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ABSTRACT 
This paper discusses some issues in numerical optimisation. It illustrates graphically the rationale behind 
some optimisation techniques. It shows the perils that await the unwary when extrapolating using functions 
whose parameters have been specified by choosing the values, which minimize a sum of squares of errors. 

 

                                                                 
1 Choose the better part. (Luke 10:42) 



Introduction 
The wisdom of the command:  ‘ choose the best part’, should be obvious to all. Optimisation 

is the branch of mathematics which deals with the techniques for locating the maximum or the 
minimum of a function, i.e. ‘ the best part’’.   

There is the common misconception that to determine the location of the minimum of a 
function of several variables, (f ),...,, 21 nxxx , one simply needs to solve the system of non-
linear equations formed by setting to zero the partial derivatives of f : 
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However, to solve such a system, usually, one needs to use a numerical procedure. Efficient 
numerical methods to do this are based on finding the minimum of  
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Thus, numerical optimisation is required for solving systems of non-linear equations and not 
the other way around. 

The computational methods for solving optimization problems are generally known as hill-
climbing techniques that is because they mimic the strategy that a climber may use in trying to 
reach the summit of a mountain. Different strategies are open to the climber to reach the summit 
and we shall illustrate the rationale behind some of them.  

Optimisation is frequently used to fit models to data with the intention of summarizing, 
interpolating or extrapolating from the observations. Extrapolation carries the implication that the 
estimated parameters are physically meaningful. However, it is very possible that parameters 
which produce a very good fit to the data lead to disastrously unsuitable extrapolations. Then, 
when is it safe to extrapolate? The paper discusses, through examples, the issues involved.      

 

Finding the best part 
Let us consider the simplest st rategy for locating the optimum of a non-linear function using a 

hill climbing technique. Consider that a climber is trying to reach the summit (maximisation) of a 
hill, or the bottom of the hill (minimisation), without a map and in dense fog. The climber can 
rely on an altimeter to measure altitude and a compass, which allows him to maintain a fixed 
direction. Measuring is time consuming, but movement itself is easy. The climber wishes to move 
as fast as possible. What is the best strategy? 

It seems that the simplest approach would be to move along an arbitrary direction, such as the 
north-south line making regular measurements of the altitude until the highest point on the line is 
reached. Starting from this new point the same operation can be carried out along the east-west 
direction. This process of alternating searching along fixed directions ultimately will take the 
climber to the summit. 



The algorithmic implementation of such simple procedure is known as the univariate search. 
To illustrate it we consider a problem presented by Box et al [1]. We wish to specify a function 
that relates the concentration η  of a chemical substance with time. The function is of the form: 
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where, 1β and 2β  are parameters which need to be estimated.  Given a set of observed values for 

η  and t , a common procedure is to estimate the β s by the method of least squares. That is: 
minimise the sum of the squared differences between the observed values and the predicted ones. 
That is, we want the location of the minimum of  
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where 1x  and 2x stand for the possible values that we can, respectively, assign to 1β and 2β ; iy  

correspond to the observed concentration at time it .  A set of observations is listed in Table 1. 
Let us consider finding values for the betas by minimizing f  using only the first six pairs of 

values of the data set. 
 

Table 1.  Observed concentration values iy  at times it . 

 
The shape of the function f is illustrated by its contours, shown in Figure 1(a). The picture 

also gives the path to the minimum using the univariate strategy. It is obvious from the graph that 
the path to the optimum requires a large number of short steps. However, the short steps could be 
used to define a general direction and a more efficient method would be to move along such a 
direction. The Davey, Swann and Campey (DSC) [2] algorithm does this. In contrast to the 
univariate search the DSC algorithm takes advantage of the accumulating information about the 
function. Starting at the point )0(x one cycle of the univariate search determines the point )1(x . 
The next search is along the line joining )0(x  and )1(x  which determines the point )2(x , and then 
we search at right angles to the previous search direction to determine )3(x . The next search 
direction is along the line joining )2(x and )3(x , and so on. Figure 1(b) shows the iterations using 
the DSC algorithm. In this case far fewer steps and function evaluations are required. 

 
 

it    0.0625 0.125 0.25 0.50 1.00 2.00 4.00 5.00 6.00 7.00 

iy  0.01 0.02 0.08 0.15 0.22 0.51 0.48 0.29 0.20 0.12 



 
Figure 1. (a) The univariate search, locates the optimum, using 581 function evaluations, at 

(0.2442, -0.2402), with 002.0=f . 

(b) The DSC algorithm uses 142 function evaluations to fin d the optimum at  
     (0.2433, -0.2431). Both methods start at the point (0.5,0.39). 
 
 However, if our intrepid climber was allowed also to carry a spirit level, then he could use it 

to measure the lay of the land, and this extra information might lead him to choose his direction 
of search to be along the steepest descent. He might well find that such a strategy might produce a 
succession of large number of short steps similar to those of the univariate search. But being a 
smart climber he would realise that information about the gradients could be used, as in the DSC 
method, to determine a more efficient direction. This will lead him, no doubt, to discover the 
conjugate gradients method. Furthermore, having information about the gradients, he might 
consider gathering information about the curvature of the land, and using it might well develop 
Newton's type methods. It may well be that the terrain over which he is moving is very rocky - a 
noisy function - and therefore he may decide that he is much better off using the DSC strategy 
than the more elaborate methods which involve misleading gradient measurements. 

All these strategies for numerical optimisation can readily be illustrated using graphs like 
those in Figure 1 and generalize to problems in more dimensions because the principles on which 
the methods are based are the same for two as for higher dimensions. The illustrations can easily 
be done using the software from McKeown et al. [2]. 

The function, specified with values for 1β  and 2β which minimise f , fits the first six points 

of the data very well. There may be the temptation of assigning physical meaning to the estimated 
betas. However, when the rest of the observations are viewed, the fitted function is in complete 
disagreement with them. Any extrapolation using the fitted function, or a physical interpretation 
given to the parameters would have been unwise. On the other hand, it is simple to see that a set 
of values for 1x  and 2x contained in the lowest contour of the sum of squares function are 
possible candidates for selection as values for the betas. For such a set there is not much change 
in the value of f . In particular, the pair of values at the start of the iteration fit the data almost as 
well as the ones that optimise f , and they happen to specify a function that gives reliable 

predictions for the extra data points. Figure 2 illustrates this. 



      
      (a)                                                                (b)  

Figure 2. (a) Fitted function. (b) 3D Plot of ),( 21 xxf . 
So, what is going on here? 
The answer to the question lies in the fact that the function we are minimizing is insensitive to 

changes in 1x  and 2x . This is particularly visible in Figure 2 (b), which gives a 3D plot of f . 
The plot shows that f  is practically constant along the line joining the initial and optimal values 

of 1x  and 2x . Though we found a local minimum, its location is insensitive to changes along the 
ridge of f  shown in the figure. The problem is said to be ill-conditioned, and in such cases the 
fitted curve is only suitable for interpolation and no physical significance should be assigned to 
the estimated parameters. The data has forced us into a curve fitting problem and not a parameter 
extraction one. 

By contrast when using the last six observed values to estimate the parameters we get the 
optimal values at 5153.01 =x , 3475.02 =x  and 0363.0=f . The contours of the new least 
squares function are given in Figure 3(a), they show that changes around the minimum lead to 
significant changes in f . The corresponding 3-D picture confirms that in this case there is no ill-
conditioning.  

           
    (a)                                                                                 (b) 

Figure 3.  (a) Contours of the sum of squares function for the last six data points. The steps of 
the univariate search are also illustrated from the starting point (0.5,0.39). 

                (b) The 3-D picture of the sum of squares function. 
 



The plot of concentration against time in Figure 4 (a) shows that extrapolation is a lot less 
problematic when there is no ill-conditioning. Furthermore, a well-conditioned problem makes 
for a faster path to the optimum as illustrated in Figure 3 (a), showing the sequence of steps to the 
optimum when using the univariate search.  

      
Figure 4.  (a) Concentration against time fitted using the last six points. 
                 (b) Orbits for Neptune - calculated and actual. The numbers on Uranus correspond   
                       to the year when its location was used to determine Neptune’s orbit.  
 

A classical story of ill-conditioning 
Recently the fascinating story of the discovery of the planet Neptune was published in a 

popularized form [3]. The story in the book contains a fair dose of human drama. It is exciting 
also because it is an example of a successful theoretical astronomical prediction. Using the 
discrepancies observed in the orbit of Uranus two mathematicians working independently, one 
French, Urbain Jean-Joseph Le Verrier, the other English, John Couch Adams, accounted for the 
discrepancies by predicting the existence of a new planet - Neptune– 

These two mathematicians were breaking new ground. Newton’s theory of gravitation had 
been used to calculate the effects of bodies on one another, but this was the first time that the 
theory was used to predict the position of a body from observations of the effects of its gravity on 
other bodies. However, not everyone was using the new planet explanation to try to account for 
the problems in Uranus’ orbit. The Astronomer Royal George Airy supported the hypothesis that 
Newton’s inverse square law did not apply over large distances. The perseverance of the two 
young mathematicians on the validity of their assumptions, against the pressures from a famous 
and established scientist are only part of the intricate drama that led to the discovery of Neptune. 
Their work not only helped in the discovery but it confirmed the universality of the gravitation 
law, and produced a model of work for the interaction between mathematicians and 
experimentalists. 

 Adams and Le Verrier were able to point out were in the sky to look for the planet. The 
astronomers duly found it in 1846. However, it is interesting that both mathematicians failed in 
determining with any accuracy the orbit of the planet for the region where there were no 
observations. Figure 4 (b) shows the theoretically proposed orbits and the actual one. Note that 
the maximum error in the predicted orbits is about half the radius of Uranus’ orbit. This is 



interesting to us, because it is an example of the consequences of ill-conditioning. To specify the 
orbit the mathematicians used the observations on the discrepancies observed in Uranus's orbit 
occurring during the first half of the 19th century. They were used to determine both, the position 
and the mass of Neptune. The mathematicians obtained a good fit to the data by overestimating 
the mass of the planet and the radius of the orbit. The errors compensated to give a fit acceptable 
in the region were the data was available but the calculated orbits were not suitable for 
extrapolation. The calculated orbits diverged more and more from Neptune's. Had the search for 
the planet taken place a few years earlier or later it would not have been found anywhere near the 
predicted location. 

  

Optimisation and mathematical education 
Optimization is a decision-making problem: how to maximize or minimize the value of some 

quantity. In many cases this amounts to assigning values to certain quantities called the decision 
variables. We showed that optimization problems are common in science and engineering and 
that they usually cannot be solved by analytical methods and that computational methods must be 
used. There are two educational issues here, the first one is how to present a rationale for the 
numerical procedures for optimization. The second issue is to identify the applicability of the 
results of the optimization.  

The analogy of ‘hill-climbing’ can be used as a powerful teaching tool to illuminate the ideas 
behind many of the numerical optimization methods. This is so because the algorithms for 
optimization can be illustrated with two-dimensional functions. We looked in particular at the 
idea behind the Davies Swann and Campey algorithm. From a simple description of the idea, the 
specification of the method – for any number of dimensions – seems a trivial generalization of the 
‘hill climbing’ analogy.  For example, we can state the DSC procedure for optimising a function 
of n variables as: 

 
1 Set k = 1.   Select an arbitrary starting point  x(0) 

2 Carry out one cycle of the univariate search algorithm to produce x(k)    
3 Select q = x(k)   - x(k-1)   as a new search direction.  
4 Generate n – 1 orthogonal directions and orthogonal to q. 

5 Search along q and each of the other n – 1 orthogonal directions to determine the 
new point x(k+1) . Each search begins at the end of the previous one. 

6 If stopping criteria satisfied stop, else set k = k+1 and repeat from 3. 
 
We used bold face to denote an n-dimensional vector. The algorithm above is a 

straightforward generalisation, to n dimensional functions, of the basic idea illustrated in Figure1 
(b). 

 Further exploitation of the hill-climbing analogy might le ad us to question the efficiency of 
obtaining exact determinations for the x(k) s. It may be better not to find the optimum along a 
search direction but simply a better point from which to continue the search along a different 
direction. This policy may take more cycles, but overall, may require less use of the altimeter, and 
as changing direction involves no effort, a method with inexact line searches might be a more 



efficient one.   The educational possibilities when using sensible, imaginative ideas derived from  
the hill-climber analogy are boundless.   

Optimisation is also taught as a procedure to fit equations to data. The objective, of course is 
to model a physical situation. However, the applicability of the fitted model is highly dependent 
on the conditioning of the problem.  We illustrated that for two-dimensional problems ill 
conditioning implies a flatness, about the optimum, of the function we wish to optimize. Thus, the 
effect of ill-conditioning is to provide many possible, near optimal, but possibly dramatically 
different solutions. When this occurs, the only sensible use for the fitted model is for 
interpolation, which is not an unimportant outcome as the history of the location of Neptune 
testifies.   

Though a mathematical treatment of ill-conditioning is an advance topic, the ideas and 
consequences of ill-conditioned problems can and should, as we have shown, be presented in 
more elementary courses in data analysis and optimization.  

Finally, we feel that the teaching of numerical optimization should not be constrained by the 
use of ‘analogies’. Their value is simply to provide another point of view, which might help to 
make the topic more interesting. We do not think that there is a unique solution to the teaching of 
the subject. It may well be that the problem of optimizing the teaching of mathematics is ill-
conditioned, in the sense that there are many equally satisfactory solutions, and hence one should 
be careful to extrapolate from any of them.  

 

Concluding remarks 
The analogy of hill-climbing has been shown to be useful for providing a motivation for 

numerical optimisation methods. The fundamental problem of using models, which are fitted to 
data, has been discussed. In particular we concentrated on the important distinction between data 
fitting and parameter extraction. We showed that when the problem is ill-conditioned, ‘choosing 
the best part’ can only be used for summarising the data and that no physical meaning should be 
associated to the parameters of the model. The discovery of the planet Neptune, during the middle 
of the 19th century, and the failure to specify its orbit was offered as an example of the effects of 
ill-conditioning. It would be an exciting project to investigate the conditioning of the problem 
using formal methods of analysis. There are, of course, such formal methods, McKeown and 
Sprevak [4] show how to use them in an application. It is not, however, the objective of this paper 
to deal with such formal methods but to offer a pictorial representation of ill-conditioning and of 
its consequences. We believe that everybody could profit by being aware that when fitting models 
to data, using optimization methods, the usefulness of the fitted model depends greatly on the 
conditioning of the problem. The moral of the lesson is: ‘Optimam partem elegit’, but be aware of 
its limitations. 
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