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ABSTRACT 
High order approximations of an integral can be obtained by taking the linear combination of lower degree 

approximations in a systematic way. One of these approaches for 1-d integrals is known as Romberg Integration 
and is based upon the composite trapezoidal rule approximations and the well-known Euler-Maclaurin expansion 
of the error. Because of its theoretical nature, students in a classical Numerical Analysis course usually find it 
difficult to follow. In order to overcome the difficulty, Mathematica software is utilized to illustrate the method, 
and the underlying theory. A Mathematica program and a set of experiments are designed to explain the method 
and it's intricacies in a stepwise manner. The program is expected to help the student to learn and apply the 
method to 1-d finite integrals.  However, with minor modifications, it is possible to extend the method to multi-
dimensional integrals. 
 



 

  

1. Introduction 
The Romberg integration is the problem of approximating the integral below using the linear 

combinations of well-known trapezoidal sums Ti
1’s in a systematic way in order to achieve higher 

orders in an effective manner. 
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The method is based on the Euler-Maclaurin asymptotic error expansion formula and the 

Richardson extrapolation to the limit (Joyce 1971). Romberg, a German mathematician, (Romberg 
1955) has been the first to organize the Richardson’s method in a systematic way suitable for 
automatic calculations on the computer in 1955. 

Geometrically speaking, the value of I is the area under the curve of y=f(x)  bounded by the x-axis, 
and the lines x=a, and x=b.  T1

1 is the area of the trapezium and approximates the value of I as shown 
in Figure 1 below. 
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Figure 1  Basic trapezoidal computation T1
1  over [a,b]. 

 

 Each trapezoidal sum is defined as 
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for i=1,2,...,n (n ≡ maximum level of subdivision), xj = xo+jh, j=1,2,…,i and h = (b-a)/2i-1. Note that for 
the ith subdivision of the interval xo = a, and xi = b. The computation starts with T1

1  on the interval 
[a,b], and T2

1, T3
1, and so on are computed by successively halving the interval and applying the basic 

rule T1
1 to each subinterval formed. In this subdivision process the Romberg sequence {1,2,4,8,16,...} is 

utilized. Other subdivision sequences are also possible (Yazýcý 1990).   

T1
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For example, after the computation of T1
1  as shown above, the interval of integration is bisected 

and the second composite approximation T2
1 to I is formed as shown below. Obviously, as the number 

of subintervals increases a better, although same order of, approximations to I are obtained.    
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Figure 2  Composite trapezoidal sum T2
1  over 2 subintervals. 

 

Once the composite Trapezoidal sums are available, so-called Romberg table can be formed.  
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It is known that the entries in the second column of the table are composite Simpson’s 
approximations to the same integral (Burden  & Faires 1985). The third column entries are also 
composite approximations based on the Newton interpolatory formulae. The consecutive columns have 
no resemblance to any known method based on interpolation. The trapezoidal rule is of polynomial 
order one. That is, trapezoidal sums are exact whenever the integrand f(x)  is a first-degree polynomial 
in x. Provided that the 1st column entries converge to I, all diagonal sequences over the table converge 
to I as well (Kelch 1993). Moreover, if column k is of order p then the column k+1 entries are of order 
p+2. This could easily be justified using the asymptotic error expansion formula: 
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The ci’s are constants (based on the Bernoulli  numbers) independent of h. This is an even 

expansion in powers of h. The linear combinations formed by the Romberg procedure causes the  ci’s 
vanish one by one. Obviously, h approaching to zero (application of the composite rule for smaller and 
sma ller values of h) suggests that Tj

1 converges to I. For singular integrals this expansion is not valid  
and it takes different forms depending on the nature of singularity (Lyness & Mc Hugh 1970).  

In order to show the way ci’s vanish when the linear combination of the composite values are 
formed, the expansion formula above is applied with two different step sizes h1=b-a (original interval 
size), and h2=(b-a)/2, (interval size after  the first bisection) to obtain 
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Multiplying  both sides of the latter by 4 and subtracting from the first, and rearranging the resulting 

equation, one gets 
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which shows that the first error term of the expansion vanishes and the linear combination of T1

1 , and 
T2

1 , (T1
2  = [4T2

1 - T1
1 ]/3), produces a higher order approximation to I. 

 

2. Romberg Integration with Mathematica 

It is the feeling of the authors that, in learning the Romberg integration, students face some 
difficulties in understanding the rational behind the method. The discussion over the asymptotic error 
expansion and Euler-Maclaurin series and convergence makes the presentation more complicated. 
Working out the details of the derivations and combinations of the composite rules and the formation of 
the Romberg table is time consuming, if not boring. Instead, a simple symbolic program could be quite 
beneficiary to show all the details and derivations. Such an approach will give the student a chance to 
play around with the formulas and observe easily the relation between the composite sums, order of an 
approximation and the high orders achievable by forming the simple linear combinations. 

A text-based Mathematica  (Burbulla & Dodson 1992) is used to develop the program below: 
romberg/: romberg[f_,{a_,b_},n_]:= (  

1. Define h and initialize other variables 
 h = b - a; 

2. Generate  array  t for composite sums (to maximum level 10) 
 Array[t,10]; 

3. Apply the basic trapezoidal rule to f 



 

  

 t[1] = h/2 (f[a] + f[b]) 
4. Create array x to hold abscissas of the points generated as a result of subdivision. The newly 

generated nodes (x, •, and +) utilized by t[2], t[3], and t[4] as depicted by the Romberg subdivision 
sequence are illustrated in Figure 3. 
 Array[x,512];   

  a �        � b 

 

  a �    ×    � b 

 

  a �  •  ×  •  � b 

 

  a � + • + × + • + � b 

Figure 3  Nodes of subdivision at levels 1,2,3, and 4 

5. Compute composite trapezoidal sums 
For[m = 2, m <= 10, m++, 

    k = m - 1; 
    Do[ x[j] = a + (j-1)h/2^k , {j , 1 ,  2^k+1}]; 
    t[m] = h/2^m ( f[a] + f[b] +2 Sum[f[x[j]],{j , 2 , 2^k}] ) 
 

6. Define the Romberg Extrapolation table r (10x10 matrix) and initialize its first column to t 
Array[ r , {10,10}] 
For[m = 1 , m <= 10 , m++ , r[m,1] = t[m]] 

 
7.  Form the Romberg table using the first column entries 
For[ i = 2 , i <= 10 , i++ ,  

    For[ j = 2 , j <= i  , j++ , 
      r[i,j] = (4^(j-1) r[i,j-1] - r[i-1,j-1] )/(4^(j-1)-1)]] 

Once, this program is made available to the student, the method can be investigated for a  symbolic 
function f over [a,b] in an effective manner by calling the subprogram romberg with f for, say, 10 
levels of subdivision as 

f[x_] := g[x]  
romberg[f,{a,b}, 10] 
Romberg integration uses the so-called Romberg sequence R = {1,2,4,8,16,..., 2k,...} to subdivide the 

interval. Other subdivision sequences are also possible and may reduce the number of function 
evaluations for the same accuracy. However, Romberg sequence provides full overlapping of the 
nodes of integration, i.e., all the nodes at level k of subdivision are included in level k+1. This idea is 
incorporated in Step 5 above by replacing t[m] by a recursive definition as follows: 
 

For[m = 2, m <= 10, m++, 



 

  

   k = m - 1;  
   For[j = 1, j <= 2^(k-1), j++,     
     Do[x[j] = a + (2j-1)h/2^k , {j, 1, 2^k+1}]; 
     t[m] = t[m-1]/2+ h/2^k(Sum[ f[x[j]], {j, 1, 2^(k-1)}]) 
 

3. Experiments 
A sample Mathematica session is set up to demonstrate the power of the Romberg integration for a 

general function f. The following instructions are to be carried out after setting up the definitions above.  
Experiment 1: Set up the first trapezoidal approximation t[1] to I over [a,b]. 

In[1] := t[1] 

                (-a+b)(g[a] + g[b]) 
Out[1] = ----------------------- 
                             2 
Experiment 2: Set up the composite trapezoidal rule t[2] over 2 sub-intervals. 

In[2] := t[2] 

                                                            -a +b 
                 (-a+b) (g[a] + g[b] + 2 g[a + -------]) 
                                                               2 
Out[2] = ----------------------------------------------- 
                                         4 
Experiment 3: Set up the composite trapezoidal rule t[3] over 4 sub-intervals. 

In[3] := t[3] 

 
Out[3] = ( (-a+b) (g[a] + g[b] +  
 
               -a+b               -a+b                3(-a+b)  
    2 (g[a +-------] + g[a +-------] + g[a + ----------])))/8   
                  4                     2                        4       
Experiment 4: Simplify the expression 

In[4] := Simplify[%] 

                                                    a+b            3a+b             a+3b 
                (-a+b) (g[a] + g[b] + 2 g[-----] + 2 g[------] + 2 g[-------]) 
                                             2                4                  4 
Out[4] = ------------------------------------------------------------------------ 
                                              8 
 
Experiment 5: Set up the first Romberg value as a linear combination of t[1] and t[2] and observe that 

this is identical to Simpson’s approximation over [a,b]. 

 



 

  

In[5] := Simplify[ (4 t[2] - t[1])/3 ] 
 
                                                      a+b 
                (-a+b) (g[a] + g[b] + 4 g[-----]) 
                                                        2 
Out[5] = -------------------------------------- 
                                   6 
 

Experiment 6: The Romberg table is generated and stored in the two-dimensional array r. Compare 

Out[5] with the value of r[2,2].  

In[6] := Simplify[r[2,2]] 

                                                      a+b 
                (-a+b) (g[a] + g[b] + 4 g[-----]) 
                                                       2 
Out[6] = --------------------------------------- 
                                  6 
 

 Experiment 7: Display the value of r[3,2] (Simpson’s rule applied to 2 sub-intervals) 

 

In[7] := Simplify[r[3,2]] 

                                                     a+b            3a+b            a+3b 
                (-a+b) (g[a] + g[b] + 2 g[-----] + 4 g[------] + 4 g[------]) 
                                                       2                 4                 4 
Out[7] = --------------------------------------------------------------------- 
                                                 12 
 

Experiment 8: Display the value of r[3,3] (First entry in the third column of the Romberg table). 
Observe that this is also an approximation based on the Newton interpolatory formula. The subsequent 
columns have no resemblance to any known formulae based on interpolation. 
In[8] := Simplify[r[3,3]] 
 
                                                           a+b               3a+b               a+3b 
               (-a+b) (7 g[a] + 7 g[b] + 12 g[-----] + 32 g[-------] + 32 g[-------]) 
                                                             2                   4                     4 
Out[8] = -------------------------------------------------------------------------------- 
                                                         90 
 

Experiment 9: Compute the integral  below numerically by displaying the value of r[6,6]. Compare the 
result with that of  Mathematica’s build-in function Integrate. 
 



 

  

Sin x dx[ ]
0

2
π

∫ =   

(* DEFINE f *)  

In[9] := f[x_]:= Sin[x] 

(* DEFINE END POINTS OF INTEGRATION *) 

In[10] := a =0 

In[11] := b = Pi 

(* DISPLAY SEVERAL ROMBERG TABLE VALUES *) 

In[12] := r[2,2]//N 

Out[12] = 2.0944 

In[13] := r[4,4]//N 

Out[13] = 2.0001 

(* COMPUTE ACTUAL VALUE AND DISPLAY ERROR *) 

In[14] := actual = Integrate[Sin[x],{x,0,Pi}]  

Out[14] = 2 

In[15] := err = Abs[ actual - r[6,6] ] // N 

                                   -12 
Out[15] = 1.32072 10 
 

The values of the Romberg table,  r[i,j]’s, computed by the program, are as  follows: 

0 
1.5708   2.0944 
1.89612  2.00456  1.99857 
1.97423  2.00027  1.99998 2.00001 
1.99357  2.00002  2.  2.  2. 
1.99839  2.   2.  2.  2.  2. 
 

Experiment 10: As discussed earlier, the basic Trapezoidal rule is linear and therefore integrates first-
degree polynomials exactly, and each Romberg column doubles the order of approximation. To 
investigate this let  f  be x^7, over [0,1/2],  and observe that r[4,j] is exact (1/2048 = 0.000488281). 

In[16] := f[x_] := x^7  

In[17] := a = 0 

In[18] := b = 1/2 

 

(* CALL ROMBERG WITH F OVER [A,B] *)  



 

  

In[19] := romberg[f, {a,b},  4] 

In[20] := r[4,4] // N 

Out[20] := 0.000488281 (exact!) 

The Romberg table produced by the execution of the subprogram is as follows: 

0.00195312 
0.000991821 0.00671387 
0.00626326 0.00504494 0.000493368 
0.00523608 0.000489369 0.000488361 0.000488281 
 

4. Justification of the Method 

Romberg extrapolation method is based upon the existence of the asymptotic error expansion 
discussed in section 1.  Mathematica can be used to illustrate how and why the method works by 
assuming such an expansion and symbolically deriving expressions that correspond to the entries of the 
Romberg table. For this purpose, let 

In[21] := Array[c,4] 

In[22] := e[h_] := Sum[c[i] h^(2i), {i,1,4]}  

In[23] := x = (4 e[h/2] - e[h]) / 3 

In[24] := y = (4 e[h/4] - e[h/2]) / 3 

In[25] := Expand[ Simplify[x] ] 

 
                     4    6           8   
              - (h  c[2])    5 h c[3]    21 h c[4]  
Out[25] = -----------  -  ---------  -  ------------    
                      4               16              64 
 

In[26] := Expand[ Simplify[ (16 y- x) / 15 ] ] 

 
                               6          8     
                 16 c[3] h      21 h  c[4])  
Out[26] = ------------ + ------------- 
                      64              1024 
 

The last two results illustrate that the values in the second column of the Romberg table are O(h4) 
and the third column entries are of O(h6). 

 
  

5. About the Error Term of the Trapezoidal Rule 



 

  

Mathematica function Series can be used to verify the error term of the Trapezoidal rule given by 
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For this purpose, we investigate the error in the basic rule for the integral 
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(* DEFINE F AND CALL ROMBERG OVER [a,a+h] *)  
 
In[27] := f[x_] := Sin[x] 

In[28] := romberg[f,{a,a+h},10] 

In[29] := t[1] 

               h (Sin[a] + Sin[a+h]) 
Out[29] = --------------------------- 
                               2 
In[30] := s = Integrate[Sin[x],{x,a,a+h}] 

Out[30] = Cos[a] - Cos[a+h] 

 

(* FIND THE ERROR IN t[1] *) 

In[31] := e = Series[s - t[1], {h,0,3}] 

 
                              3 
                  Sin[a] h             4   
Out[31] = -----------   + O[h ] 
                     12 
 

(* USING THE DEFINITION ABOVE FOR ERROR IN TRAP. RULE *) 

In[32] := terror = -h^2/12 (Cos[a+h] - Cos[a]) 

                      2 
              -(h  ( -Cos[a] + Cos[a+h]))  
Out[32] = ------------------------------- 
                                    12 
 

In[33] := Series[terror,{h,0,3}] 

                              3 
                  Sin[a] h            4 



 

  

Out[34] = ------------ + O[h ] 
                       12 
 

The values of Out[34] and Out[31] are shown to be identical verifying the dominant term of the 
error formula. 
 

6.  Computational Complexity of Romberg  Integration 
The complexity of any numerical integration algorithm based upon interpolation is mainly depicted 

by the number of integrand function evaluations at the nodes of integration of the numerical rule. 
Romberg extrapolation described in this study is no exception. An additional cost is incurred in this case 
in the formation of the Romberg table, which is negligible.  

The Mathematica program discussed earlier in Section 2 is a static implementation of the algorithm, 
i.e., for a fixed subdivision level, say, maxlevel, all of composite Trapezoidal  sums are computed first 
and then the Romberg table is formed. In this case, considering the overlapping of the nodes in 
bisecting the interval, each level  n introduces 2n  additional  integrand evaluations. In higher 
dimensions, this may result in too many function evaluations, and hence the method may not be 
computationally efficient. This could be avoided by forming the rows of the Romberg table 
dynamically. That is, at each level, rows of the table are completed by the Romberg formula and an 
error test is performed to check the accuracy of the diagonal value r[n,n].Whenever, the error criteria 
is satisfied, the algorithm terminates avoiding further unnecessary subdivisions and function evaluations. 
Otherwise, next composite sum is to be formed by bisecting the interval one more time.  

This idea can be easily incorporated into the Mathematica code given in this work. The dynamic 
implementation is given below. 

 
dynamic_romberg/: dromberg[f_,{a_,b_},n_, tol_]:= 

(h=b-a; 

 Array[t,n]; 

 t[1]= N[h/2(f[a]+f[b])]; 

 Array[x,512]; Array[r,{n,n}];    

 For[m=2,m<=n,m++, 

   k=m-1; 

   Do[x[j]= N[a+(j-1)h/2^k],{j,1,2^k+1}]; 

     t[m]= N[h/2^m(f[a]+f[b]+2 Sum[f[x[j]],{j,2,2^k}])]];    

     For[m=1,m<=n,m++, r[m,1]=t[m]]; 

       reler = 1.; 

       i=2; 

       While[reler >= tol && i<n, 

         For[j=2,j<=i,j++, 



 

  

           r[i,j]=(4^(j-1)r[i,j-1]-r[i-1,j-1])/(4^(j-1)-1)]; 

         reler = Abs[(r[i,i]-r[i-1,i-1])/r[i-1,i-1]]; 

         Print["i=",i,",",r[i,i], 

               "computed relative error=", reler]; 

         i++ 

     ]; 

 ) 

 
A sample run and its output is given for the approximation of  f[x]=Sin[x], over [0,Pi/2]. 
 
f[x_]:=Sin[x] 
dromberg[f,{0,Pi/2},10,0.00001] 
i= 2 ,  1.002280 computed relative error =0.276142 
 
i= 3 ,  0.999992 computed relative error =0.00228311 

                                                                    -6 
i= 4 ,  1.000000 computed relative error =8.44274 10 
 

7.  Comparisons and Conclusions 
In this article, Romberg extrapolation technique is illustrated using the symbolic computing facility as 

provided by Mathematica. Main objective of this article is to facilitate symbolic computations in order 
to present  a highly technical method in a simplified manner.  Because of the nature of the work done, 
numerical calculations are mostly avoided. A brief comparison of different approaches to numerical 
integration is outlined below. 

Romberg method is built on the trapezoidal rule that is based on the linear interpolation over the two 
points on the interval. Higher order interpolatory rules (Newton-Cotes type formulae) can be used for 
high order approximations. However, the coefficients of such rules alternate in sign causing loss of 
accuracy. Another class of integration rules are Gaussian type that uses coefficients based on the roots 
of certain orthogonal polynomials over the domain of integration. Gaussian type rules provide higher 
degrees of accuracy compared to Newton-Cotes formulae, however, amount of work done increases 
dramatically because of lack of overlapping during the subdivision of the interval to obtain composite 
sums. Monte Carlo methods involve generating random numbers over the domain of integration, and 
then computing the expected value (approximation to I) by simply averaging the function values at the 
randomly generated points. Monte Carlo methods are suitable for N-dimensional integration for its low 
cost compared to the rules mentioned before. For a detailed comparison of these methods the reader is 
referred to, for example, (Davis & Rabinowitz 1975).  
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