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ABSTRACT

Linear algebra is a language which is used in all sciences (and beyond). For a class consisting
of students in mathematics, computer science, physics, engineering, microtechnics, chemistry,
we use a multidisciplinary approach to this field by example and application. Starting with
linear systems, we extract the general features from three motivating examples.

In the first one, we show that it is impossible to cover a sphere with (curvilinear) hexagons
only. In any subdivision using hexagons and pentagons, a fixed number of twelve pentagons
is needed. This is shown by row operations on a system of 4 equations in 5 variables. Here,
the surprise is that although the system is under-determined, one variable has a fixed value.
Several natural examples may illustrate this necessity: Football ball, buckminsterfullerene
Ceo, architecture, protozoa...From the dodecahedron we get a special solution having no
hexagons. All others are derived from this one by addition of a solution of the associated
homogeneous system.

In the second example, we consider a chemical reaction (composition of the atmosphere,
according to Lord RAYLEIGH), in which the coefficients have to be determined. The superpo-
sition principle for homogeneous systems appears quite naturally in this context.

Finally, to exhibit the power of the general principles, we consider a huge system obtained
by digitalization of a potential on a grid. If the values are given on the boundary, then there
is one and only one solution for which the value at each interior point is the mean value of the
four neighboring points. It is indeed easy to show that the associated homogeneous system
has only the trivial solution.

In our opinion, these motivating examples are accessible to undergraduate students. Lin-
ear equations may be amplified and added; thus linear combinations appear. They can be
dependent, whence the interest in giving a maximal number of independent ones; here is the
rank. Linear equations thus furnish an ideal approach for the language of vector spaces and
their dimension.



Introduction

Linear algebra is a cornerstone in undergraduate mathematical education. It develops
a general language used by all scientists and is interdisciplinary in essence. It hence
evolves naturally towards abstraction. For most students, it is a first contact with
modern mathematics. I propose to approach it by concrete examples. In this way, its
power and relevance is immediately realized.

Let me only sketch here a possible start with linear systems, already furnishing
a meaningful and valuable part of linear algebra. Two by two (and three by three?)
systems may have been solved in high school. But now it is important to consider
more general ones, and choose examples creating surprise, leading to questions, general
methods. . ., with cultural relevance, aesthetic sense, or having as many of these quali-
ties as possible!

1 First Example: Covering a Sphere with Hexagons
and Pentagons

Question: Is it possible to cover the surface of a sphere with (curved) hexagons only?
Answer: From a bee “it is difficult!”; from EULER: “It is impossible!”

To prove the impossibility, we consider a generalization. Let us try to cover a sphere
with hexagons and pentagons only. We know that this is possible.! The dodecahedron
yields such a covering with 12 pentagons (and no hexagon). By convention, we juxtapose
two polygons along a common edge, three polygons having a common vertex. It is easy
to find a few equations, linking the unknown numbers of such polygons. More precisely,
let us introduce

x : number of pentagons, ¥ : number of hexagons,
e : number of edges, f : number of faces, v : number of vertices.

The number of faces is equal to the sum of the numbers of pentagons and hexagons,
hence a first obvious relation: f = x + y. Since each pentagon has five edges, and each
hexagon has six, the expression 5z + 6y counts twice the number of edges (edges belong
to exactly two polygons). Hence a second relation 5x + 6y = 2e. Our convention shows
that the sum 5x + 6y also counts vertices three times and we get 5z + 6y = 3v. From
this follows 2e = 3v, but this relation adds nothing new since it is a consequence of
the previous ones. Another, more subtle relation was discovered by EULER, namely?
f+v=e+ 2. We have obtained a system consisting of four equations linking the five
variables x, vy, e, f, and v:

r+y = f
x4+ 6y = 2e,
5r +6y = 3v,
f+v = e+2.

'Such configurations occur in architecture, sport, chemistry. ..
2Tt is valid for any decomposition of the sphere into polygons, with no restriction on the number of
incidences at the vertices.



Grouping the variables in the left-hand side in the order e, f, v, x, y, these equations
are

f_x_y = 07
2e—bx—06y = 0,
3s — bx — by 0,

e—f—v = =2

To save space—this savings has enormous benefits—we replace an equation by the
sequence of its coefficients, not forgetting to include a 0 in the place of a variable that
does not appear explicitly. For example, the equation f — 2z —y = 0 stands for

Oc+1f+0v—1x—1y =0 abbreviated by therow (010 —1 —1:0),

separating the left- and right-hand sides by vertical dots. The whole system is thus

o 1 0 -1 -1: 0
2 0 0 -5 -6 : 0
0 0 3 -5 -6 : 0
1 -1 -1 0 0 : =2

The big parentheses have the sole purpose of isolating the system from the context(!). It
is advisable to start the enumeration by an equation containing the first variable, so we
permute the first and last equations and obtain an equivalent system. .. As is explained
in any linear algebra textbook, row operations may be used to bring the system into a
staircase form

-1 -1 0 0% -2
1 0 -1 —-1% 0
0 1 -3/2 —2: 2

0 0 0 —1/2 0! —6

o O =

The last equation of this equivalent system is —z/2 = —6 implying x = 12.

Here comes a surprise: Although the system is under-determined (only four equa-
tions linking five variables), the number of pentagons in any subdivision of the sphere
(into hexagons and pentagons only) is fixed and equal to 12. Isn’t this remarkable! On
the other hand, the number of hexagons is not fixed. Several natural examples illustrate
this. (Recall that the audience is not necessarily interested in pure mathematics, so
why not spend a few minutes to show the importance and ubiquity of the result found;
a few slides may help.)

(a) We already mentioned that a partition of the sphere is easily obtained with twelve
pentagons and no hexagon: x = 12 and y = 0 (simply project a regular dodecahedron
onto the surface of a sphere).

(b) Another solution with y = 20 (and =z = 12) is obtained as follows. Start with
a regular icosahedron (12 vertices and 20 faces formed by equilateral triangles). Cut
the vertices, replacing them by pentagonal faces (thus replacing the triangular faces
by hexagonal ones). The polyhedron thus obtained has 60 vertices representing the
positions of the carbon atoms in the buckminsterfullerene Cp.



(c) One can construct a geometrical solution with y = 2. Start with six pentagons
attached to one hexagon. This roughly covers a hemisphere. Two such hemispheres—
placed symmetrically—will cover the sphere.

General solution. Mathematically speaking, one can take for y any value—say y =
t—and then

rxr=12, y=t, e=3t+30, f=t+12, v=2t+20.

provides the algebraic solution of the proposed linear system. 3

General Principle. The general solution is the sum of the particular solution coming
from the dodecahedron and the general solution of the associated homogeneous system,
here depending on the choice of a parameter ¢ (there is one free variable).

Further themes. (1) Construct infinitely many geometrical solutions with two groups
of 6 pentagons (Hint: Consider two types of tubes). (2) What happens if the sphere is
replaced by the surface of a torus? (The associated homogeneous system appears.)

2 Second Example: A Chemical Reaction

The first example has shown that homogeneous systems are both important and simpler
to study. Let us turn to one of them. When Lord RAYLEIGH started his investigations
on the composition of the atmosphere around 1894, he blew ammoniac and air on a
red-hot copper wire and analysed the result. Let us imitate him, and consider a typical
reaction of the form?

xNH3+yOg+zH2—>quO+UNQ,

where the proportions z,...,v have to be found. Equilibrium of N-atoms requires
x = 2v. Similarly, equilibrium of hydrogen atoms requires 3z + 2z = 2u and finally, for
oxygen, we get 2y = u. Proceeding systematically, we have to choose an order for the
variables. We adopt their order of occurrence in the chemical reaction: x, y, z, u, and
v, hence write the system in the form

T —2v =0,
3x +2z —2u =0,
2y —u = 0.

Now, observing that the right-hand sides are all zero, it is superfluous to include the
last coefficient 0 common to all equations. Thus we simply replace the first equation
by the row (1000 — 2), so that the system is represented by the array

o O

1 0 0 -2
3 2 =2 0
020 -1 0

3Notice that many algebraic solutions have no geometric realization. For example, one may take
y= % (z = 12) and adapt correspondingly e = 31.5, f = 12.5, v = 21. Similarly, one can take y = —1
together with e = 27, f = 11, v = 18. A necessary condition is that y should be a nonnegative integer!
But this condition is not sufficient. There is no covering of the sphere consisting of twelve pentagons
and just one hexagon.

4We add hydrogen for mathematical interest, but be careful of the explosive character!




From the second row (or equation), subtract three times the first one, and then, permute
the second and third equations. This leads to the staircase shape system

100 0 -2
020 -1 O
002 -2 6

The last equation is
2z —2u+6v =0 orsimply z—u+3v=0.
If we choose arbitrarily « and v—say u = a and v = b—we have to take
2z =a — 3b.

The second equation then leads to 2y = a, and the first one furnishes x = 2b. Thus, for
each choice of a pair of values for u and v, there is one and only one solution set®

r= 2b x 2b
y= 3a Y 30
z= a—3b or equivalently z | =] a—3b
u= a u a
v= b v b

Observations. This problem concerns proportions. We can deal with numbers of
atoms, or numbers of moles.® If a solution is found, any multiple will also be one. We
may also add or combine multiples of solutions to obtain new ones. A first case is
given by the choice v = 2, v = 0, hence x = 0 (no ammoniac); it corresponds to the

elementary reaction
OQ + 2H2 — 2H20,

namely the synthesis of water. Another one—in which Lord RAYLEIGH was interested—
is given by u = 6, v = 2, hence z = 0 (no danger of explosion!) which corresponds to
the elementary reaction

4NH3+302—>6H20+2N2

Any solution is a combination of these two basic solutions. The general solution of the
system depends on two arbitrary parameters. It is easy to generalize.

Results. Any homogeneous system having more variables than relations has a nonzero
solution. The solutions of a homogeneous system exhibit the following structure

o Any multiple of a solution is again a solution,
¢ The sum of two solutions is also a solution.

Linear equations (rows of a certain type) may be amplified and added; solutions (vertical
lists) may similarly be combined. The language of vector spaces emerges in a relatively
general context.

5 A solution set is a list of solutions, written vertically.
6Each mole contains approximately 0.60221367 x 10?4 atoms. This is the Avogadro number, namely
the number of atoms in 12g. of carbon, or the number of oxygen molecules O2 in 32g. of oxygen, etc.



3 Third Example: Potentials on a Grid

It is important to realize that systems containing several hundred or even thousands
of equations and variables occur frequently. These systems are often incompatible, or
under-determined, and it is highly desirable to have efficient algorithms to discuss them.
In particular, it is impossible to use tricks or guess work to solve them! This is why
a systematic discussion has to be carried out. The first problem is that the alphabet
is too poor to code so many variables and we have to number them, thereby ordering
them:
X1, T2, T3y Ty

As before, instead of the equation aixy + asxs + asxs + - - - + a,x, = b, we simply write

the row of its coefficients: (a; as az ... a, : b). At this point, one should explain the
following

Basic Principle. A linear system having as many equations as variables can always be
solved in a unique way if the rank of the associated homogeneous system is maximal.
(Indeed, the reduced staircase system exhibits no compatibility condition, and there
are no free variables.)

Consider now in the plane R?, a certain bounded domain D (e.g. a disc, the interior
of an ellipse, or a rectangle, etc.). We are looking for a potential inside D, taking
prescribed values on the boundary. To approach this physical problem, we introduce
a square mesh in the plane, and only keep the squares having a nonempty intersection
with D. We are left with a certain set of vertices P;, edges and square faces. Here is
an example

+++++++
t++++ A+t
t+++ Attt
++++ +
++ +
++ +
+++ + +
++++ 4+ +

++ + + +
++ + +
++ + +

++ + + +
+++++ A+t

e e e i



Replacing the boundary points by a bullet, we get

o e e O
e |+ o e |+ e
e + + e o + + + o
o + + + + 4+ e
e + + + o o o + -+ o
o + + o e + + e
o |+ o o |+ e
e + e e |+ o
e + 4+ e e 1+ e
e + + + o o + 4+ o
e + + + + + + + o
e + + + + + e o©
e o o o o

The vertices which are not boundary ones have four neighbors, conveniently called
North, East, South, and West. We are looking for a function (potential) defined at
all interior points having the mean value property. Starting from known values at the
boundary points,” we introduce variables x; for the unknown values at the interior
points F;. If the four neighbors of an interior point P; are P,, P,, P,, and P;, there is
a corresponding equation

Tp +xq + 2 + x5 = 4,

Here, p = N(i) is the index of the northern neighbor of P;, etc. It may happen that all
x; are unknown, in which case we get a homogeneous equation

Tp+ 2y + 2 + 1, —4a; = 0.

Or it may happen that certain values are prescribed, because the corresponding point
lies on the boundary. For instance, we may encounter an equation of the form

Tp+ x4+ 2, —4x; = —bs

where by is the given value for the potential at the boundary point P;. In any case, we
group the unknown variables in the left-hand sides, while the known ones are gathered
in the right-hand sides. Thus we get a linear system (S) for the variables x;. We are
going to show that this linear system is compatible, and has a unique solution for each
data on the boundary.

If there are N interior points P;, the system contains N variables x; and also N
equations: To prove that (S) has maximal rank r = N, we consider the associated
homogeneous system (H.S), simply obtained by requiring zero values on the boundary.
In this case, it is enough to show that there is only one solution to the problem, namely
the trivial one x; = 0 for all indices i (corresponding to interior points P;). Here is the
crucial observation. For any solution set (z;), select a variable z; taking the maximal
value (in a finite list, there is always a maximum!). Since this value z; is the average
of the four values at neighboring points, the only possibility is that these four values

"Certain boundary values may be irrelevant: Here, they are denoted by a o instead of a e.



are equal, and equal to the maximal value. Iterating this observation on neighboring
points, we eventually reach a boundary point, where the value is 0. Hence the maximal
value is itself 0. By symmetry, the minimal value is 0. Finally, we see that all z; = 0,
which proves the claim.®

4 Notes on a Teaching Approach

From my experience, the last example is much more difficult to grasp than the two
preceding ones. But even if it is not possible to convey its significance, it will serve a
purpose, namely to show that linear algebra is not a trivial matter. Linear equations in
a large number of variables are used in extremely sophisticated situations, like weather
forecasting, devising profiles for wings of supersonic planes, etc. This is not apparent
on 4 x 5 examples, and is only suggested by the last example.

The preceding examples lead to the systematic elimination theory based on row
operations. Each of them can easily fit in a one hour (or 45 min.) presentation,
possibly followed by a discussion. In parallel exercise sessions (is it necessary to repeat
that exercises constitute a must in the learning procedure?), one may try to lead the
students to the question of the invariance of the rank. As soon as the vocabulary of
independence, generation, and dimension is acquired, it is possible to give a positive
answer.

It is widely recognized now that a first part of linear algebra should be devoted to
linear systems, rank/dimension theory, linear maps and their kernels, eigenvectors (ge-
ometrical theory, incl. diagonalization). A second part should introduce inner product
spaces with metric relations, orthogonality (Pythagoras theorem), best approximation
(mean squares method). This is the “bilinear” part of linear algebra. Symmetric oper-
ators can be treated in this part (with their diagonalization). Finally, in a third part,
the determinant is presented as a generalized volume, or volume amplification factor.
Having some experience from bilinear algebra, the students may now grasp multilin-
earity. Applications abound with the characteristic polynomial. Spectral values for
orthogonal, antisymmetric (and more generally normal) operators can be discussed.

It is important to me that a student able to follow only a first section of the course,
can already apply it in his field. I hope that this type of introduction yields a valuable
primer in linear algebra, complementing the classical approach by vectors in the usual
2- and 3-dimensional spaces.
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