different 

ideas. The first idea was that of finding a way of “blocking [faults] and extending [the size of the 
rectangle]” in order to build FFRs. It is interesting to note that, in developing this concept, Martin 
seemed to be trying to develop a “systematic approach” that would allow him to control the situation 
and solve the problem. The following passage is from Martin’s written description of his solving 
process: 

AHA! Will try a systematic approach of ‘blocking’ faults. 
INTRODUCE concept of block. Given a rectangle with [a] fault line a block is a single tile 
added to stop the fault. E.g.,  

 
   

   

← block  

Figure 2 
 

INTRODUCE concept of extension. Once a block is made, the shape is extended to create a 
new rectangle by adding tiles, e.g., 
 

←extension  

  

  

 ↑   

 block  

Figure 3 
Conjecture 1. Method of blocking and extending will produce a fault-free rectangle. 
Martin devised and presented his method of “blocking and extending” as one, which would allow 

him to systematically build a FFR. It may be said that he based this method on two simple ideas: (1) 
the idea that faults must be blocked and (2) the idea that this leads to the need of increasing the size of 
the rectangle. However, the fact that he was not being able to build FFRs using this method, suggested 



  

him that they could not be built at all. As Martin put it: “repeated failure put idea of ‘no solution’ in 
my head”. In this way, he decided to modify his method and, later, to abandon it. 

Martin’s second approach was to look for the basic building blocks of rectangles made with 
dominoes. He believed, at a point, that it was not possible to build FFR from dominoes and aimed at 
proving this by showing that all rectangles contain sub-blocks that are faulty. For doing this, he first 
conjectured that all large rectangles contain either two vertical dominoes arranged side by side, or two 
vertical dominoes arranged one on top of the other, or both. In his solution process, he wrote the 
following: 

 
AHA! Must test all ways of sticking 
 

and 

 
                                             Figure 4 

 
together (to each other and self). We must prove all ways of doing so necessarily imply.  

 

or 

                                            Figure 5 
 

to complete rectangle. E.g., 
 

here 2 x = 

Figure 6 
In this second approach, Martin tried to justify that every rectangle made up with dominoes would 

contain a basic (faulty) combination, and, therefore, that FFR could not be built. He found a 
“convincing” argument to the first part of this conjecture but, “with much disappointment and 
frustration”, ended up producing a FFR. So he found himself in the position of having to modify his 
approach once more and to look for new ideas. The following figure shows Martin’s FFR: 

 
 
 



  

                      

                      

                      

                      

                      

 

                                Figure 7 

However, Martin did not abandon the idea of basic building blocks completely. Instead, he 
modified his approach by writing a new conjecture: 

Conjecture 4 Faultless rectangles with  
 

must have 

Figure 8 
Conjecture 4 was modified several times, but the idea of distilling the basic blocks contained in 

rectangles and FFRs remained. Martin provided an argument to show that it is inevitable to use these 
basic blocks and concluded that the 3-domino shape shown in Conjecture 4 is “necessary for a 
faultless rectangle”. 

So in his first and second approaches, it can be seen how Martin seemed to be looking for ideas 
that could be useful for dealing with the problem. The idea of building FFRs systematically through a 
simple but “justified” method (as in his first approach) did not prove to be very effective. Then, the 
idea of distilling the basic building blocks in rectangles made with dominoes (and later in FFR) did not 
seem to provide much information as to “what fault-free rectangles can be made”. Nonetheless, at this 
point, he had already accumulated two pieces of information: (1) that it is possible to build FFRs using 
dominoes and (2) that these FFRs contain 2 and a 3-domino, basic structures. 

The third of the basic ideas explored by Martin was the following: 
AHA! Relax original question, allow any size and ratio for rectangles to create a fault free 
rectangle (with view to dividing up larger rectangles to 2 x1). Specialise randomly: 

3 x 2 4 x 2 4 x 2 2 x 1 

3 x 2 

2 x 2 2 x 1 

3 x 2 3 x 2 4 x 2 

4 x 2 

Figure 9 
 

 



  

The idea behind this approach was that once a FFR rectangle was built with these 3 x2, 4 x 2, etc. 
rectangles, then these so-called “larger rectangles” could be split and transformed into 2 x 1 rectangles 
(dominoes). This did not turn out to be true in practice. However, by comparing these new FFR (made 
up of larger “dominoes”) to his previously built FFR, he found that they had some basic structures in 
common. The result was that this took him back to the 3-domino, basic structure mentioned above. 
Namely, 

 

             Figure 10 
The reason why Martin’s aim can be described as that of discovering lies in his overall approach. 

Martin’s approach suggests that he was looking for a key idea (or ideas) in order to solve the problem. 
By comparing Martin’s solving process to Kyle’s (discussed in detail below), it may be said that the 
latter followed an approach that is better described by the way ideas were developed and transformed.  

Kyle’s solution process 
Kyle’s first approach was to “specialise systematically”. At the beginning of his process he wrote: 

“[I] don’t know the nub of the question yet! Specialise to understand what the question really wants 
first. Specialise systematically”. In this way, he began by trying to build FFRs with 2, 3, 4, 5 and 6 
dominoes. But he was not able to build any FFR and thus declared himself “STUCK! Not sure if it can 
be done”. At this point, he decided to try to transform his last (faulty) rectangle into a FFR by adding 
dominoes to it (i.e., without restrictions on the number of dominoes used). The result was encouraging 
as he was able to build a FFR with dimensions 5 by 6. 

A second important stage in Kyle’s process was to analyse the way in which he had produced his 
first FFR and to devise a method for increasing its dimensions. As a result from the analysis, he 
distilled a list of important steps: 

- Started off with basic 6-domino shape 
- Eliminated horizontal fault by adding [blocks] “1”, “2”, “3” [see figure below] 
- Added “4” to counteract vertical fault 
- Swapped “5”, “6” to vertical to counteract horizontal fault 
- Built around to make it complete  
-  

                  

            4      

             5 6    

                  

           3       

                  

          1 2       

                 Figure 11 



  

It may be said that it was the fourth step (swapping 2 horizontal dominoes for two vertical ones) 
the one that formed the basis for Kyle’s method of extending his 6 x 5 FFR by two units in either 
direction, i.e., horizontally or vertically. This method consisted of taking a FFR and selecting a pair of, 
say, horizontal dominoes (if the size is to be increased vertically) placed one of top of the other. Then, 
all the dominoes on the level of the top domino or above (from the pair selected) had to be removed. 
The next step was to swap the selected pair of dominoes by a pair vertical ones and to add a full row 
of vertical dominoes to the top. Finally, the structure had to be “capped” again in order to return it to a 
rectangular shape. This would then produce a FFR larger than the previous one by at least two units 
(as layers of vertical rectangleswhich increase the height by 2can be added indefinitely). In order 
to justify why this method worked, Kyle added that: 

This new shape creates no horizontal faults and any vertical faults will be irrelevant because 
the existing rectangle (the “bottom part”) cancels these out. 

Using this method, Kyle showed that his FFR with dimensions 6 x 5 could be used to construct any 
N x M FFR with N = 6, 8, 10, … and M = 5, 7, 9, … As said above, Kyle based this method on the 
idea that, once a FFR is constructed, its dimensions could be increased systematically by “opening” 
the figure, inserting dominoes as required and, finally, “recapping” the figure in order to return it to a 
rectangular shape. The only condition was to make sure that, after the splitting, faults were 
“immediately taken care of”.  

The last stage in Kyle’s solution was his sub-process of trying to decide whether N x M rectangles 
of even dimensions could be built. So far, he had only been able to construct FFRs with even by odd 
dimensions. Furthermore, his method for increasing their size only allowed him to add 2n (n = 1, 2, 3, 
…) units (vertically, horizontally or to both dimensions) to already-built FFRs. So he suspected that 
even by even rectangles could not be made. For verifying this, he decided to begin by using the same 
strategy he had used before and that yielded his first even by odd FFR. I.e., he began with a faulty 
rectangle and added dominoes to it hoping that this would eventually lead to a FFR. Also, in order to 
increase the possibilities of this FFR having even by even dimensions, he decided to begin with 4 
dominoes instead of 3. In Kyle’s words: 

TRY… and find an n x m rectangle which is fault free [n, m even]. 
Earlier method: start with a basic rectangle and extend it. Previously started with a 3-domino 
rectangle so start with a 4-domino, this in the hope of getting n, m even. 

After experimenting with this approach and not being able to construct any FFR, Kyle concluded 
that: 

Staring with 2 dominoes together, it is impossible to cancel 1 fault at a time without producing 
an even by odd rectangle each time infinitely or until you find a fault-free rectangle.  

But, apparently, he was not convinced of his own arguments and thus continued trying to build an 
even by even FFR by experimenting and, at the same time, trying to use the information he had 
already accumulated on the problem. He was not successful in this attempt and closed his solving 
process by providing an unclear argument to the following conjecture: 

Starting with an even by odd dimensioned rectangle, and performing a series of iterations, it is 
impossible to get an even by odd rectangle as a result. 



  

As said before Kyle followed a solving process that can be described in terms of the strategies he 
developed for building and extending FFRs. Also, each strategy was built on the result of either 
previous strategies or previous sub-processes (e.g., the idea of building even by even FFRs using the 
concept of extension defined in a previous strategy). Comparing Kyle’s solution process to Martin’s, it 
may be said that Kyle’s aim is better described as that of using emergent ideas to build a solution. 
Martin proceeded by developing key ideas and then testing them (hoping, maybe, to find one on which 
to base his solution); Kyle on the other side, noted useful ideas as he worked with particular aspects of 
the problem and then transformed these ideas into a strategy. 

 

6. Conclusion 
The analysis of Martin and Kyle’s solving processes shows that, for dealing with the same 

problem, these students followed different routes. The nature of the differences between their 
processes suggests that their assumptions about the solution they were attempting to find may be 
different. Martin’s approach could be describedfrom a researcher’s point of viewas that of 
assuming that ideas are “out there” while Kyle’s approach as that of creating solutions.  

For Hersh (1997) a mathematician assumes the role of a Platonist when he works as if he believed 
that mathematical entities cannot be created and that they “exist whether we know them or not” (p. 
73). On the other side, when a mathematician works as if mathematics is not discovered but created, 
s/he is, according to the author, working as a formalist or an intuitionist. But, in spite of this 
apparently clear-cut distinction, the author suggests that mathematicians may actually adopt these two 
roles at different times: 

When several mathematicians solve a well-stated problem, their answers are identical. They 
all discover that answer. But when they create theories to fulfill some need, their theories 
aren’t identical. They create different theories. (Hersh, 1997, p. 74) 

In the case of the students, trying to give an account of the assumptions held during problem 
solving is an activity that can help us gain insight into their understanding about mathematics. This 
can be done, as Hersh indirectly suggests, by looking at what students do (and say, and write) during 
problem solving. In terms of validity, qualitative research methods such as grounded theory (see 
Glaser and Strauss, 1967) provide means for producing valid results. In this respect, even though an 
account of a student’s assumptions will inevitably be a researcher’s construction, it ca also be a 
scientifically justified one. 
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