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ABSTRACT

High order approximations of an integral can be obtained by taking the linear combination of lower degree
approximations in a systematic way. One of these approaches for 1-d integrals is known as Romberg Integration
and is based upon the composite trapezoidal rule approximations and the well-known Euler-Maclaurin expansion
of the error. Because of its theoretical nature, students in a classical Numerical Analysis course usualy find it
difficult to follow. In order to overcome the difficulty, Mathematica software is utilized to illustrate the method,
and the underlying theory. A Mathematica program and a set of experiments are designed to explain the method
and it's intricacies in a stepwise manner. The program is expected to help the student to learn and apply the
method to 1-d finite integrals. However, with minor modifications, it is possible to extend the method to muilti-
dimensiond integrals.



1. Introduction

The Romberg integration is te problem of gpproximating the integrd below using the linear
combinations of well-known trapezoidd sums T's in a systematic way in order to achieve higher
ordersin an effective manner.

I:(‘gf(x) dx, ablA, fiCab]

The method is based on the Euler-Maclaurin asymptotic error expanson formula and the
Richardson extrgpolation to the limit (Joyce 1971). Romberg, a German mathematician, (Romberg
1955) has been the first to organize the Richardson's method in a systematic way suitable for
automatic calculations on the computer in 1955.

Geometricaly speaking, the vaue of | is the area under the curve of y=f(X) bounded by the x-axis,
and the lines x=a, and x=b. T;'isthe areaof the trapezium and approximates the value of | as shown
in Figure 1 below.
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Figurel Basictrapezoidal computation T,' over [a,b].

Each trapezoida sum is defined as

., b-a 2571
T = T[ fla] + f[b] +2 g f[x]]

i=1
for i=1,2,...,n (n © maximum level of subdivison), % = %th, j=1.2,...,i and h = (ba)/2"™*. Note that for
the ith subdivison of the interva % = a, and x= b. The computation Starts with T ontheinterva
[ab], and T>", T5", and so on are computed by successively halving the interval and applying the basic
rule T, to each subinterval formed. In this subdivision process the Romberg sequence {1,2,4,8,16,..} is
utilized. Other subdivision sequences are dso possible (Yazycy 1990).



For example, after the computation of T:* as shown above, the interval of integration is bisected
and the second composite approximation T" to | is formed as shown below. Obvioudly, as the number
of subintervals increases a better, adthough same order of, approximationsto | are obtained.
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Figure2 Compositetrapezoidal sum T,* over 2 subintervals.

Once the composite Trapezoidd sums are available, so-caled Romberg table can be formed.
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It is known that the entries in the second column of the table are composte Smpson's
approximations to the same integrd (Burden & Faires 1985). The third column entries are aso
composite goproximations based on the Newton interpolatory formulae. The consecutive columns have
no resemblance to any known method based on interpolation. The trgpezoidd rule is of polynomid
order one. That is, trapezoida sums are exact whenever the integrand f(x) is afirst-degree polynomia
in x. Provided that the 1st column entries converge to |, al diagona sequences over the table converge
to | aswel (Kelch 1993). Moreover, if column k is of order p then the column k+1 entries are of order
p+2. This could easly be justified using the asymptotic error expanson formula



| - -El - Cth +C2h4+"'+ckh2k +O(h2k+2) ’ h=

The ¢'s are constants (based on the Bernoulli numbers) independent of h. This is an even
expansion in powers of h. The linear combinations formed by the Romberg procedure causesthe ¢’s
vanish one by one. Obvioudy, h gpproaching to zero (gpplication of the compogte rule for smaler and
smaller vaues of h) suggests that 'I',-1 converges to |. For angular integras this expanson is not vaid
and it takes different forms depending on the nature of singularity (Lyness & Mc Hugh 1970).

In order to show the way ¢'s vanish when the linear combination of the composite values are
formed, the expansion formula above is applied with two different step szes h,=b-a (origind interva
size), and hy=(b-a)/2, (interva Sze after the first bisection) to obtain

|- T =ch’ +eh'++eh™ + O™ ")

h =b-a
- T = +on rergh™ +OM) |, =22
Multiplying both sides of the latter by 4 and subtracting from the first, and rearranging the resulting
equation, one gets
4T} - T}
3

- =- 2o’ +0(h")

which shows that the first error term of the expansion vanishes and the linear combination of T,' ,and
Tt (T2 =[4T,t - T,11/3), produces a higher order approximationto |

2. Romberg Integration with Mathematica

It is the feding of the authors that, in learning the Romberg integration, students face some
difficulties in understanding the rationd behind the method. The discussion over the asymptotic error
expandon and Euler-Maclaurin series and convergence makes the presentation more complicated.
Working out the details of the derivations and combinations of the composite rules and the formation of
the Romberg table is time consuming, if not boring. Ingtead, a Smple symboalic program could be quite
beneficiary to show al the details and derivations. Such an gpproach will give the student a chance to
play around with the formulas and observe easily the relation between the composite sums, order of an
gpproximation and the high orders achievable by forming the smple linear combinations.

A text-based Mathematica (Burbulla& Dodson 1992) is used to develop the program below:
ronberg/: ronberg[f ,{a ,b },n]:=(

1. Define h and initidize other variables

h=b-& -
2. Generate array t for composite sums (to maximum level 10)
Array[t, 10];
3. Apply the basic trapezoidd ruleto f



t[1] =h/2 (f[a] + f[b])

4. Create array x to hold abscissas of the points generated & a result of subdivison. The newly
generated nodes (X, -, and +) utilized by t[2], {[3], and t[4] as depicted by the Romberg subdivison
sequence areillugtrated in Figure 3.

Array[ x, 512] ;
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Figure 3 Nodes of subdivision at levels 1,2,3, and 4

5. Compute compodite trapezoida sums
For[m= 2, m<= 10, mt+,
k =m- 1;
Do[ x[j] =a + (j-L)h/2"k , {j , 1, 2"k+1}];
t[mM =h/2"m( f[a] + f[b] +2 Sun{f[x[jl].{] , 2, 2"k}] )

6. Define the Romberg Extrapolation table r (10x10 matrix) and initidizeitsfirst columnto t
Array[ r , {10, 10}]
Forfm=1, m<=10, m+ , r[m1l] =t[n]

7. Form the Romberg table using the first column entries
For[ i =2, 1 <=10, i++ ,
For[ j =2, <=i , j++,
rfi, gl = (4%(5-1) rliyj-1] - r[i-1,j-1]1 )/7(4%() -1)-1)]]

Once, this program is made available to the sudent, the method can be investigated for a symbolic
function f over [ab] in an effective manner by calling the subprogram romberg with f for, say, 10
levels of subdivison as

fIx_] :=49lx]

ronberg[f,{a, b}, 10]

Romberg integration uses the so-called Romberg sequence R={1,24,8,16...., X,..} to subdivide the
interval. Other subdivison sequences are aso possible and may reduce the number of function
evauations for the same accuracy. However, Romberg sequence provides full overlapping of the
nodes of integretion, i.e., dl the nodes a level k of subdivison are included in level k+1. This idea is
incorporated in Step 5 above by replacing tfm] by arecursive definition as follows:

For[m= 2, m<= 10, mt+,



k =m- 1;

For[j =1, ] <= 2"(k-1), | ++,

Do[x[j] = a + (2j-1)h/2”k , {j, 1, 2"k+1}];

t[m =t[m1]/2+ h/2*k(Sum f[x[j]1], {j, 1, 2"(k-1)}])

3. Experiments

A sample Mathematica session is set up to demongtrate the power of the Romberg integration for a
generd function f. The following indructions are to be carried out after setting up the definitions above.
Experiment 1: Set up the firgt trapezoidal gpproximation t[1] to | over [ab].

In[1] :=1[1]
(-at+b)(ga] + ofb])

2
Experiment 2: Set up the composite trgpezoidd rule t[2] over 2 sub-intervas.

In[2] :=12]

Out[1] =

(-atb) (ofa] +g[b] +2g[a+ ------- )

Out[2] =
4
Experiment 3: Set up the composite trapezoidal rule t[3] over 4 sub-intervas.

In[3] =13

Out[3] = ((-a+b) (gld + g[b] +

-a+b ~atb 3(-a+b)

2 (da+--—--- ] + gla+------ ] +oa+ ---------- 1)))/8
4 2 4

Experiment 4: Smplify the expresson
In[4] := Smplify[%]
atb 3atb at+3b
(-a+b) (dld + glb] +2g[-—] + 2] + 2d-—-])

Out[4] =

8

Experiment 5: Set up the first Romberg vaue as alinear combination of t[1] and t[2] and observe that
thisisidentical to Smpson’s gpproximation over [ab].



In[5] := Smplify[ (4 (2] - {1])/3]

atb
(-at+b) (ofal +g[b] + 4 o[-—---])

Out[5] =

Experiment 6 The Romberg table is generated and stored in the two-dimensiond aray r. Compare
Out[5] with the value of 1[2,2].
In[6] := Smplify[r[2,2]]
atb
(-atb) (d[a] +g[b] + 4 o[-—-])

Out[6] =

Experiment 7: Display the vaue of 1[3,2] (Smpson’srule gpplied to 2 sub-intervas)

In[7] := Smplify[r[3,2]]

atb 3ath at3b
(-atb) (g[a] + g[b] + 2 ¢[--] + 4 ¢[-----] + 4 ¢[----])

Out[7] =

12

Experiment 8: Display the value of 1[3,3] (First entry in the third column of the Romberg table).
Observe that this is dso an gpproximation based on the Newton interpolatory formula. The subsequent

columns have no resemblance to any known formulae based on interpolation.
In[8] := Simplify[r[3,3]]

atb 3atb at+3b
(-ab) (7 o[l + 7 g[b] + 12 -] + 32 gf-------] + 32 gf--—-])

Out[8] =
Q0

Experiment 9: Compute the integra  below numericaly by displaying the vaue of 1[6,6]. Compare the
result with that of Mathematica s build-in function I ntegrate.



(‘SSn[x] dx=2

(* DEFINEf *)

In[9] :=f[x_]:=Sn[x]

(* DEFINE END POINTS OF INTEGRATION *)

In[10] :=a=0

In[11] :=b=H

(* DISPLAY SEVERAL ROMBERG TABLE VALUES*)
In[12] =r[2,2]/IN

Out[12] = 2.0044

In[13] :=r[4,4]/IN

Out[13] = 2.0001

(* COMPUTE ACTUAL VALUE AND DISPLAY ERROR *)
In[14] := actud = Integrate{ SiN[x].{x,0,A}]

Out[14] =2

IN[15] ;= err = Abg actud - r[6,6] ] // N

-12
Out[15] = 1.32072 10

The values of the Romberg table, r[i j]'s, computed by the program, are as follows:.

0

1.5708 2.0944

1.89612 2.00456 1.99857

1.97423 2.00027 1.999982.00001

1.99357 2.00002 2. 2. 2.

1.99839 2. 2. 2. 2. 2.

Experiment 10: Asdiscussed earlier, the basic Trapezoidd ruleis linear and therefore integrates first-
degree polynomids exactly, and each Romberg column doubles the order of approximation. To
investigate thislet f be x"7, over [0,1/2], and observethat r[4,] is exact (1/2048 = 0.000488281).

In[16] :=f[x ] =x7
In[17] :=a=0
In[18] :=b=1/2

(* CALL ROMBERG WITH F OVER [A,B] *)



In[19] :=romberg[f, {ab}, 4]
In[20] :=r[4,4] I N
Out[20] :=0.000488281 (exact!)
The Romberg table produced by the execution of the subprogram is as follows:

0.00195312

0.000991821  0.00671387

000626326  0.00504494  0.000493368

000523608  0.000489369 0.000488361 0.000488281

4. Justification of the Method

Romberg extrapolation method is based upon the existence of the asymptotic error expansion
discussed in section 1. Mathematica can be used to illustrate how and why the method works by
assuming such an expansion and symbolicaly deriving expressons that correspond to the entries of the
Romberg table. For this purpose, let

In[21] := Array[c/4]
In[22] :=dh ] := Sum[d]i] "\(2i), {i,1,4]}
In[23] :=x=(4€h2] - eh])/3
In[24] .=y =(4€h/4] - gh/2]) /3
In[25] := Expand] Smplify[X] ]
4 6 8
-(h d2)) 5hd3] 21hc4]

Out[25] = - -
4 16 64

In[26] = Expand] Smplify[ (16 y x) / 15] ]

6 8
163l h 21h d4))
out[26] = +
64 1024

The last two resuits illustrate that the values in the second column of the Romberg table are O(H)
and the third column entries are of O(HP).

5. About the Error Term of the Trapezoidal Rule



Mathematicafunction Series can be used to verify the error term of the Trapezoidd rule given by

(b- a)h“

E= -—[fCKb)- faa))+————f@m , mi[ab]

For this purpose, we investigate the error in the basic rule for the integral
s= Q“ Sn[x] dx = - Coga+h] + Cogal

(* DEFINE F AND CALL ROMBERG OVER [aath] *)

In[27] :=1f[x_] = Sn[X]
In[28] := romberg[f { aat+h},10]
In[29] :=1[1]

h (Sin[d] + Sin[a+h])
out[29] =

2
IN[30] := s= Integrate] Sn[x] { x,aat+h}]

Out[30] = Cogd] - Coga+h]

(* FIND THE ERROR IN t[1] *)
In[31] := = Seriegs- t[1], {n,0,3}]

3

Sing h 4

OUt[31] = ---eremmeee +O[h]
12

(* USING THE DEFINITION ABOVE FOR ERROR IN TRAP. RULE *)
In[32] :=terror = -2/12 (Cogath] - Coga])

2

-(h (-Coda] + Codathl))
Out[32] =

12

In[33] := Serieqterror {h,0,3}]

3
Sinfd h 4



(OITl] 7 [ p— +0[h]
12

The vaues of Out[34] and Out[31] are shown to be identical \erifying the dominant term of the
error formula

6. Computational Complexity of Romberg Integration

The complexity of any numerica integration agorithm based upon interpolation is mainly depicted
by the number of integrand function evauations a the nodes of integration of the numerica rule.
Romberg extrapolation described in this study is no exception. An additiona cost isincurred in this case
in the formation of the Romberg table, which is negligible.

The Mathematica program discussed earlier n Section 2 is a gatic implementation of the algorithm,
i.e, for afixed subdivison levd, say, maxlevel, al of composte Trapezoidd sums are computed first
and then the Romberg table is formed. In this case, consdering the overlapping of the nodes in
bisecting the interva, each levd n introduces 2" additiona integrand evauations. In higher
dimengons, this may result in too many function evauations, and hence the method may not be
computationdly efficient. This could be avoided by forming the rows of the Romberg table
dynamicaly. That is, a each level, rows of the table are completed by the Romberg formula and an
error test is performed to check the accuracy of the diagond vaue r[ n,n] .Whenever, the error criteria
is satisfied, the dgorithm terminates avoiding further unnecessary subdivisions and function eva uations.
Otherwise, next composite sum is to be formed by bisecting the interval one more time.

This idea can be easly incorporated into the Mathematica code given in this work. The dynamic
implementation is given below.

dynam c_ronberg/: dronberg[f_,{a_,b_},n_, tol_]:=
(h=b- a;
Array[t,n];
t[1]= NCh/2(f[a] +f[b])];
Array[ x,512]; Array[r,{n,n}];
For [ me2, nk=n, mt+,
k=m1;
Do[x[j]= N a+(j-1)h/27k],{j, 1, 2"k+1}];
tim= Nh/2*n(f[a] +f[b] +2 Sunif[x[j]1].{j,2 2*k}])]];
For[mel, nk=n, mt+, r[m1l]=t[n];
reler = 1.;
i =2;
While[reler >= tol &&% i<n,

For[j=2,)<=i,]|++,




ri =04 -rfi,j-11-r[i-1,j-1]1)/(4%(j-1)-1)];
reler = Abs[(r[i,i]-r[i-1,i-1])/r[i-2,i-1]];
Print["i=",i,",",r[i,i],

"conputed relative error=", reler];

A sample run and its output is given for the gpproximation of f[x]=Sn[X], over [0,FR/2].

f[x_]:=Sin[x]
dronberg[f, {0, Pi/2}, 10, 0. 00001]
i=2, 1002280 computed relaive error =0.276142

i=3, 0.999092 computed relative error =0.00228311
-6
i=4, 1.000000 computed releive error =8.44274 10

7. Comparisons and Conclusions

In this article, Romberg extrapolation technique is illustrated using the symbolic computing facility as
provided by Mahematica. Main objective of this article is to facilitate symbolic computations in order
to present a highly technica method in a simplified manner. Because of the nature of the work done,
numerical caculations are mostly avoided. A brief comparison of different gpproaches to numerica
integration is outlined below.

Romberg method is built on the trgpezoidd rule that is based on the linear interpolation over the two
points on the interval. Higher order interpolatory rules (Newton-Cotes type formulag) can be used for
high order approximations. However, the coefficients of such rules dternate in Sgn causing loss of
accuracy. Another class of integration rules are Gaussian type that uses coefficients based on the roots
of certain orthogona polynomids over the domain of integration. Gaussian type rules provide higher
degrees of accuracy compared to Newton-Cotes formulae, however, amount of work done increases
dramatically because of lack of overlapping during the subdivison of the interva to obtain composte
sums. Monte Carlo methods involve generating random numbers over the domain of integration, and
then computing the expected vaue (gpproximeation to 1) by smply averaging the function values a the
randomly generated points. Monte Carlo methods are suitable for N-dimensiond integration for its low
cost compared to the rules mentioned before. For a detailed comparison of these methods the reader is
referred to, for example, (Davis & Rabinowitz 1975).
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