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ABSTRACT

Mathematical symbolism in general—and symbolic algebra in particular—is among math-
ematics’ most powerful intellectual and practical tools. Knowing mathematics well enough to
use it effectively requires a degree of comfort and ease with basic symbolics. Helping students
acquire symbolic fluency and intuition has traditionally been an important, but often daunt-
ing, goal of mathematics education. Cheap, convenient, and widely available technologies can
now handle a good share of the standard symbolic operations of undergraduate mathematics:
differentiation, integration, solution of certain DEs, factoring and expansion in many forms,
and so on. Does it follow that teaching these topics, and even some of the techniques, is now
a waste of time?

The short answer is “no.” On the contrary, as machines do more and more lower-level
symbolic operations, higher-level thinking and deeper understanding of what is really happen-
ing become more, not less, important. Numerical computing has not made numerical view-
points obsolete; neither will computer algebra render symbolic mathematics obsolete. The key
question is how to help students develop that bred-in-the-bone “symbol sense” that all math-
ematicians seem to have. What really matters is that students use mathematical symbolism
effectively to pose worthwhile problems in tractable forms. Once properly posed, such prob-
lems are well on the way to solution, often with the help of technology. The longer answer,
explored in the paper, concerns choosing mathematical content and pedagogical strategies
wisely in light of today’s technology.



Introduction

What does it mean to know and do mathematics effectively at the tertiary level? How
do the answers reflect the present and future, when mathematical technology, including
symbol-manipulating technology, is already widely available, and will probably soon be
ubiquitous?

What should college-level (tertiary) students in particular know and what should
they be able to do, in order to be mathematically educated in a technology-rich envi-
ronment? How can we teachers help bring students to this kind of knowing?

I approach these questions from a perspective that’s fairly common in the United
States: I’m a generalist mathematician who teaches reasonably pure mathematics to
North American college students. About one-third of my students in an average class
intend, with varying degrees of intellectual seriousness and interest, to complete a 4-year
mathematics major. Only a small minority (10% or fewer) of students plan postgraduate
study in mathematics. A more typical student plans to work after graduation in a
technical but not university-level academic job, such as software engineering, database
management, or high school teaching.

I am a practitioner of, not an expert researcher in, mathematics education, and so
will not presume to offer advice on the education research agenda or how it should be
carried out. What I hope to contribute is a teacherly and mathematical perspective on
some content, techniques, and ideas related to symbolic mathematics that I think are
mathematically important to today’s tertiary students, and how I think students can
be helped—sometimes with technological assistance—to acquire these advantages.

1 The technology background

Disputes over educational uses of mathematical technology have been around as long
as the technology itself. Years ago one heard the “desert island” argument from oppo-
nents of instructional technology: Students who are permitted to use, say, calculators
for school arithmetic might suffer disproportionately if later shipwrecked on low-tech
islands. This argument is seldom heard anymore; it was killed either by the rising
availability of cheap calculators or by the worldwide decline in passenger marine travel.
In any event, there’s no doubt that many students can now afford and keep readily
to hand the technology needed to perform a huge share of the algorithms encountered
even in tertiary mathematics. It’s well known, for instance, that the TI-89 handles in-
tegrals, derivatives, partial fractions, and much more. But did you know that the TI-89
can also handle many of the residue calculations given as exercises in complex analysis
texts? With powerful computer algebra systems such as Maple and Mathematica also
becoming more affordable and available to students, the technology background has
shifted markedly.

With the desert island argument no longer tenable, technology opponents resort
to other arguments. Technology takes too much time to learn; students can’t think
in the presence of machines; technology use is just a post-modern cover for dumbing
mathematics down—another nail in the coffin of civilization. I find these arguments un-
convincing at best and dishonest at worst. How much do you think your students really
struggle with technology as they pirate music files from the Internet? The dumbing-



down argument is worst of all: it is simple “calumny” (as Tony Ralston observes in [2])
to equate technology-based reform with lowered intellectual standards or expectations.

This is not to deny, on the other hand, the existence of good, important, and (in
my opinion) still open questions surrounding pedagogical uses of technology. Owning a
calculator that “knows” how to expand rational functions in partial fractions does not
necessarily obviate the need to understand something of the idea—and perhaps even of
the process—by hand or by head.

At the school level, arguments over technology use often touch on the role and
importance of paper and pencil arithmetic (PPA) in technology-rich environments. At
one extreme are calculator abolitionists, asserting (with perhaps more vehemence than
evidence) that calculator use is somehow inimical to reason—children, in this view,
can either push buttons or think, but not both, and certainly not simultaneously. At
the opposite end of the spectrum are other abolitionists, such as Tony Ralston, who
advocate abolition not of calculators but of PPA itself, at least as an explicit goal of
K-12 mathematics education. (One should hasten to add that Ralston also recommends
greatly increased emphasis on mental arithmetic (and perhaps also on mental algebra)
to replace PPA. His eloquent paper [2] is well worth reading.)

Beyond with this clash of opinions is, I believe, an important basic agreement on
ultimate goals. In the end, most of us care far more about whether students can pose
and solve novel and challenging problems than about what technology they may use
along the way. What counts most is effective mathematical thinking, which comprises
such elements as “symbol sense” and facility with mathematical structures; both are
discussed in more detail below. What is mainly at issue, I believe, is whether technology
can help, or must hurt, the cause of teaching students to think well mathematically.

2 Number sense and symbol sense

At the elementary level, what may matter less than PPA facility number sense, that
intuition for numbers that includes such things as an ability to estimate magnitudes, an
eye for obviously wrong answers, and an instinct for choosing (rather than necessarily
performing) the arithmetic operation needed to solve a given problem.

At the secondary and tertiary levels, the mathematical symbols under study become
much more general than numerals (which are, of course, symbols in their own right),
and the degree of abstraction rises as students progress. The objects symbols stand
for in more advanced mathematics might be unknown numerical quantities, functions,
operators, spaces of various sorts, or even more abstract objects. At these higher levels
of study the analogue of number sense is symbol sense, as defined by Arcavi [1] and
others. Symbol sense is harder to define and delimit than number sense—appropriately
enough, given the greater mathematical depth and breadth of, say, polynomial alge-
bra as compared to integer arithmetic. (Arcavi lists at least seven aspects of symbol
sense—only one of which involves actual symbolic manipulation.) Arcavi links symbol
sense closely to algebra, asserting that acquisition of symbol sense is the proper goal of
teaching algebra.

A student with good algebraic symbol sense should see that something is amiss with
an “equation” like

(a+ 2b)4 = 17a4 + 8a3b+ b3a+
√
ab.



She should also know—without any calculation—that of

a2 − b2 = (a− b)(a+ b) and a2 + b2 = (a+ b)(a+ b),

one is right and one is wrong. Similarly, one sees rather than computes that equations
of the form

a3 − b3 = (a− b) · (something) and a3 + b3 = (a+ b) · (something)

can be arranged to hold, while

a4 + b4 = (a+ b) · (something)

probably cannot.
In this paper I take broad views of both “symbol sense” and “algebra.” By symbol

sense I mean the general ability to extract mathematical meaning from and recognize
structure in symbolic expressions, to encode meaning efficiently in symbols, and to
manipulate symbols effectively to discover new mathematical meaning and structure.
By “algebra” I mean symbolic operations in general, including not only algebra in the
classical sense but also such things as formal differentiation and expansion in power
series.

Definitions may differ, but whatever one means by “symbol sense”, it’s clear that
tertiary-level mathematics takes a lot of it. Tertiary mathematics is a symbol-rich
domain, and doing mathematics successfully at this level requires considerable com-
fort and sophistication with symbols. Above all, students need a clear sense of the
things symbols represent, and how to extract meaning and structural information from
symbolic expressions.

Perhaps this should all go without saying—who can doubt that symbols ought to
mean something to students? In practice, however, we’ve all seen students floating
untethered in the symbolic ether, blithely manipulating symbols but seldom touching
any concrete mathematical ground. For example, many students struggle to make sense
of a symbolic expression such as

lim
n→∞

n∑
k=1

1
k

=∞.

This is hardly surprising; after all, the statement’s truth or falsity is far from obvious
to a newcomer to infinite series. But a more basic source of difficulty, I believe, is that
the expression’s meaning—let alone its truth or falsity—is highly compressed in the
symbolic representation. “Unpacking” the symbolism to reveal meaning and structure
can be a daunting challenge in its own right, as we see often as our students confuse or
conflate the terms and the partial sums of infinite series.

This brings me to my main questions:

1. How can we use technology—and symbol-manipulating technology in particular—
to help students acquire symbol sense in the broad sense discussed above?

2. Where does better symbol sense lead? How can students use better symbol sense
to understand mathematics more profoundly?



3 Building symbol sense

Technology can be used in many ways to help students make sense of symbols and
symbolic expressions. We give two brief examples.

Example: Unpacking symbolic expressions

One approach to making sense of the densely packed symbolic expressions students
encounter at the tertiary level is to use technology to “unpack” them and investigate
their parts. (This is the essence of analysis.)

For the infinite harmonic series discussed above, for instance, the Maple command

> s := n -> evalf ( sum(1/k, k=1..n) ) :

defines the partial sum function s(n). Evaluating s(n) is now easy for specific inputs n:

> s(10), s(20), s(30), s(40), s(50), s(60);

2.929, 3.598, 3.995, 4.279, 4.499, 4.680

The results show s(n) increasing, although slowly, with n.
That’s a good start, but it leaves open the deeper question of convergence or di-

vergence. Further experimentation (and perhaps some hints) might eventually suggest
successively doubling inputs to s:

> s(10), s(20), s(40), s(80), s(160), s(320);

2.929, 3.598, 4.279, 4.965, 5.656, 6.347

The situation is now much clearer; successive doubling of n causes essentially linear
increase in s(n) (by about 0.7 each time), and a useful analogy with logarithmic growth
(which can lead to a rigorous proof of divergence) begins to appear.

Example: Looking closely at squares

Another technology-aided approach to giving meaning to symbols is to look very closely,
from several viewpoints, at apparently familiar symbolic objects. Almost every Ameri-
can college student “knows,” for instance, that

(x2 )′ = 2x,

a fact that, while undeniably true, is almost entirely valueless without some deeper
sense of what the symbolized objects and operations really mean. Here, too, students
might use technology to help de-crypt the symbols, perhaps by plotting appropriate
functions, zooming in on graphs, or calculating related derivatives.

For variety, let me suggest another approach to looking more “structurally” than
usual at the squaring function, this time beginning from a numerical perspective.



What structure should a student see in the following list?

1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 ...

The first answer is obvious—even the dullest student with any recent memory of mental
or paper-and-pencil arithmetic sees the squares of successive integers.

So far so good, but let’s keep looking. Taking successive differences in the first list
reveals the simpler pattern of successive odd numbers:

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 ...

Taking differences again gives an even simpler list:

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ...

And so on. (Taking further differences soon loses its fascination.)
Starting from these basic structural ideas, students can move in many possible

directions to explore—and perhaps solve—new but related structural questions:

• What happens if our original list arises by sampling not the basic quadratic func-
tion f(n) = n2, but some other quadratic, say g(n) = n2 + 2n + 3? Are the
first differences still in arithmetic progression? Are the second differences still
constant?

• How do differences behave if the original list samples the cubic function n3? Or
the exponential function 2n?

• What happens if we move in the “opposite” direction, finding successive sums
rather than differences? How does the “constant of summation” affect the results?

Quite different structural questions could also be explored. Students might notice,
for example, that successive squares alternate between exact multiples of 4 and numbers
of the form 4k + 1. Or they might see pattern in the last decimal digits of successive
squares:

0 1 4 9 6 5 6 9 4 1 0 1 4 9 6 5 6 9 4 1 0 1 4 ...

And so on, perhaps, into areas of modular arithmetic.

4 Beyond symbolics: exploring structures

We have argued that technology can help students build better symbol sense for tertiary
mathematics. But why is symbol sense worth working to acquire? Where does it lead?

We should acknowledge first that, in actual practice and despite the presence of
technology that could enable better things, a lot of tertiary mathematics still boils
down to performing symbolic algorithms. As Ralston [2] says about college calculus in
the USA:

. . . despite so-called calculus reform, the aim of most college calculus
courses still seems to be to create a student-machine in which functions
are fed to its maw and derivatives and integrals emerge at the other end.



In mathematical reality, of course, tertiary mathematics is about much more than
algorithm performance, and technology may help us refocus attention where it belongs.
The calculus, for instance, can be about mathematical objects and ideas—function,
limit, derivative, differential equation, integral, infinite series—not just about formal
calculations with these objects.

In my opinion, the true Holy Grail at the tertiary level is mathematical structure.
Some italics may be in order:

Understanding basic mathematics profoundly means proficiency at detect-
ing, recognizing, and exploiting structure, and at drawing useful connections
among different structures.

The preceding example illustrates most of these points: The basic structure of successive
squares, once recognized and slightly manipulated, leads naturally to simpler or more
complex structures, and to new, deeper, and more interesting questions.

There is nothing new about this focus on mathematical structure. Mathematics
is frequently described, in one way or another, as the science of pattern. What may
need emphasis, though, is the special importance of mathematical structure in tertiary-
level mathematics. Here is where students meet new structures, and relations among
them, in rich but potentially bewildering variety, ranging from abelian groups to planar
graphs.

Quadratic polynomials: symbols reinforcing structure

We close with a final illustration of a pedagogical strategy—looking closely (perhaps
using technology) at familiar objects—that focuses attention both on symbolics and on
structures.

Quadratic polynomials are an excellent source of simple but not trivial examples;
students should know them intimately and handle them often. The following exam-
ple, although not particularly “technological”, illustrates the value of studying familiar
examples carefully, using symbolics, to reveal somewhat hidden structures.

(Before proceeding, we acknowledge in passing the good question of whether stu-
dents should learn to manipulate quadratic polynomials mentally, as well as on paper
and by machine. Ralston [2] recommends at least some mental manipulation. My
hunch is that if quadratics are emphasized appropriately the question will become ef-
fectively moot: students will automatically acquire some mental facility with them. In
any event, and whatever the medium of calculation or recording, students should know,
not calculate, that x2 − 9 factors as (x− 3)(x+ 3).)

In calculus, quadratic polynomials illustrate several important notions, including lo-
cal linearity and “quadraticity”, global nonlinearity, the meaning of the second deriva-
tives, and geometric convexity. Quadratics also illustrate the possibility and the advan-
tage of algebraic factoring, and more generally of the value of having convenient algebra
formulas. One sees, easily, for instance, that the vertex of a quadratic polynomial lies
midway between its roots, and that one root of a quadratic polynomial with rational
coefficients is quadratic if and only if the other root is rational.



Example: Pythagorean triples and rational points

The rational roots property of quadratic polynomials has an interesting and perhaps
unexpected “structural” consequence: there are infinitely many Pythagorean triples,
and they correspond in a natural way to rational points on the unit circle.

The idea is as follows: Given a nontrivial Pythagorean triple (a, b, c) of integers,
with a2 + b2 = c2, we divide both sides by c2. Renaming x = a/c and y = b/c gives a
rational point (x, y) on the unit circle

x2 + y2 = 1.

Since the process can (essentially) be reversed, hunting for Pythagorean triples amounts
to finding rational points on the unit circle. A few solutions are obvious; one is the
“north pole” point, (0, 1).

An ingenious way of finding other (indeed, essentially all) rational points is to find
intersections of the unit circle with lines through (0, 1) that have rational coefficients.
Each such line that is not vertical has an equation of the form the line y = mx + 1,
where the slope m is a rational number. Such a line intersects the unit circle at a
simultaneous solution of

y = mx+ 1 and x2 + y2 = 1.

A little algebraic work (by hand or by head) now produces the one-variable quadratic
equation

x2 + (mx+ 1)2 = 1.
This equation is easily solved for x. But we needn’t bother, at least for the moment.
Because all coefficients and the root x = 0 are all rational numbers, so is the other
root. Because every line through (0, 1) with rational slope cuts the unit circle in a
rational point, we see that infinitely many rational points, and hence infinitely many
Pythagorean triples exist. A little more work shows, moreover, that our recipe produces
all rational points. Combining symbols, algebra, and various mathematical structures,
we have solved a modest but nontrivial problem—and suggested methods of attack on
many others. (Are there rational points on the circle x2 + y2 = 3? On x2 + 2y2 = 3)?)
Somewhere, far in the distance, even the faint glow of elliptic curve theory can be
detected.

5 Conclusion

As modern technology handles more and more of the algorithmic aspects of mathemat-
ics, even at the tertiary level, the importance of higher level mathematical thinking—
symbol sense and facility with mathematical structure—become relatively more impor-
tant. Used properly, high-level computing technology can help tertiary students see
beyond the mechanics toward what matters most: mathematical structure.
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