ELEMENTS BOOK 10

Incommensurable Magnitudes \ddagger

[^0]${ }^{*} \mathrm{Opol}$.

 $\gamma \varepsilon v \varepsilon ́ \sigma \vartheta \alpha \downarrow$.

 $\mu \varepsilon ́ т \rho о \nu ~ \gamma \varepsilon \nu \varepsilon ́ \sigma \vartheta \alpha \downarrow$.

 $\dot{\alpha} \sigma \cup ́ \mu \mu \varepsilon \tau \rho о \iota ~ \alpha ॅ \lambda о \gamma о \iota ~ \varkappa \alpha \lambda \varepsilon і \sigma \vartheta \vartheta \omega \sigma \alpha \nu$.

Definitions

1. Those magnitudes measured by the same measure are said (to be) commensurable, but (those) of which no (magnitude) admits to be a common measure (are said to be) incommensurable. ${ }^{\dagger}$
2. (Two) straight-lines are commensurable in square ${ }^{\ddagger}$ when the squares on them are measured by the same area, but (are) incommensurable (in square) when no area admits to be a common measure of the squares on them. ${ }^{\S}$
3. These things being assumed, it is proved that there exist an infinite multitude of straight-lines commensurable and incommensurable with an assigned straight-line-those (incommensurable) in length only, and those also (commensurable or incommensurable) in square. ${ }^{\top}$ Therefore, let the assigned straight-line be called rational. And (let) the (straight-lines) commensurable with it, either in length and square, or in square only, (also be called) rational. But let the (straight-lines) incommensurable with it be called irrational.*
4. And let the square on the assigned straight-line be called rational. And (let areas) commensurable with it (also be called) rational. But (let areas) incommensurable with it (be called) irrational, and (let) their squareroots ${ }^{\$}$ (also be called) irrational-the sides themselves, if the (areas) are squares, and the (straight-lines) describing squares equal to them, if the (areas) are some other rectilinear (figure).

[^1]$$
\alpha^{\prime}
$$

Proposition 1^{\dagger}

If, from the greater of two unequal magnitudes (which are) laid out, (a part) greater than half is subtracted, and (if from) the remainder (a part) greater than half (is subtracted), and (if) this happens continually, then some magnitude will (eventually) be left which will

 $\mu \varepsilon \curlyvee \varepsilon ิ \vartheta$ оus.

"Eбт $\omega \sigma \alpha \nu$ oưv גi AK, $\mathrm{K} \Theta, ~ \Theta В ~ \delta ı \alpha ı p \varepsilon ́ \sigma \varepsilon ı \varsigma ~ i \sigma o \pi \lambda \eta \vartheta \varepsilon i ̃ \varsigma ~$

 ג̀ $\propto<1 \rho 0 u ́ \mu \varepsilon v \alpha$.
be less than the lesser laid out magnitude.
Let $A B$ and C be two unequal magnitudes, of which (let) $A B$ (be) the greater. I say that if (a part) greater than half is subtracted from $A B$, and (if a part) greater than half (is subtracted) from the remainder, and (if) this happens continually, then some magnitude will (eventually) be left which will be less than the magnitude C.

For C, when multiplied (by some number), will sometimes be greater than $A B$ [Def. 5.4]. Let it have been (so) multiplied. And let $D E$ be (both) a multiple of C, and greater than $A B$. And let $D E$ have been divided into the (divisions) $D F, F G, G E$, equal to C. And let $B H$, (which is) greater than half, have been subtracted from $A B$. And (let) $H K$, (which is) greater than half, (have been subtracted) from $A H$. And let this happen continually, until the divisions in $A B$ become equal in number to the divisions in $D E$.

Therefore, let the divisions (in $A B$) be $A K, K H, H B$, being equal in number to $D F, F G, G E$. And since $D E$ is greater than $A B$, and $E G$, (which is) less than half, has been subtracted from $D E$, and $B H$, (which is) greater than half, from $A B$, the remainder $G D$ is thus greater than the remainder $H A$. And since $G D$ is greater than $H A$, and the half $G F$ has been subtracted from $G D$, and $H K$, (which is) greater than half, from $H A$, the remainder $D F$ is thus greater than the remainder $A K$. And $D F$ (is) equal to $C . C$ is thus also greater than $A K$. Thus, $A K$ (is) less than C.

Thus, the magnitude $A K$, which is less than the lesser laid out magnitude C, is left over from the magnitude $A B$. (Which is) the very thing it was required to show. (The theorem) can similarly be proved even if the (parts) subtracted are halves.
${ }^{\dagger}$ This theorem is the basis of the so-called method of exhaustion, and is generally attributed to Eudoxus of Cnidus.

$$
\beta^{\prime} .
$$

 $\mu \eta \delta$ ह́лотє ж $\alpha \tau \alpha \mu \varepsilon \tau \rho \tilde{n}$ тò $\pi \rho o ̀ ~ \varepsilon ́ \alpha \cup \tau о u ̃, ~ \alpha ̇ \sigma u ́ \mu \mu \varepsilon \tau \rho \alpha ~ ह ै \sigma \tau \alpha l ~ \tau \grave{~}$ $\mu \varepsilon \gamma \varepsilon ́ \vartheta \eta$.

Proposition 2

If the remainder of two unequal magnitudes (which are) [laid out] never measures the (magnitude) before it, (when) the lesser (magnitude is) continually subtracted in turn from the greater, then the (original) magnitudes will be incommensurable.

For, $A B$ and $C D$ being two unequal magnitudes, and $A B$ (being) the lesser, let the remainder never measure
 $\Gamma \Delta \mu \varepsilon \gamma \varepsilon ́ \vartheta \eta$.

$E \longmapsto$

$\stackrel{\square}{\vdash} \quad 1 \quad \Delta$
Ei $\gamma \alpha ́ p ~ \varepsilon ̇ \sigma \tau l ~ \sigma u ́ \mu \mu \varepsilon \tau p \alpha, ~ \mu \varepsilon \tau р ท ́ \sigma \varepsilon \iota ~ \tau l ~ \alpha u ̉ \tau \alpha ̀ ~ \mu \varepsilon ́ \gamma \varepsilon \vartheta ั o \varsigma . ~ \mu \varepsilon-~$

 व̈p α ह̇ $\sigma \grave{\iota} \tau \alpha \dot{\alpha} A B, \Gamma \Delta \mu \varepsilon \gamma \varepsilon ́ \vartheta \eta$.

${ }^{\dagger}$ The fact that this will eventually occur is guaranteed by Prop. 10.1.

$$
\gamma^{\prime}
$$

$\Delta u ́ o \mu \varepsilon \gamma \varepsilon \vartheta \widetilde{\omega} \nu ~ \sigma \cup \mu \mu \varepsilon ́ \tau \rho \omega \nu ~ \delta о \vartheta \varepsilon ́ v \tau \omega \nu ~ \tau o ̀ ~ \mu \varepsilon ́ \gamma เ \sigma \tau o \nu ~ \alpha u ̉ \tau \widetilde{\omega} \nu$

$\mathrm{H} \longmapsto$

 μ и́троข عúpeĩ̀.

 үàp тоũ $\mathrm{AB} \mu \varepsilon \gamma \varepsilon ́ ध \vartheta o u s ~ t o ̀ ~ A B ~ o u ́ ~ \mu \varepsilon \tau р \grave{\sigma \varepsilon ı . ~}$

the (magnitude) before it, (when) the lesser (magnitude is) continually subtracted in turn from the greater. I say that the magnitudes $A B$ and $C D$ are incommensurable.

$\begin{array}{lc}\text { C } & \text { F } \\ \text { For if they are commensurable then some magnitude }\end{array}$ will measure them (both). If possible, let it (so) measure (them), and let it be E. And let $A B$ leave $C F$ less than itself (in) measuring $F D$, and let $C F$ leave $A G$ less than itself (in) measuring $B G$, and let this happen continually, until some magnitude which is less than E is left. Let (this) have occurred, ${ }^{\dagger}$ and let $A G$, (which is) less than E, have been left. Therefore, since E measures $A B$, but $A B$ measures $D F, E$ will thus also measure $F D$. And it also measures the whole (of) $C D$. Thus, it will also measure the remainder $C F$. But, $C F$ measures $B G$. Thus, E also measures $B G$. And it also measures the whole (of) $A B$. Thus, it will also measure the remainder $A G$, the greater (measuring) the lesser. The very thing is impossible. Thus, some magnitude cannot measure (both) the magnitudes $A B$ and $C D$. Thus, the magnitudes $A B$ and $C D$ are incommensurable [Def. 10.1].

Thus, if . . . of two unequal magnitudes, and so on

Proposition 3

To find the greatest common measure of two given commensurable magnitudes.

Let $A B$ and $C D$ be the two given magnitudes, of which (let) $A B$ (be) the lesser. So, it is required to find the greatest common measure of $A B$ and $C D$.

For the magnitude $A B$ either measures, or (does) not (measure), $C D$. Therefore, if it measures ($C D$), and (since) it also measures itself, $A B$ is thus a common measure of $A B$ and $C D$. And (it is) clear that (it is) also (the) greatest. For a (magnitude) greater than magnitude $A B$ cannot measure $A B$.

So let $A B$ not measure $C D$. And continually subtracting in turn the lesser (magnitude) from the greater, the

$\Delta u ́ o$ äp $\alpha \mu \varepsilon \varepsilon є \vartheta \widetilde{\omega} \nu ~ \sigma \cup \mu \mu \varepsilon ́ \tau \rho \omega \nu ~ \delta о \vartheta \varepsilon ́ v \tau \omega \nu ~ \tau \widetilde{\omega} \nu \mathrm{AB}, Г \Delta$

Пópıбца.

δ^{\prime}.
 $\alpha \cup ๋ \tau \widetilde{\omega} \nu$ Koเvòv μ ย́tpov ยúpeĩ.

remaining (magnitude) will (at) some time measure the (magnitude) before it, on account of $A B$ and $C D$ not being incommensurable [Prop. 10.2]. And let $A B$ leave $E C$ less than itself (in) measuring $E D$, and let $E C$ leave $A F$ less than itself (in) measuring $F B$, and let $A F$ measure $C E$.

Therefore, since $A F$ measures $C E$, but $C E$ measures $F B, A F$ will thus also measure $F B$. And it also measures itself. Thus, $A F$ will also measure the whole (of) $A B$. But, $A B$ measures $D E$. Thus, $A F$ will also measure $E D$. And it also measures $C E$. Thus, it also measures the whole of $C D$. Thus, $A F$ is a common measure of $A B$ and $C D$. So I say that (it is) also (the) greatest (common measure). For, if not, there will be some magnitude, greater than $A F$, which will measure (both) $A B$ and $C D$. Let it be G. Therefore, since G measures $A B$, but $A B$ measures $E D, G$ will thus also measure $E D$. And it also measures the whole of $C D$. Thus, G will also measure the remainder $C E$. But $C E$ measures $F B$. Thus, G will also measure $F B$. And it also measures the whole (of) $A B$. And (so) it will measure the remainder $A F$, the greater (measuring) the lesser. The very thing is impossible. Thus, some magnitude greater than $A F$ cannot measure (both) $A B$ and $C D$. Thus, $A F$ is the greatest common measure of $A B$ and $C D$.

Thus, the greatest common measure of two given commensurable magnitudes, $A B$ and $C D$, has been found. (Which is) the very thing it was required to show.

Corollary

So (it is) clear, from this, that if a magnitude measures two magnitudes then it will also measure their greatest common measure.

Proposition 4

To find the greatest common measure of three given commensurable magnitudes.

Let A, B, C be the three given commensurable magnitudes. So it is required to find the greatest common measure of A, B, C.

For let the greatest common measure of the two (magnitudes) A and B have been taken [Prop. 10.3], and let it

 $\mu \grave{n} \mu \varepsilon \tau \rho \tilde{n}$ tò Δ tò Γ, घ̇ $\alpha \nu$ ठè $\mu \varepsilon \tau \rho \tilde{n}, \alpha u$ tò tò Δ.

Пópıбиа.

be D. So D either measures, or [does] not [measure], C. Let it, first of all, measure (C). Therefore, since D measures C, and it also measures A and B, D thus measures A, B, C. Thus, D is a common measure of A, B, C. And (it is) clear that (it is) also (the) greatest (common measure). For no magnitude larger than D measures (both) A and B.

So let D not measure C. I say, first, that C and D are commensurable. For if A, B, C are commensurable then some magnitude will measure them which will clearly also measure A and B. Hence, it will also measure D, the greatest common measure of A and B [Prop. 10.3 corr.]. And it also measures C. Hence, the aforementioned magnitude will measure (both) C and D. Thus, C and D are commensurable [Def. 10.1]. Therefore, let their greatest common measure have been taken [Prop. 10.3], and let it be E. Therefore, since E measures D, but D measures (both) A and B, E will thus also measure A and B. And it also measures C. Thus, E measures A, B, C. Thus, E is a common measure of A, B, C. So I say that (it is) also (the) greatest (common measure). For, if possible, let F be some magnitude greater than E, and let it measure A, B, C. And since F measures A, B, C, it will thus also measure A and B, and will (thus) measure the greatest common measure of A and B [Prop. 10.3 corr.]. And D is the greatest common measure of A and B. Thus, F measures D. And it also measures C. Thus, F measures (both) C and D. Thus, F will also measure the greatest common measure of C and D [Prop. 10.3 corr.]. And it is E. Thus, F will measure E, the greater (measuring) the lesser. The very thing is impossible. Thus, some [magnitude] greater than the magnitude E cannot measure A, B, C. Thus, if D does not measure C then E is the greatest common measure of A, B, C. And if it does measure (C) then D itself (is the greatest common measure).

Thus, the greatest common measure of three given commensurable magnitudes has been found. [(Which is) the very thing it was required to show.]

Corollary

So (it is) clear, from this, that if a magnitude measures three magnitudes then it will also measure their greatest common measure.

So, similarly, the greatest common measure of more (magnitudes) can also be taken, and the (above) corollary will go forward. (Which is) the very thing it was required to show.

ε^{\prime}.

T $\dot{\alpha} \sigma \cup ́ \mu \mu \varepsilon \tau \rho \alpha ~ \mu \varepsilon \gamma \varepsilon ́ \vartheta \eta ~ \pi \rho o ̀ s ~ \alpha " \lambda \lambda \eta \lambda \alpha ~ \lambda o ́ \gamma o v ~ ह ै \chi \varepsilon เ, ~ o ̀ v ~$

'Eлєì $\gamma \dot{\alpha} p ~ \sigma u ́ \mu \mu \varepsilon \tau \rho \alpha ́ ~ \varepsilon ̇ \sigma \tau \iota ~ \tau \grave{\alpha} \mathrm{~A}, \mathrm{~B}, \mu \varepsilon \tau \rho \eta ́ \sigma \varepsilon \iota ~ \tau \iota ~ \alpha u ̉ \tau \grave{\alpha}$

 тpòs tòv E .

Proposition 5

Commensurable magnitudes have to one another the ratio which (some) number (has) to (some) number.

Let A and B be commensurable magnitudes. I say that A has to B the ratio which (some) number (has) to (some) number.

For if A and B are commensurable (magnitudes) then some magnitude will measure them. Let it (so) measure (them), and let it be C. And as many times as C measures A, so many units let there be in D. And as many times as C measures B, so many units let there be in E.

Therefore, since C measures A according to the units in D, and a unit also measures D according to the units in it, a unit thus measures the number D as many times as the magnitude C (measures) A. Thus, as C is to A, so a unit (is) to D [Def. 7.20]. ${ }^{\dagger}$ Thus, inversely, as A (is) to C, so D (is) to a unit [Prop. 5.7 corr.]. Again, since C measures B according to the units in E, and a unit also measures E according to the units in it, a unit thus measures E the same number of times that C (measures) B. Thus, as C is to B, so a unit (is) to E [Def. 7.20]. And it was also shown that as A (is) to C, so D (is) to a unit. Thus, via equality, as A is to B, so the number D (is) to the (number) E [Prop. 5.22].

Thus, the commensurable magnitudes A and B have to one another the ratio which the number D (has) to the number E. (Which is) the very thing it was required to show.
${ }^{\dagger}$ There is a slight logical gap here, since Def. 7.20 applies to four numbers, rather than two number and two magnitudes.

$$
\varsigma^{\prime}
$$

 $\pi \rho o ̀ \varsigma ~ \alpha ̉ \rho เ \vartheta \mu o ́ v, ~ \sigma u ́ \mu \mu \varepsilon \tau \rho \alpha ~ \varepsilon ै \sigma \tau \alpha l ~ \tau \grave{\alpha} \mu \varepsilon \gamma \varepsilon ́ \vartheta \eta$.

 $\tau \dot{\alpha} \mathrm{A}, \mathrm{B} \mu \varepsilon \gamma \varepsilon ́ \vartheta \eta$.

Proposition 6

If two magnitudes have to one another the ratio which (some) number (has) to (some) number then the magnitudes will be commensurable.

For let the two magnitudes A and B have to one another the ratio which the number D (has) to the number E. I say that the magnitudes A and B are commensurable.

 бuүหєíб७બ tò Z.

 Δ, tò aủtò $\mu \varepsilon ́ p o s ~ \varepsilon ̇ \sigma \tau i ̀ ~ x \alpha i ̀ ~ \tau o ̀ ~ \Gamma ~ \tau o u ̃ ~ A \cdot ~ ह ै \sigma \tau ル ~ \alpha ̈ p \alpha ~ ஸ ́ s ~ t o ̀ ~ \Gamma ~$

 B.

По́рьб α.

 ónoícs $\dot{\alpha} \nu \alpha \gamma \rho \alpha \varphi o ́ \mu \varepsilon \nu o v . ~ \dot{\alpha} \lambda \lambda{ }^{\circ} \omega \varsigma \dot{\eta} \mathrm{A} \pi \rho o ̀ s ~ \tau \grave{\eta} \nu \mathrm{Z}$, oüt $\omega \varsigma$

ζ

 ג́рเ७นòऽ тро̀ऽ $\dot{\alpha} \rho เ \vartheta \mu o ́ v . ~$

For, as many units as there are in D, let A have been divided into so many equal (divisions). And let C be equal to one of them. And as many units as there are in E, let F be the sum of so many magnitudes equal to C.

Therefore, since as many units as there are in D, so many magnitudes equal to C are also in A, therefore whichever part a unit is of D, C is also the same part of A. Thus, as C is to A, so a unit (is) to D [Def. 7.20]. And a unit measures the number D. Thus, C also measures A. And since as C is to A, so a unit (is) to the [number] D, thus, inversely, as A (is) to C, so the number D (is) to a unit [Prop. 5.7 corr.]. Again, since as many units as there are in E, so many (magnitudes) equal to C are also in F, thus as C is to F, so a unit (is) to the [number] E [Def. 7.20]. And it was also shown that as A (is) to C, so D (is) to a unit. Thus, via equality, as A is to F, so D (is) to E [Prop. 5.22]. But, as D (is) to E, so A is to B. And thus as A (is) to B, so (it) also is to F [Prop. 5.11]. Thus, A has the same ratio to each of B and F. Thus, B is equal to F [Prop. 5.9]. And C measures F. Thus, it also measures B. But, in fact, (it) also (measures) A. Thus, C measures (both) A and B. Thus, A is commensurable with B [Def. 10.1].

Thus, if two magnitudes . . . to one another, and so on

Corollary

So it is clear, from this, that if there are two numbers, like D and E, and a straight-line, like A, then it is possible to contrive that as the number D (is) to the number E, so the straight-line (is) to (another) straight-line (i.e., F). And if the mean proportion, (say) B, is taken of A and F, then as A is to F, so the (square) on A (will be) to the (square) on B. That is to say, as the first (is) to the third, so the (figure) on the first (is) to the similar, and similarly described, (figure) on the second [Prop. 6.19 corr.]. But, as A (is) to F, so the number D is to the number E. Thus, it has also been contrived that as the number D (is) to the number E, so the (figure) on the straight-line A (is) to the (similar figure) on the straight-line B. (Which is) the very thing it was required to show.

Proposition 7

Incommensurable magnitudes do not have to one another the ratio which (some) number (has) to (some) number.

Let A and B be incommensurable magnitudes. I say that A does not have to B the ratio which (some) number (has) to (some) number.

 x $\alpha \grave{\imath} \tau \dot{\alpha} \dot{\varepsilon} \xi \tilde{n} \varsigma$ ．

$$
\eta^{\prime} .
$$

 $\pi \rho o ̀ s ~ \alpha \dot{\alpha} เ \vartheta \mu o ́ v, \dot{\alpha} \sigma \cup ́ \mu \mu \varepsilon \tau \rho \alpha$ हैбт $\alpha \iota \tau \dot{\alpha} \mu \varepsilon \gamma \varepsilon ́ v \eta$ ．

$\mathrm{B} \longmapsto$

 B $\mu \varepsilon \gamma \varepsilon ́ \vartheta \vartheta \eta$ ．

Eî $\gamma \dot{\alpha} \rho$ है $\sigma \tau \alpha \iota \sigma u ́ \mu \mu \varepsilon \tau \rho \alpha$ ，тò $\mathrm{A} \pi \rho o ̀ s ~ \tau o ̀ ~ B ~ \lambda o ́ \gamma o v ~ \varepsilon ́ \xi \varepsilon ı, ~ o ̊ v ~$
 A，B $\mu \varepsilon \gamma \varepsilon ์ \nexists \eta$ ．

ϑ^{\prime} ．

Tม̀ $\alpha \pi o ̀ ~ \tau \widetilde{\omega} \nu \mu n ́ x \varepsilon \iota ~ \sigma \cup \mu \mu \varepsilon ́ \tau \rho \omega \nu ~ \varepsilon u ̉ v \varepsilon เ \widetilde{\omega} \nu ~ \tau \varepsilon \tau \rho \alpha ́ \gamma \omega \nu \alpha$

 ápıひ朱．

$$
\mathrm{B} \longmapsto
$$

For if A has to B the ratio which（some）number（has） to（some）number then A will be commensurable with B ［Prop．10．6］．But it is not．Thus，A does not have to B the ratio which（some）number（has）to（some）number．

Thus，incommensurable numbers do not have to one another，and so on ．．．

Proposition 8

If two magnitudes do not have to one another the ra－ tio which（some）number（has）to（some）number then the magnitudes will be incommensurable．

For let the two magnitudes A and B not have to one another the ratio which（some）number（has）to（some） number．I say that the magnitudes A and B are incom－ mensurable．

For if they are commensurable，A will have to B the ratio which（some）number（has）to（some）number ［Prop．10．5］．But it does not have（such a ratio）．Thus， the magnitudes A and B are incommensurable．

Thus，if two magnitudes ．．．to one another，and so on ．．．．

Proposition 9

Squares on straight－lines（which are）commensurable in length have to one another the ratio which（some） square number（has）to（some）square number．And squares having to one another the ratio which（some） square number（has）to（some）square number will also have sides（which are）commensurable in length．But squares on straight－lines（which are）incommensurable in length do not have to one another the ratio which （some）square number（has）to（some）square number． And squares not having to one another the ratio which （some）square number（has）to（some）square number will not have sides（which are）commensurable in length either．

For let A and B be（straight－lines which are）commen－ surable in length．I say that the square on A has to the square on B the ratio which（some）square number（has） to（some）square number．

 $\mu \dot{\eta}$ кєь.

 àpıখuóv.

 $\tau \tilde{n}$ B $\mu \dot{n} x \varepsilon$.

 $\dot{\eta} \mathrm{A} \tau \tilde{n} \mathrm{~B} \mu \dot{\eta} \chi \varepsilon ⿺$.

For since A is commensurable in length with B, A thus has to B the ratio which (some) number (has) to (some) number [Prop. 10.5]. Let it have (that) which C (has) to D. Therefore, since as A is to B, so C (is) to D. But the (ratio) of the square on A to the square on B is the square of the ratio of A to B. For similar figures are in the squared ratio of (their) corresponding sides [Prop. 6.20 corr.]. And the (ratio) of the square on C to the square on D is the square of the ratio of the [number] C to the [number] D. For there exits one number in mean proportion to two square numbers, and (one) square (number) has to the (other) square [number] a squared ratio with respect to (that) the side (of the former has) to the side (of the latter) [Prop. 8.11]. And, thus, as the square on A is to the square on B, so the square [number] on the (number) C (is) to the square [number] on the [number] $D .^{\dagger}$

And so let the square on A be to the (square) on B as the square (number) on C (is) to the [square] (number) on D. I say that A is commensurable in length with B.

For since as the square on A is to the [square] on B, so the square (number) on C (is) to the [square] (number) on D. But, the ratio of the square on A to the (square) on B is the square of the (ratio) of A to B [Prop. 6.20 corr.]. And the (ratio) of the square [number] on the [number] C to the square [number] on the [number] D is the square of the ratio of the [number] C to the [number] D [Prop. 8.11]. Thus, as A is to B, so the [number] C also (is) to the [number] $D . A$, thus, has to B the ratio which the number C has to the number D. Thus, A is commensurable in length with B [Prop. 10.6]. \ddagger

And so let A be incommensurable in length with B. I say that the square on A does not have to the [square] on B the ratio which (some) square number (has) to (some) square number.

For if the square on A has to the [square] on B the ratio which (some) square number (has) to (some) square number then A will be commensurable (in length) with B. But it is not. Thus, the square on A does not have to the [square] on the B the ratio which (some) square number (has) to (some) square number.

So, again, let the square on A not have to the [square] on B the ratio which (some) square number (has) to (some) square number. I say that A is incommensurable in length with B.

For if A is commensurable (in length) with B then the (square) on A will have to the (square) on B the ratio which (some) square number (has) to (some) square number. But it does not have (such a ratio). Thus, A is not commensurable in length with B.

Thus, (squares) on (straight-lines which are) com-
mensurable in length, and so on

По́pıбиа.

 $\mu \dot{\gamma}$ кє.

Corollary

And it will be clear, from (what) has been demonstrated, that (straight-lines) commensurable in length (are) always also (commensurable) in square, but (straightlines commensurable) in square (are) not always also (commensurable) in length.
${ }^{\dagger}$ There is an unstated assumption here that if $\alpha: \beta:: \gamma: \delta$ then $\alpha^{2}: \beta^{2}:: \gamma^{2}: \delta^{2}$.
${ }^{\ddagger}$ There is an unstated assumption here that if $\alpha^{2}: \beta^{2}:: \gamma^{2}: \delta^{2}$ then $\alpha: \beta:: \gamma: \delta$.
\therefore.

 ठuváueı.

Tǹ $\alpha \not \rho \alpha ~ \pi \rho о \tau \varepsilon \vartheta \varepsilon i \sigma \emptyset ~ \varepsilon u ̉ v \varepsilon i ́ \alpha ~ \tau \tilde{n}$ A $\pi \rho о \sigma \varepsilon u ́ p \eta \nu \tau \alpha l ~ \delta u ́ o ~$

Proposition 10^{\dagger}

To find two straight-lines incommensurable with a given straight-line, the one (incommensurable) in length only, the other also (incommensurable) in square.

Let A be the given straight-line. So it is required to find two straight-lines incommensurable with A, the one (incommensurable) in length only, the other also (incommensurable) in square.

For let two numbers, B and C, not having to one another the ratio which (some) square number (has) to (some) square number - that is to say, not (being) similar plane (numbers) -have been taken. And let it be contrived that as B (is) to C, so the square on A (is) to the square on D. For we learned (how to do this) [Prop. 10.6 corr.]. Thus, the (square) on A (is) commensurable with the (square) on D [Prop. 10.6]. And since B does not have to C the ratio which (some) square number (has) to (some) square number, the (square) on A thus does not have to the (square) on D the ratio which (some) square number (has) to (some) square number either. Thus, A is incommensurable in length with D [Prop. 10.9]. Let the (straight-line) E (which is) in mean proportion to A and D have been taken [Prop. 6.13]. Thus, as A is to D, so the square on A (is) to the (square) on E [Def. 5.9]. And A is incommensurable in length with D. Thus, the square on A is also incommensurble with the square on E [Prop. 10.11]. Thus, A is incommensurable in square with E.
${ }^{\dagger}$ This whole proposition is regarded by Heiberg as an interpolation into the original text.

α^{\prime}.

 है〒тац.

 tò $\Gamma \uparrow \widetilde{\varphi} \Delta$.

$$
{ }^{\prime} \beta^{\prime} .
$$

 бט́циєтра.

'Етєi $\gamma \alpha ̀ \rho ~ \sigma u ́ \mu \mu \varepsilon \tau \rho o ́ v ~ \varepsilon ̇ \sigma \tau \iota ~ t o ̀ ~ A ~ \tau \widetilde{̣ ~} \Gamma$, tò A äp α трòs

Proposition 11

If four magnitudes are proportional, and the first is commensurable with the second, then the third will also be commensurable with the fourth. And if the first is incommensurable with the second, then the third will also be incommensurable with the fourth.

Let A, B, C, D be four proportional magnitudes, (such that) as A (is) to B, so C (is) to D. And let A be commensurable with B. I say that C will also be commensurable with D.

For since A is commensurable with B, A thus has to B the ratio which (some) number (has) to (some) number [Prop. 10.5]. And as A is to B, so C (is) to D. Thus, C also has to D the ratio which (some) number (has) to (some) number. Thus, C is commensurable with D [Prop. 10.6].

And so let A be incommensurable with B. I say that C will also be incommensurable with D. For since A is incommensurable with B, A thus does not have to B the ratio which (some) number (has) to (some) number [Prop. 10.7]. And as A is to B, so C (is) to D. Thus, C does not have to D the ratio which (some) number (has) to (some) number either. Thus, C is incommensurable with D [Prop. 10.8].

Thus, if four magnitudes, and so on

Proposition 12

(Magnitudes) commensurable with the same magnitude are also commensurable with one another.

For let A and B each be commensurable with C. I say that A is also commensurable with B.

For since A is commensurable with C, A thus has to C the ratio which (some) number (has) to (some) number [Prop. 10.5]. Let it have (the ratio) which D (has) to E. Again, since C is commensurable with B, C thus has to B the ratio which (some) number (has) to (some) number [Prop. 10.5]. Let it have (the ratio) which F (has) to G. And for any multitude whatsoever
 tòv Z тpòs tòv H , oưt ω s tòv $\mathrm{K} \pi \rho o ̀ s ~ \tau o ̀ v ~ \Lambda . ~$

${ }^{\prime} \gamma^{\prime}$.

 ov ยै $\sigma \tau \alpha$.

 x α tò $\lambda о \iota \pi o ̀ v ~ t o ̀ ~ B ~ \tau \widetilde{̣} \Gamma ~ \Gamma \alpha ́ \sigma u ́ \mu \mu \varepsilon \tau \rho o ́ v ~ \varepsilon ́ \sigma \tau เ \nu . ~$

Ei $\gamma \alpha ́ p$ ह̇ $\sigma \tau \iota \sigma u ́ \mu \mu \varepsilon \tau \rho o \nu$ tò $\mathrm{B} \tau \widetilde{\varphi} \Gamma, \dot{\alpha} \lambda \lambda \alpha \dot{\alpha} x \alpha i$ tò $\mathrm{A} \tau \widetilde{\varphi}$

$\Lambda \tilde{n} \mu \mu \alpha$.

of given ratios-(namely,) those which D has to E, and F to G-let the numbers H, K, L (which are) continuously (proportional) in the(se) given ratios have been taken [Prop. 8.4]. Hence, as D is to E, so H (is) to K, and as F (is) to G, so K (is) to L.

Therefore, since as A is to C, so D (is) to E, but as D (is) to E, so H (is) to K, thus also as A is to C, so H (is) to K [Prop. 5.11]. Again, since as C is to B, so F (is) to G, but as F (is) to G, [so] K (is) to L, thus also as C (is) to B, so K (is) to L [Prop. 5.11]. And also as A is to C, so H (is) to K. Thus, via equality, as A is to B, so H (is) to L [Prop. 5.22]. Thus, A has to B the ratio which the number H (has) to the number L. Thus, A is commensurable with B [Prop. 10.6].

Thus, (magnitudes) commensurable with the same magnitude are also commensurable with one another. (Which is) the very thing it was required to show.

Proposition 13

If two magnitudes are commensurable, and one of them is incommensurable with some magnitude, then the remaining (magnitude) will also be incommensurable with it.

Let A and B be two commensurable magnitudes, and let one of them, A, be incommensurable with some other (magnitude), C. I say that the remaining (magnitude), B, is also incommensurable with C.

For if B is commensurable with C, but A is also commensurable with B, A is thus also commensurable with C [Prop. 10.12]. But, (it is) also incommensurable (with C). The very thing (is) impossible. Thus, B is not commensurable with C. Thus, (it is) incommensurable.

Thus, if two magnitudes are commensurable, and so on

Lemma

For two given unequal straight-lines, to find by (the square on) which (straight-line) the square on the greater

 $\tau \tilde{n} s \Gamma$.

(straight-line is) larger than (the square on) the lesser. ${ }^{\dagger}$

Let $A B$ and C be the two given unequal straight-lines, and let $A B$ be the greater of them. So it is required to find by (the square on) which (straight-line) the square on $A B$ (is) greater than (the square on) C.

Let the semi-circle $A D B$ have been described on $A B$. And let $A D$, equal to C, have been inserted into it [Prop. 4.1]. And let $D B$ have been joined. So (it is) clear that the angle $A D B$ is a right-angle [Prop. 3.31], and that the square on $A B$ (is) greater than (the square on) $A D$-that is to say, (the square on) C-by (the square on) $D B$ [Prop. 1.47].

And, similarly, the square-root of (the sum of the squares on) two given straight-lines is also found likeso.

Let $A D$ and $D B$ be the two given straight-lines. And let it be necessary to find the square-root of (the sum of the squares on) them. For let them have been laid down such as to encompass a right-angle-(namely), that (angle encompassed) by $A D$ and $D B$. And let $A B$ have been joined. (It is) again clear that $A B$ is the square-root of (the sum of the squares on) $A D$ and $D B$ [Prop. 1.47]. (Which is) the very thing it was required to show.
${ }^{\dagger}$ That is, if α and β are the lengths of two given straight-lines, with α being greater than β, to find a straight-line of length γ such that $\alpha^{2}=\beta^{2}+\gamma^{2}$. Similarly, we can also find γ such that $\gamma^{2}=\alpha^{2}+\beta^{2}$.

$$
\delta^{\prime}
$$

 $\sigma \cup \mu \mu \varepsilon ́ \tau \rho \circ \cup$ غ́ $\alpha \cup \tau \tilde{n}[\mu \dot{\eta} x \varepsilon \iota]$. x αi ह̇ $\alpha \nu \dot{\eta} \pi \rho \omega ́ \tau \eta ~ \tau \tilde{\eta} \varsigma ~ \delta \varepsilon \cup \tau \varepsilon ́ \rho \alpha \varsigma$

 $\dot{\varepsilon} \alpha \cup \tau \tilde{n}[\mu \dot{n} \chi \varepsilon \iota]$.
"Eбт $\omega \sigma \alpha \nu$ тé $\sigma \sigma \alpha \rho \varepsilon \varsigma ~ \varepsilon u ̉ v \varepsilon i ̃ \alpha l ~ \alpha ̀ v \alpha ́ \lambda o \gamma o v ~ \alpha i ~ A, ~ В, ~ Г, ~ \Delta, ~$

Proposition 14

If four straight-lines are proportional, and the square on the first is greater than (the square on) the second by the (square) on (some straight-line) commensurable [in length] with the first, then the square on the third will also be greater than (the square on) the fourth by the (square) on (some straight-line) commensurable [in length] with the third. And if the square on the first is greater than (the square on) the second by the (square) on (some straight-line) incommensurable [in length] with the first, then the square on the third will also be greater than (the square on) the fourth by the (square) on (some straight-line) incommensurable [in length] with the third.

Let A, B, C, D be four proportional straight-lines, (such that) as A (is) to B, so C (is) to D. And let the square on A be greater than (the square on) B by the

 $\dot{\eta} \mathrm{A} \tau \tilde{n} \mathrm{E}, \alpha \dot{\alpha} \sigma \dot{\mu} \mu \mu \varepsilon \tau \rho o ́ s ~ \varepsilon ̇ \sigma \tau \iota ~ \varkappa \alpha i ̀ ~ \dot{\eta} \Gamma \tau \tilde{\eta} \mathrm{Z}$.

$$
\iota \varepsilon^{\prime}
$$

(square) on E, and let the square on C be greater than (the square on) D by the (square) on F. I say that A is either commensurable (in length) with E, and C is also commensurable with F, or A is incommensurable (in length) with E, and C is also incommensurable with F.

For since as A is to B, so C (is) to D, thus as the (square) on A is to the (square) on B, so the (square) on C (is) to the (square) on D [Prop. 6.22]. But the (sum of the squares) on E and B is equal to the (square) on A, and the (sum of the squares) on D and F is equal to the (square) on C. Thus, as the (sum of the squares) on E and B is to the (square) on B, so the (sum of the squares) on D and F (is) to the (square) on D. Thus, via separation, as the (square) on E is to the (square) on B, so the (square) on F (is) to the (square) on D [Prop. 5.17]. Thus, also, as E is to B, so F (is) to D [Prop. 6.22]. Thus, inversely, as B is to E, so D (is) to F [Prop. 5.7 corr.]. But, as A is to B, so C also (is) to D. Thus, via equality, as A is to E, so C (is) to F [Prop. 5.22]. Therefore, A is either commensurable (in length) with E, and C is also commensurable with F, or A is incommensurable (in length) with E, and C is also incommensurable with F [Prop. 10.11].

Thus, if, and so on

Proposition 15

If two commensurable magnitudes are added together then the whole will also be commensurable with each of them. And if the whole is commensurable with one of them then the original magnitudes will also be commensurable (with one another).

For let the two commensurable magnitudes $A B$ and $B C$ be laid down together. I say that the whole $A C$ is also commensurable with each of $A B$ and $B C$.

$\Delta \longmapsto$

 tò $\mathrm{A} \Gamma$ غ́x $\alpha \tau \varepsilon ́ \rho \biguplus ~ \tau \widetilde{\omega} \nu \mathrm{AB}, ~ В \Gamma$.
 ж $\grave{\imath} \tau \grave{\alpha} \mathrm{AB}, ~ В \Gamma ~ \sigma u ́ \mu \mu \varepsilon \tau р \alpha ́ \alpha ~ \varepsilon ̇ \sigma \tau \iota . ~$

 $\tau \dot{\alpha} \mathrm{AB}, \mathrm{B} \Gamma$.

$l \xi^{\prime}$.

$\Delta \longmapsto$

 $\lambda \varepsilon ́ \gamma \omega$, öтı x α ö ö̀ov tò $\mathrm{A} \Gamma$ ह́x $\alpha \tau \varepsilon ́ \rho \varphi ~ \tau \widetilde{\omega} \nu \mathrm{AB}, \mathrm{B} \Gamma \dot{\alpha} \sigma \dot{\mu} \mu \mu \varepsilon \tau \rho o ́ v$ ย̇бтเน.

 ВГ $\dot{\alpha} \sigma \cup ́ \mu \mu \varepsilon \tau \rho o ́ v ~ \varepsilon ̇ \sigma \tau \iota \nu . ~$

For since $A B$ and $B C$ are commensurable, some magnitude will measure them. Let it (so) measure (them), and let it be D. Therefore, since D measures (both) $A B$ and $B C$, it will also measure the whole $A C$. And it also measures $A B$ and $B C$. Thus, D measures $A B, B C$, and $A C$. Thus, $A C$ is commensurable with each of $A B$ and $B C$ [Def. 10.1].

And so let $A C$ be commensurable with $A B$. I say that $A B$ and $B C$ are also commensurable.

For since $A C$ and $A B$ are commensurable, some magnitude will measure them. Let it (so) measure (them), and let it be D. Therefore, since D measures (both) $C A$ and $A B$, it will thus also measure the remainder $B C$. And it also measures $A B$. Thus, D will measure (both) $A B$ and $B C$. Thus, $A B$ and $B C$ are commensurable [Def. 10.1].

Thus, if two magnitudes, and so on

Proposition 16

If two incommensurable magnitudes are added together then the whole will also be incommensurable with each of them. And if the whole is incommensurable with one of them then the original magnitudes will also be incommensurable (with one another).

D

For let the two incommensurable magnitudes $A B$ and $B C$ be laid down together. I say that that the whole $A C$ is also incommensurable with each of $A B$ and $B C$.

For if $C A$ and $A B$ are not incommensurable then some magnitude will measure [them]. If possible, let it (so) measure (them), and let it be D. Therefore, since D measures (both) $C A$ and $A B$, it will thus also measure the remainder $B C$. And it also measures $A B$. Thus, D measures (both) $A B$ and $B C$. Thus, $A B$ and $B C$ are commensurable [Def. 10.1]. But they were also assumed (to be) incommensurable. The very thing is impossible. Thus, some magnitude cannot measure (both) $C A$ and $A B$. Thus, $C A$ and $A B$ are incommensurable [Def. 10.1]. So, similarly, we can show that $A C$ and $C B$ are also incommensurable. Thus, $A C$ is incommensurable with each of $A B$ and $B C$.

And so let $A C$ be incommensurable with one of $A B$ and $B C$. So let it, first of all, be incommensurable with

 ध̇ $\sigma \tau i ̀ \tau \alpha \mathrm{AB}, \mathrm{B} \mathrm{\Gamma}$.

А $\tilde{\mu} \mu \alpha$.

${ }^{\dagger}$ Note that this lemma only applies to rectangular parallelograms.

$$
\zeta^{\prime}
$$

$A B$. I say that $A B$ and $B C$ are also incommensurable. For if they are commensurable then some magnitude will measure them. Let it (so) measure (them), and let it be D. Therefore, since D measures (both) $A B$ and $B C$, it will thus also measure the whole $A C$. And it also measures $A B$. Thus, D measures (both) $C A$ and $A B$. Thus, $C A$ and $A B$ are commensurable [Def. 10.1]. But they were also assumed (to be) incommensurable. The very thing is impossible. Thus, some magnitude cannot measure (both) $A B$ and $B C$. Thus, $A B$ and $B C$ are incommensurable [Def. 10.1].

Thus, if two. . . magnitudes, and so on

Lemma

If a parallelogram, ${ }^{\dagger}$ falling short by a square figure, is applied to some straight-line then the applied (parallelogram) is equal (in area) to the (rectangle contained) by the pieces of the straight-line created via the application (of the parallelogram).

For let the parallelogram $A D$, falling short by the square figure $D B$, have been applied to the straight-line $A B$. I say that $A D$ is equal to the (rectangle contained) by $A C$ and $C B$.

And it is immediately obvious. For since $D B$ is a square, $D C$ is equal to $C B$. And $A D$ is the (rectangle contained) by $A C$ and $C D$-that is to say, by $A C$ and $C B$.

Thus, if . . . to some straight-line, and so on

Proposition $17{ }^{\dagger}$

If there are two unequal straight-lines, and a (rectangle) equal to the fourth part of the (square) on the lesser, falling short by a square figure, is applied to the greater, and divides it into (parts which are) commensurable in length, then the square on the greater will be larger than (the square on) the lesser by the (square) on (some straight-line) commensurable [in length] with the greater. And if the square on the greater is larger than (the square on) the lesser by the (square) on (some straight-line) commensurable [in length] with the

 $\tau \widetilde{\omega} \nu \mathrm{B} \Delta, \Delta \Gamma \mu \varepsilon \tau \grave{\alpha} \tau \circ \tilde{u} \tau \varepsilon \tau \rho \alpha \pi \lambda \alpha \sigma$ íou тoũ $\alpha \pi o ̀ ~ \tau \tilde{\eta} s \Delta \mathrm{E}$ 亿ैбov

 $\alpha \dot{\alpha} o ̀ ~ \tau n ̃ ऽ ~ B \Gamma ~ \tau \varepsilon \tau \rho \alpha ́ \gamma \omega \nu o v . ~ \delta \iota \pi \lambda \alpha \sigma i ́ \omega \nu ~ \gamma \alpha ́ p ~ \varepsilon ̇ \sigma \tau \iota ~ \pi \alpha ́ \alpha \lambda \iota ~ \dot{\eta}$ ВГ

 μ и́кєь.

greater, and a (rectangle) equal to the fourth (part) of the (square) on the lesser, falling short by a square figure, is applied to the greater, then it divides it into (parts which are) commensurable in length.

Let A and $B C$ be two unequal straight-lines, of which (let) $B C$ (be) the greater. And let a (rectangle) equal to the fourth part of the (square) on the lesser, A-that is, (equal) to the (square) on half of A-falling short by a square figure, have been applied to $B C$. And let it be the (rectangle contained) by $B D$ and $D C$ [see previous lemma]. And let $B D$ be commensurable in length with $D C$. I say that that the square on $B C$ is greater than the (square on) A by (the square on some straight-line) commensurable (in length) with ($B C$).

For let $B C$ have been cut in half at the point E [Prop. 1.10]. And let $E F$ be made equal to $D E$ [Prop. 1.3]. Thus, the remainder $D C$ is equal to $B F$. And since the straight-line $B C$ has been cut into equal (pieces) at E, and into unequal (pieces) at D, the rectangle contained by $B D$ and $D C$, plus the square on $E D$, is thus equal to the square on $E C$ [Prop. 2.5]. (The same) also (for) the quadruples. Thus, four times the (rectangle contained) by $B D$ and $D C$, plus the quadruple of the (square) on $D E$, is equal to four times the square on $E C$. But, the square on A is equal to the quadruple of the (rectangle contained) by $B D$ and $D C$, and the square on $D F$ is equal to the quadruple of the (square) on $D E$. For $D F$ is double $D E$. And the square on $B C$ is equal to the quadruple of the (square) on $E C$. For, again, $B C$ is double $C E$. Thus, the (sum of the) squares on A and $D F$ is equal to the square on $B C$. Hence, the (square) on $B C$ is greater than the (square) on A by the (square) on $D F$. Thus, $B C$ is greater in square than A by $D F$. It must also be shown that $B C$ is commensurable (in length) with $D F$. For since $B D$ is commensurable in length with $D C, B C$ is thus also commensurable in length with $C D$ [Prop. 10.15]. But, $C D$ is commensurable in length with $C D$ plus $B F$. For $C D$ is equal to $B F$ [Prop. 10.6]. Thus, $B C$ is also commensurable in length with $B F$ plus $C D$ [Prop. 10.12]. Hence, $B C$ is also commensurable in length with the remainder $F D$ [Prop. 10.15]. Thus, the square on $B C$ is greater than (the square on) A by the (square) on (some straight-line) commensurable (in length) with ($B C$).

And so let the square on $B C$ be greater than the (square on) A by the (square) on (some straight-line) commensurable (in length) with $(B C)$. And let a (rectangle) equal to the fourth (part) of the (square) on A, falling short by a square figure, have been applied to $B C$. And let it be the (rectangle contained) by $B D$ and $D C$. It must be shown that $B D$ is commensurable in length with $D C$.

For, similarly, by the same construction, we can show that the square on $B C$ is greater than the (square on) A by the (square) on $F D$. And the square on $B C$ is greater than the (square on) A by the (square) on (some straightline) commensurable (in length) with ($B C$). Thus, $B C$ is commensurable in length with $F D$. Hence, $B C$ is also commensurable in length with the remaining sum of $B F$ and $D C$ [Prop. 10.15]. But, the sum of $B F$ and $D C$ is commensurable [in length] with $D C$ [Prop. 10.6]. Hence, $B C$ is also commensurable in length with $C D$ [Prop. 10.12]. Thus, via separation, $B D$ is also commensurable in length with $D C$ [Prop. 10.15].

Thus, if there are two unequal straight-lines, and so on
${ }^{\dagger}$ This proposition states that if $\alpha x-x^{2}=\beta^{2} / 4$ (where $\alpha=B C, x=D C$, and $\beta=A$) then α and $\sqrt{\alpha^{2}-\beta^{2}}$ are commensurable when $\alpha-x$ are x are commensurable, and vice versa.

$$
i \eta^{\prime}
$$

 ג̇бицце́трои غ̀ $\alpha \cup \tau \tilde{n}$.

Proposition 18^{\dagger}

If there are two unequal straight-lines, and a (rectangle) equal to the fourth part of the (square) on the lesser, falling short by a square figure, is applied to the greater, and divides it into (parts which are) incommensurable [in length], then the square on the greater will be larger than the (square on the) lesser by the (square) on (some straight-line) incommensurable (in length) with the greater. And if the square on the greater is larger than the (square on the) lesser by the (square) on (some straight-line) incommensurable (in length) with the greater, and a (rectangle) equal to the fourth (part) of the (square) on the lesser, falling short by a square figure, is applied to the greater, then it divides it into (parts which are) incommensurable [in length].

Let A and $B C$ be two unequal straight-lines, of which (let) $B C$ (be) the greater. And let a (rectangle) equal to the fourth [part] of the (square) on the lesser, A, falling short by a square figure, have been applied to $B C$. And let it be the (rectangle contained) by $B D C$. And let $B D$ be incommensurable in length with $D C$. I say that that the square on $B C$ is greater than the (square on) A by the (square) on (some straight-line) incommensurable (in length) with ($B C$).

 ג̇兀ò $\alpha \sigma \cup \mu \mu \varepsilon ́ т \rho о \cup ~ غ ́ \alpha \cup \tau \tilde{n}$.

 $\mu \eta^{\prime}$ кє．

 $\mathrm{B} \Delta \tau \tilde{n} \Delta \Gamma$ वं $\sigma \cup ́ \mu \mu \varepsilon \tau \rho o ́ \varsigma ~ \varepsilon ̇ \sigma \tau \iota ~ \mu \eta ́ \chi \varepsilon เ . ~$

For，similarly，by the same construction as before，we can show that the square on $B C$ is greater than the （square on）A by the（square）on $F D$ ．［Therefore］it must be shown that $B C$ is incommensurable in length with $D F$ ．For since $B D$ is incommensurable in length with $D C, B C$ is thus also incommensurable in length with $C D$［Prop．10．16］．But，$D C$ is commensurable（in length）with the sum of $B F$ and $D C$［Prop．10．6］．And， thus，$B C$ is incommensurable（in length）with the sum of $B F$ and $D C$［Prop．10．13］．Hence，$B C$ is also incommen－ surable in length with the remainder $F D$［Prop．10．16］． And the square on $B C$ is greater than the（square on） A by the（square）on $F D$ ．Thus，the square on $B C$ is greater than the（square on）A by the（square）on（some straight－line）incommensurable（in length）with（ $B C$ ）．

So，again，let the square on $B C$ be greater than the （square on）A by the（square）on（some straight－line）in－ commensurable（in length）with $(B C)$ ．And let a（rect－ angle）equal to the fourth［part］of the（square）on A ， falling short by a square figure，have been applied to $B C$ ． And let it be the（rectangle contained）by $B D$ and $D C$ ． It must be shown that $B D$ is incommensurable in length with $D C$ ．

For，similarly，by the same construction，we can show that the square on $B C$ is greater than the（square）on A by the（square）on $F D$ ．But，the square on $B C$ is greater than the（square）on A by the（square）on（some straight－line）incommensurable（in length）with（ $B C$ ）． Thus，$B C$ is incommensurable in length with $F D$ ．Hence， $B C$ is also incommensurable（in length）with the re－ maining sum of $B F$ and $D C$［Prop．10．16］．But，the sum of $B F$ and $D C$ is commensurable in length with $D C$［Prop．10．6］．Thus，$B C$ is also incommensurable in length with $D C$［Prop．10．13］．Hence，via separa－ tion，$B D$ is also incommensurable in length with $D C$ ［Prop．10．16］．

Thus，if there are two ．．．straight－lines，and so on ．．．．
\dagger This proposition states that if $\alpha x-x^{2}=\beta^{2} / 4$（where $\alpha=B C, x=D C$ ，and $\beta=A$ ）then α and $\sqrt{\alpha^{2}-\beta^{2}}$ are incommensurable when $\alpha-x$ are x are incommensurable，and vice versa．

เ̛＇．$^{\prime}$ ．

${ }^{〔} \Upsilon \pi o ̀ ~ \gamma \grave{\alpha} \rho \dot{\rho} \eta \tau \widetilde{\omega} \nu \mu \eta \eta^{\prime} x \varepsilon \iota \sigma u \mu \mu \varepsilon ́ \tau \rho \omega \nu \varepsilon u ̉ \vartheta \varepsilon เ \widetilde{\omega} \nu \tau \widetilde{\omega} \nu \mathrm{AB}, \mathrm{B} \mathrm{\Gamma}$

Proposition 19

The rectangle contained by rational straight－lines （which are）commensurable in length is rational．

For let the rectangle $A C$ have been enclosed by the
 $А \Gamma$.

x^{\prime}.

 ж人ì $\sigma \dot{\mu} \mu \mu \varepsilon \tau \rho o \nu \tau \tilde{n}, \pi \alpha \rho^{\prime} \hat{\eta} \nu \pi \alpha \rho \alpha ́ x \varepsilon เ \tau \alpha \iota, \mu \dot{\eta} x \varepsilon \iota$.

rational straight-lines $A B$ and $B C$ (which are) commensurable in length. I say that $A C$ is rational.

For let the square $A D$ have been described on $A B$. $A D$ is thus rational [Def. 10.4]. And since $A B$ is commensurable in length with $B C$, and $A B$ is equal to $B D$, $B D$ is thus commensurable in length with $B C$. And as $B D$ is to $B C$, so $D A$ (is) to $A C$ [Prop. 6.1]. Thus, $D A$ is commensurable with $A C$ [Prop. 10.11]. And $D A$ (is) rational. Thus, $A C$ is also rational [Def. 10.4]. Thus, the . . . by rational straight-lines ... commensurable, and so on

Proposition 20

If a rational (area) is applied to a rational (straightline) then it produces as breadth a (straight-line which is) rational, and commensurable in length with the (straightline) to which it is applied.

For let the rational (area) $A C$ have been applied to the rational (straight-line) $A B$, producing the (straight-line) $B C$ as breadth. I say that $B C$ is rational, and commensurable in length with $B A$.

For let the square $A D$ have been described on $A B$.

 $\mathrm{AB} \boldsymbol{\mu} \boldsymbol{\eta} \boldsymbol{\varepsilon}$.

$\chi \alpha^{\prime}$.

 $\delta \varepsilon ̀ \mu \varepsilon ́ \sigma \eta$.

 ठè $\dot{\eta} \mathrm{AB} \tau \tilde{n} \mathrm{~B} \Delta$, $\alpha \sigma \cup ́ \mu \mu \varepsilon \tau \rho о \varsigma ~ \alpha ́ p \alpha ~ \varepsilon ̇ \sigma \tau i ̀ ~ x \alpha i ̀ ~ \dot{\eta} \Delta \mathrm{~B} \tau \tilde{n} \mathrm{~B} \mathrm{\Gamma}$

${ }^{\dagger}$ Thus, a medial straight-line has a length expressible as $k^{1 / 4}$.
$A D$ is thus rational [Def. 10.4]. And $A C$ (is) also rational. $D A$ is thus commensurable with $A C$. And as $D A$ is to $A C$, so $D B$ (is) to $B C$ [Prop. 6.1]. Thus, $D B$ is also commensurable (in length) with $B C$ [Prop. 10.11]. And $D B$ (is) equal to $B A$. Thus, $A B$ (is) also commensurable (in length) with $B C$. And $A B$ is rational. Thus, $B C$ is also rational, and commensurable in length with $A B$ [Def. 10.3].

Thus, if a rational (area) is applied to a rational (straight-line), and so on

Proposition 21

The rectangle contained by rational straight-lines (which are) commensurable in square only is irrational, and its square-root is irrational-let it be called medial. ${ }^{\dagger}$

For let the rectangle $A C$ be contained by the rational straight-lines $A B$ and $B C$ (which are) commensurable in square only. I say that $A C$ is irrational, and its squareroot is irrational-let it be called medial.

For let the square $A D$ have been described on $A B$. $A D$ is thus rational [Def. 10.4]. And since $A B$ is incommensurable in length with $B C$. For they were assumed to be commensurable in square only. And $A B$ (is) equal to $B D . D B$ is thus also incommensurable in length with $B C$. And as $D B$ is to $B C$, so $A D$ (is) to $A C$ [Prop. 6.1]. Thus, $D A$ [is] incommensurable with $A C$ [Prop. 10.11]. And $D A$ (is) rational. Thus, $A C$ is irrational [Def. 10.4]. Hence, its square-root [that is to say, the square-root of the square equal to it] is also irrational [Def. 10.4]-let it be called medial. (Which is) the very thing it was required to show.
$\Lambda \tilde{n} \mu \mu \alpha$.

 ยu゙vะเడّ้.

 ZE, EH.

$$
x \beta^{\prime} .
$$

 $\dot{\alpha} \sigma \dot{\mu} \mu \mu \varepsilon \tau \rho о \varsigma \tau \tilde{\eta}$ ГВ $\mu \dot{\eta} \chi \varepsilon ь$.

Lemma

If there are two straight-lines then as the first is to the second, so the (square) on the first (is) to the (rectangle contained) by the two straight-lines.

Let $F E$ and $E G$ be two straight-lines. I say that as $F E$ is to $E G$, so the (square) on $F E$ (is) to the (rectangle contained) by $F E$ and $E G$.

For let the square $D F$ have been described on $F E$. And let $G D$ have been completed. Therefore, since as $F E$ is to $E G$, so $F D$ (is) to $D G$ [Prop. 6.1], and $F D$ is the (square) on $F E$, and $D G$ the (rectangle contained) by $D E$ and $E G$-that is to say, the (rectangle contained) by $F E$ and $E G$-thus as $F E$ is to $E G$, so the (square) on $F E$ (is) to the (rectangle contained) by $F E$ and $E G$. And also, similarly, as the (rectangle contained) by $G E$ and $E F$ is to the (square on) $E F$-that is to say, as $G D$ (is) to $F D$-so $G E$ (is) to $E F$. (Which is) the very thing it was required to show.

Proposition 22

The square on a medial (straight-line), being applied to a rational (straight-line), produces as breadth a (straight-line which is) rational, and incommensurable in length with the (straight-line) to which it is applied.

Let A be a medial (straight-line), and $C B$ a rational (straight-line), and let the rectangular area $B D$, equal to the (square) on A, have been applied to $B C$, producing $C D$ as breadth. I say that $C D$ is rational, and incommensurable in length with $C B$.

For since A is medial, the square on it is equal to a

 $\tau \widetilde{\varphi}$ ठ乇̀ ú $\pi o ̀ ~ \tau \widetilde{\omega} \nu \mathrm{ZE}, \mathrm{EH} \sigma u ́ \mu \mu \varepsilon \tau \rho o ́ v ~ \varepsilon ̇ \sigma \tau ו ~ \tau o ̀ ~ u ́ \pi o ̀ ~ \tau \widetilde{\omega} \nu \Delta \Gamma$,

† Literally, "rational".

$$
x \gamma^{\prime}
$$

${ }^{3} \mathrm{E} \sigma \tau \omega \mu \varepsilon ́ \sigma \eta \dot{\eta} \mathrm{~A}$, x $\alpha \grave{\imath} \tau \tilde{\eta} \mathrm{A} \sigma \dot{\mu} \mu \mu \varepsilon \tau \rho \circ \varsigma$ है $\sigma \tau \omega \dot{\eta} \mathrm{B}$ • $\lambda \varepsilon ́ \gamma \omega$, o้тા xai $\dot{\eta} \mathrm{B} \mu \varepsilon ́ \sigma \eta$ モ̇ $\sigma \tau i ́ v$.

 $\sigma u ́ \mu \mu \varepsilon \tau \rho o ́ v ~ \varepsilon ̇ \sigma \tau l ~ x \alpha i ̀ ~ \tau o ̀ ~ \alpha ̇ \pi o ̀ ~ \tau n ̃ s ~ A ~ \tau \widetilde{̣}$ árò $\tau \tilde{\eta} s \mathrm{~B}$. $\alpha \lambda \lambda \lambda \grave{\alpha}$

(rectangular) area contained by rational (straight-lines which are) commensurable in square only [Prop. 10.21]. Let the square on (A) be equal to $G F$. And the square on (A) is also equal to $B D$. Thus, $B D$ is equal to $G F$. And $(B D)$ is also equiangular with $(G F)$. And for equal and equiangular parallelograms, the sides about the equal angles are reciprocally proportional [Prop. 6.14]. Thus, proportionally, as $B C$ is to $E G$, so $E F$ (is) to $C D$. And, also, as the (square) on $B C$ is to the (square) on $E G$, so the (square) on $E F$ (is) to the (square) on $C D$ [Prop. 6.22]. And the (square) on $C B$ is commensurable with the (square) on $E G$. For they are each rational. Thus, the (square) on $E F$ is also commensurable with the (square) on $C D$ [Prop. 10.11]. And the (square) on $E F$ is rational. Thus, the (square) on $C D$ is also rational [Def. 10.4]. Thus, $C D$ is rational. And since $E F$ is incommensurable in length with $E G$. For they are commensurable in square only. And as $E F$ (is) to $E G$, so the (square) on $E F$ (is) to the (rectangle contained) by $F E$ and $E G$ [see previous lemma]. The (square) on $E F$ [is] thus incommensurable with the (rectangle contained) by $F E$ and $E G$ [Prop. 10.11]. But, the (square) on $C D$ is commensurable with the (square) on $E F$. For they are rational in square. And the (rectangle contained) by $D C$ and $C B$ is commensurable with the (rectangle contained) by $F E$ and $E G$. For they are (both) equal to the (square) on A. Thus, the (square) on $C D$ is also incommensurable with the (rectangle contained) by $D C$ and $C B$ [Prop. 10.13]. And as the (square) on $C D$ (is) to the (rectangle contained) by $D C$ and $C B$, so $D C$ is to $C B$ [see previous lemma]. Thus, $D C$ is incommensurable in length with $C B$ [Prop. 10.11]. Thus, $C D$ is rational, and incommensurable in length with $C B$. (Which is) the very thing it was required to show.

Proposition 23

A (straight-line) commensurable with a medial (straightline) is medial.

Let A be a medial (straight-line), and let B be commensurable with A. I say that B is also a medial (staightline).

Let the rational (straight-line) $C D$ be set out, and let the rectangular area $C E$, equal to the (square) on A, have been applied to $C D$, producing $E D$ as width. $E D$ is thus rational, and incommensurable in length with $C D$ [Prop. 10.22]. And let the rectangular area $C F$, equal to the (square) on B, have been applied to $C D$, producing $D F$ as width. Therefore, since A is commensurable with B, the (square) on A is also commensurable with

 $\mu o ́ v o \nu ~ \sigma \cup \mu \mu \varepsilon ́ \tau \rho \omega \nu ~ \delta u v \alpha \mu \varepsilon ́ v \eta ~ \mu \varepsilon ́ \sigma \eta ~ \varepsilon ̇ \sigma \tau i ́ v . ~ \dot{\eta} \alpha \nprec \alpha ~ \tau o ̀ ~ U ́ \pi o ̀ ~ \tau \widetilde{\omega} \nu$
 $\Delta \mathrm{Z} \dot{\eta} \mathrm{B} \cdot \mu \varepsilon ́ \sigma \eta$ a̋ $\rho \alpha$ ह̇ $\sigma \tau i \nu \dot{\eta} \mathrm{~B}$.

По́рьбцд.
 ov μ モ́бov ย̇எтív.
the (square) on B. But, $E C$ is equal to the (square) on A, and $C F$ is equal to the (square) on B. Thus, $E C$ is commensurable with $C F$. And as $E C$ is to $C F$, so $E D$ (is) to $D F$ [Prop. 6.1]. Thus, $E D$ is commensurable in length with $D F$ [Prop. 10.11]. And $E D$ is rational, and incommensurable in length with $C D . D F$ is thus also rational [Def. 10.3], and incommensurable in length with $D C$ [Prop. 10.13]. Thus, $C D$ and $D F$ are rational, and commensurable in square only. And the square-root of a (rectangle contained) by rational (straight-lines which are) commensurable in square only is medial [Prop. 10.21]. Thus, the square-root of the (rectangle contained) by $C D$ and $D F$ is medial. And the square on B is equal to the (rectangle contained) by $C D$ and $D F$. Thus, B is a medial (straight-line).

Corollary

And (it is) clear, from this, that an (area) commensurable with a medial area ${ }^{\dagger}$ is medial.
${ }^{\dagger}$ A medial area is equal to the square on some medial straight-line. Hence, a medial area is expressible as $k^{1 / 2}$.

$\chi \delta^{\prime}$.

${ }^{'} \Upsilon \pi o ̀ ~ \gamma \grave{\alpha} \rho \mu \varepsilon ́ \sigma \omega \nu ~ \mu ウ ́ x \varepsilon \iota ~ \sigma u \mu \mu \varepsilon ́ \tau \rho \omega \nu ~ \varepsilon u ̉ \vartheta \varepsilon เ \widetilde{\omega} \nu \tau \widetilde{\omega} \nu \mathrm{AB}, ~ В \Gamma$ $\pi \varepsilon \rho เ \varepsilon \chi \varepsilon ́ \sigma \vartheta \omega$ ỏp७oүávıov tò $A \Gamma \cdot \lambda \varepsilon ́ \gamma \omega$, o้тו tò $A \Gamma \mu \varepsilon ́ \sigma o v$ ย่ $\sigma \tau i ้$.

Proposition 24

A rectangle contained by medial straight-lines (which are) commensurable in length is medial.

For let the rectangle $A C$ be contained by the medial straight-lines $A B$ and $B C$ (which are) commensurable in length. I say that $A C$ is medial.

For let the square $A D$ have been described on $A B$. $A D$ is thus medial [see previous footnote]. And since $A B$ is commensurable in length with $B C$, and $A B$ (is) equal to $B D, D B$ is thus also commensurable in length with $B C$. Hence, $D A$ is also commensurable with $A C$ [Props. 6.1, 10.11]. And $D A$ (is) medial. Thus, $A C$ (is) also medial [Prop. 10.23 corr.]. (Which is) the very thing it was required to show.

Tò Úлò $\mu \varepsilon ́ \sigma \omega \nu ~ \delta u v \alpha ́ \mu \varepsilon ı ~ \mu o ́ v o v ~ \sigma u \mu \mu \varepsilon ́ т \rho \omega \nu ~ \varepsilon u ̉ v \varepsilon เ \widetilde{\omega} \nu \pi \varepsilon-$

 óp७oү́́viov $\pi \alpha \rho \alpha \lambda \lambda \eta \lambda o ́ \gamma p \alpha \mu \mu o \nu$ tò $\mathrm{MK} \pi \lambda \alpha ́ \tau o s ~ \pi о เ o u ̃ \nu ~ \tau \eta ̀ \nu ~$
 $\beta \varepsilon \beta \lambda \eta \dot{\eta} \vartheta \omega$ tò $\mathrm{N} \Lambda \pi \lambda \alpha ́ \tau o \varsigma ~ \pi o เ o u ̃ \nu ~ \tau \grave{\eta} \nu \mathrm{~K} \Lambda \cdot \dot{\varepsilon} \pi^{\prime} \varepsilon \cup \cup \vartheta \varepsilon i ́ \alpha s ~ \alpha ̈ p \alpha$

Proposition 25
The rectangle contained by medial straight-lines (which are) commensurable in square only is either rational or medial.

For let the rectangle $A C$ be contained by the medial straight-lines $A B$ and $B C$ (which are) commensurable in square only. I say that $A C$ is either rational or medial.

For let the squares $A D$ and $B E$ have been described on (the straight-lines) $A B$ and $B C$ (respectively). $A D$ and $B E$ are thus each medial. And let the rational (straight-line) $F G$ be laid out. And let the rectangular parallelogram $G H$, equal to $A D$, have been applied to $F G$, producing $F H$ as breadth. And let the rectangular parallelogram $M K$, equal to $A C$, have been applied to $H M$, producing $H K$ as breadth. And, finally, let $N L$, equal to $B E$, have similarly been applied to $K N$, producing $K L$ as breadth. Thus, $F H, H K$, and $K L$ are in a straight-line. Therefore, since $A D$ and $B E$ are each medial, and $A D$ is equal to $G H$, and $B E$ to $N L, G H$ and $N L$ (are) thus each also medial. And they are applied to the rational (straight-line) $F G . F H$ and $K L$ are thus each rational, and incommensurable in length with $F G$ [Prop. 10.22]. And since $A D$ is commensurable with $B E, G H$ is thus also commensurable with $N L$. And as

غ̇л

Tò äpa ن́兀ò $\mu \varepsilon ́ \sigma \omega \nu$ ठuvá $\mu \varepsilon \iota ~ \mu o ́ v o v ~ \sigma \cup \mu \mu \varepsilon ́ \tau p \omega \nu, ~ x \alpha i ̀ ~ \tau \alpha ̀ ~$ $\varepsilon \xi \tilde{\eta} \varsigma$.
χq^{\prime}.
Méбov μ ह́бou oủX ن́ $\pi \varepsilon \rho \varepsilon ́ \chi \varepsilon ા ~ ค ̀ \eta \tau \widetilde{̣ ̆ . ~}$

Eỉ үàp $\delta u v \alpha \tau o ́ v, ~ \mu \varepsilon ́ \sigma o v ~ \tau o ̀ ~ A B ~ \mu \varepsilon ́ \sigma o u ~ \tau o u ̃ ~ A \Gamma ~ u ́ \pi \varepsilon p \varepsilon \chi \varepsilon ́ \tau \omega ~$

$G H$ is to $N L$, so $F H$ (is) to $K L$ [Prop. 6.1]. Thus, $F H$ is commensurable in length with $K L$ [Prop. 10.11]. Thus, $F H$ and $K L$ are rational (straight-lines which are) commensurable in length. Thus, the (rectangle contained) by $F H$ and $K L$ is rational [Prop. 10.19]. And since $D B$ is equal to $B A$, and $O B$ to $B C$, thus as $D B$ is to $B C$, so $A B$ (is) to $B O$. But, as $D B$ (is) to $B C$, so $D A$ (is) to $A C$ [Props. 6.1]. And as $A B$ (is) to $B O$, so $A C$ (is) to $C O$ [Prop. 6.1]. Thus, as $D A$ is to $A C$, so $A C$ (is) to $C O$. And $A D$ is equal to $G H$, and $A C$ to $M K$, and $C O$ to $N L$. Thus, as $G H$ is to $M K$, so $M K$ (is) to $N L$. Thus, also, as $F H$ is to $H K$, so $H K$ (is) to $K L$ [Props. 6.1, 5.11]. Thus, the (rectangle contained) by $F H$ and $K L$ is equal to the (square) on $H K$ [Prop. 6.17]. And the (rectangle contained) by $F H$ and $K L$ (is) rational. Thus, the (square) on $H K$ is also rational. Thus, $H K$ is rational. And if it is commensurable in length with $F G$ then $H N$ is rational [Prop. 10.19]. And if it is incommensurable in length with $F G$ then $K H$ and $H M$ are rational (straight-lines which are) commensurable in square only: thus, $H N$ is medial [Prop. 10.21]. Thus, $H N$ is either rational or medial. And $H N$ (is) equal to $A C$. Thus, $A C$ is either rational or medial.

Thus, the . . . by medial straight-lines (which are) commensurable in square only, and so on

Proposition 26

A medial (area) does not exceed a medial (area) by a rational (area). ${ }^{\dagger}$

For, if possible, let the medial (area) $A B$ exceed the medial (area) $A C$ by the rational (area) $D B$. And let the rational (straight-line) $E F$ be laid down. And let the rectangular parallelogram $F H$, equal to $A B$, have been applied to to $E F$, producing $E H$ as breadth. And let $F G$, equal to $A C$, have been cut off (from $F H$). Thus, the remainder $B D$ is equal to the remainder $K H$. And $D B$ is rational. Thus, $K H$ is also rational. Therefore, since $A B$ and $A C$ are each medial, and $A B$ is equal to $F H$, and $A C$ to $F G, F H$ and $F G$ are thus each also medial.

 ӧтєр દ̇எтi้ $\dot{\alpha} \delta u ́ v \alpha \tau o v$.

${ }^{\dagger}$ In other words, $\sqrt{k}-\sqrt{k^{\prime}} \neq k^{\prime \prime}$.

$$
x \zeta^{\prime} .
$$

 рเモไoúซa૬.

 $\dot{\omega} \varsigma \dot{\eta} \mathrm{A} \pi \rho o ̀ \varsigma ~ \tau \grave{\eta} \nu \mathrm{~B}$, oü $\tau \omega \varsigma \dot{\eta} \Gamma \pi \rho o ̀ s \tau \grave{\eta} \nu \Delta$.

And they are applied to the rational (straight-line) $E F$. Thus, $H E$ and $E G$ are each rational, and incommensurable in length with $E F$ [Prop. 10.22]. And since $D B$ is rational, and is equal to $K H, K H$ is thus also rational. And $(K H)$ is applied to the rational (straight-line) $E F . G H$ is thus rational, and commensurable in length with $E F$ [Prop. 10.20]. But, $E G$ is also rational, and incommensurable in length with $E F$. Thus, $E G$ is incommensurable in length with $G H$ [Prop. 10.13]. And as $E G$ is to $G H$, so the (square) on $E G$ (is) to the (rectangle contained) by $E G$ and $G H$ [Prop. 10.13 lem.]. Thus, the (square) on $E G$ is incommensurable with the (rectangle contained) by $E G$ and $G H$ [Prop. 10.11]. But, the (sum of the) squares on $E G$ and $G H$ is commensurable with the (square) on $E G$. For ($E G$ and $G H$ are) both rational. And twice the (rectangle contained) by $E G$ and $G H$ is commensurable with the (rectangle contained) by $E G$ and $G H$ [Prop. 10.6]. For (the former) is double the latter. Thus, the (sum of the squares) on $E G$ and $G H$ is incommensurable with twice the (rectangle contained) by $E G$ and $G H$ [Prop. 10.13]. And thus the sum of the (squares) on $E G$ and $G H$ plus twice the (rectangle contained) by $E G$ and $G H$, that is the (square) on $E H$ [Prop. 2.4], is incommensurable with the (sum of the squares) on $E G$ and $G H$ [Prop. 10.16]. And the (sum of the squares) on $E G$ and $G H$ (is) rational. Thus, the (square) on $E H$ is irrational [Def. 10.4]. Thus, $E H$ is irrational [Def. 10.4]. But, (it is) also rational. The very thing is impossible.

Thus, a medial (area) does not exceed a medial (area) by a rational (area). (Which is) the very thing it was required to show.

Proposition 27

To find (two) medial (straight-lines), containing a rational (area), (which are) commensurable in square only.

Let the two rational (straight-lines) A and B, (which are) commensurable in square only, be laid down. And let C-the mean proportional (straight-line) to A and B -

 $\Gamma \cdot \mu \varepsilon ́ \sigma \eta$ äp α xì $\dot{\eta} \Delta$ ．$\alpha i \Gamma, \Delta$ äp $\alpha \mu \varepsilon ́ \sigma \alpha l ~ \varepsilon i \sigma i ~ \delta u v \alpha ́ \mu \varepsilon ı ~ \mu o ́ v o v ~$

 ध̇のtiv $\dot{\omega} \varsigma \dot{\eta} \mathrm{A} \pi \rho o ̀ s ~ \tau \grave{\eta} \nu \Gamma, \dot{\eta} \mathrm{~B} \pi \rho o ̀ s ~ \tau \grave{\eta} \nu \Delta$ ．$\alpha \lambda \lambda^{\circ} \dot{\omega} \varsigma \dot{\eta} \mathrm{A}$

 ن́лò 七 $\widetilde{\omega} \nu \Gamma, \Delta$ ．

have been taken［Prop．6．13］．And let it be contrived that as A（is）to B ，so C（is）to D［Prop．6．12］．

And since the rational（straight－lines）A and B are commensurable in square only，the（rectangle con－ tained）by A and B－that is to say，the（square）on C ［Prop．6．17］－is thus medial［Prop 10．21］．Thus，C is medial［Prop．10．21］．And since as A is to B ，［so］C（is） to D ，and A and B［are］commensurable in square only， C and D are thus also commensurable in square only ［Prop．10．11］．And C is medial．Thus，D is also medial ［Prop．10．23］．Thus，C and D are medial（straight－lines which are）commensurable in square only．I say that they also contain a rational（area）．For since as A is to B ，so C（is）to D ，thus，alternately，as A is to C ，so B（is）to D［Prop．5．16］．But，as A（is）to C ，（so）C（is）to B ． And thus as C（is）to B ，so B（is）to D［Prop．5．11］． Thus，the（rectangle contained）by C and D is equal to the（square）on B［Prop．6．17］．And the（square）on B （is）rational．Thus，the（rectangle contained）by C and D［is］also rational．

Thus，（two）medial（straight－lines，C and D ），con－ taining a rational（area），（which are）commensurable in square only，have been found．${ }^{\dagger}$（Which is）the very thing it was required to show．
${ }^{\dagger} C$ and D have lengths $k^{1 / 4}$ and $k^{3 / 4}$ times that of A ，respectively，where the length of B is $k^{1 / 2}$ times that of A ．

$$
x r^{\prime}
$$

 pıモðoúб人ऽ．

 E．גi Δ ， E «้p $\alpha \mu \varepsilon ́ \sigma \alpha l ~ \varepsilon i \sigma i ~ \delta u v \alpha ́ \mu \varepsilon ı ~ \mu o ́ v o v ~ \sigma u ́ \mu \mu \varepsilon \tau \rho o l . ~ \lambda \varepsilon ́ \gamma \omega ~$
 $\tau \grave{\eta} \nu \Gamma, \dot{\eta} \Delta \pi \rho o ̀ s ~ \tau \grave{\eta} \nu \mathrm{E}, \dot{\varepsilon} v \alpha \lambda \lambda \lambda \dot{\alpha} \xi \ddot{\alpha} \rho \alpha \dot{\omega} \rho \dot{\eta} \mathrm{~B} \pi \rho o ̀ s \operatorname{\tau ì\nu } \Delta, \dot{\eta}$

Proposition 28

To find（two）medial（straight－lines），containing a me－ dial（area），（which are）commensurable in square only．

Let the［three］rational（straight－lines）A, B ，and C ， （which are）commensurable in square only，be laid down． And let，D ，the mean proportional（straight－line）to A and B ，have been taken［Prop．6．13］．And let it be con－ trived that as B（is）to C ，（so）D（is）to E［Prop．6．12］．

Since the rational（straight－lines）A and B are com－ mensurable in square only，the（rectangle contained）by A and B－that is to say，the（square）on D［Prop．6．17］－ is medial［Prop．10．21］．Thus，D（is）medial［Prop．10．21］． And since B and C are commensurable in square only， and as B is to C ，（so）D（is）to E, D and E are thus com－ mensurable in square only［Prop．10．11］．And D（is）me－ dial．E（is）thus also medial［Prop．10．23］．Thus，D and E are medial（straight－lines which are）commensurable in square only．So，I say that they also enclose a medial （area）．For since as B is to C ，（so）D（is）to E ，thus，

alternately, as B (is) to D, (so) C (is) to E [Prop. 5.16]. And as B (is) to D, (so) D (is) to A. And thus as D (is) to A, (so) C (is) to E. Thus, the (rectangle contained) by A and C is equal to the (rectangle contained) by D and E [Prop. 6.16]. And the (rectangle contained) by A and C is medial [Prop. 10.21]. Thus, the (rectangle contained) by D and E (is) also medial.

Thus, (two) medial (straight-lines, D and E), containing a medial (area), (which are) commensurable in square only, have been found. (Which is) the very thing it was required to show.
${ }^{\dagger} D$ and E have lengths $k^{1 / 4}$ and $k^{1 / 2} / k^{1 / 4}$ times that of A, respectively, where the lengths of B and C are $k^{1 / 2}$ and $k^{1 / 2}$ times that of A, respectively.

$\Lambda \tilde{\eta} \mu \mu \alpha \alpha^{\prime}$.

 тoเoũซl 七òv $\alpha \pi o ̀ ~ \tau o u ̃ ~ B \Delta ~ \tau \varepsilon \tau \rho \alpha ́ \gamma \omega v o v . ~$

Lemma I

To find two square numbers such that the sum of them is also square.

Let the two numbers $A B$ and $B C$ be laid down. And let them be either (both) even or (both) odd. And since, if an even (number) is subtracted from an even (number), or if an odd (number is subtracted) from an odd (number), then the remainder is even [Props. 9.24, 9.26], the remainder $A C$ is thus even. Let $A C$ have been cut in half at D. And let $A B$ and $B C$ also be either similar plane (numbers), or square (numbers) -which are themselves also similar plane (numbers). Thus, the (number created) from (multiplying) $A B$ and $B C$, plus the square on $C D$, is equal to the square on $B D$ [Prop. 2.6]. And the (number created) from (multiplying) $A B$ and $B C$ is square-inasmuch as it was shown that if two similar plane (numbers) make some (number) by multiplying one another then the (number so) created is square [Prop. 9.1]. Thus, two square numbers have been found-(namely,) the (number created) from (multiplying) $A B$ and $B C$, and the (square) on $C D$-which, (when) added (together), make the square on $B D$.

And (it is) clear that two square (numbers) have again been found-(namely,) the (square) on $B D$, and the (square) on $C D$-such that their difference-(namely,) the (rectangle) contained by $A B$ and $B C$-is square whenever $A B$ and $B C$ are similar plane (numbers). But, when they are not similar plane numbers, two square (numbers) have been found-(namely,) the (square) on $B D$, and the (square) on $D C$-between which the difference-(namely,) the (rectangle) contained by $A B$ and $B C$-is not square. (Which is) the very thing it was required to show.

$\Lambda \tilde{n} \mu \mu \alpha \beta^{\prime}$.

Lemma II

To find two square numbers such that the sum of them is not square.

For let the (number created) from (multiplying) $A B$ and $B C$, as we said, be square. And (let) $C A$ (be) even. And let $C A$ have been cut in half at D. So it is clear that the square (number created) from (multiplying) $A B$ and $B C$, plus the square on $C D$, is equal to the square on $B D$ [see previous lemma]. Let the unit $D E$ have been subtracted (from $B D$). Thus, the (number created) from (multiplying) $A B$ and $B C$, plus the (square) on $C E$, is less than the square on $B D$. I say, therefore, that the square (number created) from (multiplying) $A B$ and $B C$, plus the (square) on $C E$, is not square.

For if it is square, it is either equal to the (square) on $B E$, or less than the (square) on $B E$, but cannot any more be greater (than the square on $B E$), lest the unit be divided. First of all, if possible, let the (number created) from (multiplying) $A B$ and $B C$, plus the (square) on $C E$, be equal to the (square) on $B E$. And let $G A$ be double the unit $D E$. Therefore, since the whole of $A C$ is double the whole of $C D$, of which $A G$ is double $D E$, the remain$\operatorname{der} G C$ is thus double the remainder $E C$. Thus, $G C$ has been cut in half at E. Thus, the (number created) from (multiplying) $G B$ and $B C$, plus the (square) on $C E$, is equal to the square on $B E$ [Prop. 2.6]. But, the (number created) from (multiplying) $A B$ and $B C$, plus the (square) on $C E$, was also assumed (to be) equal to the square on $B E$. Thus, the (number created) from (multiplying) $G B$ and $B C$, plus the (square) on $C E$, is equal to the (number created) from (multiplying) $A B$ and $B C$, plus the (square) on $C E$. And subtracting the (square) on $C E$ from both, $A B$ is inferred (to be) equal to $G B$. The very thing is absurd. Thus, the (number created) from (multiplying) $A B$ and $B C$, plus the (square) on $C E$, is not equal to the (square) on $B E$. So I say that (it is) not less than the (square) on $B E$ either. For, if possible, let it be equal to the (square) on $B F$. And (let) $H A$ (be) double $D F$. And it can again be inferred that $H C$ (is) double $C F$. Hence, $C H$ has also been cut in half at F. And, on account of this, the (number created) from (multiplying) $H B$ and $B C$, plus the (square) on $F C$, becomes equal to the (square) on $B F$ [Prop. 2.6]. And the (number created) from (multiplying) $A B$ and $B C$, plus the (square) on $C E$, was also assumed (to be) equal to the (square) on $B F$. Hence, the (number created) from (multiplying) $H B$ and $B C$, plus the (square) on $C F$, will also be equal to the (number created) from (multiplying) $A B$ and $B C$,

$$
\chi \vartheta^{\prime} .
$$

Eúpeĩ $\delta u ́ o$ ค̊ $\eta \tau \alpha ̀ s ~ \delta u v \alpha ́ \mu \varepsilon ı ~ \mu o ́ v o v ~ \sigma u \mu \mu \varepsilon ́ \tau p o u s, ~ \omega ̈ \sigma \tau \varepsilon ~ \tau \eta ̀ v ~$
 $\dot{\varepsilon} \alpha \cup \tau \tilde{n} \mu \dot{\eta} x \varepsilon \iota$ ．

 غ̇лを弓ょú $\chi \vartheta \omega \dot{\eta} \mathrm{ZB}$ ．

plus the（square）on $C E$ ．The very thing is absurd．Thus， the（number created）from（multiplying）$A B$ and $B C$ ， plus the（square）on $C E$ ，is not equal to less than the （square）on $B E$ ．And it was shown that（is it）not equal to the（square）on $B E$ either．Thus，the（number created） from（multiplying）$A B$ and $B C$ ，plus the square on $C E$ ， is not square．（Which is）the very thing it was required to show．

Proposition 29

To find two rational（straight－lines which are）com－ mensurable in square only，such that the square on the greater is larger than the（square on the）lesser by the （square）on（some straight－line which is）commensurable in length with the greater．

For let some rational（straight－line）$A B$ be laid down， and two square numbers，$C D$ and $D E$ ，such that the dif－ ference between them，$C E$ ，is not square［Prop． 10.28 lem．I］．And let the semi－circle $A F B$ have been drawn on $A B$ ．And let it be contrived that as $D C$（is）to $C E$ ，so the square on $B A$（is）to the square on $A F$［Prop． 10.6 corr．］． And let $F B$ have been joined．
［Therefore，］since as the（square）on $B A$ is to the （square）on $A F$ ，so $D C$（is）to $C E$ ，the（square）on $B A$ thus has to the（square）on $A F$ the ratio which the number $D C$（has）to the number $C E$ ．Thus，the （square）on $B A$ is commensurable with the（square）on $A F$［Prop．10．6］．And the（square）on $A B$（is）rational ［Def．10．4］．Thus，the（square）on $A F$（is）also ratio－ nal．Thus，$A F$（is）also rational．And since $D C$ does not have to $C E$ the ratio which（some）square num－ ber（has）to（some）square number，the（square）on $B A$ thus does not have to the（square）on $A F$ the ra－ tio which（some）square number has to（some）square number either．Thus，$A B$ is incommensurable in length with $A F$［Prop．10．9］．Thus，the rational（straight－lines） $B A$ and $A F$ are commensurable in square only．And since as $D C$［is］to $C E$ ，so the（square）on $B A$（is）to the（square）on $A F$ ，thus，via conversion，as $C D$（is） to $D E$ ，so the（square）on $A B$（is）to the（square）on
$\varepsilon \alpha \cup \tau \tilde{n}$.

 ठદǐ̌ α.
$B F$ [Props. 5.19 corr., $3.31,1.47$]. And $C D$ has to $D E$ the ratio which (some) square number (has) to (some) square number. Thus, the (square) on $A B$ also has to the (square) on $B F$ the ratio which (some) square number has to (some) square number. $A B$ is thus commensurable in length with $B F$ [Prop. 10.9]. And the (square) on $A B$ is equal to the (sum of the squares) on $A F$ and $F B$ [Prop. 1.47]. Thus, the square on $A B$ is greater than (the square on) $A F$ by (the square on) $B F$, (which is) commensurable (in length) with $(A B)$.

Thus, two rational (straight-lines), $B A$ and $A F$, commensurable in square only, have been found such that the square on the greater, $A B$, is larger than (the square on) the lesser, $A F$, by the (square) on $B F$, (which is) commensurable in length with $(A B) .^{\dagger}$ (Which is) the very thing it was required to show.
${ }^{\dagger} B A$ and $A F$ have lengths 1 and $\sqrt{1-k^{2}}$ times that of $A B$, respectively, where $k=\sqrt{D E / C D}$.

$$
\lambda^{\prime}
$$

 غ́ $\cup \tau \tilde{n} \mu \dot{\eta} x \varepsilon ા$.

 BA rpòs tò $\alpha \pi o ̀ ~ \tau n ̃ s ~ A Z, ~ x \alpha \grave{~ \varepsilon ̇ \pi \varepsilon \zeta \varepsilon u ́ \chi \vartheta \omega ~ \dot{\eta} Z B . ~}$

 $\dot{\alpha} \sigma u ́ \mu \mu \varepsilon \tau \rho о \varsigma ~ \alpha ้ p \alpha ~ \varepsilon ̇ \sigma \tau i \nu ~ \dot{\eta} \mathrm{AB}$ т $\tilde{n} \mathrm{BZ} \mu \dot{\eta} x \varepsilon เ$. x $\alpha \grave{\iota}$ ठúv $\alpha \tau \alpha \iota \dot{\eta}$

Proposition 30

To find two rational (straight-lines which are) commensurable in square only, such that the square on the greater is larger than the (the square on) lesser by the (square) on (some straight-line which is) incommensurable in length with the greater.

Let the rational (straight-line) $A B$ be laid out, and the two square numbers, $C E$ and $E D$, such that the sum of them, $C D$, is not square [Prop. 10.28 lem. II]. And let the semi-circle $A F B$ have been drawn on $A B$. And let it be contrived that as $D C$ (is) to $C E$, so the (square) on $B A$ (is) to the (square) on $A F$ [Prop. 10.6 corr]. And let $F B$ have been joined.

So, similarly to the (proposition) before this, we can show that $B A$ and $A F$ are rational (straight-lines which are) commensurable in square only. And since as $D C$ is to $C E$, so the (square) on $B A$ (is) to the (square) on $A F$, thus, via conversion, as $C D$ (is) to $D E$, so the (square) on $A B$ (is) to the (square) on $B F$ [Props. 5.19 corr., 3.31, 1.47]. And $C D$ does not have to $D E$ the ratio which (some) square number (has) to (some) square number.

Thus, the (square) on $A B$ does not have to the (square) on $B F$ the ratio which (some) square number has to (some) square number either. Thus, $A B$ is incommensurable in length with $B F$ [Prop. 10.9]. And the square on $A B$ is greater than the (square on) $A F$ by the (square) on $F B$ [Prop. 1.47], (which is) incommensurable (in length) with ($A B$).

Thus, $A B$ and $A F$ are rational (straight-lines which are) commensurable in square only, and the square on $A B$ is greater than (the square on) $A F$ by the (square) on $F B$, (which is) incommensurable (in length) with $(A B) .^{\dagger}$ (Which is) the very thing it was required to show.
${ }^{\dagger} A B$ and $A F$ have lengths 1 and $1 / \sqrt{1+k^{2}}$ times that of $A B$, respectively, where $k=\sqrt{D E / C E}$.

$$
\lambda \alpha^{\prime}
$$

’Е๙x

 $\dot{\eta} \mathrm{A} \pi \rho o ̀ s ~ \tau \grave{\eta} \nu \mathrm{~B}$, oưt $\tau \omega \varsigma \dot{\eta} \Gamma$ трòs t $\grave{\nu} \nu \Delta$. $\sigma u ́ \mu \mu \varepsilon \tau \rho o s ~ \delta \grave{\varepsilon} \dot{\eta} \mathrm{~A}$

Proposition 31

To find two medial (straight-lines), commensurable in square only, (and) containing a rational (area), such that the square on the greater is larger than the (square on the) lesser by the (square) on (some straight-line) commensurable in length with the greater.

Let two rational (straight-lines), A and B, commensurable in square only, be laid out, such that the square on the greater A is larger than the (square on the) lesser B by the (square) on (some straight-line) commensurable in length with (A) [Prop. 10.29]. And let the (square) on C be equal to the (rectangle contained) by A and B. And the (rectangle contained by) A and B (is) medial [Prop. 10.21]. Thus, the (square) on C (is) also medial. Thus, C (is) also medial [Prop. 10.21]. And let the (rectangle contained) by C and D be equal to the (square) on B. And the (square) on B (is) rational. Thus, the (rectangle contained) by C and D (is) also rational. And since as A is to B, so the (rectangle contained) by A and B (is) to the (square) on B [Prop. 10.21 lem.], but the (square) on C is equal to the (rectangle contained) by A and B, and the (rectangle contained) by C and D to the (square) on B, thus as A (is) to B, so the (square) on C (is) to the (rectangle contained) by C and D. And as the (square) on C (is) to the (rectangle contained) by

C and D, so C (is) to D [Prop. 10.21 lem.]. And thus as A (is) to B, so C (is) to D. And A is commensurable in square only with B. Thus, C (is) also commensurable in square only with D [Prop. 10.11]. And C is medial. Thus, D (is) also medial [Prop. 10.23]. And since as A is to B, (so) C (is) to D, and the square on A is greater than (the square on) B by the (square) on (some straight-line) commensurable (in length) with (A), the square on C is thus also greater than (the square on) D by the (square) on (some straight-line) commensurable (in length) with (C) [Prop. 10.14].

Thus, two medial (straight-lines), C and D, commensurable in square only, (and) containing a rational (area), have been found. And the square on C is greater than (the square on) D by the (square) on (some straight-line) commensurable in length with (C). ${ }^{\dagger}$

So, similarly, (the proposition) can also be demonstrated for (some straight-line) incommensurable (in length with C), provided that the square on A is greater than (the square on B) by the (square) on (some straight-line) incommensurable (in length) with (A) [Prop. 10.30].
${ }^{\dagger} C$ and D have lengths $\left(1-k^{2}\right)^{1 / 4}$ and $\left(1-k^{2}\right)^{3 / 4}$ times that of A, respectively, where k is defined in the footnote to Prop. 10.29.
$\ddagger C$ and D would have lengths $1 /\left(1+k^{2}\right)^{1 / 4}$ and $1 /\left(1+k^{2}\right)^{3 / 4}$ times that of A, respectively, where k is defined in the footnote to Prop. 10.30.

$$
\lambda \beta^{\prime} .
$$

Proposition 32

To find two medial (straight-lines), commensurable in square only, (and) containing a medial (area), such that the square on the greater is larger than the (square on the) lesser by the (square) on (some straight-line) commensurable (in length) with the greater.

Let three rational (straight-lines), A, B and C, commensurable in square only, be laid out such that the square on A is greater than (the square on C) by the (square) on (some straight-line) commensurable (in length) with (A) [Prop. 10.29]. And let the (square) on D be equal to the (rectangle contained) by A and B. Thus, the (square) on D (is) medial. Thus, D is also medial [Prop. 10.21]. And let the (rectangle contained) by D and E be equal to the (rectangle contained) by B and C. And since as the (rectangle contained) by A and B is to the (rectangle contained) by B and C, so A (is) to C [Prop. 10.21 lem.], but the (square) on D is equal to the (rectangle contained) by A and B, and the (rectangle
 $\Gamma, \dot{\eta} \Delta \pi \rho o ̀ \varsigma ~ \tau \grave{\eta} \nu \mathrm{E}, \dot{\eta}$ ठè $\mathrm{A} \tau \tilde{\eta} \varsigma \Gamma \mu \varepsilon i ̆ \zeta o v ~ \delta u ́ v \alpha \tau \alpha l ~ \tau \widetilde{\varphi} \alpha \dot{\alpha} \pi \grave{o}$

contained) by D and E to the (rectangle contained) by B and C, thus as A is to C, so the (square) on D (is) to the (rectangle contained) by D and E. And as the (square) on D (is) to the (rectangle contained) by D and E, so D (is) to E [Prop. 10.21 lem.]. And thus as A (is) to C, so D (is) to E. And A (is) commensurable in square [only] with C. Thus, D (is) also commensurable in square only with E [Prop. 10.11]. And D (is) medial. Thus, E (is) also medial [Prop. 10.23]. And since as A is to C, (so) D (is) to E, and the square on A is greater than (the square on) C by the (square) on (some straight-line) commensurable (in length) with (A), the square on D will thus also be greater than (the square on) E by the (square) on (some straight-line) commensurable (in length) with (D) [Prop. 10.14]. So, I also say that the (rectangle contained) by D and E is medial. For since the (rectangle contained) by B and C is equal to the (rectangle contained) by D and E, and the (rectangle contained) by B and C (is) medial [for B and C are rational (straight-lines which are) commensurable in square only] [Prop. 10.21], the (rectangle contained) by D and E (is) thus also medial.

Thus, two medial (straight-lines), D and E, commensurable in square only, (and) containing a medial (area), have been found such that the square on the greater is larger than the (square on the) lesser by the (square) on (some straight-line) commensurable (in length) with the greater. ${ }^{\dagger}$.

So, similarly, (the proposition) can again also be demonstrated for (some straight-line) incommensurable (in length with the greater), provided that the square on A is greater than (the square on) C by the (square) on (some straight-line) incommensurable (in length) with (A) [Prop. 10.30]. \ddagger
${ }^{\dagger} D$ and E have lengths $k^{1 / 4}$ and $k^{1 / 4} \sqrt{1-k^{2}}$ times that of A, respectively, where the length of B is $k^{\prime 1 / 2}$ times that of A, and k is defined in the footnote to Prop. 10.29.
$\ddagger D$ and E would have lengths $k^{\prime 1 / 4}$ and $k^{\prime 1 / 4} / \sqrt{1+k^{2}}$ times that of A, respectively, where the length of B is $k^{\prime 1 / 2}$ times that of A, and k is defined in the footnote to Prop. 10.30.

$\Lambda \tilde{\eta} \mu \mu \alpha$.

 $\tau \tilde{\eta} \mathrm{BA}$.

Lemma

Let $A B C$ be a right-angled triangle having the (angle) A a right-angle. And let the perpendicular $A D$ have been drawn. I say that the (rectangle contained) by $C B D$ is equal to the (square) on $B A$, and the (rectangle contained) by $B C D$ (is) equal to the (square) on $C A$, and the (rectangle contained) by $B D$ and $D C$ (is) equal to the (square) on $A D$, and, further, the (rectangle contained) by $B C$ and $A D$ [is] equal to the (rectangle contained) by $B A$ and $A C$.

 $\tau \tilde{\eta} \mathrm{A} \cdot$.

$$
\lambda \gamma^{\prime}
$$

 $\delta^{\prime} \dot{\cup} \pi^{\prime} \alpha \cup ๋ \tau \widetilde{\omega} \nu \mu \varepsilon ́ \sigma o v$.

And, first of all, (let us prove) that the (rectangle contained) by $C B D$ [is] equal to the (square) on $B A$.

For since $A D$ has been drawn from the right-angle in a right-angled triangle, perpendicular to the base, $A B D$ and $A D C$ are thus triangles (which are) similar to the whole, $A B C$, and to one another [Prop. 6.8]. And since triangle $A B C$ is similar to triangle $A B D$, thus as $C B$ is to $B A$, so $B A$ (is) to $B D$ [Prop. 6.4]. Thus, the (rectangle contained) by $C B D$ is equal to the (square) on $A B$ [Prop. 6.17].

So, for the same (reasons), the (rectangle contained) by $B C D$ is also equal to the (square) on $A C$.

And since if a (straight-line) is drawn from the rightangle in a right-angled triangle, perpendicular to the base, the (straight-line so) drawn is the mean proportional to the pieces of the base [Prop. 6.8 corr.], thus as $B D$ is to $D A$, so $A D$ (is) to $D C$. Thus, the (rectangle contained) by $B D$ and $D C$ is equal to the (square) on $D A$ [Prop. 6.17].

I also say that the (rectangle contained) by $B C$ and $A D$ is equal to the (rectangle contained) by $B A$ and $A C$. For since, as we said, $A B C$ is similar to $A B D$, thus as $B C$ is to $C A$, so $B A$ (is) to $A D$ [Prop. 6.4]. Thus, the (rectangle contained) by $B C$ and $A D$ is equal to the (rectangle contained) by $B A$ and $A C$ [Prop. 6.16]. (Which is) the very thing it was required to show.

Proposition 33

To find two straight-lines (which are) incommensurable in square, making the sum of the squares on them rational, and the (rectangle contained) by them medial.

Let the two rational (straight-lines) $A B$ and $B C$, (which are) commensurable in square only, be laid out such that the square on the greater, $A B$, is larger than (the square on) the lesser, $B C$, by the (square) on (some straight-line which is) incommensurable (in length) with $(A B)$ [Prop. 10.30]. And let $B C$ have been cut in half at D. And let a parallelogram equal to the (square) on ei-

 $\tau \widetilde{\omega} \nu \dot{\alpha} \pi^{\prime} \alpha \cup \cup \tau \widetilde{\omega} \nu \tau \varepsilon \tau \rho \alpha \gamma \dot{\omega} \nu \omega \nu$.

ther of $B D$ or $D C$, (and) falling short by a square figure, have been applied to $A B$ [Prop. 6.28], and let it be the (rectangle contained) by $A E B$. And let the semi-circle $A F B$ have been drawn on $A B$. And let $E F$ have been drawn at right-angles to $A B$. And let $A F$ and $F B$ have been joined.

And since $A B$ and $B C$ are [two] unequal straightlines, and the square on $A B$ is greater than (the square on) $B C$ by the (square) on (some straight-line which is) incommensurable (in length) with $(A B)$. And a parallelogram, equal to one quarter of the (square) on $B C$ that is to say, (equal) to the (square) on half of it-(and) falling short by a square figure, has been applied to $A B$, and makes the (rectangle contained) by $A E B . A E$ is thus incommensurable (in length) with $E B$ [Prop. 10.18]. And as $A E$ is to $E B$, so the (rectangle contained) by $B A$ and $A E$ (is) to the (rectangle contained) by $A B$ and $B E$. And the (rectangle contained) by $B A$ and $A E$ (is) equal to the (square) on $A F$, and the (rectangle contained) by $A B$ and $B E$ to the (square) on $B F$ [Prop. 10.32 lem.]. The (square) on $A F$ is thus incommensurable with the (square) on $F B$ [Prop. 10.11]. Thus, $A F$ and $F B$ are incommensurable in square. And since $A B$ is rational, the (square) on $A B$ is also rational. Hence, the sum of the (squares) on $A F$ and $F B$ is also rational [Prop. 1.47]. And, again, since the (rectangle contained) by $A E$ and $E B$ is equal to the (square) on $E F$, and the (rectangle contained) by $A E$ and $E B$ was assumed (to be) equal to the (square) on $B D, F E$ is thus equal to $B D$. Thus, $B C$ is double $F E$. And hence the (rectangle contained) by $A B$ and $B C$ is commensurable with the (rectangle contained) by $A B$ and $E F$ [Prop. 10.6]. And the (rectangle contained) by $A B$ and $B C$ (is) medial [Prop. 10.21]. Thus, the (rectangle contained) by $A B$ and $E F$ (is) also medial [Prop. 10.23 corr.]. And the (rectangle contained) by $A B$ and $E F$ (is) equal to the (rectangle contained) by $A F$ and $F B$ [Prop. 10.32 lem.]. Thus, the (rectangle contained) by $A F$ and $F B$ (is) also medial. And the sum of the squares on them was also shown (to be) rational.

Thus, the two straight-lines, $A F$ and $F B$, (which are) incommensurable in square, have been found, making the sum of the squares on them rational, and the (rectangle contained) by them medial. (Which is) the very thing it was required to show.
$\dagger A F$ and $F B$ have lengths $\sqrt{\left[1+k /\left(1+k^{2}\right)^{1 / 2}\right] / 2}$ and $\sqrt{\left[1-k /\left(1+k^{2}\right)^{1 / 2}\right] / 2}$ times that of $A B$, respectively, where k is defined in the footnote to Prop. 10.30.

$$
\lambda \delta^{\prime}
$$

 tò μ ह̀े

Proposition 34

To find two straight-lines (which are) incommensurable in square, making the sum of the squares on them medial, and the (rectangle contained) by them rational.

Let the two medial (straight-lines) $A B$ and $B C$, (which are) commensurable in square only, be laid out having the (rectangle contained) by them rational, (and) such that the square on $A B$ is greater than (the square on) $B C$ by the (square) on (some straight-line) incommensurable (in length) with ($A B$) [Prop. 10.31]. And let the semi-circle $A D B$ have been drawn on $A B$. And let $B C$ have been cut in half at E. And let a (rectangular) parallelogram equal to the (square) on $B E$, (and) falling short by a square figure, have been applied to $A B$, (and let it be) the (rectangle contained by) $A F B$ [Prop. 6.28]. Thus, $A F$ [is] incommensurable in length with $F B$ [Prop. 10.18]. And let $F D$ have been drawn from F at right-angles to $A B$. And let $A D$ and $D B$ have been joined.

Since $A F$ is incommensurable (in length) with $F B$, the (rectangle contained) by $B A$ and $A F$ is thus also incommensurable with the (rectangle contained) by $A B$ and $B F$ [Prop. 10.11]. And the (rectangle contained) by $B A$ and $A F$ (is) equal to the (square) on $A D$, and the (rectangle contained) by $A B$ and $B F$ to the (square) on $D B$ [Prop. 10.32 lem.]. Thus, the (square) on $A D$ is also incommensurable with the (square) on $D B$. And since the (square) on $A B$ is medial, the sum of the (squares) on $A D$ and $D B$ (is) thus also medial [Props. 3.31, 1.47]. And since $B C$ is double $D F$ [see previous proposition], the (rectangle contained) by $A B$ and $B C$ (is) thus also double the (rectangle contained) by $A B$ and $F D$. And the (rectangle contained) by $A B$ and $B C$ (is) rational. Thus, the (rectangle contained) by $A B$ and $F D$ (is) also rational [Prop. 10.6, Def. 10.4]. And the (rectangle contained) by $A B$ and $F D$ (is) equal to the (rectangle contained) by $A D$ and $D B$ [Prop. 10.32 lem.]. And hence the (rectangle contained) by $A D$ and $D B$ is rational.

Thus, two straight-lines, $A D$ and $D B$, (which are) incommensurable in square, have been found, making the sum of the squares on them medial, and the (rectangle
contained) by them rational. ${ }^{\dagger}$ (Which is) the very thing it was required to show.
${ }^{\dagger} A D$ and $D B$ have lengths $\sqrt{\left[\left(1+k^{2}\right)^{1 / 2}+k\right] /\left[2\left(1+k^{2}\right)\right]}$ and $\sqrt{\left[\left(1+k^{2}\right)^{1 / 2}-k\right] /\left[2\left(1+k^{2}\right)\right]}$ times that of $A B$, respectively, where k is defined in the footnote to Prop. 10.29.

$$
\lambda \varepsilon^{\prime} .
$$

 $\tau \widetilde{\omega} \nu \dot{\alpha} \pi^{\prime} \alpha \cup \tau \widetilde{\omega} \nu \tau \varepsilon \tau \rho \alpha \gamma \omega ่ \nu \varphi$.

 ónoícss.

 $\dot{\varepsilon} x ~ \tau \widetilde{\omega} \nu \dot{\alpha} \pi \grave{o} \tau \widetilde{\omega} \nu \mathrm{~A} \Delta, \Delta \mathrm{~B} \tau \widetilde{\varphi} \dot{\cup} \pi \dot{\prime} \tau \widetilde{\omega} \nu \mathrm{~A} \Delta, \Delta \mathrm{~B}$.

Proposition 35

To find two straight-lines (which are) incommensurable in square, making the sum of the squares on them medial, and the (rectangle contained) by them medial, and, moreover, incommensurable with the sum of the squares on them.

Let the two medial (straight-lines) $A B$ and $B C$, (which are) commensurable in square only, be laid out containing a medial (area), such that the square on $A B$ is greater than (the square on) $B C$ by the (square) on (some straight-line) incommensurable (in length) with ($A B$) [Prop. 10.32]. And let the semi-circle $A D B$ have been drawn on $A B$. And let the remainder (of the figure) be generated similarly to the above (proposition).

And since $A F$ is incommensurable in length with $F B$ [Prop. 10.18], $A D$ is also incommensurable in square with $D B$ [Prop. 10.11]. And since the (square) on $A B$ is medial, the sum of the (squares) on $A D$ and $D B$ (is) thus also medial [Props. 3.31, 1.47]. And since the (rectangle contained) by $A F$ and $F B$ is equal to the (square) on each of $B E$ and $D F, B E$ is thus equal to $D F$. Thus, $B C$ (is) double $F D$. And hence the (rectangle contained) by $A B$ and $B C$ is double the (rectangle) contained by $A B$ and $F D$. And the (rectangle contained) by $A B$ and $B C$ (is) medial. Thus, the (rectangle contained) by $A B$ and $F D$ (is) also medial. And it is equal to the (rectangle contained) by $A D$ and $D B$ [Prop. 10.32 lem.]. Thus, the (rectangle contained) by $A D$ and $D B$ (is) also medial. And since $A B$ is incommensurable in length with $B C$, and $C B$ (is) commensurable (in length) with $B E$, $A B$ (is) thus also incommensurable in length with $B E$ [Prop. 10.13]. And hence the (square) on $A B$ is also incommensurable with the (rectangle contained) by $A B$ and $B E$ [Prop. 10.11]. But the (sum of the squares) on $A D$ and $D B$ is equal to the (square) on $A B$ [Prop. 1.47]. And the (rectangle contained) by $A B$ and $F D$-that is to say, the (rectangle contained) by $A D$ and $D B$-is equal to the (rectangle contained) by $A B$ and $B E$. Thus, the
${ }^{\dagger} A D$ and $D B$ have lengths $k^{\prime 1 / 4} \sqrt{\left[1+k /\left(1+k^{2}\right)^{1 / 2}\right] / 2}$ and $k^{\prime 1 / 4} \sqrt{\left[1-k /\left(1+k^{2}\right)^{1 / 2}\right] / 2}$ times that of $A B$, respectively, where k and k^{\prime} are
defined in the footnote to Prop. 10.32.
sum of the (squares) on $A D$ and $D B$ is incommensurable with the (rectangle contained) by $A D$ and $D B$.

Thus, two straight-lines, $A D$ and $D B$, (which are) incommensurable in square, have been found, making the sum of the (squares) on them medial, and the (rectangle contained) by them medial, and, moreover, incommensurable with the sum of the squares on them. ${ }^{\dagger}$ (Which is) the very thing it was required to show.

$$
\lambda \epsilon^{\prime}
$$

 ő $\lambda \eta$ ̈入

 ठعї̆ α.
 .

Proposition 36

If two rational (straight-lines which are) commensurable in square only are added together then the whole (straight-line) is irrational-let it be called a binomial (straight-line). ${ }^{\dagger}$

For let the two rational (straight-lines), $A B$ and $B C$, (which are) commensurable in square only, be laid down together. I say that the whole (straight-line), $A C$, is irrational. For since $A B$ is incommensurable in length with $B C$-for they are commensurable in square only-and as $A B$ (is) to $B C$, so the (rectangle contained) by $A B C$ (is) to the (square) on $B C$, the (rectangle contained) by $A B$ and $B C$ is thus incommensurable with the (square) on $B C$ [Prop. 10.11]. But, twice the (rectangle contained) by $A B$ and $B C$ is commensurable with the (rectangle contained) by $A B$ and $B C$ [Prop. 10.6]. And (the sum of) the (squares) on $A B$ and $B C$ is commensurable with the (square) on $B C$-for the rational (straight-lines) $A B$ and $B C$ are commensurable in square only [Prop. 10.15]. Thus, twice the (rectangle contained) by $A B$ and $B C$ is incommensurable with (the sum of) the (squares) on $A B$ and $B C$ [Prop. 10.13]. And, via composition, twice the (rectangle contained) by $A B$ and $B C$, plus (the sum of) the (squares) on $A B$ and $B C$-that is to say, the (square) on $A C$ [Prop. 2.4]-is incommensurable with the sum of the (squares) on $A B$ and $B C$ [Prop. 10.16]. And the sum of the (squares) on $A B$ and $B C$ (is) rational. Thus, the (square) on $A C$ [is] irrational [Def. 10.4]. Hence, $A C$ is also irrational [Def. 10.4]-let it be called a binomial (straight-line). ${ }^{\ddagger}$ (Which is) the very thing it was required to show.

[^2](see Prop. 10.73), are the positive roots of the quartic $x^{4}-2(1+k) x^{2}+(1-k)^{2}=0$.
$$
\lambda \zeta^{\prime} .
$$
’Eàv $\delta u ́ o ~ \mu \varepsilon ́ \sigma \alpha l ~ \delta u v a ́ \mu \varepsilon ı ~ \mu o ́ v o v ~ \sigma u ́ \mu \mu \varepsilon \tau р о ا ~ \sigma u \nu \tau \varepsilon \vartheta \overparen{\omega ั \sigma \iota ~}$
 ठúo $\mu \varepsilon ́ \sigma \omega \nu \pi \rho \omega ́ \tau \eta$.

$\Sigma u \gamma \varkappa \varepsilon i \sigma \vartheta \omega \sigma \alpha \nu \gamma \grave{\alpha} \rho$ ठúo $\mu \varepsilon ́ \sigma \alpha l ~ \delta u v \alpha ́ \mu \varepsilon ı ~ \mu o ́ v o v ~ \sigma u ́ \mu \mu \varepsilon \tau \rho o l ~$
 ย่ $\sigma \tau \iota$.

 $\tau \widetilde{\omega} \nu \mathrm{AB}, \mathrm{B} \mathrm{\Gamma}$. p̀ntòv dè tò ú $\pi o ̀ \tau \widetilde{\omega} \nu \mathrm{AB}, \mathrm{B} \mathrm{\Gamma} \cdot$ ن́ $\pi o ́ x \varepsilon เ \nu \tau \alpha l ~ \gamma \grave{\alpha} \rho$

Proposition 37

If two medial (straight-lines), commensurable in square only, which contain a rational (area), are added together then the whole (straight-line) is irrational-let it be called a first bimedial (straight-line). ${ }^{\dagger}$

For let the two medial (straight-lines), $A B$ and $B C$, commensurable in square only, (and) containing a rational (area), be laid down together. I say that the whole (straight-line), $A C$, is irrational.

For since $A B$ is incommensurable in length with $B C$, (the sum of) the (squares) on $A B$ and $B C$ is thus also incommensurable with twice the (rectangle contained) by $A B$ and $B C$ [see previous proposition]. And, via composition, (the sum of) the (squares) on $A B$ and $B C$, plus twice the (rectangle contained) by $A B$ and $B C$ that is, the (square) on $A C$ [Prop. 2.4]-is incommensurable with the (rectangle contained) by $A B$ and $B C$ [Prop. 10.16]. And the (rectangle contained) by $A B$ and $B C$ (is) rational-for $A B$ and $B C$ were assumed to enclose a rational (area). Thus, the (square) on $A C$ (is) irrational. Thus, $A C$ (is) irrational [Def. 10.4]-let it be called a first bimedial (straight-line). ${ }^{\ddagger}$ (Which is) the very thing it was required to show.
† Literally, "first from two medials".
\ddagger Thus, a first bimedial straight-line has a length expressible as $k^{1 / 4}+k^{3 / 4}$. The first bimedial and the corresponding first apotome of a medial, whose length is expressible as $k^{1 / 4}-k^{3 / 4}$ (see Prop. 10.74), are the positive roots of the quartic $x^{4}-2 \sqrt{k}(1+k) x^{2}+k(1-k)^{2}=0$.

$$
\lambda \eta^{\prime}
$$

’Eàv ठúo $\mu \varepsilon ́ \sigma \alpha l ~ \delta u v \alpha ́ \mu \varepsilon ı ~ \mu o ́ v o v ~ \sigma u ́ \mu \mu \varepsilon \tau p o l ~ \sigma u \nu \tau \varepsilon \vartheta \widetilde{\omega} \sigma \iota ~$
 ठúo $\mu \varepsilon ́ \sigma \omega \nu$ ठuєтépa.

$\Sigma u \gamma \varkappa \varepsilon i \sigma \vartheta \omega \sigma \alpha \nu \gamma \grave{\alpha} \rho$ ठúo $\mu \varepsilon ́ \sigma \alpha l ~ \delta u v \alpha ́ \mu \varepsilon ı ~ \mu o ́ v o v ~ \sigma u ́ \mu \mu \varepsilon \tau \rho o ь ~$

Proposition 38

If two medial (straight-lines), commensurable in square only, which contain a medial (area), are added together then the whole (straight-line) is irrational-let it be called a second bimedial (straight-line).

For let the two medial (straight-lines), $A B$ and $B C$, commensurable in square only, (and) containing a medial

АГ.

(area), be laid down together [Prop. 10.28]. I say that $A C$ is irrational.

For let the rational (straight-line) $D E$ be laid down, and let (the rectangle) $D F$, equal to the (square) on $A C$, have been applied to $D E$, making $D G$ as breadth [Prop. 1.44]. And since the (square) on $A C$ is equal to (the sum of) the (squares) on $A B$ and $B C$, plus twice the (rectangle contained) by $A B$ and $B C$ [Prop. 2.4], so let (the rectangle) $E H$, equal to (the sum of) the squares on $A B$ and $B C$, have been applied to $D E$. The remainder $H F$ is thus equal to twice the (rectangle contained) by $A B$ and $B C$. And since $A B$ and $B C$ are each medial, (the sum of) the squares on $A B$ and $B C$ is thus also medial. ${ }^{\ddagger}$ And twice the (rectangle contained) by $A B$ and $B C$ was also assumed (to be) medial. And $E H$ is equal to (the sum of) the squares on $A B$ and $B C$, and $F H$ (is) equal to twice the (rectangle contained) by $A B$ and $B C$. Thus, $E H$ and $H F$ (are) each medial. And they were applied to the rational (straight-line) $D E$. Thus, $D H$ and $H G$ are each rational, and incommensurable in length with $D E$ [Prop. 10.22]. Therefore, since $A B$ is incommensurable in length with $B C$, and as $A B$ is to $B C$, so the (square) on $A B$ (is) to the (rectangle contained) by $A B$ and $B C$ [Prop. 10.21 lem.], the (square) on $A B$ is thus incommensurable with the (rectangle contained) by $A B$ and $B C$ [Prop. 10.11]. But, the sum of the squares on $A B$ and $B C$ is commensurable with the (square) on $A B$ [Prop. 10.15], and twice the (rectangle contained) by $A B$ and $B C$ is commensurable with the (rectangle contained) by $A B$ and $B C$ [Prop. 10.6]. Thus, the sum of the (squares) on $A B$ and $B C$ is incommensurable with twice the (rectangle contained) by $A B$ and $B C$ [Prop. 10.13]. But, $E H$ is equal to (the sum of) the squares on $A B$ and $B C$, and $H F$ is equal to twice the (rectangle) contained by $A B$ and $B C$. Thus, $E H$ is incommensurable with $H F$. Hence, $D H$ is also incommensurable in length with $H G$ [Props. 6.1, 10.11]. Thus, $D H$ and $H G$ are rational (straight-lines which are) commensurable in square only. Hence, $D G$ is irrational [Prop. 10.36]. And $D E$ (is) rational. And the rectangle contained by irrational and rational (straight-lines) is irrational [Prop. 10.20]. The area $D F$ is thus irrational, and (so) the square-root [of it] is irrational [Def. 10.4]. And $A C$ is the square-root of $D F$. $A C$ is thus irrational-let it be called a second bimedial (straight-line). ${ }^{\S}$ (Which is) the very thing it was required to show.

[^3]$\left[\left(k-k^{\prime}\right)^{2} / k\right]=0$.

$\lambda \vartheta^{\prime}$.

 б乇̀ $\mu \varepsilon$ í $\omega \nu$.

 АГ.

 ठєi̧̋al.

Proposition 39

If two straight-lines (which are) incommensurable in square, making the sum of the squares on them rational, and the (rectangle contained) by them medial, are added together then the whole straight-line is irrational-let it be called a major (straight-line).

$$
\begin{array}{lll}
\mathrm{A} & \mathrm{~B} & \mathrm{C}
\end{array}
$$

For let the two straight-lines, $A B$ and $B C$, incommensurable in square, and fulfilling the prescribed (conditions), be laid down together [Prop. 10.33]. I say that $A C$ is irrational.

For since the (rectangle contained) by $A B$ and $B C$ is medial, twice the (rectangle contained) by $A B$ and $B C$ is [thus] also medial [Props. 10.6, 10.23 corr.]. And the sum of the (squares) on $A B$ and $B C$ (is) rational. Thus, twice the (rectangle contained) by $A B$ and $B C$ is incommensurable with the sum of the (squares) on $A B$ and $B C$ [Def. 10.4]. Hence, (the sum of) the squares on $A B$ and $B C$, plus twice the (rectangle contained) by $A B$ and $B C$-that is, the (square) on $A C$ [Prop. 2.4]-is also incommensurable with the sum of the (squares) on $A B$ and $B C$ [Prop. 10.16] [and the sum of the (squares) on $A B$ and $B C$ (is) rational]. Thus, the (square) on $A C$ is irrational. Hence, $A C$ is also irrational [Def. 10.4]-let it be called a major (straight-line). ${ }^{\dagger}$ (Which is) the very thing it was required to show.
${ }^{\dagger}$ Thus, a major straight-line has a length expressible as $\sqrt{\left[1+k /\left(1+k^{2}\right)^{1 / 2}\right] / 2}+\sqrt{\left[1-k /\left(1+k^{2}\right)^{1 / 2}\right] / 2}$. The major and the corresponding minor, whose length is expressible as $\sqrt{\left[1+k /\left(1+k^{2}\right)^{1 / 2}\right] / 2}-\sqrt{\left[1-k /\left(1+k^{2}\right)^{1 / 2}\right] / 2}$ (see Prop. 10.76), are the positive roots of the quartic $x^{4}-2 x^{2}+k^{2} /\left(1+k^{2}\right)=0$.

$$
\mu^{\prime}
$$

 AГ.

Proposition 40

If two straight-lines (which are) incommensurable in square, making the sum of the squares on them medial, and the (rectangle contained) by them rational, are added together then the whole straight-line is irrational-let it be called the square-root of a rational plus a medial (area).

For let the two straight-lines, $A B$ and $B C$, incommensurable in square, (and) fulfilling the prescribed (conditions), be laid down together [Prop. 10.34]. I say that $A C$ is irrational.

For since the sum of the (squares) on $A B$ and $B C$ is medial, and twice the (rectangle contained) by $A B$ and

$B C$ (is) rational, the sum of the (squares) on $A B$ and $B C$ is thus incommensurable with twice the (rectangle contained) by $A B$ and $B C$. Hence, the (square) on $A C$ is also incommensurable with twice the (rectangle contained) by $A B$ and $B C$ [Prop. 10.16]. And twice the (rectangle contained) by $A B$ and $B C$ (is) rational. The (square) on $A C$ (is) thus irrational. Thus, $A C$ (is) irrational [Def. 10.4]-let it be called the square-root of a rational plus a medial (area). ${ }^{\dagger}$ (Which is) the very thing it was required to show.
${ }^{\dagger}$ Thus, the square-root of a rational plus a medial (area) has a length expressible as $\sqrt{\left[\left(1+k^{2}\right)^{1 / 2}+k\right] /\left[2\left(1+k^{2}\right)\right]}+\sqrt{\left[\left(1+k^{2}\right)^{1 / 2}-k\right] /\left[2\left(1+k^{2}\right)\right]}$. This and the corresponding irrational with a minus sign, whose length is expressible as $\sqrt{\left[\left(1+k^{2}\right)^{1 / 2}+k\right] /\left[2\left(1+k^{2}\right)\right]}-\sqrt{\left[\left(1+k^{2}\right)^{1 / 2}-k\right] /\left[2\left(1+k^{2}\right)\right]}$ (see Prop. 10.77), are the positive roots of the quartic $x^{4}-\left(2 / \sqrt{1+k^{2}}\right) x^{2}+k^{2} /\left(1+k^{2}\right)^{2}=0$.

$$
\mu \alpha^{\prime}
$$

 ย̇எтเน.

Proposition 41

If two straight-lines (which are) incommensurable in square, making the sum of the squares on them medial, and the (rectangle contained) by them medial, and, moreover, incommensurable with the sum of the squares on them, are added together then the whole straight-line is irrational-let it be called the square-root of (the sum of) two medial (areas).

For let the two straight-lines, $A B$ and $B C$, incommensurable in square, (and) fulfilling the prescribed (conditions), be laid down together [Prop. 10.35]. I say that $A C$ is irrational.

Let the rational (straight-line) $D E$ be laid out, and let (the rectangle) $D F$, equal to (the sum of) the (squares) on $A B$ and $B C$, and (the rectangle) $G H$, equal to twice the (rectangle contained) by $A B$ and $B C$, have been applied to $D E$. Thus, the whole of $D H$ is equal to the square on $A C$ [Prop. 2.4]. And since the sum of the (squares) on $A B$ and $B C$ is medial, and is equal to $D F$, $D F$ is thus also medial. And it is applied to the rational (straight-line) $D E$. Thus, $D G$ is rational, and incommen-

surable in length with $D E$ [Prop. 10.22]. So, for the same (reasons), $G K$ is also rational, and incommensurable in length with $G F$-that is to say, $D E$. And since (the sum of) the (squares) on $A B$ and $B C$ is incommensurable with twice the (rectangle contained) by $A B$ and $B C$, $D F$ is incommensurable with $G H$. Hence, $D G$ is also incommensurable (in length) with $G K$ [Props. 6.1, 10.11]. And they are rational. Thus, $D G$ and $G K$ are rational (straight-lines which are) commensurable in square only. Thus, $D K$ is irrational, and that (straight-line which is) called binomial [Prop. 10.36]. And $D E$ (is) rational. Thus, $D H$ is irrational, and its square-root is irrational [Def. 10.4]. And $A C$ (is) the square-root of $H D$. Thus, $A C$ is irrational-let it be called the square-root of (the sum of) two medial (areas). ${ }^{\dagger}$ (Which is) the very thing it was required to show.
${ }^{\dagger}$ Thus, the square-root of (the sum of) two medial (areas) has a length expressible as $k^{\prime 1 / 4}\left(\sqrt{\left[1+k /\left(1+k^{2}\right)^{1 / 2}\right] / 2}+\sqrt{\left[1-k /\left(1+k^{2}\right)^{1 / 2}\right] / 2}\right)$. This and the corresponding irrational with a minus sign, whose length is expressible as $k^{\prime 1 / 4}\left(\sqrt{\left[1+k /\left(1+k^{2}\right)^{1 / 2}\right] / 2}-\sqrt{\left[1-k /\left(1+k^{2}\right)^{1 / 2}\right] / 2}\right)$ (see Prop. 10.78), are the positive roots of the quartic $x^{4}-2 k^{\prime 1 / 2} x^{2}+k^{\prime} k^{2} /\left(1+k^{2}\right)=0$.

$\Lambda \tilde{n} \mu \mu \alpha$.

 $\tau \widetilde{\omega} \mathrm{A} \Delta, \Delta \mathrm{B}$.

 ن́ $\pi o ̀ ~ \tau \tilde{\omega} \nu \mathrm{~A} \Delta, \Delta \mathrm{~B} \mu \varepsilon \tau \dot{\alpha}$ toũ $\dot{\alpha} \pi o ̀ ~ \tau \tilde{\eta} \varsigma \Delta \mathrm{E} \cdot \widetilde{\omega} \nu$ tò $\alpha \pi o ̀ ~ \tau \eta ̃ \varsigma ~$

Lemma

We will now demonstrate that the aforementioned irrational (straight-lines) are uniquely divided into the straight-lines of which they are the sum, and which produce the prescribed types, (after) setting forth the following lemma.

Let the straight-line $A B$ be laid out, and let the whole (straight-line) have been cut into unequal parts at each of the (points) C and D. And let $A C$ be assumed (to be) greater than $D B$. I say that (the sum of) the (squares) on $A C$ and $C B$ is greater than (the sum of) the (squares) on $A D$ and $D B$.

For let $A B$ have been cut in half at E. And since $A C$ is greater than $D B$, let $D C$ have been subtracted from both. Thus, the remainder $A D$ is greater than the remainder $C B$. And $A E$ (is) equal to $E B$. Thus, $D E$ (is) less than $E C$. Thus, points C and D are not equally far from the point of bisection. And since the (rectangle contained) by $A C$ and $C B$, plus the (square) on $E C$, is equal to the (square) on $E B$ [Prop. 2.5], but, moreover, the (rectangle contained) by $A D$ and $D B$, plus the (square) on $D E$, is also equal to the (square) on $E B$ [Prop. 2.5], the (rectangle contained) by $A C$ and $C B$, plus the (square) on $E C$, is thus equal to the (rectangle contained) by $A D$ and $D B$, plus the (square) on $D E$. And, of these, the (square) on $D E$ is less than the (square) on $E C$. And, thus, the
remaining (rectangle contained) by $A C$ and $C B$ is less than the (rectangle contained) by $A D$ and $D B$. And, hence, twice the (rectangle contained) by $A C$ and $C B$ is less than twice the (rectangle contained) by $A D$ and $D B$. And thus the remaining sum of the (squares) on $A C$ and $C B$ is greater than the sum of the (squares) on $A D$ and $D B .^{\dagger}$ (Which is) the very thing it was required to show.
${ }^{\dagger}$ Since, $A C^{2}+C B^{2}+2 A C C B=A D^{2}+D B^{2}+2 A D D B=A B^{2}$.

$$
\mu \beta^{\prime} .
$$

 عis t̀̀ óvó $\mu \alpha \tau \alpha$.

 $\pi \rho o ̀ s ~ \tau \grave{\eta} \nu ~ \Gamma \mathrm{~B}$, oữ ω s $\dot{\eta} \mathrm{B} \Delta$ тpòs $\operatorname{\tau \eta } \nu \Delta \mathrm{A}$, xal हैन $\tau \alpha l \dot{\eta} \mathrm{AB}$

Proposition 42

A binomial (straight-line) can be divided into its (component) terms at one point only. ${ }^{\dagger}$

Let $A B$ be a binomial (straight-line) which has been divided into its (component) terms at $C . A C$ and $C B$ are thus rational (straight-lines which are) commensurable in square only [Prop. 10.36]. I say that $A B$ cannot be divided at another point into two rational (straight-lines which are) commensurable in square only.

For, if possible, let it also have been divided at D, such that $A D$ and $D B$ are also rational (straight-lines which are) commensurable in square only. So, (it is) clear that $A C$ is not the same as $D B$. For, if possible, let it be (the same). So, $A D$ will also be the same as $C B$. And as $A C$ will be to $C B$, so $B D$ (will be) to $D A$. And $A B$ will (thus) also be divided at D in the same (manner) as the division at C. The very opposite was assumed. Thus, $A C$ is not the same as $D B$. So, on account of this, points C and D are not equally far from the point of bisection. Thus, by whatever (amount the sum of) the (squares) on $A C$ and $C B$ differs from (the sum of) the (squares) on $A D$ and $D B$, twice the (rectangle contained) by $A D$ and $D B$ also differs from twice the (rectangle contained) by $A C$ and $C B$ by this (same amount)—on account of both (the sum of) the (squares) on $A C$ and $C B$, plus twice the (rectangle contained) by $A C$ and $C B$, and (the sum of) the (squares) on $A D$ and $D B$, plus twice the (rectangle contained) by $A D$ and $D B$, being equal to the (square) on $A B$ [Prop. 2.4]. But, (the sum of) the (squares) on $A C$ and $C B$ differs from (the sum of) the (squares) on $A D$ and $D B$ by a rational (area). For (they are) both rational (areas). Thus, twice the (rectangle contained) by $A D$ and $D B$ also differs from twice the (rectangle contained) by $A C$ and $C B$ by a rational (area, despite both) being medial (areas) [Prop. 10.21]. The very thing is absurd. For a medial (area) cannot exceed a medial (area) by a rational (area) [Prop. 10.26].
${ }^{\dagger}$ In other words, $k+k^{\prime 1 / 2}=k^{\prime \prime}+k^{\prime \prime \prime 1 / 2}$ has only one solution: i.e., $k^{\prime \prime}=k$ and $k^{\prime \prime \prime}=k^{\prime}$. Likewise, $k^{1 / 2}+k^{\prime 1 / 2}=k^{\prime \prime 1 / 2}+k^{\prime \prime \prime 1 / 2}$ has only one solution: i.e., $k^{\prime \prime}=k$ and $k^{\prime \prime \prime}=k^{\prime}$ (or, equivalently, $k^{\prime \prime}=k^{\prime}$ and $k^{\prime \prime \prime}=k$).

$$
\mu \gamma^{\prime} .
$$

 ठเаlрعі̃тац.

Proposition 43

A first bimedial (straight-line) can be divided (into its component terms) at one point only. ${ }^{\dagger}$

Let $A B$ be a first bimedial (straight-line) which has been divided at C, such that $A C$ and $C B$ are medial (straight-lines), commensurable in square only, (and) containing a rational (area) [Prop. 10.37]. I say that $A B$ cannot be (so) divided at another point.

For, if possible, let it also have been divided at D, such that $A D$ and $D B$ are also medial (straight-lines), commensurable in square only, (and) containing a rational (area). Since, therefore, by whatever (amount) twice the (rectangle contained) by $A D$ and $D B$ differs from twice the (rectangle contained) by $A C$ and $C B$, (the sum of) the (squares) on $A C$ and $C B$ differs from (the sum of) the (squares) on $A D$ and $D B$ by this (same amount) [Prop. 10.41 lem.]. And twice the (rectangle contained) by $A D$ and $D B$ differs from twice the (rectangle contained) by $A C$ and $C B$ by a rational (area). For (they are) both rational (areas). (The sum of) the (squares) on $A C$ and $C B$ thus differs from (the sum of) the (squares) on $A D$ and $D B$ by a rational (area, despite both) being medial (areas). The very thing is absurd [Prop. 10.26].

Thus, a first bimedial (straight-line) cannot be divided into its (component) terms at different points. Thus, (it can be so divided) at one point only. (Which is) the very thing it was required to show.
${ }^{\dagger}$ In other words, $k^{1 / 4}+k^{3 / 4}=k^{1 / 4}+k^{3 / 4}$ has only one solution: i.e., $k^{\prime}=k$.
$\mu \delta^{\prime}$.
'H ėx ठúo $\mu \varepsilon ́ \sigma \omega \nu ~ \delta \varepsilon \cup \tau \varepsilon ́ p \alpha ~ x \alpha \vartheta ’ ~ ह ै \nu ~ \mu o ́ v o v ~ \sigma \eta \mu \varepsilon i ̃ o \nu ~$

 Γ, ๕̋ $\sigma \tau \varepsilon \tau \grave{\alpha} \varsigma ~ А Г, ~ Г В ~ \mu \varepsilon ́ \sigma \alpha s ~ \varepsilon i v \alpha a l ~ \delta u v \alpha ́ \mu \varepsilon ı ~ \mu o ́ v o v ~ \sigma u \mu \mu \varepsilon ́ \tau p o u s ~$

Proposition 44

A second bimedial (straight-line) can be divided (into its component terms) at one point only. ${ }^{\dagger}$

Let $A B$ be a second bimedial (straight-line) which has been divided at C, so that $A C$ and $B C$ are medial (straight-lines), commensurable in square only, (and) containing a medial (area) [Prop. 10.38]. So, (it is) clear that C is not (located) at the point of bisection, since ($A C$ and $B C$) are not commensurable in length. I say that $A B$ cannot be (so) divided at another point.

 $\tau \grave{\eta} \nu \mathrm{A} \Gamma \cdot \delta \tilde{\eta} \lambda o \nu \delta \dot{\eta}$, ǒ $\tau \iota \nprec \alpha i ~ \tau \dot{\alpha} \alpha \dot{\alpha} \pi o ̀ ~ \tau \widetilde{\omega} \nu \mathrm{~A} \Delta, \Delta \mathrm{~B}, \dot{\omega} \varsigma$ ह́ $\pi \alpha ́ \nu \omega$

 $\dot{\eta} \mathrm{A} \Gamma \pi \rho o ̀ s ~ \tau \grave{\eta} \nu \Gamma \mathrm{~B}$, oưt $\omega \varsigma$ tò $\alpha \pi o ̀ ~ \tau \tilde{\eta} \varsigma ~ А \Gamma ~ \pi \rho o ̀ s ~ \tau o ̀ ~ U ́ \pi o ̀ ~ \tau \widetilde{\omega} \nu$

 АГ, ГВ• ठuvá $\mu \varepsilon \iota ~ \gamma \alpha ́ p ~ \varepsilon i \sigma ı ~ \sigma u ́ \mu \mu \varepsilon \tau p o l ~ \alpha i ~ А Г, ~ Г В . ~ \tau \widetilde{̣} ~ \delta e ̀ ~ i ́ \pi o ̀ ~$

 $\tau \widetilde{\omega} \nu \dot{\alpha} \pi o ̀ ~ \tau \widetilde{\omega} \nu \mathrm{~A} \Delta, \Delta \mathrm{~B}$. $\dot{\alpha} \lambda \lambda \alpha$ $\tau \dot{\alpha} \alpha \dot{\alpha} \pi o ̀ ~ \tau \widetilde{\omega} \nu \mathrm{~A} \Delta, \Delta \mathrm{~B} \mu \varepsilon i \zeta o v \alpha ́$

For, if possible, let it also have been (so) divided at D, so that $A C$ is not the same as $D B$, but $A C$ (is), by hypothesis, greater. So, (it is) clear that (the sum of) the (squares) on $A D$ and $D B$ is also less than (the sum of) the (squares) on $A C$ and $C B$, as we showed above [Prop. 10.41 lem.]. And $A D$ and $D B$ are medial (straight-lines), commensurable in square only, (and) containing a medial (area). And let the rational (straightline) $E F$ be laid down. And let the rectangular parallelogram $E K$, equal to the (square) on $A B$, have been applied to $E F$. And let $E G$, equal to (the sum of) the (squares) on $A C$ and $C B$, have been cut off (from $E K$). Thus, the remainder, $H K$, is equal to twice the (rectangle contained) by $A C$ and $C B$ [Prop. 2.4]. So, again, let $E L$, equal to (the sum of) the (squares) on $A D$ and $D B$-which was shown (to be) less than (the sum of) the (squares) on $A C$ and $C B$-have been cut off (from $E K$). And, thus, the remainder, $M K$, (is) equal to twice the (rectangle contained) by $A D$ and $D B$. And since (the sum of) the (squares) on $A C$ and $C B$ is medial, $E G$ (is) thus [also] medial. And it is applied to the rational (straight-line) $E F$. Thus, $E H$ is rational, and incommensurable in length with $E F$ [Prop. 10.22]. So, for the same (reasons), $H N$ is also rational, and incommensurable in length with $E F$. And since $A C$ and $C B$ are medial (straight-lines which are) commensurable in square only, $A C$ is thus incommensurable in length with $C B$. And as $A C$ (is) to $C B$, so the (square) on $A C$ (is) to the (rectangle contained) by $A C$ and $C B$ [Prop. 10.21 lem.]. Thus, the (square) on $A C$ is incommensurable with the (rectangle contained) by $A C$ and $C B$ [Prop. 10.11]. But, (the sum of) the (squares) on $A C$ and $C B$ is commensurable with the (square) on $A C$. For, $A C$ and $C B$ are commensurable in square [Prop. 10.15]. And twice the (rectangle contained) by $A C$ and $C B$ is commensurable with the (rectangle contained) by $A C$ and $C B$ [Prop. 10.6]. And thus (the sum of) the squares on $A C$ and $C B$ is incommensurable with twice the (rectangle contained) by $A C$ and $C B$ [Prop. 10.13]. But, $E G$ is equal to (the sum of) the (squares) on $A C$ and $C B$, and $H K$ equal to twice the (rectangle contained) by $A C$ and $C B$. Thus, $E G$ is incommensurable with $H K$. Hence, $E H$ is also incom-
mensurable in length with $H N$ [Props. 6.1, 10.11]. And (they are) rational (straight-lines). Thus, $E H$ and $H N$ are rational (straight-lines which are) commensurable in square only. And if two rational (straight-lines which are) commensurable in square only are added together then the whole (straight-line) is that irrational called binomial [Prop. 10.36]. Thus, EN is a binomial (straightline) which has been divided (into its component terms) at H. So, according to the same (reasoning), $E M$ and $M N$ can be shown (to be) rational (straight-lines which are) commensurable in square only. And $E N$ will (thus) be a binomial (straight-line) which has been divided (into its component terms) at the different (points) H and M (which is absurd [Prop. 10.42]). And $E H$ is not the same as $M N$, since (the sum of) the (squares) on $A C$ and $C B$ is greater than (the sum of) the (squares) on $A D$ and $D B$. But, (the sum of) the (squares) on $A D$ and $D B$ is greater than twice the (rectangle contained) by $A D$ and $D B$ [Prop. 10.59 lem.]. Thus, (the sum of) the (squares) on $A C$ and $C B$-that is to say, $E G$-is also much greater than twice the (rectangle contained) by $A D$ and $D B$ that is to say, $M K$. Hence, $E H$ is also greater than $M N$ [Prop. 6.1]. Thus, $E H$ is not the same as $M N$. (Which is) the very thing it was required to show.
${ }^{\dagger}$ In other words, $k^{1 / 4}+k^{\prime 1 / 2} / k^{1 / 4}=k^{\prime \prime 1 / 4}+k^{\prime \prime \prime 1 / 2} / k^{\prime \prime 1 / 4}$ has only one solution: i.e., $k^{\prime \prime}=k$ and $k^{\prime \prime \prime}=k^{\prime}$.
$\mu \varepsilon^{\prime}$

 oủ ठıаıрعі̃таı.

 $\Delta \mathrm{B}$ тoũ $\delta i \varsigma ~ \cup ́ \pi o ̀ ~ \tau \widetilde{\omega} \nu ~ А Г, ~ Г В, ~ \alpha ̀ \lambda \lambda \dot{\alpha} \tau \grave{\alpha} \alpha \pi o ̀ ~ \tau \widetilde{\omega} \nu ~ А Г, ~ Г В ~$

Proposition 45

A major (straight-line) can only be divided (into its component terms) at the same point. ${ }^{\dagger}$

Let $A B$ be a major (straight-line) which has been divided at C, so that $A C$ and $C B$ are incommensurable in square, making the sum of the squares on $A C$ and $C B$ rational, and the (rectangle contained) by $A C$ and $C D$ medial [Prop. 10.39]. I say that $A B$ cannot be (so) divided at another point.

For, if possible, let it also have been divided at D, such that $A D$ and $D B$ are also incommensurable in square, making the sum of the (squares) on $A D$ and $D B$ rational, and the (rectangle contained) by them medial. And since, by whatever (amount the sum of) the (squares) on $A C$ and $C B$ differs from (the sum of) the (squares) on $A D$ and $D B$, twice the (rectangle contained) by $A D$ and $D B$ also differs from twice the (rectangle contained) by $A C$ and $C B$ by this (same amount). But, (the sum of) the (squares) on $A C$ and $C B$ exceeds (the sum of) the (squares) on $A D$ and $D B$ by a rational (area). For (they are) both rational (areas). Thus, twice the (rectangle
${ }^{\dagger}$ In other words, $\sqrt{\left[1+k /\left(1+k^{2}\right)^{1 / 2}\right] / 2}+\sqrt{\left[1-k /\left(1+k^{2}\right)^{1 / 2}\right] / 2}=\sqrt{\left[1+k^{\prime} /\left(1+k^{\prime 2}\right)^{1 / 2}\right] / 2}+\sqrt{\left[1-k^{\prime} /\left(1+k^{\prime 2}\right)^{1 / 2}\right] / 2}$ has only one solution: i.e., $k^{\prime}=k$.

$$
\mu \tau^{\prime}
$$

 ঠıаюреїта.

 бпиеі̃ov oú ठıаıреїтац.

Eî $\gamma \dot{\rho}$ ठ

Proposition 46

The square-root of a rational plus a medial (area) can be divided (into its component terms) at one point only. ${ }^{\dagger}$

Let $A B$ be the square-root of a rational plus a medial (area) which has been divided at C, so that $A C$ and $C B$ are incommensurable in square, making the sum of the (squares) on $A C$ and $C B$ medial, and twice the (rectangle contained) by $A C$ and $C B$ rational [Prop. 10.40]. I say that $A B$ cannot be (so) divided at another point.

For, if possible, let it also have been divided at D, so that $A D$ and $D B$ are also incommensurable in square, making the sum of the (squares) on $A D$ and $D B$ medial, and twice the (rectangle contained) by $A D$ and $D B$ rational. Therefore, since by whatever (amount) twice the (rectangle contained) by $A C$ and $C B$ differs from twice the (rectangle contained) by $A D$ and $D B$, (the sum of) the (squares) on $A D$ and $D B$ also differs from (the sum of) the (squares) on $A C$ and $C B$ by this (same amount). And twice the (rectangle contained) by $A C$ and $C B$ exceeds twice the (rectangle contained) by $A D$ and $D B$ by a rational (area). (The sum of) the (squares) on $A D$ and $D B$ thus also exceeds (the sum of) the (squares) on $A C$ and $C B$ by a rational (area), (despite both) being medial (areas). The very thing is impossible [Prop. 10.26]. Thus, the square-root of a rational plus a medial (area) cannot be divided (into its component terms) at different points. Thus, it can be (so) divided at one point (only). (Which is) the very thing it was required to show.
\dagger In other words, $\sqrt{\left[\left(1+k^{2}\right)^{1 / 2}+k\right] /\left[2\left(1+k^{2}\right)\right]}+\sqrt{\left[\left(1+k^{2}\right)^{1 / 2}-k\right] /\left[2\left(1+k^{2}\right)\right]}=\sqrt{\left[\left(1+k^{\prime 2}\right)^{1 / 2}+k^{\prime}\right] /\left[2\left(1+k^{\prime 2}\right)\right]}$ $+\sqrt{\left[\left(1+k^{\prime 2}\right)^{1 / 2}-k^{\prime}\right] /\left[2\left(1+k^{\prime 2}\right)\right]}$ has only one solution: i.e., $k^{\prime}=k$.

$$
\mu \zeta^{\prime} .
$$

Proposition 47

The square-root of (the sum of) two medial (areas) can be divided (into its component terms) at one point only. ${ }^{\dagger}$

Let $A B$ be [the square-root of (the sum of) two medial (areas)] which has been divided at C, such that $A C$ and $C B$ are incommensurable in square, making the sum of the (squares) on $A C$ and $C B$ medial, and the (rectangle contained) by $A C$ and $C B$ medial, and, moreover, incommensurable with the sum of the (squares) on ($A C$ and $C B$) [Prop. 10.41]. I say that $A B$ cannot be divided at another point fulfilling the prescribed (conditions).

For, if possible, let it have been divided at D, such that $A C$ is again manifestly not the same as $D B$, but $A C$ (is), by hypothesis, greater. And let the rational (straight-line) $E F$ be laid down. And let $E G$, equal to (the sum of) the (squares) on $A C$ and $C B$, and $H K$, equal to twice the (rectangle contained) by $A C$ and $C B$, have been applied to $E F$. Thus, the whole of $E K$ is equal to the square on $A B$ [Prop. 2.4]. So, again, let $E L$, equal to (the sum of) the (squares) on $A D$ and $D B$, have been applied to $E F$. Thus, the remainder-twice the (rectangle contained) by $A D$ and $D B$-is equal to the remainder, $M K$. And since the sum of the (squares) on $A C$ and $C B$ was assumed (to be) medial, $E G$ is also medial. And it is applied to the rational (straight-line) $E F . H E$ is thus rational, and incommensurable in length with $E F$ [Prop. 10.22]. So, for the same (reasons), $H N$ is also rational, and incommensurable in length with $E F$. And since the sum of the (squares) on $A C$ and $C B$ is incommensurable with twice the (rectangle contained) by $A C$ and $C B, E G$ is thus also incommensurable with $G N$. Hence, $E H$ is also incommensurable with $H N$ [Props. 6.1, 10.11]. And they are (both) rational (straight-lines). Thus, $E H$ and $H N$ are rational (straight-lines which are) commensurable in square only. Thus, $E N$ is a binomial (straightline) which has been divided (into its component terms) at H [Prop. 10.36]. So, similarly, we can show that it has also been (so) divided at M. And $E H$ is not the same as $M N$. Thus, a binomial (straight-line) has been divided (into its component terms) at different points. The very thing is absurd [Prop. 10.42]. Thus, the square-root of (the sum of) two medial (areas) cannot be divided (into
its component terms) at different points. Thus, it can be (so) divided at one [point] only.
${ }^{\dagger}$ In other words, $k^{\prime 1 / 4} \sqrt{\left[1+k /\left(1+k^{2}\right)^{1 / 2}\right] / 2}+k^{\prime 1 / 4} \sqrt{\left[1-k /\left(1+k^{2}\right)^{1 / 2}\right] / 2}=k^{\prime \prime \prime 1 / 4} \sqrt{\left[1+k^{\prime \prime} /\left(1+k^{\prime 2}\right)^{1 / 2}\right] / 2}$
$+k^{\prime \prime \prime 1 / 4} \sqrt{\left[1-k^{\prime \prime} /\left(1+k^{\prime \prime 2}\right)^{1 / 2}\right] / 2}$ has only one solution: i.e., $k^{\prime \prime}=k$ and $k^{\prime \prime \prime}=k^{\prime}$.
"Opot δ ع́útepot.

$\mu \eta^{\prime}$.

 ๕̀ $\chi \varepsilon เ \nu, ~ o ̈ \nu ~ \tau \varepsilon \tau р \alpha ́ \gamma \omega \nu о \varsigma ~ \alpha ̉ p ı \vartheta \mu o ̀ s ~ \pi р o ̀ s ~ \tau \varepsilon \tau р \alpha ́ \gamma \omega \nu о \nu ~ \alpha ̉ p เ \vartheta \mu o ́ v, ~$

Definitions II

5. Given a rational (straight-line), and a binomial (straight-line) which has been divided into its (component) terms, of which the square on the greater term is larger than (the square on) the lesser by the (square) on (some straight-line) commensurable in length with (the greater) then, if the greater term is commensurable in length with the rational (straight-line previously) laid out, let [the whole] (straight-line) be called a first binomial (straight-line).
6. And if the lesser term is commensurable in length with the rational (straight-line previously) laid out then let (the whole straight-line) be called a second binomial (straight-line).
7. And if neither of the terms is commensurable in length with the rational (straight-line previously) laid out then let (the whole straight-line) be called a third binomial (straight-line).
8. So, again, if the square on the greater term is larger than (the square on) [the lesser] by the (square) on (some straight-line) incommensurable in length with (the greater) then, if the greater term is commensurable in length with the rational (straight-line previously) laid out, let (the whole straight-line) be called a fourth binomial (straight-line).
9. And if the lesser (term is commensurable), a fifth (binomial straight-line).
10. And if neither (term is commensurable), a sixth (binomial straight-line).

Proposition 48

To find a first binomial (straight-line).
Let two numbers $A C$ and $C B$ be laid down such that their sum $A B$ has to $B C$ the ratio which (some) square number (has) to (some) square number, and does not have to $C A$ the ratio which (some) square number (has) to (some) square number [Prop. 10.28 lem. I]. And let some rational (straight-line) D be laid down. And let $E F$ be commensurable in length with $D . E F$ is thus also rational [Def. 10.3]. And let it have been contrived that as the number $B A$ (is) to $A C$, so the (square) on $E F$ (is) to the (square) on $F G$ [Prop. 10.6 corr.]. And $A B$ has to $A C$ the ratio which (some) number (has) to (some) num-

 $\pi \rho o ̀ s ~ \tau \varepsilon \tau \rho \alpha ́ \gamma \omega \nu o v ~ \alpha ́ p ı \vartheta \mu o ́ v, ~ o u ̉ \delta e ̀ ~ \tau o ̀ ~ \alpha ́ \pi o ̀ ~ \tau n ̃ s ~ E Z ~ \alpha ́ p \alpha ~ \pi \rho o ̀ s ~$

 tò $\alpha \pi o ̀ ~ \tau n ̃ s ~ E Z ~ \alpha ै p \alpha ~ \pi p o ̀ s ~ t o ̀ ~ \alpha ́ \pi o ̀ ~ \tau n ̃ s ~ \Theta ~ \lambda o ́ \gamma o v ~ ह ै \chi ~ \chi \varepsilon ا, ~ o ̋ v ~$

 $\sigma \cup ́ \mu \mu \varepsilon \tau \rho о \varsigma \dot{\eta} \mathrm{EZ} \tau \tilde{n} \Delta \mu \dot{\eta} \varkappa \varepsilon \iota$.
 ठєĭ̧al.
ber. Thus, the (square) on $E F$ also has to the (square) on $F G$ the ratio which (some) number (has) to (some) number. Hence, the (square) on $E F$ is commensurable with the (square) on $F G$ [Prop. 10.6]. And $E F$ is rational. Thus, $F G$ (is) also rational. And since $B A$ does not have to $A C$ the ratio which (some) square number (has) to (some) square number, thus the (square) on $E F$ does not have to the (square) on $F G$ the ratio which (some) square number (has) to (some) square number either. Thus, $E F$ is incommensurable in length with $F G$ [Prop 10.9]. $E F$ and $F G$ are thus rational (straight-lines which are) commensurable in square only. Thus, $E G$ is a binomial (straight-line) [Prop. 10.36]. I say that (it is) also a first (binomial straight-line).

For since as the number $B A$ is to $A C$, so the (square) on $E F$ (is) to the (square) on $F G$, and $B A$ (is) greater than $A C$, the (square) on $E F$ (is) thus also greater than the (square) on $F G$ [Prop. 5.14]. Therefore, let (the sum of) the (squares) on $F G$ and H be equal to the (square) on $E F$. And since as $B A$ is to $A C$, so the (square) on $E F$ (is) to the (square) on $F G$, thus, via conversion, as $A B$ is to $B C$, so the (square) on $E F$ (is) to the (square) on H [Prop. 5.19 corr.]. And $A B$ has to $B C$ the ratio which (some) square number (has) to (some) square number. Thus, the (square) on $E F$ also has to the (square) on H the ratio which (some) square number (has) to (some) square number. Thus, $E F$ is commensurable in length with H [Prop. 10.9]. Thus, the square on $E F$ is greater than (the square on) $F G$ by the (square) on (some straight-line) commensurable (in length) with $(E F)$. And $E F$ and $F G$ are rational (straight-lines). And $E F$ (is) commensurable in length with D.

Thus, $E G$ is a first binomial (straight-line) [Def. 10.5]. ${ }^{\dagger}$ (Which is) the very thing it was required to show.
${ }^{\dagger}$ If the rational straight-line has unit length then the length of a first binomial straight-line is $k+k \sqrt{1-k^{\prime 2}}$. This, and the first apotome, whose length is $k-k \sqrt{1-k^{\prime 2}}$ [Prop. 10.85], are the roots of $x^{2}-2 k x+k^{2} k^{\prime 2}=0$.

$\mu \vartheta^{\prime}$.

Proposition 49

To find a second binomial (straight-line).

 है $\chi \varepsilon เ \nu, ~ o ̈ \nu ~ \tau \varepsilon \tau р \alpha ́ \gamma \omega \nu о \varsigma ~ \alpha ́ p ı \vartheta \mu o ̀ s ~ \pi \rho o ̀ s ~ \tau \varepsilon \tau р \alpha ́ \gamma \omega \nu о \nu ~ \alpha ̉ р \imath \vartheta \mu o ́ v, ~$

 $\pi \rho o ̀ s ~ \tau o ̀ ~ \alpha ́ \pi o ̀ ~ \tau \tilde{n} \varsigma ~ \Theta . ~ \dot{\alpha} \lambda \lambda \lambda^{\prime}$ ó AB тpòs tòv $\mathrm{B} \mathrm{\Gamma}$ 入óүov है $\chi \varepsilon \iota$, őv

 ठعї̆ α.

Let the two numbers $A C$ and $C B$ be laid down such that their sum $A B$ has to $B C$ the ratio which (some) square number (has) to (some) square number, and does not have to $A C$ the ratio which (some) square number (has) to (some) square number [Prop. 10.28 lem. I]. And let the rational (straight-line) D be laid down. And let $E F$ be commensurable in length with D. $E F$ is thus a rational (straight-line). So, let it also have been contrived that as the number $C A$ (is) to $A B$, so the (square) on $E F$ (is) to the (square) on $F G$ [Prop. 10.6 corr.]. Thus, the (square) on $E F$ is commensurable with the (square) on $F G$ [Prop. 10.6]. Thus, $F G$ is also a rational (straightline). And since the number $C A$ does not have to $A B$ the ratio which (some) square number (has) to (some) square number, the (square) on $E F$ does not have to the (square) on $F G$ the ratio which (some) square number (has) to (some) square number either. Thus, $E F$ is incommensurable in length with $F G$ [Prop. 10.9]. $E F$ and $F G$ are thus rational (straight-lines which are) commensurable in square only. Thus, $E G$ is a binomial (straightline) [Prop. 10.36]. So, we must show that (it is) also a second (binomial straight-line).

For since, inversely, as the number $B A$ is to $A C$, so the (square) on $G F$ (is) to the (square) on $F E$ [Prop. 5.7 corr.], and $B A$ (is) greater than $A C$, the (square) on $G F$ (is) thus [also] greater than the (square) on $F E$ [Prop. 5.14]. Let (the sum of) the (squares) on $E F$ and H be equal to the (square) on $G F$. Thus, via conversion, as $A B$ is to $B C$, so the (square) on $F G$ (is) to the (square) on H [Prop. 5.19 corr.]. But, $A B$ has to $B C$ the ratio which (some) square number (has) to (some) square number. Thus, the (square) on $F G$ also has to the (square) on H the ratio which (some) square number (has) to (some) square number. Thus, $F G$ is commensurable in length with H [Prop. 10.9]. Hence, the square on $F G$ is greater than (the square on) $F E$ by the (square) on (some straight-line) commensurable in length with $(F G)$. And $F G$ and $F E$ are rational (straight-lines which are) commensurable in square only. And the lesser term $E F$ is commensurable in length with the rational (straightline) D (previously) laid down.

Thus, $E G$ is a second binomial (straight-line) [Def. 10.6]. ${ }^{\dagger}$ (Which is) the very thing it was required to show.

[^4]whose length is $k / \sqrt{1-k^{\prime 2}}-k$ [Prop. 10.86], are the roots of $x^{2}-\left(2 k / \sqrt{1-k^{\prime 2}}\right) x+k^{2}\left[k^{\prime 2} /\left(1-k^{\prime 2}\right)\right]=0$.

v^{\prime}.

 $\pi \rho o ̀ s ~ \tau \varepsilon \tau \rho \alpha ́ \gamma \omega \nu о \nu ~ \alpha ́ p \imath \vartheta \mu o ́ v ~ \alpha ́ \sigma u ́ \mu \mu \varepsilon \tau \rho о \varsigma ~ \alpha ̈ p \alpha ~ \varepsilon ̇ \sigma \tau i \nu ~ \dot{\eta} \mathrm{ZH}$

 x α ì трít η.

 $\dot{\alpha} \pi o ̀ ~ \tau \widetilde{\omega} \nu \mathrm{H} \Theta, \mathrm{K} \cdot \dot{\alpha} \nu \alpha \sigma \tau \rho \varepsilon ́ \psi \alpha \nu \tau \iota \not ้ p \alpha[\hat{\varepsilon} \sigma \tau i \nu]$ $\dot{\omega} \varsigma$ ó $\mathrm{AB} \pi \rho o ̀ s$

Proposition 50
To find a third binomial (straight-line).

Let the two numbers $A C$ and $C B$ be laid down such that their sum $A B$ has to $B C$ the ratio which (some) square number (has) to (some) square number, and does not have to $A C$ the ratio which (some) square number (has) to (some) square number. And let some other nonsquare number D also be laid down, and let it not have to each of $B A$ and $A C$ the ratio which (some) square number (has) to (some) square number. And let some rational straight-line E be laid down, and let it have been contrived that as D (is) to $A B$, so the (square) on E (is) to the (square) on $F G$ [Prop. 10.6 corr.]. Thus, the (square) on E is commensurable with the (square) on $F G$ [Prop. 10.6]. And E is a rational (straight-line). Thus, $F G$ is also a rational (straight-line). And since D does not have to $A B$ the ratio which (some) square number has to (some) square number, the (square) on E does not have to the (square) on $F G$ the ratio which (some) square number (has) to (some) square number either. E is thus incommensurable in length with $F G$ [Prop. 10.9]. So, again, let it have been contrived that as the number $B A$ (is) to $A C$, so the (square) on $F G$ (is) to the (square) on $G H$ [Prop. 10.6 corr.]. Thus, the (square) on $F G$ is commensurable with the (square) on $G H$ [Prop. 10.6]. And $F G$ (is) a rational (straight-line). Thus, $G H$ (is) also a rational (straight-line). And since $B A$ does not have to $A C$ the ratio which (some) square number (has) to (some) square number, the (square) on $F G$ does not have to the (square) on $H G$ the ratio which (some) square number (has) to (some) square number either. Thus, $F G$ is incommensurable in length with $G H$ [Prop. 10.9]. $F G$ and $G H$ are thus rational (straightlines which are) commensurable in square only. Thus, $F H$ is a binomial (straight-line) [Prop. 10.36]. So, I say that (it is) also a third (binomial straight-line).

For since as D is to $A B$, so the (square) on E (is) to the (square) on $F G$, and as $B A$ (is) to $A C$, so the (square) on $F G$ (is) to the (square) on $G H$, thus, via equality, as D (is) to $A C$, so the (square) on E (is) to the (square) on $G H$ [Prop. 5.22]. And D does not

have to $A C$ the ratio which (some) square number (has) to (some) square number. Thus, the (square) on E does not have to the (square) on $G H$ the ratio which (some) square number (has) to (some) square number either. Thus, E is incommensurable in length with $G H$ [Prop. 10.9]. And since as $B A$ is to $A C$, so the (square) on $F G$ (is) to the (square) on $G H$, the (square) on $F G$ (is) thus greater than the (square) on $G H$ [Prop. 5.14]. Therefore, let (the sum of) the (squares) on $G H$ and K be equal to the (square) on $F G$. Thus, via conversion, as $A B$ [is] to $B C$, so the (square) on $F G$ (is) to the (square) on K [Prop. 5.19 corr.]. And $A B$ has to $B C$ the ratio which (some) square number (has) to (some) square number. Thus, the (square) on $F G$ also has to the (square) on K the ratio which (some) square number (has) to (some) square number. Thus, $F G$ [is] commensurable in length with K [Prop. 10.9]. Thus, the square on $F G$ is greater than (the square on) $G H$ by the (square) on (some straight-line) commensurable (in length) with ($F G$). And $F G$ and $G H$ are rational (straight-lines which are) commensurable in square only, and neither of them is commensurable in length with E.

Thus, $F H$ is a third binomial (straight-line) [Def. 10.7]. ${ }^{\dagger}$ (Which is) the very thing it was required to show.
${ }^{\dagger}$ If the rational straight-line has unit length then the length of a third binomial straight-line is $k^{1 / 2}\left(1+\sqrt{1-k^{\prime 2}}\right)$. This, and the third apotome, whose length is $k^{1 / 2}\left(1-\sqrt{1-k^{\prime 2}}\right)$ [Prop. 10.87], are the roots of $x^{2}-2 k^{1 / 2} x+k k^{\prime 2}=0$.

 ย̇xxยíб७

Proposition 51

To find a fourth binomial (straight-line).

Let the two numbers $A C$ and $C B$ be laid down such that $A B$ does not have to $B C$, or to $A C$ either, the ratio which (some) square number (has) to (some) square number [Prop. 10.28 lem. I]. And let the rational (straight-line) D be laid down. And let $E F$ be commensurable in length with D. Thus, $E F$ is also a rational (straight-line). And let it have been contrived that as the number $B A$ (is) to $A C$, so the (square) on $E F$ (is) to the (square) on $F G$ [Prop. 10.6 corr.]. Thus, the (square) on $E F$ is commensurable with the (square) on $F G$ [Prop. 10.6]. Thus, $F G$ is also a rational (straightline). And since $B A$ does not have to $A C$ the ratio which (some) square number (has) to (some) square number,

O้тl $x \alpha i ̀ \tau \varepsilon \tau \alpha ́ p \tau \eta$.

 ठعǐ̌ α.
the (square) on $E F$ does not have to the (square) on $F G$ the ratio which (some) square number (has) to (some) square number either. Thus, $E F$ is incommensurable in length with $F G$ [Prop. 10.9]. Thus, $E F$ and $F G$ are rational (straight-lines which are) commensurable in square only. Hence, $E G$ is a binomial (straight-line) [Prop. 10.36]. So, I say that (it is) also a fourth (binomial straight-line).

For since as $B A$ is to $A C$, so the (square) on $E F$ (is) to the (square) on $F G$ [and $B A$ (is) greater than $A C$], the (square) on $E F$ (is) thus greater than the (square) on $F G$ [Prop. 5.14]. Therefore, let (the sum of) the squares on $F G$ and H be equal to the (square) on $E F$. Thus, via conversion, as the number $A B$ (is) to $B C$, so the (square) on $E F$ (is) to the (square) on H [Prop. 5.19 corr.]. And $A B$ does not have to $B C$ the ratio which (some) square numbber (has) to (some) square number. Thus, the (square) on $E F$ does not have to the (square) on H the ratio which (some) square number (has) to (some) square number either. Thus, $E F$ is incommensurable in length with H [Prop. 10.9]. Thus, the square on $E F$ is greater than (the square on) $G F$ by the (square) on (some straight-line) incommensurable (in length) with ($E F$). And $E F$ and $F G$ are rational (straight-lines which are) commensurable in square only. And $E F$ is commensurable in length with D.

Thus, $E G$ is a fourth binomial (straight-line) [Def. 10.8]. ${ }^{\dagger}$ (Which is) the very thing it was required to show.
${ }^{\dagger}$ If the rational straight-line has unit length then the length of a fourth binomial straight-line is $k\left(1+1 / \sqrt{1+k^{\prime}}\right)$. This, and the fourth apotome, whose length is $k\left(1-1 / \sqrt{1+k^{\prime}}\right)$ [Prop. 10.88], are the roots of $x^{2}-2 k x+k^{2} k^{\prime} /\left(1+k^{\prime}\right)=0$.

$$
\nu \beta^{\prime}
$$

Proposition 52

To find a fifth binomial straight-line.

Let the two numbers $A C$ and $C B$ be laid down such that $A B$ does not have to either of them the ratio which (some) square number (has) to (some) square number [Prop. 10.38 lem.]. And let some rational straight-line D be laid down. And let $E F$ be commensurable [in length] with D. Thus, $E F$ (is) a rational (straightline). And let it have been contrived that as $C A$ (is) to $A B$, so the (square) on $E F$ (is) to the (square) on $F G$ [Prop. 10.6 corr.]. And $C A$ does not have to $A B$ the ra-

 $\mu o ́ v o v ~ \sigma u ́ \mu \mu \varepsilon \tau \rho o l, ~ \chi \alpha \grave{~} \tau o ̀ ~ E Z ~ ह ै \lambda \alpha \tau \tau o \nu ~ o ้ v o \mu \alpha ~ \sigma u ́ \mu \mu \varepsilon \tau \rho o ́ v ~ \varepsilon ̇ \sigma \tau \iota ~$

 ठعǐ̌ α.
tio which (some) square number (has) to (some) square number. Thus, the (square) on $E F$ does not have to the (square) on $F G$ the ratio which (some) square number (has) to (some) square number either. Thus, EF and $F G$ are rational (straight-lines which are) commensurable in square only [Prop. 10.9]. Thus, $E G$ is a binomial (straight-line) [Prop. 10.36]. So, I say that (it is) also a fifth (binomial straight-line).

For since as $C A$ is to $A B$, so the (square) on $E F$ (is) to the (square) on $F G$, inversely, as $B A$ (is) to $A C$, so the (square) on $F G$ (is) to the (square) on $F E$ [Prop. 5.7 corr.]. Thus, the (square) on $G F$ (is) greater than the (square) on $F E$ [Prop. 5.14]. Therefore, let (the sum of) the (squares) on $E F$ and H be equal to the (square) on $G F$. Thus, via conversion, as the number $A B$ is to $B C$, so the (square) on $G F$ (is) to the (square) on H [Prop. 5.19 corr.]. And $A B$ does not have to $B C$ the ratio which (some) square number (has) to (some) square number. Thus, the (square) on $F G$ does not have to the (square) on H the ratio which (some) square number (has) to (some) square number either. Thus, $F G$ is incommensurable in length with H [Prop. 10.9]. Hence, the square on $F G$ is greater than (the square on) $F E$ by the (square) on (some straight-line) incommensurable (in length) with ($F G$). And $G F$ and $F E$ are rational (straight-lines which are) commensurable in square only. And the lesser term $E F$ is commensurable in length with the rational (straight-line previously) laid down, D.

Thus, $E G$ is a fifth binomial (straight-line). ${ }^{\dagger}$ (Which is) the very thing it was required to show.
${ }^{\dagger}$ If the rational straight-line has unit length then the length of a fifth binomial straight-line is $k\left(\sqrt{1+k^{\prime}}+1\right)$. This, and the fifth apotome, whose length is $k\left(\sqrt{1+k^{\prime}}-1\right)$ [Prop. 10.89], are the roots of $x^{2}-2 k \sqrt{1+k^{\prime}} x+k^{2} k^{\prime}=0$.

Proposition 53

To find a sixth binomial (straight-line).

Let the two numbers $A C$ and $C B$ be laid down such that $A B$ does not have to each of them the ratio which (some) square number (has) to (some) square number. And let D also be another number, which is not square, and does not have to each of $B A$ and $A C$ the ratio which (some) square number (has) to (some) square number either [Prop. 10.28 lem. I]. And let some rational straightline E be laid down. And let it have been contrived that

 tñs ZH тpòs tò $\alpha \pi o ̀ ~ \tau n ̃ s ~ H \Theta . ~ \sigma u ́ \mu \mu \varepsilon \tau p o v ~ \alpha ̈ p \alpha ~ \tau o ̀ ~ \alpha ́ \pi o ̀ ~ \tau n ̃ ̧ ~ Z H ~$

 оัтા xal ยैxтท.

 oủठè tò $\alpha \pi o ̀ ~ \tau \eta ̃ s ~ E ~ \alpha ̈ p \alpha ~ \pi \rho o ̀ s ~ \tau o ̀ ~ \alpha ́ \pi o ̀ ~ \tau n ̃ s ~ H \Theta ~ \lambda o ́ \gamma o v ~$

 ג́pı७
 $\alpha i \mathrm{ZH}, \mathrm{H} \Theta$ ṕntaì $\delta u v \alpha ́ \mu \varepsilon \iota ~ \mu o ́ v o v ~ \sigma u ́ \mu \mu \varepsilon \tau \rho o l, ~ \chi \alpha i ̀ ~ o u ̉ \delta \varepsilon \tau \varepsilon ́ p \alpha ~$

as D (is) to $A B$, so the (square) on E (is) to the (square) on $F G$ [Prop. 10.6 corr.]. Thus, the (square) on E (is) commensurable with the (square) on $F G$ [Prop. 10.6]. And E is rational. Thus, $F G$ (is) also rational. And since D does not have to $A B$ the ratio which (some) square number (has) to (some) square number, the (square) on E thus does not have to the (square) on $F G$ the ratio which (some) square number (has) to (some) square number either. Thus, E (is) incommensurable in length with $F G$ [Prop. 10.9]. So, again, let it have be contrived that as $B A$ (is) to $A C$, so the (square) on $F G$ (is) to the (square) on $G H$ [Prop. 10.6 corr.]. The (square) on $F G$ (is) thus commensurable with the (square) on $H G$ [Prop. 10.6]. The (square) on $H G$ (is) thus rational. Thus, $H G$ (is) rational. And since $B A$ does not have to $A C$ the ratio which (some) square number (has) to (some) square number, the (square) on $F G$ does not have to the (square) on $G H$ the ratio which (some) square number (has) to (some) square number either. Thus, $F G$ is incommensurable in length with $G H$ [Prop. 10.9]. Thus, $F G$ and $G H$ are rational (straight-lines which are) commensurable in square only. Thus, $F H$ is a binomial (straight-line) [Prop. 10.36]. So, we must show that (it is) also a sixth (binomial straight-line).

For since as D is to $A B$, so the (square) on E (is) to the (square) on $F G$, and also as $B A$ is to $A C$, so the (square) on $F G$ (is) to the (square) on $G H$, thus, via equality, as D is to $A C$, so the (square) on E (is) to the (square) on $G H$ [Prop. 5.22]. And D does not have to $A C$ the ratio which (some) square number (has) to (some) square number. Thus, the (square) on E does not have to the (square) on $G H$ the ratio which (some) square number (has) to (some) square number either. E is thus incommensurable in length with $G H$ [Prop. 10.9]. And (E) was also shown (to be) incommensurable (in length) with $F G$. Thus, $F G$ and $G H$ are each incommensurable in length with E. And since as $B A$ is to $A C$, so the (square) on $F G$ (is) to the (square) on $G H$, the (square) on $F G$ (is) thus greater than the (square) on $G H$ [Prop. 5.14]. Therefore, let (the sum of) the (squares) on $G H$ and K be equal to the (square) on $F G$. Thus, via conversion, as $A B$ (is) to $B C$, so the (square) on $F G$ (is) to the (square) on K [Prop. 5.19 corr.]. And $A B$ does not have to $B C$ the ratio which (some) square number (has) to (some) square number. Hence, the (square) on $F G$ does not have to the (square) on K the ratio which (some) square number (has) to (some) square number either. Thus, $F G$ is incommensurable in length with K [Prop. 10.9]. The square on $F G$ is thus greater than (the square on) $G H$ by the (square) on (some straight-line which is) incom-
mensurable (in length) with ($F G$). And $F G$ and $G H$ are rational (straight-lines which are) commensurable in square only, and neither of them is commensurable in length with the rational (straight-line) E (previously) laid down.

Thus, $F H$ is a sixth binomial (straight-line) [Def. 10.10]. ${ }^{\dagger}$ (Which is) the very thing it was required to show.
${ }^{\dagger}$ If the rational straight-line has unit length then the length of a sixth binomial straight-line is $\sqrt{k}+\sqrt{k^{\prime}}$. This, and the sixth apotome, whose length is $\sqrt{k}-\sqrt{k^{\prime}}$ [Prop. 10.90], are the roots of $x^{2}-2 \sqrt{k} x+\left(k-k^{\prime}\right)=0$.

$\Lambda \tilde{\mu} \mu \mu \alpha$.

 $\mathrm{ZB} \tau \tilde{n} \mathrm{BH}$. x $\alpha \grave{\imath} \sigma \cup \mu \pi \varepsilon \pi \lambda n \rho \omega ́ \sigma \vartheta \omega$ tò $\mathrm{A} \Gamma \pi \alpha \rho \alpha \lambda \lambda \eta \lambda o ́ \gamma \rho \alpha \mu \mu o v$. $\lambda \varepsilon ́ \gamma \omega$, ơтı тєтра́ү ω vóv ह̇ $\sigma \tau \iota ~ \tau o ̀ ~ A \Gamma, ~ x \alpha \grave{~ o ̛ \tau \iota ~ \tau \widetilde{\omega} \nu ~} \mathrm{AB}, \mathrm{B} \Gamma$ $\mu \varepsilon ́ \sigma o v ~ \dot{\alpha} v \alpha ́ \lambda o \gamma o ́ v ~ \varepsilon ̇ \sigma \tau l ~ \tau o ̀ ~ \Delta H, ~ x \alpha l ~ ह ै \tau \iota ~ \tau \widetilde{\omega} \nu ~ А Г, ~ Г В ~ \mu \varepsilon ́ \sigma o v ~$

 $\Delta \Gamma$.

Lemma

Let $A B$ and $B C$ be two squares, and let them be laid down such that $D B$ is straight-on to $B E . F B$ is, thus, also straight-on to $B G$. And let the parallelogram $A C$ have been completed. I say that $A C$ is a square, and that $D G$ is the mean proportional to $A B$ and $B C$, and, moreover, $D C$ is the mean proportional to $A C$ and $C B$.

For since $D B$ is equal to $B F$, and $B E$ to $B G$, the whole of $D E$ is thus equal to the whole of $F G$. But $D E$ is equal to each of $A H$ and $K C$, and $F G$ is equal to each of $A K$ and $H C$ [Prop. 1.34]. Thus, $A H$ and $K C$ are also equal to $A K$ and $H C$, respectively. Thus, the parallelogram $A C$ is equilateral. And (it is) also right-angled. Thus, $A C$ is a square.

And since as $F B$ is to $B G$, so $D B$ (is) to $B E$, but as $F B$ (is) to $B G$, so $A B$ (is) to $D G$, and as $D B$ (is) to $B E$, so $D G$ (is) to $B C$ [Prop. 6.1], thus also as $A B$ (is) to $D G$, so $D G$ (is) to $B C$ [Prop. 5.11]. Thus, $D G$ is the mean proportional to $A B$ and $B C$.

So I also say that $D C$ [is] the mean proportional to $A C$ and $C B$.

For since as $A D$ is to $D K$, so $K G$ (is) to $G C$. For [they are] respectively equal. And, via composition, as $A K$ (is) to $K D$, so $K C$ (is) to $C G$ [Prop. 5.18]. But as $A K$ (is) to $K D$, so $A C$ (is) to $C D$, and as $K C$ (is) to $C G$, so $D C$ (is) to $C B$ [Prop. 6.1]. Thus, also, as $A C$ (is) to $D C$, so $D C$ (is) to $B C$ [Prop. 5.11]. Thus, $D C$ is the mean proportional to $A C$ and $C B$. Which (is the very thing) it

$v \delta^{\prime}$.

 $\dot{\eta} x \alpha \lambda о \cup \mu \varepsilon ́ v \eta$ モ̇x ठ́́o o̊vo $\mu \dot{\alpha} \tau \omega \nu$.

 ỏvoú́t $\omega \nu$.

 $\dot{\rho} \eta \tau \tilde{n} \tau \tilde{n} \mathrm{AB} \mu \dot{\eta} x \varepsilon \iota$. $\tau \varepsilon \tau \mu \dot{\eta} \sigma \vartheta \omega$ ò̀ $\dot{\eta} \mathrm{E} \Delta$ ठí $\alpha \alpha \alpha \tau \dot{\alpha}$ tò Z

 $\Gamma \Delta \pi \alpha p \alpha ́ \lambda \lambda \eta \lambda o l ~ \alpha i ~ H \Theta, ~ E K, ~ Z \Lambda \cdot ~ \chi \alpha i ~ \tau \widetilde{\omega} ~ \mu \varepsilon ̀ v ~ A \Theta ~ \pi \alpha p \alpha \lambda \lambda \eta-~$

 $\pi \varepsilon \pi \lambda \eta \rho \omega ́ \sigma \vartheta \omega$ тò $\Sigma \Pi \pi \alpha \rho \alpha \lambda \lambda \eta \lambda o ́ \gamma \rho \alpha \mu \mu о \nu$. тєтра́ү $\omega \nu$ оv $\alpha \rho \alpha$

 EH• xaì ćs α 人p α tò $\mathrm{A} \Theta$ тpòs $\mathrm{E} \Lambda$, tò $\mathrm{E} \Lambda$ тpòs $\mathrm{KH} \cdot \tau \widetilde{\omega} \nu$

 $\mu \varepsilon ́ \sigma o \nu ~ \alpha ̉ \nu \alpha ́ \lambda o \gamma o ́ v ~ \varepsilon ̇ \sigma \tau l ~ \tau o ̀ ~ E \Lambda . ~ ह ै \sigma \tau l ~ \delta غ ̀ ~ \tau \widetilde{\omega} \nu ~ \alpha u ̉ \tau \widetilde{\omega} \nu \tau \widetilde{\omega} \nu \Sigma N$,

’Eлعì $\gamma \dot{\alpha} \rho \sigma u ́ \mu \mu \varepsilon \tau \rho o ́ s ~ \varepsilon ̇ \sigma \tau ו \nu ~ \dot{\eta} A H ~ \tau \tilde{n} H E, ~ \sigma u ́ \mu \mu \varepsilon \tau \rho o ́ s ~ \varepsilon ̇ \sigma \tau \tau ~$

was prescribed to show.

Proposition 54

If an area is contained by a rational (straight-line) and a first binomial (straight-line) then the square-root of the area is the irrational (straight-line which is) called binomial. ${ }^{\dagger}$

For let the area $A C$ be contained by the rational (straight-line) $A B$ and by the first binomial (straightline) $A D$. I say that square-root of area $A C$ is the irrational (straight-line which is) called binomial.

For since $A D$ is a first binomial (straight-line), let it have been divided into its (component) terms at E, and let $A E$ be the greater term. So, (it is) clear that $A E$ and $E D$ are rational (straight-lines which are) commensurable in square only, and that the square on $A E$ is greater than (the square on) $E D$ by the (square) on (some straight-line) commensurable (in length) with ($A E$), and that $A E$ is commensurable (in length) with the rational (straight-line) $A B$ (first) laid out [Def. 10.5]. So, let $E D$ have been cut in half at point F. And since the square on $A E$ is greater than (the square on) $E D$ by the (square) on (some straight-line) commensurable (in length) with ($A E$), thus if a (rectangle) equal to the fourth part of the (square) on the lesser (term) -that is to say, the (square) on $E F$-falling short by a square figure, is applied to the greater (term) $A E$, then it divides it into (terms which are) commensurable (in length) [Prop 10.17]. Therefore, let the (rectangle contained) by $A G$ and $G E$, equal to the (square) on $E F$, have been applied to $A E . A G$ is thus commensurable in length with $E G$. And let $G H, E K$, and $F L$ have been drawn from (points) G, E, and F (respectively), parallel to either of $A B$ or $C D$. And let the square $S N$, equal to the parallelogram $A H$, have been constructed, and (the square) $N Q$, equal to (the parallelogram) $G K$ [Prop. 2.14]. And let $M N$ be laid down so as to be straight-on to $N O . R N$ is thus also straight-on to $N P$. And let the parallelogram $S Q$ have been completed. $S Q$ is thus a square [Prop. 10.53 lem.]. And since the (rectangle contained) by $A G$ and $G E$ is equal to the (square) on $E F$, thus as $A G$ is to $E F$, so $F E$ (is) to $E G$ [Prop. 6.17]. And thus as $A H$ (is) to $E L$, (so) $E L$ (is)

 $\mathrm{AE} \tau \tilde{n} \mathrm{E} \Delta \mu \dot{\eta} x \varepsilon \iota, \alpha \dot{\alpha} \lambda^{\circ} \dot{\eta} \mu \varepsilon ̀ \nu \mathrm{AE} \tau \tilde{n} \mathrm{AH}$ ह́ $\sigma \tau \iota \sigma \cup ́ \mu \mu \varepsilon \tau \rho \circ \varsigma$,

 $\tau \widetilde{\varphi} \mathrm{MP} \dot{\alpha} \sigma \cup ́ \mu \mu \varepsilon \tau \rho o ́ v ~ \varepsilon ̇ \sigma \tau \tau \nu . ~ \dot{\alpha} \lambda \lambda{ }^{\circ} \dot{\omega} \varsigma ~ \tau o ̀ ~ \Sigma N ~ \pi \rho o ̀ s ~ M P, ~ \dot{\eta} \mathrm{ON}$

 цóvov oú $\mu \mu \varepsilon \tau \rho o l$.
${ }^{`} \mathrm{H} \mathrm{M} \Xi$ äp α ह̉x $\delta u ́ o ~ o ̉ v o \mu \alpha ́ \tau \omega \nu ~ \varepsilon ̇ \sigma \tau i ̀ ~ x \alpha i ̀ ~ \delta u ́ v \alpha \tau \alpha l ~ t o ̀ ~ A \Gamma . ~$

to $K G$ [Prop. 6.1]. Thus, $E L$ is the mean proportional to $A H$ and $G K$. But, $A H$ is equal to $S N$, and $G K$ (is) equal to $N Q . E L$ is thus the mean proportional to $S N$ and $N Q$. And $M R$ is also the mean proportional to the same(namely), $S N$ and $N Q$ [Prop. 10.53 lem.]. $E L$ is thus equal to $M R$. Hence, it is also equal to $P O$ [Prop. 1.43]. And $A H$ plus $G K$ is equal to $S N$ plus $N Q$. Thus, the whole of $A C$ is equal to the whole of $S Q$-that is to say, to the square on $M O$. Thus, $M O$ (is) the square-root of (area) $A C$. I say that $M O$ is a binomial (straight-line).

For since $A G$ is commensurable (in length) with $G E$, $A E$ is also commensurable (in length) with each of $A G$ and $G E$ [Prop. 10.15]. And $A E$ was also assumed (to be) commensurable (in length) with $A B$. Thus, $A G$ and $G E$ are also commensurable (in length) with $A B$ [Prop. 10.12]. And $A B$ is rational. $A G$ and $G E$ are thus each also rational. Thus, $A H$ and $G K$ are each rational (areas), and $A H$ is commensurable with $G K$ [Prop. 10.19]. But, $A H$ is equal to $S N$, and $G K$ to $N Q$. $S N$ and $N Q$-that is to say, the (squares) on $M N$ and $N O$ (respectively) -are thus also rational and commensurable. And since $A E$ is incommensurable in length with $E D$, but $A E$ is commensurable (in length) with $A G$, and $D E$ (is) commensurable (in length) with $E F$, $A G$ (is) thus also incommensurable (in length) with $E F$ [Prop. 10.13]. Hence, $A H$ is also incommensurable with $E L$ [Props. 6.1, 10.11]. But, $A H$ is equal to $S N$, and $E L$ to $M R$. Thus, $S N$ is also incommensurable with $M R$. But, as $S N$ (is) to $M R$, (so) $P N$ (is) to $N R$ [Prop. 6.1]. $P N$ is thus incommensurable (in length) with $N R$ [Prop. 10.11]. And $P N$ (is) equal to $M N$, and $N R$ to $N O$. Thus, $M N$ is incommensurable (in length) with $N O$. And the (square) on $M N$ is commensurable with the (square) on $N O$, and each (is) rational. $M N$ and $N O$ are thus rational (straight-lines which are) commensurable in square only.

Thus, $M O$ is (both) a binomial (straight-line) [Prop. 10.36], and the square-root of $A C$. (Which is) the very thing it was required to show.

[^5]$$
v \varepsilon^{\prime}
$$

 $\dot{\eta} x \alpha \lambda o \cup \mu \varepsilon ́ v \eta$ モ̇x ठט́o $\mu \varepsilon ́ \sigma \omega \nu \pi \rho \omega \dot{\epsilon} \tau \eta$.

Proposition 55

If an area is contained by a rational (straight-line) and a second binomial (straight-line) then the square-root of the area is the irrational (straight-line which is) called first bimedial. ${ }^{\dagger}$

 $\sigma \cup \mu \mu \varepsilon ́ \tau \rho о \cup ~ \varepsilon ́ \alpha \cup \tau \tilde{n}, ~ x \alpha i ̀ ~ \tau o ̀ ~ ह ै \lambda \alpha \tau \tau о \nu ~ o ̋ v o \mu \alpha ~ \dot{\eta} \mathrm{E} \Delta$ бú $\mu \mu \varepsilon \tau \rho o ́ v$

 $\tau \tilde{n}$ HE $\mu \dot{n} x \varepsilon \iota . ~ \chi \alpha \grave{~} \delta \iota \dot{\alpha} \tau \widetilde{\omega} \nu \mathrm{H}, \mathrm{E}, \mathrm{Z} \pi \alpha \rho \alpha ́ \lambda \lambda \eta \lambda o \iota ~ \ddot{\eta} \chi \vartheta \omega \sigma \alpha \nu$ $\tau \alpha i ̈ \varsigma ~ A B, \Gamma \Delta$ 人i $\mathrm{H} \Theta, \mathrm{EK}, \mathrm{Z} \Lambda$, $x \alpha \grave{\imath} \tau \widetilde{\varphi} \mu \varepsilon ̀ \nu \mathrm{~A} \Theta \pi \alpha p \alpha \lambda \lambda \eta-$

 $\dot{\varepsilon} x \alpha \tau \varepsilon ́ \rho \alpha \tau \widetilde{\omega} \nu \mathrm{AH}$, HE. $\dot{\alpha} \lambda \lambda \dot{\alpha} \dot{\eta} \mathrm{AE} \dot{\alpha} \sigma \cup ́ \mu \mu \varepsilon \tau \rho o s \tau \tilde{n} \mathrm{AB} \mu \dot{\eta} x \varepsilon เ \cdot$

 NП $\mu \varepsilon ́ \sigma o v ~ \varepsilon ̇ \sigma \tau i ́ v . ~ x \alpha i ̀ ~ \alpha i ~ M N, ~ N \Xi ~ \alpha ̈ p \alpha ~ \mu \varepsilon ́ \sigma \alpha l ~ \varepsilon i ̄ \sigma i ́ v . ~ x \alpha i ̀ ~$

 $\alpha \lambda^{\lambda} \dot{\eta} \mu \varepsilon ̀ \nu \mathrm{AE} \sigma u ̛ \mu \mu \varepsilon \tau \rho o ́ s ~ \varepsilon ̇ \sigma \tau \iota ~ \tau \tilde{n} \mathrm{AH}, \dot{\eta}$ ठ̇̀ $\mathrm{E} \Delta \tau \tilde{n} \mathrm{EZ}$

For let the area $A B C D$ be contained by the rational (straight-line) $A B$ and by the second binomial (straightline) $A D$. I say that the square-root of area $A C$ is a first bimedial (straight-line).

For since $A D$ is a second binomial (straight-line), let it have been divided into its (component) terms at E, such that $A E$ is the greater term. Thus, $A E$ and $E D$ are rational (straight-lines which are) commensurable in square only, and the square on $A E$ is greater than (the square on) $E D$ by the (square) on (some straight-line) commensurable (in length) with $(A E)$, and the lesser term $E D$ is commensurable in length with $A B$ [Def. 10.6]. Let $E D$ have been cut in half at F. And let the (rectangle contained) by $A G E$, equal to the (square) on $E F$, have been applied to $A E$, falling short by a square figure. $A G$ (is) thus commensurable in length with $G E$ [Prop. 10.17]. And let $G H, E K$, and $F L$ have been drawn through (points) G, E, and F (respectively), parallel to $A B$ and $C D$. And let the square $S N$, equal to the parallelogram $A H$, have been constructed, and the square $N Q$, equal to $G K$. And let $M N$ be laid down so as to be straight-on to $N O$. Thus, $R N$ [is] also straight-on to $N P$. And let the square $S Q$ have been completed. So, (it is) clear from what has been previously demonstrated [Prop. 10.53 lem.] that $M R$ is the mean proportional to $S N$ and $N Q$, and (is) equal to $E L$, and that $M O$ is the square-root of the area $A C$. So, we must show that $M O$ is a first bimedial (straight-line).

Since $A E$ is incommensurable in length with $E D$, and $E D$ (is) commensurable (in length) with $A B$, $A E$ (is) thus incommensurable (in length) with $A B$ [Prop. 10.13]. And since $A G$ is commensurable (in length) with $E G, A E$ is also commensurable (in length) with each of $A G$ and $G E$ [Prop. 10.15]. But, $A E$ is incommensurable in length with $A B$. Thus, $A G$ and $G E$ are also (both) incommensurable (in length) with $A B$ [Prop. 10.13]. Thus, $B A, A G$, and ($B A$, and) $G E$ are (pairs of) rational (straight-lines which are) commensurable in square only. And, hence, each of $A H$ and $G K$ is a medial (area) [Prop. 10.21]. Hence, each of $S N$ and $N Q$ is also a medial (area). Thus, $M N$ and $N O$ are medial (straight-lines). And since $A G$ (is) commensurable in length with $G E, A H$ is also commensurable
$\pi \varepsilon \rho เ \varepsilon ́ \chi$ OU $\pi \rho \omega ́$ тท.

with $G K$-that is to say, $S N$ with $N Q$-that is to say, the (square) on $M N$ with the (square) on $N O$ [hence, $M N$ and $N O$ are commensurable in square] [Props. 6.1, 10.11]. And since $A E$ is incommensurable in length with $E D$, but $A E$ is commensurable (in length) with $A G$, and $E D$ commensurable (in length) with $E F, A G$ (is) thus incommensurable (in length) with $E F$ [Prop. 10.13]. Hence, $A H$ is also incommensurable with $E L$-that is to say, $S N$ with $M R$-that is to say, $P N$ with $N R$-that is to say, $M N$ is incommensurable in length with $N O$ [Props. 6.1, 10.11]. But $M N$ and $N O$ have also been shown to be medial (straight-lines) which are commensurable in square. Thus, $M N$ and $N O$ are medial (straightlines which are) commensurable in square only. So, I say that they also contain a rational (area). For since $D E$ was assumed (to be) commensurable (in length) with each of $A B$ and $E F, E F$ (is) thus also commensurable with $E K$ [Prop. 10.12]. And they (are) each rational. Thus, $E L-$ that is to say, $M R$-(is) rational [Prop. 10.19]. And $M R$ is the (rectangle contained) by $M N O$. And if two medial (straight-lines), commensurable in square only, which contain a rational (area), are added together, then the whole is (that) irrational (straight-line which is) called first bimedial [Prop. 10.37].

Thus, $M O$ is a first bimedial (straight-line). (Which is) the very thing it was required to show.
\dagger If the rational straight-line has unit length then this proposition states that the square-root of a second binomial straight-line is a first bimedial straight-line: i.e., a second binomial straight-line has a length $k / \sqrt{1-k^{\prime 2}}+k$ whose square-root can be written $\rho\left(k^{\prime \prime 1 / 4}+k^{\prime \prime 3 / 4}\right)$, where $\rho=\sqrt{(k / 2)\left(1+k^{\prime}\right) /\left(1-k^{\prime}\right)}$ and $k^{\prime \prime}=\left(1-k^{\prime}\right) /\left(1+k^{\prime}\right)$. This is the length of a first bimedial straight-line (see Prop. 10.37), since ρ is rational.
νq^{\prime}.

 $\mu \varepsilon ́ \sigma \omega \nu$ ठெvtépa.

Proposition 56

If an area is contained by a rational (straight-line) and a third binomial (straight-line) then the square-root of the area is the irrational (straight-line which is) called second bimedial. ${ }^{\dagger}$

For let the area $A B C D$ be contained by the rational (straight-line) $A B$ and by the third binomial (straightline) $A D$, which has been divided into its (component) terms at E, of which $A E$ is the greater. I say that the square-root of area $A C$ is the irrational (straight-line which is) called second bimedial.

 ठєutépa.

For let the same construction be made as previously. And since $A D$ is a third binomial (straight-line), $A E$ and $E D$ are thus rational (straight-lines which are) commensurable in square only, and the square on $A E$ is greater than (the square on) $E D$ by the (square) on (some straight-line) commensurable (in length) with ($A E$), and neither of $A E$ and $E D$ [is] commensurable in length with $A B$ [Def. 10.7]. So, similarly to that which has been previously demonstrated, we can show that $M O$ is the square-root of area $A C$, and $M N$ and $N O$ are medial (straight-lines which are) commensurable in square only. Hence, $M O$ is bimedial. So, we must show that (it is) also second (bimedial).
[And] since $D E$ is incommensurable in length with $A B$-that is to say, with $E K$-and $D E$ (is) commensurable (in length) with $E F, E F$ is thus incommensurable in length with $E K$ [Prop. 10.13]. And they are (both) rational (straight-lines). Thus, $F E$ and $E K$ are rational (straight-lines which are) commensurable in square only. $E L$-that is to say, $M R$-[is] thus medial [Prop. 10.21]. And it is contained by $M N O$. Thus, the (rectangle contained) by $M N O$ is medial.

Thus, $M O$ is a second bimedial (straight-line) [Prop. 10.38]. (Which is) the very thing it was required to show.
\dagger If the rational straight-line has unit length then this proposition states that the square-root of a third binomial straight-line is a second bimedial straight-line: i.e., a third binomial straight-line has a length $k^{1 / 2}\left(1+\sqrt{1-k^{\prime 2}}\right)$ whose square-root can be written $\rho\left(k^{1 / 4}+k^{\prime \prime 1 / 2} / k^{1 / 4}\right)$, where $\rho=\sqrt{\left(1+k^{\prime}\right) / 2}$ and $k^{\prime \prime}=k\left(1-k^{\prime}\right) /\left(1+k^{\prime}\right)$. This is the length of a second bimedial straight-line (see Prop. 10.38), since ρ is rational.

$$
\nu \zeta^{\prime} .
$$

 $\dot{\eta} \chi \alpha \lambda о \cup \mu \varepsilon ́ v \eta \mu \varepsilon i \zeta \omega \nu$.

Proposition 57

If an area is contained by a rational (straight-line) and a fourth binomial (straight-line) then the square-root of the area is the irrational (straight-line which is) called major. ${ }^{\dagger}$

For let the area $A C$ be contained by the rational (straight-line) $A B$ and the fourth binomial (straight-line) $A D$, which has been divided into its (component) terms at E, of which let $A E$ be the greater. I say that the squareroot of $A C$ is the irrational (straight-line which is) called major.

For since $A D$ is a fourth binomial (straight-line), $A E$ and $E D$ are thus rational (straight-lines which are) com-

 $\dot{\eta} \mathrm{AH} \tau \tilde{n} \mathrm{HE} \mu \dot{\eta} x \varepsilon \iota$. $\ddot{\eta} \chi \vartheta \omega \sigma \alpha \nu \pi \alpha \rho \alpha ́ \lambda \lambda \eta \lambda o \iota ~ \tau \tilde{n} \mathrm{AB} \alpha i \mathrm{H} \Theta$,

 $\tau \tilde{n} \mathrm{EZ}, \alpha \dot{\alpha} \cup^{\mu} \mu \mu \varepsilon \tau \rho o s ~ \alpha ้ p \alpha \dot{\eta}$ EZ $\tau \tilde{n}$ EK $\mu \dot{\eta} x \varepsilon \iota$. $\alpha i \mathrm{EK}$, EZ

 б̀̀ $\mu \varepsilon$ í弓 $\omega \nu$.

mensurable in square only, and the square on $A E$ is greater than (the square on) $E D$ by the (square) on (some straight-line) incommensurable (in length) with ($A E$), and $A E$ [is] commensurable in length with $A B$ [Def. 10.8]. Let $D E$ have been cut in half at F, and let the parallelogram (contained by) $A G$ and $G E$, equal to the (square) on $E F$, (and falling short by a square figure) have been applied to $A E . A G$ is thus incommensurable in length with $G E$ [Prop. 10.18]. Let $G H, E K$, and $F L$ have been drawn parallel to $A B$, and let the rest (of the construction) have been made the same as the (proposition) before this. So, it is clear that $M O$ is the square-root of area $A C$. So, we must show that $M O$ is the irrational (straight-line which is) called major.

Since $A G$ is incommensurable in length with $E G, A H$ is also incommensurable with $G K$-that is to say, $S N$ with $N Q$ [Props. 6.1, 10.11]. Thus, $M N$ and $N O$ are incommensurable in square. And since $A E$ is commensurable in length with $A B, A K$ is rational [Prop. 10.19]. And it is equal to the (sum of the squares) on $M N$ and $N O$. Thus, the sum of the (squares) on $M N$ and $N O$ [is] also rational. And since $D E$ [is] incommensurable in length with $A B$ [Prop. 10.13]-that is to say, with $E K$-but $D E$ is commensurable (in length) with $E F, E F$ (is) thus incommensurable in length with $E K$ [Prop. 10.13]. Thus, $E K$ and $E F$ are rational (straightlines which are) commensurable in square only. $L E-$ that is to say, $M R$-(is) thus medial [Prop. 10.21]. And it is contained by $M N$ and $N O$. The (rectangle contained) by $M N$ and $N O$ is thus medial. And the [sum] of the (squares) on $M N$ and $N O$ (is) rational, and $M N$ and $N O$ are incommensurable in square. And if two straightlines (which are) incommensurable in square, making the sum of the squares on them rational, and the (rectangle contained) by them medial, are added together, then the whole is the irrational (straight-line which is) called major [Prop. 10.39].

Thus, $M O$ is the irrational (straight-line which is) called major. And (it is) the square-root of area $A C$. (Which is) the very thing it was required to show.

[^6]

 بavepòv $\delta \dot{\eta}$, ơтı $\dot{\eta}$ тò $А \Gamma ~ \chi \omega p i ́ o v ~ \delta u v a \mu \varepsilon ́ v \eta ~ \varepsilon ̇ \sigma \tau i v ~ \dot{\eta} \mathrm{M} \Xi$.

 $\dot{\alpha} \lambda \lambda \dot{\alpha} \dot{\eta} \mathrm{AE} \tau \tilde{n} \mathrm{E} \Delta$ ह̇ $\sigma \tau \omega \nu \dot{\alpha} \sigma \cup ́ \mu \mu \varepsilon \tau \rho \circ \varsigma \varsigma^{\circ}$ к人i $\dot{\eta} \mathrm{AB}$ 人́p $\alpha \tau \tilde{n}$

For let the area $A C$ be contained by the rational (straight-line) $A B$ and the fifth binomial (straight-line) $A D$, which has been divided into its (component) terms at E, such that $A E$ is the greater term. [So] I say that the square-root of area $A C$ is the irrational (straight-line which is) called the square-root of a rational plus a medial (area).

For let the same construction be made as that shown previously. So, (it is) clear that $M O$ is the square-root of area $A C$. So, we must show that $M O$ is the square-root of a rational plus a medial (area).

For since $A G$ is incommensurable (in length) with $G E$ [Prop. 10.18], $A H$ is thus also incommensurable with $H E$-that is to say, the (square) on $M N$ with the (square) on $N O$ [Props. 6.1, 10.11]. Thus, $M N$ and $N O$ are incommensurable in square. And since $A D$ is a fifth binomial (straight-line), and $E D$ [is] its lesser segment, $E D$ (is) thus commensurable in length with $A B$ [Def. 10.9]. But, $A E$ is incommensurable (in length) with $E D$. Thus, $A B$ is also incommensurable in length with $A E$ [$B A$ and $A E$ are rational (straight-lines which are) commensurable in square only] [Prop. 10.13]. Thus, $A K$-that is to say, the sum of the (squares) on $M N$ and $N O$-is medial [Prop. 10.21]. And since $D E$ is commensurable in length with $A B$-that is to say, with $E K$-but, $D E$ is commensurable (in length) with $E F$, $E F$ is thus also commensurable (in length) with $E K$ [Prop. 10.12]. And $E K$ (is) rational. Thus, $E L$-that is to say, $M R$-that is to say, the (rectangle contained) by $M N O$-(is) also rational [Prop. 10.19]. $M N$ and $N O$ are thus (straight-lines which are) incommensurable in square, making the sum of the squares on them medial, and the (rectangle contained) by them rational.

Thus, $M O$ is the square-root of a rational plus a medial (area) [Prop. 10.40]. And (it is) the square-root of area $A C$. (Which is) the very thing it was required to show.

[^7]the square root of a rational plus a medial area (see Prop. 10.40), since ρ is rational.
$v v^{\prime}$.

 वं б́йцвтроь.

Proposition 59

If an area is contained by a rational (straight-line) and a sixth binomial (straight-line) then the square-root of the area is the irrational (straight-line which is) called the square-root of (the sum of) two medial (areas). ${ }^{\dagger}$

For let the area $A B C D$ be contained by the rational (straight-line) $A B$ and the sixth binomial (straight-line) $A D$, which has been divided into its (component) terms at E, such that $A E$ is the greater term. So, I say that the square-root of $A C$ is the square-root of (the sum of) two medial (areas).
[For] let the same construction be made as that shown previously. So, (it is) clear that $M O$ is the square-root of $A C$, and that $M N$ is incommensurable in square with $N O$. And since $E A$ is incommensurable in length with $A B$ [Def. 10.10], $E A$ and $A B$ are thus rational (straightlines which are) commensurable in square only. Thus, $A K$-that is to say, the sum of the (squares) on $M N$ and $N O$-is medial [Prop. 10.21]. Again, since $E D$ is incommensurable in length with $A B$ [Def. 10.10], $F E$ is thus also incommensurable (in length) with $E K$ [Prop. 10.13]. Thus, $F E$ and $E K$ are rational (straightlines which are) commensurable in square only. Thus, $E L$-that is to say, $M R$-that is to say, the (rectangle contained) by $M N O$-is medial [Prop. 10.21]. And since $A E$ is incommensurable (in length) with $E F, A K$ is also incommensurable with $E L$ [Props. 6.1, 10.11]. But, $A K$ is the sum of the (squares) on $M N$ and $N O$, and $E L$ is the (rectangle contained) by $M N O$. Thus, the sum of the (squares) on $M N O$ is incommensurable with the (rectangle contained) by $M N O$. And each of them is medial. And $M N$ and $N O$ are incommensurable in square.

Thus, $M O$ is the square-root of (the sum of) two medial (areas) [Prop. 10.41]. And (it is) the square-root of $A C$. (Which is) the very thing it was required to show.

[^8]
$\Lambda \tilde{n} \mu \mu \alpha$.

$\xi '$.

Lemma

If a straight-line is cut unequally then (the sum of) the squares on the unequal (parts) is greater than twice the rectangle contained by the unequal (parts).

Let $A B$ be a straight-line, and let it have been cut unequally at C, and let $A C$ be greater (than $C B$). I say that (the sum of) the (squares) on $A C$ and $C B$ is greater than twice the (rectangle contained) by $A C$ and $C B$.

For let $A B$ have been cut in half at D. Therefore, since a straight-line has been cut into equal (parts) at D, and into unequal (parts) at C, the (rectangle contained) by $A C$ and $C B$, plus the (square) on $C D$, is thus equal to the (square) on $A D$ [Prop. 2.5]. Hence, the (rectangle contained) by $A C$ and $C B$ is less than the (square) on $A D$. Thus, twice the (rectangle contained) by $A C$ and $C B$ is less than double the (square) on $A D$. But, (the sum of) the (squares) on $A C$ and $C B$ [is] double (the sum of) the (squares) on $A D$ and $D C$ [Prop. 2.9]. Thus, (the sum of) the (squares) on $A C$ and $C B$ is greater than twice the (rectangle contained) by $A C$ and $C B$. (Which is) the very thing it was required to show.

Proposition 60

The square on a binomial (straight-line) applied to a rational (straight-line) produces as breadth a first binomial (straight-line). ${ }^{\dagger}$

Let $A B$ be a binomial (straight-line), having been divided into its (component) terms at C, such that $A C$ is the greater term. And let the rational (straight-line) $D E$ be laid down. And let the (rectangle) $D E F G$, equal to the (square) on $A B$, have been applied to $D E$, producing $D G$ as breadth. I say that $D G$ is a first binomial (straightline).

For let $D H$, equal to the (square) on $A C$, and $K L$, equal to the (square) on $B C$, have been applied to $D E$.

 $\tau \tilde{\eta} \varsigma \dot{\varepsilon} \lambda \alpha \dot{\alpha} \sigma \sigma o v o s ~ \mu \varepsilon і ̈ \zeta o v ~ \delta u ́ v \alpha \tau \alpha l ~ \tau \widetilde{̣}$ 秋ò $\sigma \cup \mu \mu \varepsilon ́ \tau \rho o u ~ \varepsilon ́ \alpha u \tau \tilde{n} \cdot \dot{\eta}$

 ठєֹ̧̈ α.

Thus, the remaining twice the (rectangle contained) by $A C$ and $C B$ is equal to $M F$ [Prop. 2.4]. Let $M G$ have been cut in half at N, and let $N O$ have been drawn parallel [to each of $M L$ and $G F$]. $M O$ and $N F$ are thus each equal to once the (rectangle contained) by $A C B$. And since $A B$ is a binomial (straight-line), having been divided into its (component) terms at $C, A C$ and $C B$ are thus rational (straight-lines which are) commensurable in square only [Prop. 10.36]. Thus, the (squares) on $A C$ and $C B$ are rational, and commensurable with one another. And hence the sum of the (squares) on $A C$ and $C B$ (is rational) [Prop. 10.15], and is equal to $D L$. Thus, $D L$ is rational. And it is applied to the rational (straightline) $D E . D M$ is thus rational, and commensurable in length with $D E$ [Prop. 10.20]. Again, since $A C$ and $C B$ are rational (straight-lines which are) commensurable in square only, twice the (rectangle contained) by $A C$ and $C B$-that is to say, $M F$-is thus medial [Prop. 10.21]. And it is applied to the rational (straight-line) $M L . M G$ is thus also rational, and incommensurable in length with $M L$-that is to say, with $D E$ [Prop. 10.22]. And $M D$ is also rational, and commensurable in length with $D E$. Thus, $D M$ is incommensurable in length with $M G$ [Prop. 10.13]. And they are rational. $D M$ and $M G$ are thus rational (straight-lines which are) commensurable in square only. Thus, $D G$ is a binomial (straight-line) [Prop. 10.36]. So, we must show that (it is) also a first (binomial straight-line).

Since the (rectangle contained) by $A C B$ is the mean proportional to the squares on $A C$ and $C B$ [Prop. 10.53 lem.], $M O$ is thus also the mean proportional to $D H$ and $K L$. Thus, as $D H$ is to $M O$, so $M O$ (is) to $K L$-that is to say, as $D K$ (is) to $M N$, (so) $M N$ (is) to $M K$ [Prop. 6.1]. Thus, the (rectangle contained) by $D K$ and $K M$ is equal to the (square) on $M N$ [Prop. 6.17]. And since the (square) on $A C$ is commensurable with the (square) on $C B, D H$ is also commensurable with $K L$. Hence, $D K$ is also commensurable with $K M$ [Props. 6.1, 10.11]. And since (the sum of) the squares on $A C$ and $C B$ is greater than twice the (rectangle contained) by $A C$ and $C B$ [Prop. 10.59 lem.], $D L$ (is) thus also greater than $M F$. Hence, $D M$ is also greater than $M G$ [Props. 6.1, 5.14]. And the (rectangle contained) by $D K$ and $K M$ is equal to the (square) on $M N$-that is to say, to one quarter the (square) on $M G$. And $D K$ (is) commensurable (in length) with $K M$. And if there are two unequal straight-lines, and a (rectangle) equal to the fourth part of the (square) on the lesser, falling short by a square figure, is applied to the greater, and divides it into (parts which are) commensurable (in length), then the square on the greater is larger
than (the square on) the lesser by the (square) on (some straight-line) commensurable (in length) with the greater [Prop. 10.17]. Thus, the square on $D M$ is greater than (the square on) $M G$ by the (square) on (some straightline) commensurable (in length) with ($D M$). And $D M$ and $M G$ are rational. And $D M$, which is the greater term, is commensurable in length with the (previously) laid down rational (straight-line) $D E$.

Thus, $D G$ is a first binomial (straight-line) [Def. 10.5]. (Which is) the very thing it was required to show.
${ }^{\dagger}$ In other words, the square of a binomial is a first binomial. See Prop. 10.54.
$\xi \alpha^{\prime}$.

 $\mu \varepsilon ́ \sigma \alpha s ~ x \alpha \tau \dot{\alpha}$ тò Γ, $\widetilde{\omega} \nu \mu \varepsilon i \zeta \omega \nu \dot{\eta} А \Gamma$, x $\alpha \grave{~ \varepsilon ̇ x x \varepsilon ا ́ \sigma \vartheta \omega ~ p ̀ \eta \tau \grave{\eta} \dot{\eta}}$

 Γ, גi $А Г, Г В$ äpa $\mu \varepsilon ́ \sigma \alpha l ~ \varepsilon i \sigma i ̀ ~ \delta u v \alpha ́ \mu ц ı ~ \mu o ́ v o v ~ \sigma u ́ \mu \mu \varepsilon т \rho o ь ~$

 $\rho \alpha \beta \varepsilon ́ \beta \lambda \eta \tau \alpha l \cdot \rho \eta \tau \grave{\eta} \alpha \rho \alpha$ ह̇ $\sigma \tau i \nu \dot{\eta} \mathrm{M} \Delta$ x $\alpha \grave{l} \dot{\alpha} \sigma \cup ́ \mu \mu \varepsilon \tau \rho о \varsigma ~ \tau \tilde{n} ~ \Delta \mathrm{E}$

 ठєutép α.

 $\dot{\eta} \Delta \mathrm{K} \tau \tilde{n} \mathrm{KM} \sigma \dot{\mu} \mu \mu \varepsilon \tau \rho o ́ \varsigma ~ \varepsilon ̇ \sigma \tau \iota \nu . ~ x \alpha i ́ ~ \varepsilon ̇ \sigma \tau \iota ~ \tau o ̀ ~ ن ́ ~ u ̀ o ̀ ~ \tau \widetilde{\omega} \nu \Delta \mathrm{KM}$

Proposition 61

The square on a first bimedial (straight-line) applied to a rational (straight-line) produces as breadth a second binomial (straight-line). ${ }^{\dagger}$

Let $A B$ be a first bimedial (straight-line) having been divided into its (component) medial (straight-lines) at C, of which $A C$ (is) the greater. And let the rational (straight-line) $D E$ be laid down. And let the parallelogram $D F$, equal to the (square) on $A B$, have been applied to $D E$, producing $D G$ as breadth. I say that $D G$ is a second binomial (straight-line).

For let the same construction have been made as in the (proposition) before this. And since $A B$ is a first bimedial (straight-line), having been divided at C, $A C$ and $C B$ are thus medial (straight-lines) commensurable in square only, and containing a rational (area) [Prop. 10.37]. Hence, the (squares) on $A C$ and $C B$ are also medial [Prop. 10.21]. Thus, $D L$ is medial [Props. 10.15, 10.23 corr.]. And it has been applied to the rational (straight-line) $D E . M D$ is thus rational, and incommensurable in length with $D E$ [Prop. 10.22]. Again, since twice the (rectangle contained) by $A C$ and $C B$ is rational, $M F$ is also rational. And it is applied to the rational (straight-line) $M L$. Thus, $M G$ [is] also rational, and commensurable in length with $M L$-that is to say, with $D E$ [Prop. 10.20]. $D M$ is thus incommensurable in length with $M G$ [Prop. 10.13]. And they are rational. $D M$ and $M G$ are thus rational, and commensu-
 $\mu \eta^{\prime}$ кь.

rable in square only. $D G$ is thus a binomial (straight-line) [Prop. 10.36]. So, we must show that (it is) also a second (binomial straight-line).

For since (the sum of) the squares on $A C$ and $C B$ is greater than twice the (rectangle contained) by $A C$ and $C B$ [Prop. 10.59], $D L$ (is) thus also greater than $M F$. Hence, $D M$ (is) also (greater) than $M G$ [Prop. 6.1]. And since the (square) on $A C$ is commensurable with the (square) on $C B, D H$ is also commensurable with $K L$. Hence, $D K$ is also commensurable (in length) with $K M$ [Props. 6.1, 10.11]. And the (rectangle contained) by $D K M$ is equal to the (square) on $M N$. Thus, the square on $D M$ is greater than (the square on) $M G$ by the (square) on (some straight-line) commensurable (in length) with ($D M$) [Prop. 10.17]. And $M G$ is commensurable in length with $D E$.

Thus, $D G$ is a second binomial (straight-line) [Def. 10.6].
${ }^{\dagger}$ In other words, the square of a first bimedial is a second binomial. See Prop. 10.55.

$$
\xi \beta^{\prime} .
$$

 $\beta \alpha \lambda \lambda o ́ \mu \varepsilon v o \nu ~ \pi \lambda \alpha ́ \tau о \varsigma ~ \pi о เ \varepsilon і ̃ ~ \tau \eta ̀ \nu ~ ย ̉ x ~ \delta u ́ o ~ o ̉ v o \mu \alpha ́ \tau \omega \nu ~ \tau р i ́ t \eta \nu . ~$

Proposition 62

The square on a second bimedial (straight-line) applied to a rational (straight-line) produces as breadth a third binomial (straight-line). ${ }^{\dagger}$

Let $A B$ be a second bimedial (straight-line) having been divided into its (component) medial (straight-lines) at C, such that $A C$ is the greater segment. And let $D E$ be some rational (straight-line). And let the parallelogram $D F$, equal to the (square) on $A B$, have been applied to $D E$, producing $D G$ as breadth. I say that $D G$ is a third binomial (straight-line).

Let the same construction be made as that shown previously. And since $A B$ is a second bimedial (straightline), having been divided at $C, A C$ and $C B$ are thus medial (straight-lines) commensurable in square only, and containing a medial (area) [Prop. 10.38]. Hence, the sum of the (squares) on $A C$ and $C B$ is also medial [Props. 10.15, 10.23 corr.]. And it is equal to $D L$. Thus, $D L$ (is) also medial. And it is applied to the rational (straight-line) $D E . \quad M D$ is thus also rational, and in-

 ГВ т $\Delta \Lambda \tau \widetilde{\varphi} \mathrm{MZ} \cdot \stackrel{\omega}{\sigma} \sigma \varepsilon$ каi $\dot{\eta} \Delta \mathrm{M} \tau \widetilde{\varphi} \mathrm{MH} \dot{\alpha} \sigma u ́ \mu \mu \varepsilon \tau \rho o ́ s ~ \varepsilon ̇ \sigma \tau \iota . ~ \chi \alpha i ́ ~$
 őt каі трítท.

 $\Delta \mathrm{M}, \mathrm{MH} \sigma \cup ́ \mu \mu \varepsilon \tau \rho o ́ \varsigma ~ \varepsilon ̇ \sigma \tau \iota ~ \tau \tilde{n} \Delta \mathrm{E} \mu \eta^{\prime} x \varepsilon \iota$.

commensurable in length with $D E$ [Prop. 10.22]. So, for the same (reasons), $M G$ is also rational, and incommensurable in length with $M L$-that is to say, with $D E$. Thus, $D M$ and $M G$ are each rational, and incommensurable in length with $D E$. And since $A C$ is incommensurable in length with $C B$, and as $A C$ (is) to $C B$, so the (square) on $A C$ (is) to the (rectangle contained) by $A C B$ [Prop. 10.21 lem.], the (square) on $A C$ (is) also incommensurable with the (rectangle contained) by $A C B$ [Prop. 10.11]. And hence the sum of the (squares) on $A C$ and $C B$ is incommensurable with twice the (rectangle contained) by $A C B$-that is to say, $D L$ with $M F$ [Props. 10.12, 10.13]. Hence, $D M$ is also incommensurable (in length) with $M G$ [Props. 6.1, 10.11]. And they are rational. $D G$ is thus a binomial (straight-line) [Prop. 10.36]. [So] we must show that (it is) also a third (binomial straight-line).

So, similarly to the previous (propositions), we can conclude that $D M$ is greater than $M G$, and $D K$ (is) commensurable (in length) with $K M$. And the (rectangle contained) by $D K M$ is equal to the (square) on $M N$. Thus, the square on $D M$ is greater than (the square on) $M G$ by the (square) on (some straight-line) commensurable (in length) with ($D M$) [Prop. 10.17]. And neither of $D M$ and $M G$ is commensurable in length with $D E$.

Thus, $D G$ is a third binomial (straight-line) [Def. 10.7]. (Which is) the very thing it was required to show.
${ }^{\dagger}$ In other words, the square of a second bimedial is a third binomial. See Prop. 10.56.

$$
\xi \gamma^{\prime} .
$$

Tò $\alpha \pi o ̀ ~ \tau \tilde{\eta} s ~ \mu \varepsilon i \zeta o v o s ~ \pi \alpha p \alpha ̀ ~ \rho ́ \eta \tau \grave{\nu} \nu ~ \pi \alpha \rho \alpha \beta \alpha \lambda \lambda o ́ \mu \varepsilon v o v ~$

 $\pi \alpha p \alpha ̀ ~ \tau \grave{\nu} \nu \mathrm{E} \pi \alpha \rho \alpha \beta \varepsilon \beta \lambda \eta \dot{\sigma} \vartheta \omega$ тò $\Delta \mathrm{Z} \pi \alpha \rho \alpha \lambda \lambda \eta \lambda o ́ \gamma \rho \alpha \mu \mu о \nu$
 غ̇бтì $\tau \varepsilon \tau \alpha ́ p \tau \eta$.

Proposition 63

The square on a major (straight-line) applied to a rational (straight-line) produces as breadth a fourth binomial (straight-line). ${ }^{\dagger}$

Let $A B$ be a major (straight-line) having been divided at C, such that $A C$ is greater than $C B$, and (let) $D E$ (be) a rational (straight-line). And let the parallelogram $D F$, equal to the (square) on $A B$, have been applied to $D E$, producing $D G$ as breadth. I say that $D G$ is a fourth binomial (straight-line).

Let the same construction be made as that shown pre-

 ย̇xxєıц́vท
 ठєi̧̋ α.
viously. And since $A B$ is a major (straight-line), having been divided at $C, A C$ and $C B$ are incommensurable in square, making the sum of the squares on them rational, and the (rectangle contained) by them medial [Prop. 10.39]. Therefore, since the sum of the (squares) on $A C$ and $C B$ is rational, $D L$ is thus rational. Thus, $D M$ (is) also rational, and commensurable in length with $D E$ [Prop. 10.20]. Again, since twice the (rectangle contained) by $A C$ and $C B$-that is to say, $M F$-is medial, and is (applied to) the rational (straight-line) $M L, M G$ is thus also rational, and incommensurable in length with $D E$ [Prop. 10.22]. $D M$ is thus also incommensurable in length with $M G$ [Prop. 10.13]. $D M$ and $M G$ are thus rational (straight-lines which are) commensurable in square only. Thus, $D G$ is a binomial (straight-line) [Prop. 10.36]. [So] we must show that (it is) also a fourth (binomial straight-line).

So, similarly to the previous (propositions), we can show that $D M$ is greater than $M G$, and that the (rectangle contained) by $D K M$ is equal to the (square) on $M N$. Therefore, since the (square) on $A C$ is incommensurable with the (square) on $C B, D H$ is also incommensurable with $K L$. Hence, $D K$ is also incommensurable with $K M$ [Props. 6.1, 10.11]. And if there are two unequal straight-lines, and a parallelogram equal to the fourth part of the (square) on the lesser, falling short by a square figure, is applied to the greater, and divides it into (parts which are) incommensurable (in length), then the square on the greater will be larger than (the square on) the lesser by the (square) on (some straight-line) incommensurable in length with the greater [Prop. 10.18]. Thus, the square on $D M$ is greater than (the square on) $M G$ by the (square) on (some straight-line) incommensurable (in length) with ($D M$). And $D M$ and $M G$ are rational (straight-lines which are) commensurable in square only. And $D M$ is commensurable (in length) with the (previously) laid down rational (straight-line) $D E$.

Thus, $D G$ is a fourth binomial (straight-line) [Def. 10.8]. (Which is) the very thing it was required to show.
${ }^{\dagger}$ In other words, the square of a major is a fourth binomial. See Prop. 10.57.

$\xi \delta^{\prime}$.

 $\Delta \mathrm{E} \pi \alpha \rho \alpha \beta \varepsilon \beta \lambda \dot{\eta} \sigma \vartheta \omega$ тò $\Delta \mathrm{Z} \pi \lambda \alpha ́ \tau o s ~ \pi o เ o u ̃ \nu ~ \tau \eta ̀ \nu ~ \Delta H \cdot \lambda \varepsilon ́ \gamma \omega$,

Proposition 64

The square on the square-root of a rational plus a medial (area) applied to a rational (straight-line) produces as breadth a fifth binomial (straight-line). ${ }^{\dagger}$

Let $A B$ be the square-root of a rational plus a medial (area) having been divided into its (component) straightlines at C, such that $A C$ is greater. And let the rational (straight-line) $D E$ be laid down. And let the (parallelogram) $D F$, equal to the (square) on $A B$, have been ap-

\vdash	\quad	\quad

 tò ठís ítò $\tau \widetilde{\omega} \nu \mathrm{A}$,

 ठєĭ̧al.
plied to $D E$, producing $D G$ as breadth. I say that $D G$ is a fifth binomial straight-line.

Let the same construction be made as in the (propositions) before this. Therefore, since $A B$ is the square-root of a rational plus a medial (area), having been divided at $C, A C$ and $C B$ are thus incommensurable in square, making the sum of the squares on them medial, and the (rectangle contained) by them rational [Prop. 10.40]. Therefore, since the sum of the (squares) on $A C$ and $C B$ is medial, $D L$ is thus medial. Hence, $D M$ is rational and incommensurable in length with $D E$ [Prop. 10.22]. Again, since twice the (rectangle contained) by $A C B-$ that is to say, $M F$-is rational, $M G$ (is) thus rational and commensurable (in length) with $D E$ [Prop. 10.20]. $D M$ (is) thus incommensurable (in length) with $M G$ [Prop. 10.13]. Thus, $D M$ and $M G$ are rational (straightlines which are) commensurable in square only. Thus, $D G$ is a binomial (straight-line) [Prop. 10.36]. So, I say that (it is) also a fifth (binomial straight-line).

For, similarly (to the previous propositions), it can be shown that the (rectangle contained) by $D K M$ is equal to the (square) on $M N$, and $D K$ (is) incommensurable in length with $K M$. Thus, the square on $D M$ is greater than (the square on) $M G$ by the (square) on (some straight-line) incommensurable (in length) with ($D M$) [Prop. 10.18]. And $D M$ and $M G$ are [rational] (straight-lines which are) commensurable in square only, and the lesser $M G$ is commensurable in length with $D E$.

Thus, $D G$ is a fifth binomial (straight-line) [Def. 10.9]. (Which is) the very thing it was required to show.
${ }^{\dagger}$ In other words, the square of the square-root of a rational plus medial is a fifth binomial. See Prop. 10.58.

$\xi \varepsilon^{\prime}$.

Tò árò tñs ठúo $\mu \varepsilon ́ \sigma \alpha ~ \delta u v \alpha \mu \varepsilon ́ v \eta s ~ \pi \alpha p \alpha ̀ ~ \rho ீ \eta t \eta ̀ \nu ~ \pi \alpha p \alpha-~$

Proposition 65

The square on the square-root of (the sum of) two medial (areas) applied to a rational (straight-line) produces as breadth a sixth binomial (straight-line). ${ }^{\dagger}$

Let $A B$ be the square-root of (the sum of) two medial (areas), having been divided at C. And let $D E$ be a rational (straight-line). And let the (parallelogram) $D F$, equal to the (square) on $A B$, have been applied to $D E$,

 $\sigma \cup \gamma x \varepsilon \dot{\prime} \mu \varepsilon \nu \frac{}{}$

 x α ย゙ $์$ тท.

 ठєĩ̌ α.
producing $D G$ as breadth. I say that $D G$ is a sixth binomial (straight-line).

For let the same construction be made as in the previous (propositions). And since $A B$ is the square-root of (the sum of) two medial (areas), having been divided at $C, A C$ and $C B$ are thus incommensurable in square, making the sum of the squares on them medial, and the (rectangle contained) by them medial, and, moreover, the sum of the squares on them incommensurable with the (rectangle contained) by them [Prop. 10.41]. Hence, according to what has been previously demonstrated, $D L$ and $M F$ are each medial. And they are applied to the rational (straight-line) $D E$. Thus, $D M$ and $M G$ are each rational, and incommensurable in length with $D E$ [Prop. 10.22]. And since the sum of the (squares) on $A C$ and $C B$ is incommensurable with twice the (rectangle contained) by $A C$ and $C B, D L$ is thus incommensurable with $M F$. Thus, $D M$ (is) also incommensurable (in length) with $M G$ [Props. 6.1, 10.11]. $D M$ and $M G$ are thus rational (straight-lines which are) commensurable in square only. Thus, $D G$ is a binomial (straight-line) [Prop. 10.36]. So, I say that (it is) also a sixth (binomial straight-line).

So, similarly (to the previous propositions), we can again show that the (rectangle contained) by $D K M$ is equal to the (square) on $M N$, and that $D K$ is incommensurable in length with $K M$. And so, for the same (reasons), the square on $D M$ is greater than (the square on) $M G$ by the (square) on (some straight-line) incommensurable in length with ($D M$) [Prop. 10.18]. And neither of $D M$ and $M G$ is commensurable in length with the (previously) laid down rational (straight-line) $D E$.

Thus, $D G$ is a sixth binomial (straight-line) [Def. 10.10]. (Which is) the very thing it was required to show.
${ }^{\dagger}$ In other words, the square of the square-root of two medials is a sixth binomial. See Prop. 10.59.

$$
\xi \varepsilon^{\prime}
$$

Proposition 66

A (straight-line) commensurable in length with a binomial (straight-line) is itself also binomial, and the same in order.

 $\dot{\eta} \mathrm{AB} \pi \rho o ̀ s ~ \tau \eta ̀ \nu ~ \Gamma \Delta$, oưt $\omega \varsigma \dot{\eta} \mathrm{AE} \pi \rho o ̀ s ~ \tau \grave{\eta} \nu ~ \Gamma Z . ~ \chi \alpha i ̀ ~ \lambda o l \pi \dot{\eta}$

Let $A B$ be a binomial (straight-line), and let $C D$ be commensurable in length with $A B$. I say that $C D$ is a binomial (straight-line), and (is) the same in order as $A B$.

For since $A B$ is a binomial (straight-line), let it have been divided into its (component) terms at E, and let $A E$ be the greater term. $A E$ and $E B$ are thus rational (straight-lines which are) commensurable in square only [Prop. 10.36]. Let it have been contrived that as $A B$ (is) to $C D$, so $A E$ (is) to $C F$ [Prop. 6.12]. Thus, the remainder $E B$ is also to the remainder $F D$, as $A B$ (is) to $C D$ [Props. 6.16, 5.19 corr.]. And $A B$ (is) commensurable in length with $C D$. Thus, $A E$ is also commensurable (in length) with $C F$, and $E B$ with $F D$ [Prop. 10.11]. And $A E$ and $E B$ are rational. Thus, $C F$ and $F D$ are also rational. And as $A E$ is to $C F$, (so) $E B$ (is) to $F D$ [Prop. 5.11]. Thus, alternately, as $A E$ is to $E B$, (so) $C F$ (is) to $F D$ [Prop. 5.16]. And $A E$ and $E B$ [are] commensurable in square only. Thus, $C F$ and $F D$ are also commensurable in square only [Prop. 10.11]. And they are rational. $C D$ is thus a binomial (straight-line) [Prop. 10.36]. So, I say that it is the same in order as $A B$.

For the square on $A E$ is greater than (the square on) $E B$ by the (square) on (some straight-line) either commensurable or incommensurable (in length) with ($A E$). Therefore, if the square on $A E$ is greater than (the square on) $E B$ by the (square) on (some straight-line) commensurable (in length) with $(A E)$ then the square on $C F$ will also be greater than (the square on) $F D$ by the (square) on (some straight-line) commensurable (in length) with ($C F$) [Prop. 10.14]. And if $A E$ is commensurable (in length) with (some previously) laid down rational (straight-line) then $C F$ will also be commensurable (in length) with it [Prop. 10.12]. And, on account of this, $A B$ and $C D$ are each first binomial (straightlines) [Def. 10.5] -that is to say, the same in order. And if $E B$ is commensurable (in length) with the (previously) laid down rational (straight-line) then $F D$ is also commensurable (in length) with it [Prop. 10.12], and, again, on account of this, $(C D)$ will be the same in order as $A B$. For each of them will be second binomial (straightlines) [Def. 10.6]. And if neither of $A E$ and $E B$ is commensurable (in length) with the (previously) laid down rational (straight-line) then neither of $C F$ and $F D$ will be commensurable (in length) with it [Prop. 10.13], and each (of $A B$ and $C D$) is a third (binomial straight-line)

$\xi \zeta^{\prime}$.

 $\mu \varepsilon ́ \sigma \omega \nu$ ह̇எтì $\varkappa \alpha \grave{\imath} \tau \tilde{n} \tau \alpha ́ \xi \varepsilon ા ~ \dot{\eta} \alpha u ̉ \tau ท ́$.

"E $\sigma \tau \omega$ ह̇x ठúo $\mu \varepsilon ́ \sigma \omega \nu \dot{\eta} \mathrm{AB}$, x α 亿 $\tau \tilde{n} \mathrm{AB} \sigma \dot{\mu} \mu \mu \varepsilon \tau \rho \circ \varsigma$ है $\sigma \tau \omega$
 $\dot{\eta} \alpha u ̋ n \eta \tau \tilde{n} \mathrm{AB}$.

 ஸ́s $\dot{\eta}$ AE трòs $\mathrm{EB}, \dot{\eta}$ ГZ $\pi \rho o ̀ s ~ Z \Delta, ~ \alpha i ~ \delta e ̀ ~ A E, ~ E B ~ \delta u v \alpha ́ \mu \varepsilon ı ~$ بóvov σ ú $\mu \mu \varepsilon \tau \rho o i ́ ~ \varepsilon i \sigma เ \nu, ~ x \alpha i ̀ ~ \alpha i ~ \Gamma Z, ~ Z \Delta ~[\alpha ̌ p \alpha] ~ \delta u v \alpha ́ \mu \varepsilon ı ~ \mu o ́ v o v ~$

[Def. 10.7]. And if the square on $A E$ is greater than (the square on) $E B$ by the (square) on (some straightline) incommensurable (in length) with ($A E$) then the square on $C F$ is also greater than (the square on) $F D$ by the (square) on (some straight-line) incommensurable (in length) with ($C F$) [Prop. 10.14]. And if $A E$ is commensurable (in length) with the (previously) laid down rational (straight-line) then $C F$ is also commensurable (in length) with it [Prop. 10.12], and each (of $A B$ and $C D$) is a fourth (binomial straight-line) [Def. 10.8]. And if $E B$ (is commensurable in length with the previously laid down rational straight-line) then $F D$ (is) also (commensurable in length with it), and each (of $A B$ and $C D$) will be a fifth (binomial straight-line) [Def. 10.9]. And if neither of $A E$ and $E B$ (is commensurable in length with the previously laid down rational straight-line) then also neither of $C F$ and $F D$ is commensurable (in length) with the laid down rational (straight-line), and each (of $A B$ and $C D$) will be a sixth (binomial straight-line) [Def. 10.10].

Hence, a (straight-line) commensurable in length with a binomial (straight-line) is a binomial (straightline), and the same in order. (Which is) the very thing it was required to show.

Proposition 67

A (straight-line) commensurable in length with a bimedial (straight-line) is itself also bimedial, and the same in order.

Let $A B$ be a bimedial (straight-line), and let $C D$ be commensurable in length with $A B$. I say that $C D$ is bimedial, and the same in order as $A B$.

For since $A B$ is a bimedial (straight-line), let it have been divided into its (component) medial (straight-lines) at E. Thus, $A E$ and $E B$ are medial (straight-lines which are) commensurable in square only [Props. 10.37, 10.38]. And let it have been contrived that as $A B$ (is) to $C D$, (so) $A E$ (is) to $C F$ [Prop. 6.12]. And thus as the remainder $E B$ is to the remainder $F D$, so $A B$ (is) to $C D$ [Props. 5.19 corr., 6.16]. And $A B$ (is) commensurable in length with $C D$. Thus, $A E$ and $E B$ are also commensurable (in length) with $C F$ and $F D$, respectively [Prop. 10.11]. And $A E$ and $E B$ (are) medial. Thus, $C F$ and $F D$ (are) also medial [Prop. 10.23]. And since as $A E$ is to $E B$, (so) $C F$ (is) to $F D$, and $A E$ and $E B$ are commensurable in square only, $C F$ and $F D$ are [thus]

AE $\pi \rho o ̀ s ~ \tau o ̀ ~ \alpha ̉ \pi o ̀ ~ \tau \tilde{n} \varsigma ~ \Gamma Z, ~ o u ̛ \tau \omega \varsigma ~ \tau o ̀ ~ U ́ \pi o ̀ ~ \tau \widetilde{\omega} \nu \mathrm{AEB} \pi \rho o ̀ \varsigma ~ \tau o ̀ ~$

 $\mu \varepsilon ́ \sigma o \nu, \mu \varepsilon ́ \sigma o \nu, \chi \alpha i ́ ~ \varepsilon ̇ \sigma \tau \tau \nu$ ย̇x $\kappa \tau \varepsilon ́ p \alpha ~ \delta \varepsilon \cup \tau \varepsilon ́ p \alpha . ~$

＂E $\sigma \tau \omega \mu \varepsilon$ i丂 $\omega \nu \dot{\eta} \mathrm{AB}$ ，$\alpha \alpha i ̀ \tau \tilde{n} \mathrm{AB} \sigma \dot{\prime} \mu \mu \varepsilon \tau \rho o s$ है $\sigma \tau \omega \dot{\eta} \Gamma \Delta$ ． $\lambda \varepsilon ́ \gamma \omega$ ，öть $\dot{\eta} \Gamma \Delta \mu \varepsilon i \zeta \omega \nu$ ह̇ $\sigma \tau i ⿱ 亠 䒑$.

also commensurable in square only［Prop．10．11］．And they were also shown（to be）medial．Thus，$C D$ is a bi－ medial（straight－line）．So，I say that it is also the same in order as $A B$ ．

For since as $A E$ is to $E B$ ，（so）$C F$（is）to $F D$ ，thus also as the（square）on $A E$（is）to the（rectangle con－ tained）by $A E B$ ，so the（square）on $C F$（is）to the（rect－ angle contained）by $C F D$［Prop． 10.21 lem．］．Alter－ nately，as the（square）on $A E$（is）to the（square）on $C F$ ，so the（rectangle contained）by $A E B$（is）to the （rectangle contained）by $C F D$［Prop．5．16］．And the （square）on $A E$（is）commensurable with the（square） on $C F$ ．Thus，the（rectangle contained）by $A E B$（is） also commensurable with the（rectangle contained）by $C F D$［Prop．10．11］．Therefore，either the（rectangle contained）by $A E B$ is rational，and the（rectangle con－ tained）by $C F D$ is rational［and，on account of this， （ $A E$ and $C D$ ）are first bimedial（straight－lines）］，or（the rectangle contained by $A E B$ is）medial，and（the rect－ angle containe by $C F D$ is）medial，and（ $A B$ and $C D$ ） are each second（bimedial straight－lines）［Props．10．23， 10．37，10．38］．

And，on account of this，$C D$ will be the same in order as $A B$ ．（Which is）the very thing it was required to show．

Proposition 68

A（straight－line）commensurable（in length）with a major（straight－line）is itself also major．

Let $A B$ be a major（straight－line），and let $C D$ be com－ mensurable（in length）with $A B$ ．I say that $C D$ is a major （straight－line）．

Let $A B$ have been divided（into its component terms） at $E . A E$ and $E B$ are thus incommensurable in square， making the sum of the squares on them rational，and the （rectangle contained）by them medial［Prop．10．39］．And let（the）same（things）have been contrived as in the pre－ vious（propositions）．And since as $A B$ is to $C D$ ，so $A E$ （is）to $C F$ and $E B$ to $F D$ ，thus also as $A E$（is）to $C F$ ， so $E B$（is）to $F D$［Prop．5．11］．And $A B$（is）commen－ surable（in length）with $C D$ ．Thus，$A E$ and $E B$（are） also commensurable（in length）with $C F$ and $F D$ ，re－ spectively［Prop．10．11］．And since as $A E$ is to $C F$ ，so $E B$（is）to $F D$ ，also，alternately，as $A E$（is）to $E B$ ，so $C F$（is）to $F D$［Prop．5．16］，and thus，via composition， as $A B$ is to $B E$ ，so $C D$（is）to $D F$［Prop．5．18］．And thus as the（square）on $A B$（is）to the（square）on $B E$ ，so the
 $\Gamma \Delta$, oú $\tau \omega \varsigma ~ \tau \grave{\alpha} \alpha \dot{\alpha} \pi \grave{\tau} \tau \widetilde{\omega} \nu \mathrm{AE}, \mathrm{EB} \pi \rho o ̀ \varsigma \tau \dot{\alpha} \alpha \dot{\alpha} \pi o ̀ ~ \tau \widetilde{\omega} \nu \Gamma \mathrm{Z}, \mathrm{Z} \Delta$.

 ж $\alpha \lambda о \cup \mu \varepsilon ́ v \eta ~ \mu \varepsilon i \zeta \omega \nu$.
 ठعǐ̌ α.

$$
\xi \vartheta^{\prime}
$$

 $\mu \varepsilon ́ \sigma o \nu ~ \delta u v \alpha \mu \varepsilon ́ v \eta ~ \varepsilon ̇ \sigma \tau i ́ v . ~$

(square) on $C D$ (is) to the (square) on $D F$ [Prop. 6.20]. So, similarly, we can also show that as the (square) on $A B$ (is) to the (square) on $A E$, so the (square) on $C D$ (is) to the (square) on $C F$. And thus as the (square) on $A B$ (is) to (the sum of) the (squares) on $A E$ and $E B$, so the (square) on $C D$ (is) to (the sum of) the (squares) on $C F$ and $F D$. And thus, alternately, as the (square) on $A B$ is to the (square) on $C D$, so (the sum of) the (squares) on $A E$ and $E B$ (is) to (the sum of) the (squares) on $C F$ and $F D$ [Prop. 5.16]. And the (square) on $A B$ (is) commensurable with the (square) on $C D$. Thus, (the sum of) the (squares) on $A E$ and $E B$ (is) also commensurable with (the sum of) the (squares) on $C F$ and $F D$ [Prop. 10.11]. And the (squares) on $A E$ and $E B$ (added) together are rational. The (squares) on $C F$ and $F D$ (added) together (are) thus also rational. So, similarly, twice the (rectangle contained) by $A E$ and $E B$ is also commensurable with twice the (rectangle contained) by $C F$ and $F D$. And twice the (rectangle contained) by $A E$ and $E B$ is medial. Therefore, twice the (rectangle contained) by $C F$ and $F D$ (is) also medial [Prop. 10.23 corr.]. $C F$ and $F D$ are thus (straight-lines which are) incommensurable in square [Prop 10.13], simultaneously making the sum of the squares on them rational, and twice the (rectangle contained) by them medial. The whole, $C D$, is thus that irrational (straight-line) called major [Prop. 10.39].

Thus, a (straight-line) commensurable (in length) with a major (straight-line) is major. (Which is) the very thing it was required to show.

Proposition 69

A (straight-line) commensurable (in length) with the square-root of a rational plus a medial (area) is [itself also] the square-root of a rational plus a medial (area).

Let $A B$ be the square-root of a rational plus a medial (area), and let $C D$ be commensurable (in length) with $A B$. We must show that $C D$ is also the square-root of a rational plus a medial (area).

Let $A B$ have been divided into its (component) straight-lines at $E . A E$ and $E B$ are thus incommensurable in square, making the sum of the squares on them medial, and the (rectangle contained) by them rational [Prop. 10.40]. And let the same construction have been made as in the previous (propositions). So, similarly, we can show that $C F$ and $F D$ are also incommensurable in square, and that the sum of the (squares) on $A E$ and
$\mathrm{Z} \Delta$ pintóv.
 סєī̧al.

o^{\prime}.
 ėठтív.

 $\tau \widetilde{\sim}$ ГZ, Z Δ.

$o \alpha^{\prime}$.

$E B$ (is) commensurable with the sum of the (squares) on $C F$ and $F D$, and the (rectangle contained) by $A E$ and $E B$ with the (rectangle contained) by $C F$ and $F D$. And hence the sum of the squares on $C F$ and $F D$ is medial, and the (rectangle contained) by $C F$ and $F D$ (is) rational.

Thus, $C D$ is the square-root of a rational plus a medial (area) [Prop. 10.40]. (Which is) the very thing it was required to show.

Proposition 70

A (straight-line) commensurable (in length) with the square-root of (the sum of) two medial (areas) is (itself also) the square-root of (the sum of) two medial (areas).

Let $A B$ be the square-root of (the sum of) two medial (areas), and (let) $C D$ (be) commensurable (in length) with $A B$. We must show that $C D$ is also the square-root of (the sum of) two medial (areas).

For since $A B$ is the square-root of (the sum of) two medial (areas), let it have been divided into its (component) straight-lines at E. Thus, $A E$ and $E B$ are incommensurable in square, making the sum of the [squares] on them medial, and the (rectangle contained) by them medial, and, moreover, the sum of the (squares) on $A E$ and $E B$ incommensurable with the (rectangle) contained by $A E$ and $E B$ [Prop. 10.41]. And let the same construction have been made as in the previous (propositions). So, similarly, we can show that $C F$ and $F D$ are also incommensurable in square, and (that) the sum of the (squares) on $A E$ and $E B$ (is) commensurable with the sum of the (squares) on $C F$ and $F D$, and the (rectangle contained) by $A E$ and $E B$ with the (rectangle contained) by $C F$ and $F D$. Hence, the sum of the squares on $C F$ and $F D$ is also medial, and the (rectangle contained) by $C F$ and $F D$ (is) medial, and, moreover, the sum of the squares on $C F$ and $F D$ (is) incommensurable with the (rectangle contained) by $C F$ and $F D$.

Thus, $C D$ is the square-root of (the sum of) two medial (areas) [Prop. 10.41]. (Which is) the very thing it was required to show.

Proposition 71

When a rational and a medial (area) are added together, four irrational (straight-lines) arise (as the squareroots of the total area)-either a binomial, or a first bi-

 ӨI $\pi \lambda \alpha ́ \tau o s ~ \pi o เ o u ̃ \nu ~ \tau \grave{\nu} \nu ~ \Theta K . ~ x \alpha i ̀ ~ \varepsilon ́ \pi \varepsilon ो ~ p ̣ \eta \tau o ́ v ~ \varepsilon ̇ \sigma \tau \iota ~ \tau o ̀ ~ A B ~ x \alpha i ́ ~$
 тウ̀̀ $\mathrm{EZ} \pi \alpha \rho \alpha \beta \dot{\beta} \beta \lambda \eta \tau \alpha l \pi \lambda \alpha ́ \tau o s ~ \pi o เ o u ̃ \nu ~ \tau \grave{\eta} \nu \mathrm{E} \Theta \cdot \dot{\eta} \mathrm{E} \Theta$ 㒸 $\rho \alpha$

medial, or a major, or the square-root of a rational plus a medial (area).

Let $A B$ be a rational (area), and $C D$ a medial (area). I say that the square-root of area $A D$ is either binomial, or first bimedial, or major, or the square-root of a rational plus a medial (area).

For $A B$ is either greater or less than $C D$. Let it, first of all, be greater. And let the rational (straight-line) $E F$ be laid down. And let (the rectangle) $E G$, equal to $A B$, have been applied to $E F$, producing $E H$ as breadth. And let (the recatangle) $H I$, equal to $D C$, have been applied to $E F$, producing $H K$ as breadth. And since $A B$ is rational, and is equal to $E G, E G$ is thus also rational. And it has been applied to the [rational] (straight-line) $E F$, producing $E H$ as breadth. $E H$ is thus rational, and commensurable in length with $E F$ [Prop. 10.20]. Again, since $C D$ is medial, and is equal to $H I, H I$ is thus also medial. And it is applied to the rational (straight-line) $E F$, producing $H K$ as breadth. $H K$ is thus rational, and incommensurable in length with $E F$ [Prop. 10.22]. And since $C D$ is medial, and $A B$ rational, $A B$ is thus incommensurable with $C D$. Hence, $E G$ is also incommensurable with $H I$. And as $E G$ (is) to $H I$, so $E H$ is to $H K$ [Prop. 6.1]. Thus, $E H$ is also incommensurable in length with $H K$ [Prop. 10.11]. And they are both rational. Thus, $E H$ and $H K$ are rational (straight-lines which are) commensurable in square only. $E K$ is thus a binomial (straight-line), having been divided (into its component terms) at H [Prop. 10.36]. And since $A B$ is greater than $C D$, and $A B$ (is) equal to $E G$, and $C D$ to $H I, E G$ (is) thus also greater than $H I$. Thus, $E H$ is also greater than $H K$ [Prop. 5.14]. Therefore, the square on $E H$ is greater than (the square on) $H K$ either by the (square) on (some straight-line) commensurable in length with $(E H)$, or by the (square) on (some straightline) incommensurable (in length with $E H$). Let it, first of all, be greater by the (square) on (some straight-line) commensurable (in length with $E H$). And the greater
 $\chi \alpha \lambda о \cup \mu \varepsilon ́ v \eta \mu \varepsilon i \zeta \omega \nu$. $\dot{\eta}$ äp α тò EI $\chi \omega \rho i ́ o \nu ~ \delta u v \alpha \mu \varepsilon ́ v \eta ~ \mu \varepsilon i \zeta \omega \nu$

' $\mathrm{A} \lambda \lambda \alpha$ 人 $\delta \dot{\eta}$ है $\sigma \tau \omega$ है $\lambda \alpha \sigma \sigma o v$ тò AB тoũ $\Gamma \Delta$ ' $x \alpha i$ tò EH

 $\sigma \cup \mu \mu \varepsilon ́ \tau \rho о \cup ~ \dot{\varepsilon} \alpha \cup \tau \tilde{n} \tilde{\eta} \tau \widetilde{\uparrow} \alpha \dot{\alpha} \pi o ̀ ~ \alpha ́ \sigma u \mu \mu \varepsilon ́ \tau \rho o u . ~ \delta u v \alpha ́ \sigma \vartheta \omega ~ \pi \rho o ́ \tau \varepsilon \rho o v ~$

 ү'ү

(of the two components of $E K$) $H E$ is commensurable (in length) with the (previously) laid down (straightline) $E F . E K$ is thus a first binomial (straight-line) [Def. 10.5]. And $E F$ (is) rational. And if an area is contained by a rational (straight-line) and a first binomial (straight-line) then the square-root of the area is a binomial (straight-line) [Prop. 10.54]. Thus, the square-root of $E I$ is a binomial (straight-line). Hence the squareroot of $A D$ is also a binomial (straight-line). And, so, let the square on $E H$ be greater than (the square on) $H K$ by the (square) on (some straight-line) incommensurable (in length) with $(E H)$. And the greater (of the two components of $E K) E H$ is commensurable in length with the (previously) laid down rational (straight-line) $E F$. Thus, $E K$ is a fourth binomial (straight-line) [Def. 10.8]. And $E F$ (is) rational. And if an area is contained by a rational (straight-line) and a fourth binomial (straight-line) then the square-root of the area is the irrational (straight-line) called major [Prop. 10.57]. Thus, the square-root of area $E I$ is a major (straight-line). Hence, the square-root of $A D$ is also major.

And so, let $A B$ be less than $C D$. Thus, $E G$ is also less than $H I$. Hence, $E H$ is also less than $H K$ [Props. 6.1, 5.14]. And the square on $H K$ is greater than (the square on) $E H$ either by the (square) on (some straightline) commensurable (in length) with ($H K$), or by the (square) on (some straight-line) incommensurable (in length) with ($H K$). Let it, first of all, be greater by the square on (some straight-line) commensurable in length with ($H K$). And the lesser (of the two components of $E K$) $E H$ is commensurable in length with the (previously) laid down rational (straight-line) EF. Thus, $E K$ is a second binomial (straight-line) [Def. 10.6]. And $E F$ (is) rational. And if an area is contained by a rational (straight-line) and a second binomial (straight-line) then the square-root of the area is a first bimedial (straightline) [Prop. 10.55]. Thus, the square-root of area $E I$ is a first bimedial (straight-line). Hence, the square-root of $A D$ is also a first bimedial (straight-line). And so, let the square on $H K$ be greater than (the square on) $H E$ by the (square) on (some straight-line) incommensurable (in length) with ($H K$). And the lesser (of the two components of $E K$) $E H$ is commensurable (in length) with the (previously) laid down rational (straight-line) $E F$. Thus, $E K$ is a fifth binomial (straight-line) [Def. 10.9]. And $E F$ (is) rational. And if an area is contained by a rational (straight-line) and a fifth binomial (straight-line) then the square-root of the area is the square-root of a rational plus a medial (area) [Prop. 10.58]. Thus, the square-root of area $E I$ is the square-root of a rational plus a medial (area). Hence, the square-root of area $A D$ is also the

$$
\xi \beta^{\prime} .
$$

 દ̇のтì $\delta \varepsilon u \tau \varepsilon ́ \rho \alpha ~ \grave{\eta}$ ठúo $\mu \varepsilon ́ \sigma \alpha ~ \delta u v \alpha \mu \varepsilon ́ v \eta$.

 EI, тOUtモ́ $\sigma \tau \iota ~ \tau o ̀ ~ A \Delta, ~ \delta u v \alpha \mu \varepsilon ́ v \eta ~ \varepsilon ̉ x ~ \delta u ́ o ~ \mu \varepsilon ́ \sigma \omega \nu ~ \varepsilon ̉ \sigma \tau i ̀ ~ \delta \varepsilon u \tau \varepsilon ́ p \alpha . ~$
square-root of a rational plus a medial (area).
Thus, when a rational and a medial area are added together, four irrational (straight-lines) arise (as the squareroots of the total area)—either a binomial, or a first bimedial, or a major, or the square-root of a rational plus a medial (area). (Which is) the very thing it was required to show.

Proposition 72

When two medial (areas which are) incommensurable with one another are added together, the remaining two irrational (straight-lines) arise (as the square-roots of the total area) -either a second bimedial, or the squareroot of (the sum of) two medial (areas).

For let the two medial (areas) $A B$ and $C D$, (which are) incommensurable with one another, have been added together. I say that the square-root of area $A D$ is either a second bimedial, or the square-root of (the sum of) two medial (areas).

For $A B$ is either greater than or less than $C D$. By chance, let $A B$, first of all, be greater than $C D$. And let the rational (straight-line) $E F$ be laid down. And let $E G$, equal to $A B$, have been applied to $E F$, producing $E H$ as breadth, and $H I$, equal to $C D$, producing $H K$ as breadth. And since $A B$ and $C D$ are each medial, $E G$ and $H I$ (are) thus also each medial. And they are applied to the rational straight-line $F E$, producing $E H$ and $H K$ (respectively) as breadth. Thus, $E H$ and $H K$ are each rational (straight-lines which are) incommensurable in length with $E F$ [Prop. 10.22]. And since $A B$ is incommensurable with $C D$, and $A B$ is equal to $E G$, and $C D$ to $H I, E G$ is thus also incommensurable with $H I$. And as $E G$ (is) to $H I$, so $E H$ is to $H K$ [Prop. 6.1]. $E H$ is thus incommensurable in length with $H K$ [Prop. 10.11]. Thus, $E H$ and $H K$ are rational (straight-lines which are) commensurable in square only. $E K$ is thus a binomial (straight-line) [Prop. 10.36]. And the square on $E H$ is greater than (the square on) $H K$ either by the (square)

 ย̇бтív.

 ठט́o μ ह́ $\sigma \alpha$ ठuvaцévŋ.

 $\pi \varepsilon ́ \mu \pi \tau \eta \nu$. Tò $\delta \varepsilon ̀ ~ \alpha ̉ \pi o ̀ ~ \tau \eta ̃ ऽ ~ \delta u ́ o ~ \mu \varepsilon ́ \sigma \alpha ~ \delta u v \alpha \mu \varepsilon ́ v \eta s ~ \pi \alpha p \alpha ̀ ~ \rho ́ \eta \tau \eta ̀ \nu ~$ $\pi \alpha p \alpha \beta \alpha \lambda \lambda o ́ \mu \varepsilon \nu \circ \nu \pi \lambda \alpha ́ \tau o \varsigma \pi о เ \varepsilon і ̃ ~ \tau \grave{\eta} \nu$ ह̉x ठúo ỏvo $\mu \alpha ́ \tau \omega \nu$ हैx $\tau \eta \nu$.

 $\dot{\alpha} \lambda \lambda \dot{n} \lambda \omega \nu$.
on (some straight-line) commensurable (in length) with ($E H$), or by the (square) on (some straight-line) incommensurable (in length with $E H$). Let it, first of all, be greater by the square on (some straight-line) commensurable in length with $(E H)$. And neither of $E H$ or $H K$ is commensurable in length with the (previously) laid down rational (straight-line) $E F$. Thus, $E K$ is a third binomial (straight-line) [Def. 10.7]. And $E F$ (is) rational. And if an area is contained by a rational (straight-line) and a third binomial (straight-line) then the square-root of the area is a second bimedial (straight-line) [Prop. 10.56]. Thus, the square-root of $E I$-that is to say, of $A D$ is a second bimedial. And so, let the square on $E H$ be greater than (the square) on $H K$ by the (square) on (some straight-line) incommensurable in length with $(E H)$. And $E H$ and $H K$ are each incommensurable in length with $E F$. Thus, $E K$ is a sixth binomial (straightline) [Def. 10.10]. And if an area is contained by a rational (straight-line) and a sixth binomial (straight-line) then the square-root of the area is the square-root of (the sum of) two medial (areas) [Prop. 10.59]. Hence, the square-root of area $A D$ is also the square-root of (the sum of) two medial (areas).
[So, similarly, we can show that, even if $A B$ is less than $C D$, the square-root of area $A D$ is either a second bimedial or the square-root of (the sum of) two medial (areas).]

Thus, when two medial (areas which are) incommensurable with one another are added together, the remaining two irrational (straight-lines) arise (as the squareroots of the total area) -either a second bimedial, or the square-root of (the sum of) two medial (areas).

A binomial (straight-line), and the (other) irrational (straight-lines) after it, are neither the same as a medial (straight-line) nor (the same) as one another. For the (square) on a medial (straight-line), applied to a rational (straight-line), produces as breadth a rational (straightline which is) also incommensurable in length with (the straight-line) to which it is applied [Prop. 10.22]. And the (square) on a binomial (straight-line), applied to a rational (straight-line), produces as breadth a first binomial [Prop. 10.60]. And the (square) on a first bimedial (straight-line), applied to a rational (straight-line), produces as breadth a second binomial [Prop. 10.61]. And the (square) on a second bimedial (straight-line), applied to a rational (straight-line), produces as breadth a third binomial [Prop. 10.62]. And the (square) on a major (straight-line), applied to a rational (straight-line), produces as breadth a fourth binomial [Prop. 10.63]. And the (square) on the square-root of a rational plus a medial

$$
o \gamma^{\prime}
$$

${ }^{\dagger}$ See footnote to Prop. 10.36.

$$
o \delta^{\prime}
$$

(area), applied to a rational (straight-line), produces as breadth a fifth binomial [Prop. 10.64]. And the (square) on the square-root of (the sum of) two medial (areas), applied to a rational (straight-line), produces as breadth a sixth binomial [Prop. 10.65]. And the aforementioned breadths differ from the first (breadth), and from one another-from the first, because it is rational-and from one another, because they are not the same in order. Hence, the (previously mentioned) irrational (straightlines) themselves also differ from one another.

Proposition 73

If a rational (straight-line), which is commensurable in square only with the whole, is subtracted from a(nother) rational (straight-line) then the remainder is an irrational (straight-line). Let it be called an apotome.

For let the rational (straight-line) $B C$, which commensurable in square only with the whole, have been subtracted from the rational (straight-line) $A B$. I say that the remainder $A C$ is that irrational (straight-line) called an apotome.

For since $A B$ is incommensurable in length with $B C$, and as $A B$ is to $B C$, so the (square) on $A B$ (is) to the (rectangle contained) by $A B$ and $B C$ [Prop. 10.21 lem.], the (square) on $A B$ is thus incommensurable with the (rectangle contained) by $A B$ and $B C$ [Prop. 10.11]. But, the (sum of the) squares on $A B$ and $B C$ is commensurable with the (square) on $A B$ [Prop. 10.15], and twice the (rectangle contained) by $A B$ and $B C$ is commensurable with the (rectangle contained) by $A B$ and $B C$ [Prop. 10.6]. And, inasmuch as the (sum of the squares) on $A B$ and $B C$ is equal to twice the (rectangle contained) by $A B$ and $B C$ plus the (square) on $C A$ [Prop. 2.7], the (sum of the squares) on $A B$ and $B C$ is thus also incommensurable with the remaining (square) on $A C$ [Props. 10.13, 10.16]. And the (sum of the squares) on $A B$ and $B C$ is rational. $A C$ is thus an irrational (straight-line) [Def. 10.4]. And let it be called an apotome. ${ }^{\dagger}$ (Which is) the very thing it was required to show.

Proposition 74

If a medial (straight-line), which is commensurable in square only with the whole, and which contains a rational (area) with the whole, is subtracted from a(nother) medial (straight-line) then the remainder is an irrational

 $\mu o ́ v o v ~ \sigma u ́ \mu \mu \varepsilon \tau \rho o s ~ o u ̛ \sigma \alpha ~ \tau \tilde{n} A B, \mu \varepsilon \tau \dot{\alpha}$ ठè $\tau \tilde{\eta} \varsigma \mathrm{AB}$ ṕntòv $\pi o \circ o u ̃ \sigma \alpha$ tò ن́ $\pi o ̀ ~ \tau \widetilde{\omega} \nu \mathrm{AB}, \mathrm{B} \mathrm{\Gamma} \cdot \lambda \hat{\varepsilon} \gamma \omega$, ö $\tau \iota \dot{\eta} \lambda o \iota \pi \dot{\eta} \dot{\eta} \mathrm{~A} \Gamma$

[^9]$$
o \varepsilon^{\prime} .
$$

'A

 $\dot{\eta} \lambda o \iota \pi \grave{\eta} \dot{\eta} \mathrm{~A} \Gamma$ 敞 бєu七ép α.
(straight-line). Let it be called a first apotome of a medial (straight-line).

For let the medial (straight-line) $B C$, which is commensurable in square only with $A B$, and which makes with $A B$ the rational (rectangle contained) by $A B$ and $B C$, have been subtracted from the medial (straight-line) $A B$ [Prop. 10.27]. I say that the remainder $A C$ is an irrational (straight-line). Let it be called the first apotome of a medial (straight-line).

For since $A B$ and $B C$ are medial (straight-lines), the (sum of the squares) on $A B$ and $B C$ is also medial. And twice the (rectangle contained) by $A B$ and $B C$ (is) rational. The (sum of the squares) on $A B$ and $B C$ (is) thus incommensurable with twice the (rectangle contained) by $A B$ and $B C$. Thus, twice the (rectangle contained) by $A B$ and $B C$ is also incommensurable with the remaining (square) on $A C$ [Prop. 2.7], since if the whole is incommensurable with one of the (constituent magnitudes) then the original magnitudes will also be incommensurable (with one another) [Prop. 10.16]. And twice the (rectangle contained) by $A B$ and $B C$ (is) rational. Thus, the (square) on $A C$ is irrational. Thus, $A C$ is an irrational (straight-line) [Def. 10.4]. Let it be called a first apotome of a medial (straight-line). ${ }^{\dagger}$

Proposition 75

If a medial (straight-line), which is commensurable in square only with the whole, and which contains a medial (area) with the whole, is subtracted from a(nother) medial (straight-line) then the remainder is an irrational (straight-line). Let it be called a second apotome of a medial (straight-line).

For let the medial (straight-line) $C B$, which is commensurable in square only with the whole, $A B$, and which contains with the whole, $A B$, the medial (rectangle contained) by $A B$ and $B C$, have been subtracted from the medial (straight-line) $A B$ [Prop. 10.28]. I say that the remainder $A C$ is an irrational (straight-line). Let it be called a second apotome of a medial (straight-line).

 тท̀̀ $\Delta \mathrm{H}, \tau \widetilde{̣}$ ठ

 $\tau \widetilde{\uparrow} \mu \varepsilon ̀ \nu \alpha \dot{\alpha} \pi o ̀ ~ \tau n ̃ \varsigma ~ A B ~ \sigma u ̛ ́ \mu \mu \varepsilon \tau p \alpha ́ ~ \varepsilon ̉ \sigma \tau \iota ~ \tau \alpha ̀ ~ \alpha ̇ \pi o ̀ ~ \tau \widetilde{\omega} \nu \mathrm{AB}, \mathrm{B} \mathrm{\Gamma}, \tau \widetilde{\widetilde{\omega}}$

For let the rational (straight-line) $D I$ be laid down. And let $D E$, equal to the (sum of the squares) on $A B$ and $B C$, have been applied to $D I$, producing $D G$ as breadth. And let $D H$, equal to twice the (rectangle contained) by $A B$ and $B C$, have been applied to $D I$, producing $D F$ as breadth. The remainder $F E$ is thus equal to the (square) on $A C$ [Prop. 2.7]. And since the (squares) on $A B$ and $B C$ are medial and commensurable (with one another), $D E$ (is) thus also medial [Props. 10.15, 10.23 corr.]. And it is applied to the rational (straightline) $D I$, producing $D G$ as breadth. Thus, $D G$ is rational, and incommensurable in length with $D I$ [Prop. 10.22]. Again, since the (rectangle contained) by $A B$ and $B C$ is medial, twice the (rectangle contained) by $A B$ and $B C$ is thus also medial [Prop. 10.23 corr.]. And it is equal to $D H$. Thus, $D H$ is also medial. And it has been applied to the rational (straight-line) $D I$, producing $D F$ as breadth. $D F$ is thus rational, and incommensurable in length with $D I$ [Prop. 10.22]. And since $A B$ and $B C$ are commensurable in square only, $A B$ is thus incommensurable in length with $B C$. Thus, the square on $A B$ (is) also incommensurable with the (rectangle contained) by $A B$ and $B C$ [Props. 10.21 lem., 10.11]. But, the (sum of the squares) on $A B$ and $B C$ is commensurable with the (square) on $A B$ [Prop. 10.15], and twice the (rectangle contained) by $A B$ and $B C$ is commensurable with the (rectangle contained) by $A B$ and $B C$ [Prop. 10.6]. Thus, twice the (rectangle contained) by $A B$ and $B C$ is incommensurable with the (sum of the squares) on $A B$ and $B C$ [Prop. 10.13]. And $D E$ is equal to the (sum of the squares) on $A B$ and $B C$, and $D H$ to twice the (rectangle contained) by $A B$ and $B C$. Thus, $D E$ [is] incommensurable with $D H$. And as $D E$ (is) to $D H$, so $G D$ (is) to $D F$ [Prop. 6.1]. Thus, $G D$ is incommensurable with $D F$ [Prop. 10.11]. And they are both rational (straight-lines). Thus, $G D$ and $D F$ are rational (straight-lines which are) commensurable in square only. Thus, $F G$ is an apotome [Prop. 10.73]. And $D I$ (is) rational. And the (area) contained by a rational and an irrational (straight-line) is irrational [Prop. 10.20], and its square-root is irrational.
${ }^{\dagger}$ See footnote to Prop. 10.38.

$$
O \xi^{\prime} .
$$

${ }^{\dagger}$ See footnote to Prop. 10.39.

$$
o \zeta^{\prime}
$$

And $A C$ is the square-root of $F E$. Thus, $A C$ is an irrational (straight-line) [Def. 10.4]. And let it be called the second apotome of a medial (straight-line). ${ }^{\dagger}$ (Which is) the very thing it was required to show.

Proposition 76

If a straight-line, which is incommensurable in square with the whole, and with the whole makes the (squares) on them (added) together rational, and the (rectangle contained) by them medial, is subtracted from a(nother) straight-line then the remainder is an irrational (straightline). Let it be called a minor (straight-line).

For let the straight-line $B C$, which is incommensurable in square with the whole, and fulfils the (other) prescribed (conditions), have been subtracted from the straight-line $A B$ [Prop. 10.33]. I say that the remainder $A C$ is that irrational (straight-line) called minor.

For since the sum of the squares on $A B$ and $B C$ is rational, and twice the (rectangle contained) by $A B$ and $B C$ (is) medial, the (sum of the squares) on $A B$ and $B C$ is thus incommensurable with twice the (rectangle contained) by $A B$ and $B C$. And, via conversion, the (sum of the squares) on $A B$ and $B C$ is incommensurable with the remaining (square) on $A C$ [Props. 2.7, 10.16]. And the (sum of the squares) on $A B$ and $B C$ (is) rational. The (square) on $A C$ (is) thus irrational. Thus, $A C$ (is) an irrational (straight-line) [Def. 10.4]. Let it be called a minor (straight-line). ${ }^{\dagger}$ (Which is) the very thing it was required to show.

Proposition 77

If a straight-line, which is incommensurable in square with the whole, and with the whole makes the sum of the squares on them medial, and twice the (rectangle contained) by them rational, is subtracted from a(nother) straight-line then the remainder is an irrational (straightline). Let it be called that which makes with a rational (area) a medial whole.

For let the straight-line $B C$, which is incommensurable in square with $A B$, and fulfils the (other) prescribed (conditions), have been subtracted from the straight-line $A B$ [Prop. 10.34]. I say that the remainder $A C$ is the

${ }^{\dagger}$ See footnote to Prop. 10.40.

$$
o \eta^{\prime}
$$

 $\mu \varepsilon ́ \sigma o \cup \mu \varepsilon ́ \sigma o \nu ~ \tau o ̀ ~ o ̈ \lambda o \nu ~ \pi o เ o v ̃ \sigma \alpha . ~$

aforementioned irrational (straight-line).
For since the sum of the squares on $A B$ and $B C$ is medial, and twice the (rectangle contained) by $A B$ and $B C$ rational, the (sum of the squares) on $A B$ and $B C$ is thus incommensurable with twice the (rectangle contained) by $A B$ and $B C$. Thus, the remaining (square) on $A C$ is also incommensurable with twice the (rectangle contained) by $A B$ and $B C$ [Props. 2.7, 10.16]. And twice the (rectangle contained) by $A B$ and $B C$ is rational. Thus, the (square) on $A C$ is irrational. Thus, $A C$ is an irrational (straight-line) [Def. 10.4]. And let it be called that which makes with a rational (area) a medial whole. ${ }^{\dagger}$ (Which is) the very thing it was required to show.

Proposition 78

If a straight-line, which is incommensurable in square with the whole, and with the whole makes the sum of the squares on them medial, and twice the (rectangle contained) by them medial, and, moreover, the (sum of the) squares on them incommensurable with twice the (rectangle contained) by them, is subtracted from a(nother) straight-line then the remainder is an irrational (straightline). Let it be called that which makes with a medial (area) a medial whole.

For let the straight-line $B C$, which is incommensurable in square $A B$, and fulfils the (other) prescribed (conditions), have been subtracted from the (straightline) $A B$ [Prop. 10.35]. I say that the remainder $A C$ is the irrational (straight-line) called that which makes with a medial (area) a medial whole.

For let the rational (straight-line) $D I$ be laid down. And let $D E$, equal to the (sum of the squares) on $A B$ and $B C$, have been applied to $D I$, producing $D G$ as breadth. And let $D H$, equal to twice the (rectangle contained) by $A B$ and $B C$, have been subtracted (from $D E$) [producing $D F$ as breadth]. Thus, the remainder $F E$ is equal to the (square) on $A C$ [Prop. 2.7]. Hence, $A C$ is the square-root of $F E$. And since the sum of the squares on

${ }^{\dagger}$ See footnote to Prop. 10.41.
$O \vartheta^{\prime}$.

 oŨ $\sigma \alpha \tau \tilde{n}$ ö̀ñ.

 ठuvá $\mu \varepsilon \iota \mu$ н́vov $\sigma u ́ \mu \mu \varepsilon \tau \rho о \varsigma ~ o u ̃ \sigma \alpha ~ \tau \tilde{n}$ ö̀n.

$A B$ and $B C$ is medial, and is equal to $D E, D E$ [is] thus medial. And it is applied to the rational (straight-line) $D I$, producing $D G$ as breadth. Thus, $D G$ is rational, and incommensurable in length with $D I$ [Prop 10.22]. Again, since twice the (rectangle contained) by $A B$ and $B C$ is medial, and is equal to $D H, D H$ is thus medial. And it is applied to the rational (straight-line) $D I$, producing $D F$ as breadth. Thus, $D F$ is also rational, and incommensurable in length with $D I$ [Prop. 10.22]. And since the (sum of the squares) on $A B$ and $B C$ is incommensurable with twice the (rectangle contained) by $A B$ and $B C, D E$ (is) also incommensurable with $D H$. And as $D E$ (is) to $D H$, so $D G$ also is to $D F$ [Prop. 6.1]. Thus, $D G$ (is) incommensurable (in length) with $D F$ [Prop. 10.11]. And they are both rational. Thus, $G D$ and $D F$ are rational (straight-lines which are) commensurable in square only. Thus, $F G$ is an apotome [Prop. 10.73]. And $F H$ (is) rational. And the [rectangle] contained by a rational (straight-line) and an apotome is irrational [Prop. 10.20], and its square-root is irrational. And $A C$ is the squareroot of $F E$. Thus, $A C$ is irrational. Let it be called that which makes with a medial (area) a medial whole. ${ }^{\dagger}$ (Which is) the very thing it was required to show.

Proposition 79

[Only] one rational straight-line, which is commensurable in square only with the whole, can be attached to an apotome. ${ }^{\dagger}$

Let $A B$ be an apotome, with $B C$ (so) attached to it. $A C$ and $C B$ are thus rational (straight-lines which are) commensurable in square only [Prop. 10.73]. I say that another rational (straight-line), which is commensurable in square only with the whole, cannot be attached to $A B$.

For, if possible, let $B D$ be (so) attached (to $A B$). Thus, $A D$ and $D B$ are also rational (straight-lines which are) commensurable in square only [Prop. 10.73]. And since by whatever (area) the (sum of the squares) on $A D$ and $D B$ exceeds twice the (rectangle contained) by $A D$ and $D B$, the (sum of the squares) on $A C$ and $C B$ also exceeds twice the (rectangle contained) by $A C$ and $C B$ by this (same area). For both exceed by the same (area)(namely), the (square) on $A B$ [Prop. 2.7]. Thus, alternately, by whatever (area) the (sum of the squares) on $A D$ and $D B$ exceeds the (sum of the squares) on $A C$ and $C B$, twice the (rectangle contained) by $A D$ and $D B$ [also] exceeds twice the (rectangle contained) by $A C$ and

$C B$ by this (same area). And the (sum of the squares) on $A D$ and $D B$ exceeds the (sum of the squares) on $A C$ and $C B$ by a rational (area). For both (are) rational (areas). Thus, twice the (rectangle contained) by $A D$ and $D B$ also exceeds twice the (rectangle contained) by $A C$ and $C B$ by a rational (area). The very thing is impossible. For both are medial (areas) [Prop. 10.21], and a medial (area) cannot exceed a(nother) medial (area) by a rational (area) [Prop. 10.26]. Thus, another rational (straight-line), which is commensurable in square only with the whole, cannot be attached to $A B$.

Thus, only one rational (straight-line), which is commensurable in square only with the whole, can be attached to an apotome. (Which is) the very thing it was required to show.
${ }^{\dagger}$ This proposition is equivalent to Prop. 10.42, with minus signs instead of plus signs.

$$
\pi^{\prime}
$$

 $\mu \varepsilon ́ \sigma \eta ~ \delta u v \alpha ́ \mu \varepsilon ı ~ \mu o ́ v o v ~ \sigma u ́ \mu \mu \varepsilon \tau \rho o s ~ o u ̛ \sigma \alpha ~ \tau n ̃ ~ o ̈ \lambda \eta, ~ \mu \varepsilon \tau \grave{\alpha} \delta \grave{\varepsilon} \tau \tilde{\eta} \varsigma$ ő $\lambda \eta s$ ค́ntòv $\pi \varepsilon \rho เ \varepsilon ́ \chi o \cup \sigma \alpha$.

 $\mu o ́ v o v ~ \sigma u ́ \mu \mu \varepsilon \tau \rho o l ~ ¢ ̣ \eta \tau o ̀ v ~ \pi \varepsilon p l \varepsilon ́ \chi o v \sigma \alpha l ~ t o ̀ ~ u ́ \pi o ̀ ~ \tau \widetilde{\omega} \nu ~ А Г, ~ Г В \cdot ~$

 $\pi \varepsilon p t \varepsilon ́ \chi o \cup \sigma \alpha$.

Proposition 80

Only one medial straight-line, which is commensurable in square only with the whole, and contains a rational (area) with the whole, can be attached to a first apotome of a medial (straight-line). ${ }^{\dagger}$

$$
\mathrm{A} \quad \mathrm{~B} \quad \mathrm{C} D
$$

For let $A B$ be a first apotome of a medial (straightline), and let $B C$ be (so) attached to $A B$. Thus, $A C$ and $C B$ are medial (straight-lines which are) commensurable in square only, containing a rational (area)(namely, that contained) by $A C$ and $C B$ [Prop. 10.74]. I say that a(nother) medial (straight-line), which is commensurable in square only with the whole, and contains a rational (area) with the whole, cannot be attached to $A B$.

For, if possible, let $D B$ also be (so) attached to $A B$. Thus, $A D$ and $D B$ are medial (straight-lines which are) commensurable in square only, containing a rational (area)-(namely, that) contained by $A D$ and $D B$ [Prop. 10.74]. And since by whatever (area) the (sum of the squares) on $A D$ and $D B$ exceeds twice the (rectangle contained) by $A D$ and $D B$, the (sum of the squares) on $A C$ and $C B$ also exceeds twice the (rectangle contained) by $A C$ and $C B$ by this (same area). For [again] both exceed by the same (area)-(namely), the (square) on $A B$ [Prop. 2.7]. Thus, alternately, by whatever (area) the (sum of the squares) on $A D$ and $D B$ exceeds the (sum of the squares) on $A C$ and $C B$, twice the (rectangle contained) by $A D$ and $D B$ also exceeds twice the (rectangle contained) by $A C$ and $C B$ by this (same area). And twice the (rectangle contained) by $A D$ and $D B$ exceeds twice
the (rectangle contained) by $A C$ and $C B$ by a rational (area). For both (are) rational (areas). Thus, the (sum of the squares) on $A D$ and $D B$ also exceeds the (sum of the) [squares] on $A C$ and $C B$ by a rational (area). The very thing is impossible. For both are medial (areas) [Props. 10.15, 10.23 corr.], and a medial (area) cannot exceed a(nother) medial (area) by a rational (area) [Prop. 10.26].

Thus, only one medial (straight-line), which is commensurable in square only with the whole, and contains a rational (area) with the whole, can be attached to a first apotome of a medial (straight-line). (Which is) the very thing it was required to show.
${ }^{\dagger}$ This proposition is equivalent to Prop. 10.43, with minus signs instead of plus signs.

$$
\pi \alpha^{\prime}
$$

 oั̀ $\eta \varsigma ~ \mu \varepsilon ́ \sigma o \nu ~ \pi \varepsilon p เ \varepsilon ́ \chi o \cup \sigma \alpha$.

 бú $\mu \mu \varepsilon \tau \rho o \iota \mu \varepsilon ́ \sigma o \nu ~ \pi \varepsilon \rho เ \varepsilon ́ \chi o v \sigma \alpha l ~ \tau o ̀ ~ ن ́ \pi o ̀ ~ \tau \widetilde{\omega} \nu ~ А Г, ~ Г В \cdot ~ \lambda \varepsilon ́ \gamma \omega, ~$

 $\pi \varepsilon \rho เ \varepsilon ́ \chi o \cup \sigma \alpha$.

Eî $\gamma \dot{\alpha} \rho \delta u v \alpha \tau o ́ v, \pi \rho o \sigma \alpha \rho \mu o \zeta \varepsilon ́ \tau \omega \dot{\eta} \mathrm{~B} \Delta \cdot x \alpha \grave{i} \alpha \mathrm{~A} \Delta, \Delta \mathrm{~B}$

Proposition 81

Only one medial straight-line, which is commensurable in square only with the whole, and contains a medial (area) with the whole, can be attached to a second apotome of a medial (straight-line). ${ }^{\dagger}$

Let $A B$ be a second apotome of a medial (straightline), with $B C$ (so) attached to $A B$. Thus, $A C$ and $C B$ are medial (straight-lines which are) commensurable in square only, containing a medial (area)-(namely, that contained) by $A C$ and $C B$ [Prop. 10.75]. I say that a(nother) medial straight-line, which is commensurable in square only with the whole, and contains a medial (area) with the whole, cannot be attached to $A B$.

For, if possible, let $B D$ be (so) attached. Thus, $A D$ and $D B$ are also medial (straight-lines which are) commensurable in square only, containing a medial (area) (namely, that contained) by $A D$ and $D B$ [Prop. 10.75]. And let the rational (straight-line) $E F$ be laid down. And let $E G$, equal to the (sum of the squares) on $A C$ and $C B$, have been applied to $E F$, producing $E M$ as breadth. And let $H G$, equal to twice the (rectangle contained) by $A C$ and $C B$, have been subtracted (from $E G$), producing $H M$ as breadth. The remainder $E L$ is thus equal to the (square) on $A B$ [Prop. 2.7]. Hence, $A B$ is the

 $\tau \tilde{n}$ ö̀ η. ö $\pi \varepsilon \rho$ ह̇бтiv $\alpha \delta \dot{v} v \alpha \tau o \nu$.

square-root of $E L$. So, again, let $E I$, equal to the (sum of the squares) on $A D$ and $D B$ have been applied to $E F$, producing $E N$ as breadth. And $E L$ is also equal to the square on $A B$. Thus, the remainder $H I$ is equal to twice the (rectangle contained) by $A D$ and $D B$ [Prop. 2.7]. And since $A C$ and $C B$ are (both) medial (straight-lines), the (sum of the squares) on $A C$ and $C B$ is also medial. And it is equal to $E G$. Thus, $E G$ is also medial [Props. $10.15,10.23$ corr.]. And it is applied to the rational (straight-line) $E F$, producing $E M$ as breadth. Thus, $E M$ is rational, and incommensurable in length with $E F$ [Prop. 10.22]. Again, since the (rectangle contained) by $A C$ and $C B$ is medial, twice the (rectangle contained) by $A C$ and $C B$ is also medial [Prop. 10.23 corr.]. And it is equal to $H G$. Thus, $H G$ is also medial. And it is applied to the rational (straight-line) $E F$, producing $H M$ as breadth. Thus, $H M$ is also rational, and incommensurable in length with $E F$ [Prop. 10.22]. And since $A C$ and $C B$ are commensurable in square only, $A C$ is thus incommensurable in length with $C B$. And as $A C$ (is) to $C B$, so the (square) on $A C$ is to the (rectangle contained) by $A C$ and $C B$ [Prop. 10.21 corr.]. Thus, the (square) on $A C$ is incommensurable with the (rectangle contained) by $A C$ and $C B$ [Prop. 10.11]. But, the (sum of the squares) on $A C$ and $C B$ is commensurable with the (square) on $A C$, and twice the (rectangle contained) by $A C$ and $C B$ is commensurable with the (rectangle contained) by $A C$ and $C B$ [Prop. 10.6]. Thus, the (sum of the squares) on $A C$ and $C B$ is incommensurable with twice the (rectangle contained) by $A C$ and $C B$ [Prop. 10.13]. And $E G$ is equal to the (sum of the squares) on $A C$ and $C B$. And $G H$ is equal to twice the (rectangle contained) by $A C$ and $C B$. Thus, $E G$ is incommensurable with $H G$. And as $E G$ (is) to $H G$, so $E M$ is to $H M$ [Prop. 6.1]. Thus, $E M$ is incommensurable in length with $M H$ [Prop. 10.11]. And they are both rational (straight-lines). Thus, $E M$ and $M H$ are rational (straight-lines which are) commensurable in square only. Thus, $E H$ is an apotome [Prop. 10.73], and $H M$ (is) attached to it. So, similarly, we can show that $H N$ (is) also (commensurable in square only with $E N$ and is) attached to $(E H)$. Thus, different straight-lines, which are commensurable in square only with the whole, are attached to an apotome. The very thing is impossible [Prop. 10.79].

Thus, only one medial straight-line, which is commensurable in square only with the whole, and contains a medial (area) with the whole, can be attached to a second apotome of a medial (straight-line). (Which is) the very thing it was required to show.
${ }^{\dagger}$ This proposition is equivalent to Prop. 10.44, with minus signs instead of plus signs.

$$
\pi \beta^{\prime}
$$

 $\mu \varepsilon ́ \sigma o v$.

 عủvะĩ oủ $\pi \rho \circ \sigma \alpha \rho \mu o ́ \sigma \varepsilon l ~ \tau \alpha ̀ ~ \alpha u ̉ \tau \alpha ̀ ~ \pi o เ o u ̃ \sigma \alpha . ~$

 غ̇ $\tau \varepsilon i ́, \widetilde{\varphi} \dot{\varphi} \dot{u} \pi \varepsilon \rho \varepsilon ́ \chi \varepsilon \iota \tau \grave{\alpha} \alpha \dot{\alpha} \pi \grave{\tau} \tau \widetilde{\omega} \nu \mathrm{~A} \Delta, \Delta \mathrm{~B} \tau \widetilde{\omega} \nu \dot{\alpha} \pi o ̀ \tau \widetilde{\omega} \nu \mathrm{~A} \Gamma, \Gamma \mathrm{~B}$,
 $\tau \widetilde{\omega} \nu \mathrm{A} \Gamma, \Gamma \mathrm{B}, \tau \grave{\alpha} \delta \grave{\varepsilon} \alpha \dot{\alpha} \grave{o} \tau \widetilde{\omega} \nu \mathrm{~A} \Delta, \Delta \mathrm{~B} \tau \varepsilon \tau \rho \alpha ́ \gamma \omega \nu \alpha \tau \widetilde{\omega} \nu \dot{\alpha} \pi o ̀$

 үáp ह̇бтıレ $\alpha \mu \varphi o ́ \tau \varepsilon \rho \alpha . ~$

 ઠєǐそ α.

Proposition 82

Only one straight-line, which is incommensurable in square with the whole, and (together) with the whole makes the (sum of the) squares on them rational, and twice the (rectangle contained) by them medial, can be attached to a minor (straight-line).

Let $A B$ be a minor (straight-line), and let $B C$ be (so) attached to $A B$. Thus, $A C$ and $C B$ are (straight-lines which are) incommensurable in square, making the sum of the squares on them rational, and twice the (rectangle contained) by them medial [Prop. 10.76]. I say that another another straight-line fulfilling the same (conditions) cannot be attached to $A B$.

For, if possible, let $B D$ be (so) attached (to $A B$). Thus, $A D$ and $D B$ are also (straight-lines which are) incommensurable in square, fulfilling the (other) aforementioned (conditions) [Prop. 10.76]. And since by whatever (area) the (sum of the squares) on $A D$ and $D B$ exceeds the (sum of the squares) on $A C$ and $C B$, twice the (rectangle contained) by $A D$ and $D B$ also exceeds twice the (rectangle contained) by $A C$ and $C B$ by this (same area) [Prop. 2.7]. And the (sum of the) squares on $A D$ and $D B$ exceeds the (sum of the) squares on $A C$ and $C B$ by a rational (area). For both are rational (areas). Thus, twice the (rectangle contained) by $A D$ and $D B$ also exceeds twice the (rectangle contained) by $A C$ and $C B$ by a rational (area). The very thing is impossible. For both are medial (areas) [Prop. 10.26].

Thus, only one straight-line, which is incommensurable in square with the whole, and (with the whole) makes the squares on them (added) together rational, and twice the (rectangle contained) by them medial, can be attached to a minor (straight-line). (Which is) the very thing it was required to show.
${ }^{\dagger}$ This proposition is equivalent to Prop. 10.45, with minus signs instead of plus signs.

$$
\pi \gamma^{\prime}
$$

Tñ $\mu \varepsilon \tau \alpha ̀ ~ \rho ீ \eta \tau о u ̃ ~ \mu \varepsilon ́ \sigma o v ~ \tau o ̀ ~ o ̋ \lambda o v ~ \pi o เ o u ́ \sigma n ~ \mu i ́ \alpha ~ \mu o ́ v o v ~ \pi \rho o-~$

Proposition 83

Only one straight-line, which is incommensurable in square with the whole, and (together) with the whole makes the sum of the squares on them medial, and twice the (rectangle contained) by them rational, can be attached to that (straight-line) which with a rational (area) makes a medial whole. ${ }^{\dagger}$

 oủ тробариóбєl $\tau \alpha ̀ \alpha u ̉ \tau \alpha ̀ ~ \pi o เ o u ̃ \sigma \alpha . ~$

Let $A B$ be a (straight-line) which with a rational (area) makes a medial whole, and let $B C$ be (so) attached to $A B$. Thus, $A C$ and $C B$ are (straight-lines which are) incommensurable in square, fulfilling the (other) proscribed (conditions) [Prop. 10.77]. I say that another (straight-line) fulfilling the same (conditions) cannot be attached to $A B$.

For, if possible, let $B D$ be (so) attached (to $A B$). Thus, $A D$ and $D B$ are also straight-lines (which are) incommensurable in square, fulfilling the (other) prescribed (conditions) [Prop. 10.77]. Therefore, analogously to the (propositions) before this, since by whatever (area) the (sum of the squares) on $A D$ and $D B$ exceeds the (sum of the squares) on $A C$ and $C B$, twice the (rectangle contained) by $A D$ and $D B$ also exceeds twice the (rectangle contained) by $A C$ and $C B$ by this (same area). And twice the (rectangle contained) by $A D$ and $D B$ exceeds twice the (rectangle contained) by $A C$ and $C B$ by a rational (area). For they are (both) rational (areas). Thus, the (sum of the squares) on $A D$ and $D B$ also exceeds the (sum of the squares) on $A C$ and $C B$ by a rational (area). The very thing is impossible. For both are medial (areas) [Prop. 10.26].

Thus, another straight-line cannot be attached to $A B$, which is incommensurable in square with the whole, and fulfills the (other) aforementioned (conditions) with the whole. Thus, only one (such straight-line) can be (so) attached. (Which is) the very thing it was required to show.
${ }^{\dagger}$ This proposition is equivalent to Prop. 10.46, with minus signs instead of plus signs.

$$
\pi \delta^{\prime}
$$

Proposition 84

Only one straight-line, which is incommensurable in square with the whole, and (together) with the whole makes the sum of the squares on them medial, and twice the (rectangle contained) by them medial, and, moreover, incommensurable with the sum of the (squares) on them, can be attached to that (straight-line) which with a medial (area) makes a medial whole. ${ }^{\dagger}$

Let $A B$ be a (straight-line) which with a medial (area) makes a medial whole, $B C$ being (so) attached to it. Thus, $A C$ and $C B$ are incommensurable in square, fulfilling the (other) aforementioned (conditions) [Prop. 10.78]. I say that a(nother) (straight-line) fulfilling the aforementioned (conditions) cannot be attached to $A B$.

 $\mathrm{A} \Delta, \Delta \mathrm{B} \mu \varepsilon ́ \sigma o \nu x \alpha \grave{~ \varepsilon} \tau \iota \tau \dot{\alpha} \dot{\alpha} \tau \grave{\jmath} \tau \widetilde{\omega} \nu \mathrm{~A} \Delta, \Delta \mathrm{~B} \dot{\alpha} \sigma \dot{\jmath} \mu \mu \varepsilon \tau \rho \alpha \tau \widetilde{\varphi}$

 $\pi \alpha \rho \alpha ̀ ~ \tau \grave{\eta} \nu \mathrm{EZ} \pi \alpha \rho \alpha \beta \varepsilon \beta \lambda \dot{\eta} \sigma \vartheta \omega$ 七ò $\mathrm{EI} \pi \lambda \alpha ́ \tau o s ~ \pi o เ o u ̃ \nu ~ \tau \eta ̀ \nu ~ E N . ~$

For, if possible, let $B D$ be (so) attached. Hence, $A D$ and $D B$ are also (straight-lines which are) incommensurable in square, making the squares on $A D$ and $D B$ (added) together medial, and twice the (rectangle contained) by $A D$ and $D B$ medial, and, moreover, the (sum of the squares) on $A D$ and $D B$ incommensurable with twice the (rectangle contained) by $A D$ and $D B$ [Prop. 10.78]. And let the rational (straight-line) $E F$ be laid down. And let $E G$, equal to the (sum of the squares) on $A C$ and $C B$, have been applied to $E F$, producing $E M$ as breadth. And let $H G$, equal to twice the (rectangle contained) by $A C$ and $C B$, have been applied to $E F$, producing $H M$ as breadth. Thus, the remaining (square) on $A B$ is equal to $E L$ [Prop. 2.7]. Thus, $A B$ is the squareroot of $E L$. Again, let $E I$, equal to the (sum of the squares) on $A D$ and $D B$, have been applied to $E F$, producing $E N$ as breadth. And the (square) on $A B$ is also equal to $E L$. Thus, the remaining twice the (rectangle contained) by $A D$ and $D B$ [is] equal to $H I$ [Prop. 2.7]. And since the sum of the (squares) on $A C$ and $C B$ is medial, and is equal to $E G, E G$ is thus also medial. And it is applied to the rational (straight-line) $E F$, producing $E M$ as breadth. $E M$ is thus rational, and incommensurable in length with $E F$ [Prop. 10.22]. Again, since twice the (rectangle contained) by $A C$ and $C B$ is medial, and is equal to $H G, H G$ is thus also medial. And it is applied to the rational (straight-line) $E F$, producing $H M$ as breadth. $H M$ is thus rational, and incommensurable in length with $E F$ [Prop. 10.22]. And since the (sum of the squares) on $A C$ and $C B$ is incommensurable with twice the (rectangle contained) by $A C$ and $C B, E G$ is also incommensurable with $H G$. Thus, $E M$ is also incommensurable in length with $M H$ [Props. 6.1, 10.11]. And they are both rational (straight-lines). Thus, $E M$ and $M H$ are rational (straight-lines which are) commensurable in square only. Thus, $E H$ is an apotome [Prop. 10.73], with $H M$ attached to it. So, similarly, we can show that $E H$ is again an apotome, with $H N$ attached to it. Thus, different rational (straight-lines), which are commensurable in square only with the whole, are attached to an apotome. The very thing was shown
(to be) impossible [Prop. 10.79]. Thus, another straightline cannot be (so) attached to $A B$.

Thus, only one straight-line, which is incommensurable in square with the whole, and (together) with the whole makes the squares on them (added) together medial, and twice the (rectangle contained) by them medial, and, moreover, the (sum of the) squares on them incommensurable with the (rectangle contained) by them, can be attached to $A B$. (Which is) the very thing it was required to show.
${ }^{\dagger}$ This proposition is equivalent to Prop. 10.47, with minus signs instead of plus signs.

"Opot tpítol.

 $x \alpha \lambda \varepsilon i ́ \sigma \vartheta \omega$ аं $\pi о \tau о \mu \dot{\eta} \pi \rho \omega ́ \tau \eta$.

 $\tau \widetilde{\varphi} \alpha \dot{\alpha}$ ò $\sigma \cup \mu \mu \varepsilon ́ \tau \rho о \cup \dot{\varepsilon} \alpha \cup \tau \tilde{n}, \chi \alpha \lambda \varepsilon i ́ \sigma \vartheta \omega \alpha \dot{\alpha} \pi о \tau о \mu \grave{\eta} \delta \varepsilon \cup \tau \varepsilon ́ \rho \alpha$.

 $\tau \varepsilon \tau \alpha ́ p \tau \eta$.

เモ'. 'E $\alpha \nu$ ठغ̀ $\dot{\eta} \pi \rho o \sigma \alpha \rho \mu o ́ \zeta o v \sigma \alpha, \pi \varepsilon ́ \mu \pi \tau \eta$.

Definitions III

11. Given a rational (straight-line) and an apotome, if the square on the whole is greater than the (square on a straight-line) attached (to the apotome) by the (square) on (some straight-line) commensurable in length with (the whole), and the whole is commensurable in length with the (previously) laid down rational (straight-line), then let the (apotome) be called a first apotome.
12. And if the attached (straight-line) is commensurable in length with the (previously) laid down rational (straight-line), and the square on the whole is greater than (the square on) the attached (straight-line) by the (square) on (some straight-line) commensurable (in length) with (the whole), then let the (apotome) be called a second apotome.
13. And if neither of (the whole or the attached straight-line) is commensurable in length with the (previously) laid down rational (straight-line), and the square on the whole is greater than (the square on) the attached (straight-line) by the (square) on (some straight-line) commensurable (in length) with (the whole), then let the (apotome) be called a third apotome.
14. Again, if the square on the whole is greater than (the square on) the attached (straight-line) by the (square) on (some straight-line) incommensurable [in length] with (the whole), and the whole is commensurable in length with the (previously) laid down rational (straight-line), then let the (apotome) be called a fourth apotome.
15. And if the attached (straight-line is commensurable), a fifth (apotome).
16. And if neither (the whole nor the attached straight-line is commensurable), a sixth (apotome).

Proposition 85

To find a first apotome.

 öv тєтра́ $\gamma \omega \nu \circ \varsigma \alpha \dot{\alpha} \rho เ \vartheta \mu o ̀ \varsigma ~ \pi \rho o ̀ \varsigma ~ \tau \varepsilon \tau \rho \alpha ́ \gamma \omega \nu o v ~ \alpha ́ p เ \vartheta \mu o ́ v . ~ \chi \alpha \grave{~} \pi \varepsilon-$
 $\tau \varepsilon \tau \rho \alpha ́ \gamma \omega \nu \circ \nu \pi \rho o ̀ s ~ t o ̀ ~ \alpha ́ \pi o ̀ ~ t \eta ̀ s ~ Н Г ~ \tau \varepsilon \tau \rho \alpha ́ \gamma \omega v o v \cdot ~ \sigma u ́ \mu \mu \varepsilon \tau \rho o v ~$
 тñs BH

Let the rational (straight-line) A be laid down. And let $B G$ be commensurable in length with $A . B G$ is thus also a rational (straight-line). And let two square numbers $D E$ and $E F$ be laid down, and let their difference $F D$ be not square [Prop. 10.28 lem. I]. Thus, $E D$ does not have to $D F$ the ratio which (some) square number (has) to (some) square number. And let it have been contrived that as $E D$ (is) to $D F$, so the square on $B G$ (is) to the square on $G C$ [Prop. 10.6. corr.]. Thus, the (square) on $B G$ is commensurable with the (square) on $G C$ [Prop. 10.6]. And the (square) on $B G$ (is) rational. Thus, the (square) on $G C$ (is) also rational. Thus, $G C$ is also rational. And since $E D$ does not have to $D F$ the ratio which (some) square number (has) to (some) square number, the (square) on $B G$ thus does not have to the (square) on $G C$ the ratio which (some) square number (has) to (some) square number either. Thus, $B G$ is incommensurable in length with $G C$ [Prop. 10.9]. And they are both rational (straight-lines). Thus, $B G$ and $G C$ are rational (straight-lines which are) commensurable in square only. Thus, $B C$ is an apotome [Prop. 10.73]. So, I say that (it is) also a first (apotome).

Let the (square) on H be that (area) by which the (square) on $B G$ is greater than the (square) on $G C$ [Prop. 10.13 lem.]. And since as $E D$ is to $F D$, so the (square) on $B G$ (is) to the (square) on $G C$, thus, via conversion, as $D E$ is to $E F$, so the (square) on $G B$ (is) to the (square) on H [Prop. 5.19 corr.]. And $D E$ has to $E F$ the ratio which (some) square-number (has) to (some) square-number. For each is a square (number). Thus, the (square) on $G B$ also has to the (square) on H the ratio which (some) square number (has) to (some) square number. Thus, $B G$ is commensurable in length with H [Prop. 10.9]. And the square on $B G$ is greater than (the square on) $G C$ by the (square) on H. Thus, the square on $B G$ is greater than (the square on) $G C$ by the (square) on (some straight-line) commensurable in length with $(B G)$. And the whole, $B G$, is commensurable in length with the (previously) laid down rational (straight-line) A. Thus, $B C$ is a first apotome [Def. 10.11].

Thus, the first apotome $B C$ has been found. (Which is) the very thing it was required to find.

Proposition 86

To find a second apotome.
${ }^{\circ}$ Еxxєíб७
 $\dot{\alpha}$ рı

Let the rational (straight-line) A, and $G C$ (which is) commensurable in length with A, be laid down. Thus, $G C$ is a rational (straight-line). And let the two square numbers $D E$ and $E F$ be laid down, and let their difference $D F$ be not square [Prop. 10.28 lem. I]. And let it have been contrived that as $F D$ (is) to $D E$, so the square on $C G$ (is) to the square on $G B$ [Prop. 10.6 corr.]. Thus, the square on $C G$ is commensurable with the square on $G B$ [Prop. 10.6]. And the (square) on $C G$ (is) rational. Thus, the (square) on $G B$ [is] also rational. Thus, $B G$ is a rational (straight-line). And since the square on $G C$ does not have to the (square) on $G B$ the ratio which (some) square number (has) to (some) square number, $C G$ is incommensurable in length with $G B$ [Prop. 10.9]. And they are both rational (straight-lines). Thus, $C G$ and $G B$ are rational (straight-lines which are) commensurable in square only. Thus, $B C$ is an apotome [Prop. 10.73]. So, I say that it is also a second (apotome).

For let the (square) on H be that (area) by which the (square) on $B G$ is greater than the (square) on $G C$ [Prop. 10.13 lem.]. Therefore, since as the (square) on $B G$ is to the (square) on $G C$, so the number $E D$ (is) to the number $D F$, thus, also, via conversion, as the (square) on $B G$ is to the (square) on H, so $D E$ (is) to $E F$ [Prop. 5.19 corr.]. And $D E$ and $E F$ are each square (numbers). Thus, the (square) on $B G$ has to the (square) on H the ratio which (some) square number (has) to (some) square number. Thus, $B G$ is commensurable in length with H [Prop. 10.9]. And the square on $B G$ is greater than (the square on) $G C$ by the (square) on H. Thus, the square on $B G$ is greater than (the square on) $G C$ by the (square) on (some straight-line) commensurable in length with $(B G)$. And the attachment $C G$ is commensurable (in length) with the (prevously) laid down rational (straight-line) A. Thus, $B C$ is a second apotome [Def. 10.12]. ${ }^{\dagger}$

Thus, the second apotome $B C$ has been found. (Which is) the very thing it was required to show.

Proposition 87
To find a third apotome.

$\mathrm{E} \longmapsto$

K

 $\lambda \varepsilon ́ \gamma \omega$ ón, ötı xai tpítๆ.

Let the rational (straight-line) A be laid down. And let the three numbers, $E, B C$, and $C D$, not having to one another the ratio which (some) square number (has) to (some) square number, be laid down. And let $C B$ have to $B D$ the ratio which (some) square number (has) to (some) square number. And let it have been contrived that as E (is) to $B C$, so the square on A (is) to the square on $F G$, and as $B C$ (is) to $C D$, so the square on $F G$ (is) to the (square) on $G H$ [Prop. 10.6 corr.]. Therefore, since as E is to $B C$, so the square on A (is) to the square on $F G$, the square on A is thus commensurable with the square on $F G$ [Prop. 10.6]. And the square on A (is) rational. Thus, the (square) on $F G$ (is) also rational. Thus, $F G$ is a rational (straight-line). And since E does not have to $B C$ the ratio which (some) square number (has) to (some) square number, the square on A thus does not have to the [square] on $F G$ the ratio which (some) square number (has) to (some) square number either. Thus, A is incommensurable in length with $F G$ [Prop. 10.9]. Again, since as $B C$ is to $C D$, so the square on $F G$ is to the (square) on $G H$, the square on $F G$ is thus commensurable with the (square) on $G H$ [Prop. 10.6]. And the (square) on $F G$ (is) rational. Thus, the (square) on $G H$ (is) also rational. Thus, $G H$ is a rational (straightline). And since $B C$ does not have to $C D$ the ratio which (some) square number (has) to (some) square number, the (square) on $F G$ thus does not have to the (square) on $G H$ the ratio which (some) square number (has) to (some) square number either. Thus, $F G$ is incommensurable in length with $G H$ [Prop. 10.9]. And both are rational (straight-lines). $F G$ and $G H$ are thus rational (straight-lines which are) commensurable in square only. Thus, $F H$ is an apotome [Prop. 10.73]. So, I say that (it is) also a third (apotome).

For since as E is to $B C$, so the square on A (is) to the (square) on $F G$, and as $B C$ (is) to $C D$, so the (square) on $F G$ (is) to the (square) on $H G$, thus, via equality, as E is to $C D$, so the (square) on A (is) to the (square) on $H G$ [Prop. 5.22]. And E does not have to $C D$ the ratio which (some) square number (has) to (some) square number. Thus, the (square) on A does not have to the (square) on $G H$ the ratio which (some) square number (has) to (some) square number either. A (is) thus incommensurable in length with $G H$ [Prop. 10.9]. Thus, neither of $F G$ and $G H$ is commensurable in length with the

${ }^{\dagger}$ See footnote to Prop. 10.50.

 ג́pıখ

 [$\lambda \varepsilon ́ \gamma \omega$ б́ń, öт兀 жаi $\tau \varepsilon \tau \alpha ́ p \tau \eta$.]

(previously) laid down rational (straight-line) A. Therefore, let the (square) on K be that (area) by which the (square) on $F G$ is greater than the (square) on $G H$ [Prop. 10.13 lem.]. Therefore, since as $B C$ is to $C D$, so the (square) on $F G$ (is) to the (square) on $G H$, thus, via conversion, as $B C$ is to $B D$, so the square on $F G$ (is) to the square on K [Prop. 5.19 corr.]. And $B C$ has to $B D$ the ratio which (some) square number (has) to (some) square number. Thus, the (square) on $F G$ also has to the (square) on K the ratio which (some) square number (has) to (some) square number. $F G$ is thus commensurable in length with K [Prop. 10.9]. And the square on $F G$ is (thus) greater than (the square on) $G H$ by the (square) on (some straight-line) commensurable (in length) with $(F G)$. And neither of $F G$ and $G H$ is commensurable in length with the (previously) laid down rational (straight-line) A. Thus, $F H$ is a third apotome [Def. 10.13].

Thus, the third apotome FH has been found. (Which is) very thing it was required to show.

Proposition 88

To find a fourth apotome.

Let the rational (straight-line) A, and $B G$ (which is) commensurable in length with A, be laid down. Thus, $B G$ is also a rational (straight-line). And let the two numbers $D F$ and $F E$ be laid down such that the whole, $D E$, does not have to each of $D F$ and $E F$ the ratio which (some) square number (has) to (some) square number. And let it have been contrived that as $D E$ (is) to $E F$, so the square on $B G$ (is) to the (square) on $G C$ [Prop. 10.6 corr.]. The (square) on $B G$ is thus commensurable with the (square) on $G C$ [Prop. 10.6]. And the (square) on $B G$ (is) rational. Thus, the (square) on $G C$ (is) also rational. Thus, $G C$ (is) a rational (straightline). And since $D E$ does not have to $E F$ the ratio which (some) square number (has) to (some) square number, the (square) on $B G$ thus does not have to the (square) on $G C$ the ratio which (some) square number (has) to (some) square number either. Thus, $B G$ is incommensurable in length with $G C$ [Prop. 10.9]. And they are both rational (straight-lines). Thus, $B G$ and $G C$ are rational (straight-lines which are) commensurable in square only. Thus, $B C$ is an apotome [Prop. 10.73]. [So, I say that (it

 $\tau \circ \mu \dot{\eta}$ ह̇бть $\tau \varepsilon \tau \alpha ́ \rho \tau \eta$.

is) also a fourth (apotome).]
Now, let the (square) on H be that (area) by which the (square) on $B G$ is greater than the (square) on $G C$ [Prop. 10.13 lem.]. Therefore, since as $D E$ is to $E F$, so the (square) on $B G$ (is) to the (square) on $G C$, thus, also, via conversion, as $E D$ is to $D F$, so the (square) on $G B$ (is) to the (square) on H [Prop. 5.19 corr.]. And $E D$ does not have to $D F$ the ratio which (some) square number (has) to (some) square number. Thus, the (square) on $G B$ does not have to the (square) on H the ratio which (some) square number (has) to (some) square number either. Thus, $B G$ is incommensurable in length with H [Prop. 10.9]. And the square on $B G$ is greater than (the square on) $G C$ by the (square) on H. Thus, the square on $B G$ is greater than (the square) on $G C$ by the (square) on (some straight-line) incommensurable (in length) with $(B G)$. And the whole, $B G$, is commensurable in length with the the (previously) laid down rational (straightline) A. Thus, $B C$ is a fourth apotome [Def. 10.14]. ${ }^{\dagger}$

Thus, a fourth apotome has been found. (Which is) the very thing it was required to show.

Proposition 89

To find a fifth apotome.

Let the rational (straight-line) A be laid down, and let $C G$ be commensurable in length with A. Thus, $C G$ [is] a rational (straight-line). And let the two numbers $D F$ and $F E$ be laid down such that $D E$ again does not have to each of $D F$ and $F E$ the ratio which (some) square number (has) to (some) square number. And let it have been contrived that as $F E$ (is) to $E D$, so the (square) on $C G$ (is) to the (square) on $G B$. Thus, the (square) on $G B$ (is) also rational [Prop. 10.6]. Thus, $B G$ is also rational. And since as $D E$ is to $E F$, so the (square) on $B G$ (is) to the (square) on $G C$. And $D E$ does not have to $E F$ the ratio which (some) square number (has) to (some) square number. The (square) on $B G$ thus does not have to the (square) on $G C$ the ratio which (some) square number (has) to (some) square number either. Thus, $B G$ is incommensurable in length with $G C$ [Prop. 10.9]. And they are both rational (straight-lines). $B G$ and $G C$ are thus rational (straight-lines which are) commensurable in square only. Thus, $B C$ is an apotome [Prop. 10.73]. So, I say that (it is) also a fifth (apotome).

 тñ ย̇x $\pi \varepsilon ́ \mu \pi \tau \eta$.

${ }^{\dagger}$ See footnote to Prop. 10.52.
4.

 $\Gamma \Delta$, oưt $\omega \varsigma$ tò $\dot{\alpha} \pi o ̀ ~ \tau \tilde{\eta} \varsigma \mathrm{ZH} \pi \rho o ̀ s ~ \tau o ̀ ~ \alpha ́ \pi o ̀ ~ \tau \tilde{n} \varsigma ~ H \Theta . ~$

K

 ó $\mathrm{B} \Gamma \pi \rho o ̀ s ~ \tau o ̀ v ~ \Gamma \Delta, ~ o u ̛ \tau \omega s ~ \tau o ̀ ~ \alpha ́ \pi o ̀ ~ \tau n ̃ s ~ Z H ~ \pi p o ̀ s ~ t o ̀ ~ \alpha ̉ \pi o ̀ ~ \tau n ̃ s ~$

For, let the (square) on H be that (area) by which the (square) on $B G$ is greater than the (square) on $G C$ [Prop. 10.13 lem.]. Therefore, since as the (square) on $B G$ (is) to the (square) on $G C$, so $D E$ (is) to $E F$, thus, via conversion, as $E D$ is to $D F$, so the (square) on $B G$ (is) to the (square) on H [Prop. 5.19 corr.]. And $E D$ does not have to $D F$ the ratio which (some) square number (has) to (some) square number. Thus, the (square) on $B G$ does not have to the (square) on H the ratio which (some) square number (has) to (some) square number either. Thus, $B G$ is incommensurable in length with H [Prop. 10.9]. And the square on $B G$ is greater than (the square on) $G C$ by the (square) on H. Thus, the square on $G B$ is greater than (the square on) $G C$ by the (square) on (some straight-line) incommensurable in length with $(G B)$. And the attachment $C G$ is commensurable in length with the (previously) laid down rational (straightline) A. Thus, $B C$ is a fifth apotome [Def. 10.15]. ${ }^{\dagger}$

Thus, the fifth apotome $B C$ has been found. (Which is) the very thing it was required to show.

Proposition 90

To find a sixth apotome.
Let the rational (straight-line) A, and the three numbers $E, B C$, and $C D$, not having to one another the ratio which (some) square number (has) to (some) square number, be laid down. Furthermore, let $C B$ also not have to $B D$ the ratio which (some) square number (has) to (some) square number. And let it have been contrived that as E (is) to $B C$, so the (square) on A (is) to the (square) on $F G$, and as $B C$ (is) to $C D$, so the (square) on $F G$ (is) to the (square) on $G H$ [Prop. 10.6 corr.].

Therefore, since as E is to $B C$, so the (square) on A (is) to the (square) on $F G$, the (square) on A (is) thus commensurable with the (square) on $F G$ [Prop. 10.6]. And the (square) on A (is) rational. Thus, the (square) on $F G$ (is) also rational. Thus, $F G$ is also a rational (straight-line). And since E does not have to $B C$ the ratio which (some) square number (has) to (some) square number, the (square) on A thus does not have to the (square) on $F G$ the ratio which (some) square number (has) to (some) square number either. Thus, A is in-

 $\mu \eta$ ńx

 tò $\alpha \pi o ̀ ~ \tau n ̃ s ~ K . ~ o ́ ~ \delta e ̀ ~ Г В ~ \pi p o ̀ s ~ t o ̀ v ~ B \Delta ~ \lambda o ́ \gamma o v ~ o u ̛ x ~ ह ै \chi \varepsilon ા, ~ o ̋ v ~$

commensurable in length with $F G$ [Prop. 10.9]. Again, since as $B C$ is to $C D$, so the (square) on $F G$ (is) to the (square) on $G H$, the (square) on $F G$ (is) thus commensurable with the (square) on $G H$ [Prop. 10.6]. And the (square) on $F G$ (is) rational. Thus, the (square) on $G H$ (is) also rational. Thus, $G H$ (is) also rational. And since $B C$ does not have to $C D$ the ratio which (some) square number (has) to (some) square number, the (square) on $F G$ thus does not have to the (square) on $G H$ the ratio which (some) square (number) has to (some) square (number) either. Thus, $F G$ is incommensurable in length with $G H$ [Prop. 10.9]. And both are rational (straightlines). Thus, $F G$ and $G H$ are rational (straight-lines which are) commensurable in square only. Thus, $F H$ is an apotome [Prop. 10.73]. So, I say that (it is) also a sixth (apotome).

For since as E is to $B C$, so the (square) on A (is) to the (square) on $F G$, and as $B C$ (is) to $C D$, so the (square) on $F G$ (is) to the (square) on $G H$, thus, via equality, as E is to $C D$, so the (square) on A (is) to the (square) on $G H$ [Prop. 5.22]. And E does not have to $C D$ the ratio which (some) square number (has) to (some) square number. Thus, the (square) on A does not have to the (square) $G H$ the ratio which (some) square number (has) to (some) square number either. A is thus incommensurable in length with $G H$ [Prop. 10.9]. Thus, neither of $F G$ and $G H$ is commensurable in length with the rational (straight-line) A. Therefore, let the (square) on K be that (area) by which the (square) on $F G$ is greater than the (square) on $G H$ [Prop. 10.13 lem.]. Therefore, since as $B C$ is to $C D$, so the (square) on $F G$ (is) to the (square) on $G H$, thus, via conversion, as $C B$ is to $B D$, so the (square) on $F G$ (is) to the (square) on K [Prop. 5.19 corr.]. And $C B$ does not have to $B D$ the ratio which (some) square number (has) to (some) square number. Thus, the (square) on $F G$ does not have to the (square) on K the ratio which (some) square number (has) to (some) square number either. $F G$ is thus incommensurable in length with K [Prop. 10.9]. And the square on $F G$ is greater than (the square on) $G H$ by the (square) on K. Thus, the square on $F G$ is greater than (the square on) $G H$ by the (square) on (some straightline) incommensurable in length with $(F G)$. And neither of $F G$ and $G H$ is commensurable in length with the (previously) laid down rational (straight-line) A. Thus, $F H$ is a sixth apotome [Def. 10.16].

Thus, the sixth apotome $F H$ has been found. (Which is) the very thing it was required to show.

[^10]
$4 \alpha^{\prime}$.

 д̈ $\rho \alpha$ غ் $\chi \alpha \tau \varepsilon ́ \rho \alpha \tau \widetilde{\omega} v \mathrm{AZ}, \mathrm{ZH} \sigma \dot{\mu} \mu \mu \varepsilon \tau \rho o ́ s ~ \varepsilon ̇ \sigma \tau \iota ~ \mu \dot{\eta}\langle\varepsilon \iota . ~ \dot{\alpha} \lambda \lambda \dot{\alpha} \dot{\eta}$

Proposition 91

If an area is contained by a rational (straight-line) and a first apotome then the square-root of the area is an apotome.

For let the area $A B$ have been contained by the rational (straight-line) $A C$ and the first apotome $A D$. I say that the square-root of area $A B$ is an apotome.

For since $A D$ is a first apotome, let $D G$ be its attachment. Thus, $A G$ and $D G$ are rational (straight-lines which are) commensurable in square only [Prop. 10.73]. And the whole, $A G$, is commensurable (in length) with the (previously) laid down rational (straight-line) $A C$, and the square on $A G$ is greater than (the square on) $G D$ by the (square) on (some straight-line) commensurable in length with $(A G)$ [Def. 10.11]. Thus, if (an area) equal to the fourth part of the (square) on $D G$ is applied to $A G$, falling short by a square figure, then it divides ($A G$) into (parts which are) commensurable (in length) [Prop. 10.17]. Let $D G$ have been cut in half at E. And let (an area) equal to the (square) on $E G$ have been applied to $A G$, falling short by a square figure. And let it be the (rectangle contained) by $A F$ and $F G . A F$ is thus commensurable (in length) with $F G$. And let $E H, F I$, and $G K$ have been drawn through points E, F, and G (respectively), parallel to $A C$.

And since $A F$ is commensurable in length with $F G$, $A G$ is thus also commensurable in length with each of $A F$ and $F G$ [Prop. 10.15]. But $A G$ is commensurable (in length) with $A C$. Thus, each of $A F$ and $F G$ is also commensurable in length with $A C$ [Prop. 10.12]. And $A C$ is a rational (straight-line). Thus, $A F$ and $F G$ (are) each also rational (straight-lines). Hence, $A I$ and $F K$ are also each rational (areas) [Prop. 10.19]. And since $D E$ is commensurable in length with $E G, D G$ is thus also commensurable in length with each of $D E$ and $E G$ [Prop. 10.15]. And $D G$ (is) rational, and incommensurable in length with $A C . D E$ and $E G$ (are) thus each rational, and incommensurable in length with $A C$ [Prop. 10.13]. Thus, $D H$ and $E K$ are each medial (areas) [Prop. 10.21].

So let the square $L M$, equal to $A I$, be laid down. And let the square $N O$, equal to $F K$, have been sub-

' β^{\prime}.

tracted (from $L M$), having with it the common angle $L P M$. Thus, the squares $L M$ and $N O$ are about the same diagonal [Prop. 6.26]. Let $P R$ be their (common) diagonal, and let the (rest of the) figure have been drawn. Therefore, since the rectangle contained by $A F$ and $F G$ is equal to the square $E G$, thus as $A F$ is to $E G$, so $E G$ (is) to $F G$ [Prop. 6.17]. But, as $A F$ (is) to $E G$, so $A I$ (is) to $E K$, and as $E G$ (is) to $F G$, so $E K$ is to $K F$ [Prop. 6.1]. Thus, $E K$ is the mean proportional to $A I$ and $K F$ [Prop. 5.11]. And $M N$ is also the mean proportional to $L M$ and $N O$, as shown before [Prop. 10.53 lem.]. And $A I$ is equal to the square $L M$, and $K F$ to $N O$. Thus, $M N$ is also equal to $E K$. But, $E K$ is equal to $D H$, and $M N$ to $L O$ [Prop. 1.43]. Thus, $D K$ is equal to the gnomon $U V W$ and $N O$. And $A K$ is also equal to (the sum of) the squares $L M$ and $N O$. Thus, the remainder $A B$ is equal to $S T$. And $S T$ is the square on $L N$. Thus, the square on $L N$ is equal to $A B$. Thus, $L N$ is the square-root of $A B$. So, I say that $L N$ is an apotome.

For since $A I$ and $F K$ are each rational (areas), and are equal to $L M$ and $N O$ (respectively), thus $L M$ and $N O$-that is to say, the (squares) on each of $L P$ and $P N$ (respectively) -are also each rational (areas). Thus, $L P$ and $P N$ are also each rational (straight-lines). Again, since $D H$ is a medial (area), and is equal to $L O, L O$ is thus also a medial (area). Therefore, since $L O$ is medial, and $N O$ rational, $L O$ is thus incommensurable with $N O$. And as $L O$ (is) to $N O$, so $L P$ is to $P N$ [Prop. 6.1]. $L P$ is thus incommensurable in length with $P N$ [Prop. 10.11]. And they are both rational (straightlines). Thus, $L P$ and $P N$ are rational (straight-lines which are) commensurable in square only. Thus, $L N$ is an apotome [Prop. 10.73]. And it is the square-root of area $A B$. Thus, the square-root of area $A B$ is an apotome.

Thus, if an area is contained by a rational (straightline), and so on

Proposition 92

If an area is contained by a rational (straight-line) and a second apotome then the square-root of the area is a first apotome of a medial (straight-line).

 $\pi \rho o ̀ s ~ \tau \grave{\eta} \nu \mathrm{ZH} \cdot \dot{\alpha} \lambda \lambda \lambda^{\prime} \dot{\omega} \varsigma \mu \mathrm{E} \nu \dot{\eta} \mathrm{AZ} \pi \rho o ̀ s ~ \tau \grave{\eta} \nu \mathrm{EH}$, oütcus tò AI

For let the area $A B$ have been contained by the rational (straight-line) $A C$ and the second apotome $A D$. I say that the square-root of area $A B$ is the first apotome of a medial (straight-line).

For let $D G$ be an attachment to $A D$. Thus, $A G$ and $G D$ are rational (straight-lines which are) commensurable in square only [Prop. 10.73], and the attachment $D G$ is commensurable (in length) with the (previously) laid down rational (straight-line) $A C$, and the square on the whole, $A G$, is greater than (the square on) the attachment, $G D$, by the (square) on (some straight-line) commensurable in length with $(A G)$ [Def. 10.12]. Therefore, since the square on $A G$ is greater than (the square on) $G D$ by the (square) on (some straight-line) commensurable (in length) with ($A G$), thus if (an area) equal to the fourth part of the (square) on $G D$ is applied to $A G$, falling short by a square figure, then it divides ($A G$) into (parts which are) commensurable (in length) [Prop. 10.17]. Therefore, let $D G$ have been cut in half at E. And let (an area) equal to the (square) on $E G$ have been applied to $A G$, falling short by a square figure. And let it be the (rectangle contained) by $A F$ and $F G$. Thus, $A F$ is commensurable in length with $F G . A G$ is thus also commensurable in length with each of $A F$ and $F G$ [Prop. 10.15]. And $A G$ (is) a rational (straight-line), and incommensurable in length with $A C . A F$ and $F G$ are thus also each rational (straight-lines), and incommensurable in length with $A C$ [Prop. 10.13]. Thus, $A I$ and $F K$ are each medial (areas) [Prop. 10.21]. Again, since $D E$ is commensurable (in length) with $E G$, thus $D G$ is also commensurable (in length) with each of $D E$ and $E G$ [Prop. 10.15]. But, $D G$ is commensurable in length with $A C$ [thus, $D E$ and $E G$ are also each rational, and commensurable in length with $A C]$. Thus, $D H$ and $E K$ are each rational (areas) [Prop. 10.19].

Therefore, let the square $L M$, equal to $A I$, have been constructed. And let $N O$, equal to $F K$, which is about the same angle $L P M$ as $L M$, have been subtracted (from $L M$). Thus, the squares $L M$ and $N O$ are about the same diagonal [Prop. 6.26]. Let $P R$ be their (common) diagonal, and let the (rest of the) figure have been drawn. Therefore, since $A I$ and $F K$ are medial (areas), and are equal to the (squares) on $L P$ and $P N$ (respectively), [thus] the (squares) on $L P$ and $P N$ are also medial. Thus, $L P$ and $P N$ are also medial (straight-lines which are) commensurable in square only. ${ }^{\dagger}$ And since the (rectangle contained) by $A F$ and $F G$ is equal to the (square) on $E G$, thus as $A F$ is to $E G$, so $E G$ (is) to $F G$ [Prop. 10.17]. But, as $A F$ (is) to $E G$, so $A I$ (is) to $E K$. And as $E G$ (is) to $F G$, so $E K$ [is] to $F K$ [Prop. 6.1]. Thus, $E K$ is the mean proportional to $A I$

and $F K$ [Prop. 5.11]. And $M N$ is also the mean proportional to the squares $L M$ and $N O$ [Prop. 10.53 lem.]. And $A I$ is equal to $L M$, and $F K$ to $N O$. Thus, $M N$ is also equal to $E K$. But, $D H$ [is] equal to $E K$, and $L O$ equal to $M N$ [Prop. 1.43]. Thus, the whole (of) $D K$ is equal to the gnomon $U V W$ and $N O$. Therefore, since the whole (of) $A K$ is equal to $L M$ and $N O$, of which $D K$ is equal to the gnomon $U V W$ and $N O$, the remainder $A B$ is thus equal to $T S$. And $T S$ is the (square) on $L N$. Thus, the (square) on $L N$ is equal to the area $A B . L N$ is thus the square-root of area $A B$. [So], I say that $L N$ is the first apotome of a medial (straight-line).

For since $E K$ is a rational (area), and is equal to $L O, L O$-that is to say, the (rectangle contained) by $L P$ and $P N$-is thus a rational (area). And $N O$ was shown (to be) a medial (area). Thus, $L O$ is incommensurable with $N O$. And as $L O$ (is) to $N O$, so $L P$ is to $P N$ [Prop. 6.1]. Thus, $L P$ and $P N$ are incommensurable in length [Prop. 10.11]. $L P$ and $P N$ are thus medial (straight-lines which are) commensurable in square only, and which contain a rational (area). Thus, $L N$ is the first apotome of a medial (straight-line) [Prop. 10.74]. And it is the square-root of area $A B$.

Thus, the square root of area $A B$ is the first apotome of a medial (straight-line). (Which is) the very thing it was required to show.
\dagger There is an error in the argument here. It should just say that $L P$ and $P N$ are commensurable in square, rather than in square only, since $L P$ and $P N$ are only shown to be incommensurable in length later on.

$$
4 \gamma^{\prime}
$$

"E $\sigma \tau \omega$ ү $\alpha \rho \tau \tilde{n} \mathrm{~A} \Delta \pi \rho o \sigma \alpha \rho \mu o ́ \zeta o v \sigma \alpha \dot{\eta} \Delta \mathrm{H} \cdot \alpha i \mathrm{AH}, \mathrm{H} \Delta$

Proposition 93

If an area is contained by a rational (straight-line) and a third apotome then the square-root of the area is a second apotome of a medial (straight-line).

For let the area $A B$ have been contained by the rational (straight-line) $A C$ and the third apotome $A D$. I say that the square-root of area $A B$ is the second apotome of a medial (straight-line).

For let $D G$ be an attachment to $A D$. Thus, $A G$ and $G D$ are rational (straight-lines which are) commensurable in square only [Prop. 10.73], and neither of $A G$ and $G D$ is commensurable in length with the (previ-

 $\tau \tilde{n} \mathrm{~A} \Gamma \pi \alpha \rho \alpha ́ \lambda \lambda \eta \lambda$ оı $\alpha \mathrm{E}$ E, ZI, HK• $\sigma u ́ \mu \mu \varepsilon \tau \rho o l ~ \alpha ̈ p \alpha ~ \varepsilon i \sigma i \nu ~ \alpha i ~$

 $\mu \dot{\eta} x \varepsilon \iota, x \alpha i ̀ \dot{\eta} \Delta \mathrm{H} \alpha{ }_{\alpha} \rho \alpha$ غ́x $\alpha \tau \varepsilon ́ \rho \alpha \tau \widetilde{\omega} \nu \Delta \mathrm{E}$, $\mathrm{EH} \sigma \dot{\prime} \mu \mu \varepsilon \tau \rho o ́ s$ ह̇ $\sigma \tau \iota$

 $\mu \dot{\eta} x \varepsilon \iota \dot{\eta} \mathrm{AH} \tau \tilde{n} \mathrm{H} \Delta$. $\alpha \lambda \lambda^{\circ} \dot{\eta} \mu \varepsilon ̀ \nu \mathrm{AH} \tau \tilde{n} \mathrm{AZ} \sigma u ́ \mu \mu \varepsilon \tau \rho o ́ \varsigma ~ \varepsilon ̇ \sigma \tau \iota$

 EK• $\dot{\alpha} \sigma u ́ \mu \mu \varepsilon \tau \rho o \nu \alpha \not p \alpha ~ \varepsilon ̇ \sigma \tau i ̀ ~ \tau o ̀ ~ A I ~ \tau \widetilde{̣}$ EK.

 ஸ́s $\dot{\eta} \mathrm{AZ} \pi \rho o ̀ s ~ \tau \dot{\eta} \nu \mathrm{EH}$, oút $\tau \omega \varsigma \dot{\eta} \mathrm{EH} \pi \rho o ̀ s ~ \tau \grave{\eta} \nu \mathrm{ZH} . \dot{\alpha} \lambda \lambda{ }^{\circ} \dot{\omega} \varsigma$

ously) laid down rational (straight-line) $A C$, and the square on the whole, $A G$, is greater than (the square on) the attachment, $D G$, by the (square) on (some straightline) commensurable (in length) with $(A G)$ [Def. 10.13]. Therefore, since the square on $A G$ is greater than (the square on) $G D$ by the (square) on (some straight-line) commensurable (in length) with $(A G)$, thus if (an area) equal to the fourth part of the square on $D G$ is applied to $A G$, falling short by a square figure, then it divides ($A G$) into (parts which are) commensurable (in length) [Prop. 10.17]. Therefore, let $D G$ have been cut in half at E. And let (an area) equal to the (square) on $E G$ have been applied to $A G$, falling short by a square figure. And let it be the (rectangle contained) by $A F$ and $F G$. And let $E H, F I$, and $G K$ have been drawn through points E, F, and G (respectively), parallel to $A C$. Thus, $A F$ and $F G$ are commensurable (in length). $A I$ (is) thus also commensurable with $F K$ [Props. 6.1, 10.11]. And since $A F$ and $F G$ are commensurable in length, $A G$ is thus also commensurable in length with each of $A F$ and $F G$ [Prop. 10.15]. And $A G$ (is) rational, and incommensurable in length with $A C$. Hence, $A F$ and $F G$ (are) also (rational, and incommensurable in length with $A C$) [Prop. 10.13]. Thus, $A I$ and $F K$ are each medial (areas) [Prop. 10.21]. Again, since $D E$ is commensurable in length with $E G, D G$ is also commensurable in length with each of $D E$ and $E G$ [Prop. 10.15]. And $G D$ (is) rational, and incommensurable in length with $A C$. Thus, $D E$ and $E G$ (are) each also rational, and incommensurable in length with $A C$ [Prop. 10.13]. $D H$ and $E K$ are thus each medial (areas) [Prop. 10.21]. And since $A G$ and $G D$ are commensurable in square only, $A G$ is thus incommensurable in length with $G D$. But, $A G$ is commensurable in length with $A F$, and $D G$ with $E G$. Thus, $A F$ is incommensurable in length with $E G$ [Prop. 10.13]. And as $A F$ (is) to $E G$, so $A I$ is to $E K$ [Prop. 6.1]. Thus, $A I$ is incommensurable with $E K$ [Prop. 10.11].

Therefore, let the square $L M$, equal to $A I$, have been constructed. And let $N O$, equal to $F K$, which is about the same angle as $L M$, have been subtracted (from $L M$). Thus, $L M$ and $N O$ are about the same diagonal [Prop. 6.26]. Let $P R$ be their (common) diagonal, and let the (rest of the) figure have been drawn. Therefore, since the (rectangle contained) by $A F$ and $F G$ is equal to the (square) on $E G$, thus as $A F$ is to $E G$, so $E G$ (is) to $F G$ [Prop. 6.17]. But, as $A F$ (is) to $E G$, so $A I$ is to $E K$ [Prop. 6.1]. And as $E G$ (is) to $F G$, so $E K$ is to $F K$ [Prop. 6.1]. And thus as $A I$ (is) to $E K$, so $E K$ (is) to $F K$ [Prop. 5.11]. Thus, $E K$ is the mean proportional to $A I$ and $F K$. And $M N$ is also the mean proportional to the squares $L M$ and $N O$ [Prop. 10.53 lem.]. And $A I$ is
 ठúvatal тò $\mathrm{AB} \chi \omega$ рíov.

40°.

equal to $L M$, and $F K$ to $N O$. Thus, $E K$ is also equal to $M N$. But, $M N$ is equal to $L O$, and $E K$ [is] equal to $D H$ [Prop. 1.43]. And thus the whole of $D K$ is equal to the gnomon $U V W$ and $N O$. And $A K$ (is) also equal to $L M$ and $N O$. Thus, the remainder $A B$ is equal to $S T$-that is to say, to the square on $L N$. Thus, $L N$ is the square-root of area $A B$. I say that $L N$ is the second apotome of a medial (straight-line).

For since $A I$ and $F K$ were shown (to be) medial (areas), and are equal to the (squares) on $L P$ and $P N$ (respectively), the (squares) on each of $L P$ and $P N$ (are) thus also medial. Thus, $L P$ and $P N$ (are) each medial (straight-lines). And since $A I$ is commensurable with $F K$ [Props. 6.1, 10.11], the (square) on $L P$ (is) thus also commensurable with the (square) on $P N$. Again, since $A I$ was shown (to be) incommensurable with $E K$, $L M$ is thus also incommensurable with $M N$-that is to say, the (square) on $L P$ with the (rectangle contained) by $L P$ and $P N$. Hence, $L P$ is also incommensurable in length with $P N$ [Props. 6.1, 10.11]. Thus, $L P$ and $P N$ are medial (straight-lines which are) commensurable in square only. So, I say that they also contain a medial (area).

For since $E K$ was shown (to be) a medial (area), and is equal to the (rectangle contained) by $L P$ and $P N$, the (rectangle contained) by $L P$ and $P N$ is thus also medial. Hence, $L P$ and $P N$ are medial (straight-lines which are) commensurable in square only, and which contain a medial (area). Thus, $L N$ is the second apotome of a medial (straight-line) [Prop. 10.75]. And it is the square-root of area $A B$.

Thus, the square-root of area $A B$ is the second apotome of a medial (straight-line). (Which is) the very thing it was required to show.

Proposition 94

If an area is contained by a rational (straight-line) and a fourth apotome then the square-root of the area is a minor (straight-line).

For let the area $A B$ have been contained by the rational (straight-line) $A C$ and the fourth apotome $A D$. I say that the square-root of area $A B$ is a minor (straight-

 тò $\mathrm{AI} \tau \widetilde{\square} \mathrm{ZK}$.

 χ срíov.

line). For let $D G$ be an attachment to $A D$. Thus, $A G$ and $D G$ are rational (straight-lines which are) commensurable in square only [Prop. 10.73], and $A G$ is commensurable in length with the (previously) laid down rational (straight-line) $A C$, and the square on the whole, $A G$, is greater than (the square on) the attachment, $D G$, by the square on (some straight-line) incommensurable in length with $(A G)$ [Def. 10.14]. Therefore, since the square on $A G$ is greater than (the square on) $G D$ by the (square) on (some straight-line) incommensurable in length with $(A G)$, thus if (some area), equal to the fourth part of the (square) on $D G$, is applied to $A G$, falling short by a square figure, then it divides ($A G$) into (parts which are) incommensurable (in length) [Prop. 10.18]. Therefore, let $D G$ have been cut in half at E, and let (some area), equal to the (square) on $E G$, have been applied to $A G$, falling short by a square figure, and let it be the (rectangle contained) by $A F$ and $F G$. Thus, $A F$ is incommensurable in length with $F G$. Therefore, let $E H$, $F I$, and $G K$ have been drawn through E, F, and G (respectively), parallel to $A C$ and $B D$. Therefore, since $A G$ is rational, and commensurable in length with $A C$, the whole (area) $A K$ is thus rational [Prop. 10.19]. Again, since $D G$ is incommensurable in length with $A C$, and both are rational (straight-lines), $D K$ is thus a medial (area) [Prop. 10.21]. Again, since $A F$ is incommensurable in length with $F G, A I$ (is) thus also incommensurable with $F K$ [Props. 6.1, 10.11].

Therefore, let the square $L M$, equal to $A I$, have been constructed. And let $N O$, equal to $F K$, (and) about the same angle, $L P M$, have been subtracted (from $L M$). Thus, the squares $L M$ and $N O$ are about the same diagonal [Prop. 6.26]. Let $P R$ be their (common) diagonal, and let the (rest of the) figure have been drawn. Therefore, since the (rectangle contained) by $A F$ and $F G$ is equal to the (square) on $E G$, thus, proportionally, as $A F$ is to $E G$, so $E G$ (is) to $F G$ [Prop. 6.17]. But, as $A F$ (is) to $E G$, so $A I$ is to $E K$, and as $E G$ (is) to $F G$, so $E K$ is to $F K$ [Prop. 6.1]. Thus, $E K$ is the mean proportional to $A I$ and $F K$ [Prop. 5.11]. And $M N$ is also the mean proportional to the squares $L M$ and $N O$ [Prop. 10.13 lem.], and $A I$ is equal to $L M$, and $F K$ to $N O$. $E K$ is thus also equal to $M N$. But, $D H$ is equal to $E K$, and $L O$ is equal to $M N$ [Prop. 1.43]. Thus, the whole of $D K$ is equal to the gnomon $U V W$ and $N O$. Therefore, since the whole of $A K$ is equal to the (sum of the) squares $L M$ and $N O$, of which $D K$ is equal to the gnomon $U V W$ and the square $N O$, the remainder $A B$ is thus equal to $S T$-that is to say, to the square on $L N$. Thus, $L N$ is the square-root of area $A B$. I say that $L N$ is the irrational (straight-line which is) called minor.

$$
\backslash \varepsilon^{\prime} .
$$

 દ̇のтเข.

For since $A K$ is rational, and is equal to the (sum of the) squares $L P$ and $P N$, the sum of the (squares) on $L P$ and $P N$ is thus rational. Again, since $D K$ is medial, and $D K$ is equal to twice the (rectangle contained) by $L P$ and $P N$, thus twice the (rectangle contained) by $L P$ and $P N$ is medial. And since $A I$ was shown (to be) incommensurable with $F K$, the square on $L P$ (is) thus also incommensurable with the square on $P N$. Thus, $L P$ and $P N$ are (straight-lines which are) incommensurable in square, making the sum of the squares on them rational, and twice the (rectangle contained) by them medial. $L N$ is thus the irrational (straight-line) called minor [Prop. 10.76]. And it is the square-root of area $A B$.

Thus, the square-root of area $A B$ is a minor (straightline). (Which is) the very thing it was required to show.

Proposition 95

If an area is contained by a rational (straight-line) and a fifth apotome then the square-root of the area is that (straight-line) which with a rational (area) makes a medial whole.

For let the area $A B$ have been contained by the rational (straight-line) $A C$ and the fifth apotome $A D$. I say that the square-root of area $A B$ is that (straight-line) which with a rational (area) makes a medial whole.

For let $D G$ be an attachment to $A D$. Thus, $A G$ and $D G$ are rational (straight-lines which are) commensurable in square only [Prop. 10.73], and the attachment $G D$ is commensurable in length the the (previously) laid down rational (straight-line) $A C$, and the square on the whole, $A G$, is greater than (the square on) the attachment, $D G$, by the (square) on (some straight-line) incommensurable (in length) with ($A G$) [Def. 10.15]. Thus, if (some area), equal to the fourth part of the (square) on $D G$, is applied to $A G$, falling short by a square figure, then it divides ($A G$) into (parts which are) incommensurable (in length) [Prop. 10.18]. Therefore, let $D G$ have been divided in half at point E, and let (some area), equal to the (square) on $E G$, have been applied to $A G$, falling short by a square figure, and let it be the (rectangle contained) by $A F$ and $F G$. Thus, $A F$ is incommensurable in length with $F G$. And since $A G$ is incommensurable

$$
\zeta r^{\prime} .
$$

 غ̇бтı.

 $\mathrm{H} \Delta$ p̀ntaí $\varepsilon i \sigma \iota ~ \delta u v a ́ \mu \varepsilon ı ~ \mu o ́ v o v ~ \sigma u ́ \mu \mu \varepsilon \tau \rho o l, ~ x a i ~ o u ̛ \delta \varepsilon \tau e ́ p \alpha ~$
in length with $C A$, and both are rational (straight-lines), $A K$ is thus a medial (area) [Prop. 10.21]. Again, since $D G$ is rational, and commensurable in length with $A C$, $D K$ is a rational (area) [Prop. 10.19].

Therefore, let the square $L M$, equal to $A I$, have been constructed. And let the square $N O$, equal to $F K$, (and) about the same angle, $L P M$, have been subtracted (from $N O$). Thus, the squares $L M$ and $N O$ are about the same diagonal [Prop. 6.26]. Let $P R$ be their (common) diagonal, and let (the rest of) the figure have been drawn. So, similarly (to the previous propositions), we can show that $L N$ is the square-root of area $A B$. I say that $L N$ is that (straight-line) which with a rational (area) makes a medial whole.

For since $A K$ was shown (to be) a medial (area), and is equal to (the sum of) the squares on $L P$ and $P N$, the sum of the (squares) on $L P$ and $P N$ is thus medial. Again, since $D K$ is rational, and is equal to twice the (rectangle contained) by $L P$ and $P N$, (the latter) is also rational. And since $A I$ is incommensurable with $F K$, the (square) on $L P$ is thus also incommensurable with the (square) on $P N$. Thus, $L P$ and $P N$ are (straight-lines which are) incommensurable in square, making the sum of the squares on them medial, and twice the (rectangle contained) by them rational. Thus, the remainder $L N$ is the irrational (straight-line) called that which with a rational (area) makes a medial whole [Prop. 10.77]. And it is the square-root of area $A B$.

Thus, the square-root of area $A B$ is that (straightline) which with a rational (area) makes a medial whole. (Which is) the very thing it was required to show.

Proposition 96

If an area is contained by a rational (straight-line) and a sixth apotome then the square-root of the area is that (straight-line) which with a medial (area) makes a medial whole.

For let the area $A B$ have been contained by the rational (straight-line) $A C$ and the sixth apotome $A D$. I say that the square-root of area $A B$ is that (straight-line) which with a medial (area) makes a medial whole.

For let $D G$ be an attachment to $A D$. Thus, $A G$ and

 $\alpha i \mathrm{AH}, \mathrm{H} \Delta$ ठuvá $\mu \varepsilon \iota \mu o ́ v o v ~ \sigma u ́ \mu \mu \varepsilon \tau \rho o i ́ ~ \varepsilon i \sigma เ \nu, ~ \alpha ̇ \sigma u ́ \mu \mu \varepsilon \tau \rho o s ~ « ้ p \alpha ~$

 $\mathrm{K} \Delta$.

 $\mu \varepsilon ́ \sigma o u ~ \mu \varepsilon ́ \sigma o v ~ \tau o ̀ ~ o ̋ \lambda o v ~ \pi o เ o u ̃ \sigma \alpha \cdot ~ \chi \alpha l ̀ ~ \delta u ́ v \alpha \tau \alpha l ~ \tau o ̀ ~ A B ~ \chi \omega p i ́ o v . ~$

$G D$ are rational (straight-lines which are) commensurable in square only [Prop. 10.73], and neither of them is commensurable in length with the (previously) laid down rational (straight-line) $A C$, and the square on the whole, $A G$, is greater than (the square on) the attachment, $D G$, by the (square) on (some straight-line) incommensurable in length with $(A G)$ [Def. 10.16]. Therefore, since the square on $A G$ is greater than (the square on) $G D$ by the (square) on (some straight-line) incommensurable in length with $(A G)$, thus if (some area), equal to the fourth part of square on $D G$, is applied to $A G$, falling short by a square figure, then it divides $(A G)$ into (parts which are) incommensurable (in length) [Prop. 10.18]. Therefore, let $D G$ have been cut in half at [point] E. And let (some area), equal to the (square) on $E G$, have been applied to $A G$, falling short by a square figure. And let it be the (rectangle contained) by $A F$ and $F G$. $A F$ is thus incommensurable in length with $F G$. And as $A F$ (is) to $F G$, so $A I$ is to $F K$ [Prop. 6.1]. Thus, $A I$ is incommensurable with $F K$ [Prop. 10.11]. And since $A G$ and $A C$ are rational (straight-lines which are) commensurable in square only, $A K$ is a medial (area) [Prop. 10.21]. Again, since $A C$ and $D G$ are rational (straight-lines which are) incommensurable in length, $D K$ is also a medial (area) [Prop. 10.21]. Therefore, since $A G$ and $G D$ are commensurable in square only, $A G$ is thus incommensurable in length with $G D$. And as $A G$ (is) to $G D$, so $A K$ is to $K D$ [Prop. 6.1]. Thus, $A K$ is incommensurable with $K D$ [Prop. 10.11].

Therefore, let the square $L M$, equal to $A I$, have been constructed. And let $N O$, equal to $F K$, (and) about the same angle, have been subtracted (from $L M$). Thus, the squares $L M$ and $N O$ are about the same diagonal [Prop. 6.26]. Let $P R$ be their (common) diagonal, and let (the rest of) the figure have been drawn. So, similarly to the above, we can show that $L N$ is the square-root of area $A B$. I say that $L N$ is that (straight-line) which with a medial (area) makes a medial whole.

For since $A K$ was shown (to be) a medial (area), and is equal to the (sum of the) squares on $L P$ and $P N$, the sum of the (squares) on $L P$ and $P N$ is medial. Again, since $D K$ was shown (to be) a medial (area), and is equal to twice the (rectangle contained) by $L P$ and $P N$, twice the (rectangle contained) by $L P$ and $P N$ is also medial. And since $A K$ was shown (to be) incommensurable with $D K$, [thus] the (sum of the) squares on $L P$ and $P N$ is also incommensurable with twice the (rectangle contained) by $L P$ and $P N$. And since $A I$ is incommensurable with $F K$, the (square) on $L P$ (is) thus also incommensurable with the (square) on $P N$. Thus, $L P$ and $P N$ are (straight-lines which are) incommensu-

Abstract

ζ^{\prime}. Tò $\alpha \pi o ̀ ~ \alpha \dot{\alpha} \pi o \tau o \mu \tilde{\eta} s ~ \pi \alpha p \alpha ̀ ~ \rho ́ \eta \tau \grave{\eta} \nu \pi \alpha p \alpha \beta \alpha \lambda \lambda o ́ \mu \varepsilon \nu o \nu \pi \lambda \alpha ́ \tau o s$ $\pi о เ \varepsilon \grave{~} \alpha \pi о \tau о \mu \grave{\nu} \nu \pi \rho \omega ́ \tau \eta \nu$.

 AB 亿̛бov $\pi \alpha \rho \alpha ̀ ~ \tau \grave{̀} \nu \Gamma \Delta \pi \alpha p \alpha \beta \varepsilon \beta \lambda \dot{\eta} \sigma \vartheta \omega$ тò $\Gamma \mathrm{E} \pi \lambda \alpha ́ \tau o \varsigma ~ \pi o เ o u ̃ \nu ~$

"E $\sigma \tau \omega$ үàp $\tau \tilde{n} \mathrm{AB} \pi \rho о \sigma \alpha \rho \mu o ́ \zeta o v \sigma \alpha \dot{\eta} \mathrm{BH}$ • ai $\alpha \rho \alpha \mathrm{AH}$,

rable in square, making the sum of the squares on them medial, and twice the (rectangle contained) by medial, and, furthermore, the (sum of the) squares on them incommensurable with twice the (rectangle contained) by them. Thus, $L N$ is the irrational (straight-line) called that which with a medial (area) makes a medial whole [Prop. 10.78]. And it is the square-root of area $A B$.

Thus, the square-root of area $(A B)$ is that (straightline) which with a medial (area) makes a medial whole. (Which is) the very thing it was required to show.

Proposition 97

The (square) on an apotome, applied to a rational (straight-line), produces a first apotome as breadth.

Let $A B$ be an apotome, and $C D$ a rational (straightline). And let $C E$, equal to the (square) on $A B$, have been applied to $C D$, producing $C F$ as breadth. I say that $C F$ is a first apotome.

For let $B G$ be an attachment to $A B$. Thus, $A G$ and $G B$ are rational (straight-lines which are) commensurable in square only [Prop. 10.73]. And let $C H$, equal to the (square) on $A G$, and $K L$, (equal) to the (square) on $B G$, have been applied to $C D$. Thus, the whole of $C L$ is equal to the (sum of the squares) on $A G$ and $G B$, of which $C E$ is equal to the (square) on $A B$. The remainder $F L$ is thus equal to twice the (rectangle contained) by $A G$ and $G B$ [Prop. 2.7]. Let $F M$ have been cut in half at point N. And let $N O$ have been drawn through N, parallel to $C D$. Thus, $F O$ and $L N$ are each equal to the (rectangle contained) by $A G$ and $G B$. And since the (sum of the squares) on $A G$ and $G B$ is rational, and $D M$ is equal to the (sum of the squares) on $A G$ and $G B, D M$ is thus rational. And it has been applied to the rational (straight-line) $C D$, producing $C M$ as breadth. Thus, $C M$ is rational, and commensurable in length with $C D$ [Prop. 10.20]. Again, since twice the (rectangle contained) by $A G$ and $G B$ is medial, and $F L$ (is) equal to twice the (rectangle contained) by $A G$ and $G B, F L$ (is) thus a medial (area). And it is applied to the rational (straight-line) $C D$, producing $F M$ as breadth. $F M$ is
 ठウ́, őtı каі $\pi \rho \omega ́ \tau \eta$.

 tò $\mathrm{K} \Lambda$, oứt $\omega \varsigma \dot{\eta} \Gamma \mathrm{K} \pi \rho o ̀ s ~ \tau \grave{\eta} \nu \mathrm{KM} \cdot \sigma u ́ \mu \mu \varepsilon \tau \rho o \varsigma ~ \alpha ้ p \alpha ~ \varepsilon ̇ \sigma \tau i \nu ~ \dot{\eta}$

 KM, x $\alpha i ́ ~ \varepsilon ̇ \sigma \tau \iota ~ \sigma u ́ \mu \mu \varepsilon \tau p o s ~ \dot{\eta} \Gamma K \tau \tilde{n} \mathrm{KM}, \dot{\eta} \alpha \nsim \alpha$ ГМ $\tau \tilde{\eta} \varsigma \mathrm{MZ}$

 $\dot{\alpha} \pi о \tau о \mu \dot{\prime}$ ध̇ $\sigma \tau \iota \pi \rho \omega ́ \tau \eta$.

$$
4 \eta^{\prime}
$$

Tò $\alpha \pi o ̀ ~ \mu \varepsilon ́ \sigma \eta s ~ \alpha \dot{\alpha} \pi о \tau o \mu \tilde{\eta} s ~ \pi \rho \omega ́ t \eta s ~ \pi \alpha \rho \alpha ̀ ~ \rho ं \eta t i ̀ \nu ~ \pi \alpha \rho \alpha-$

thus rational, and incommensurable in length with $C D$ [Prop. 10.22]. And since the (sum of the squares) on $A G$ and $G B$ is rational, and twice the (rectangle contained) by $A G$ and $G B$ medial, the (sum of the squares) on $A G$ and $G B$ is thus incommensurable with twice the (rectangle contained) by $A G$ and $G B$. And $C L$ is equal to the (sum of the squares) on $A G$ and $G B$, and $F L$ to twice the (rectangle contained) by $A G$ and $G B . D M$ is thus incommensurable with $F L$. And as $D M$ (is) to $F L$, so $C M$ is to $F M$ [Prop. 6.1]. $C M$ is thus incommensurable in length with $F M$ [Prop. 10.11]. And both are rational (straightlines). Thus, $C M$ and $M F$ are rational (straight-lines which are) commensurable in square only. $C F$ is thus an apotome [Prop. 10.73]. So, I say that (it is) also a first (apotome).

For since the (rectangle contained) by $A G$ and $G B$ is the mean proportional to the (squares) on $A G$ and $G B$ [Prop. 10.21 lem.], and $C H$ is equal to the (square) on $A G$, and $K L$ equal to the (square) on $B G$, and $N L$ to the (rectangle contained) by $A G$ and $G B, N L$ is thus also the mean proportional to $C H$ and $K L$. Thus, as $C H$ is to $N L$, so $N L$ (is) to $K L$. But, as $C H$ (is) to $N L$, so $C K$ is to $N M$, and as $N L$ (is) to $K L$, so $N M$ is to $K M$ [Prop. 6.1]. Thus, the (rectangle contained) by $C K$ and $K M$ is equal to the (square) on $N M$ that is to say, to the fourth part of the (square) on $F M$ [Prop. 6.17]. And since the (square) on $A G$ is commensurable with the (square) on $G B, C H$ [is] also commensurable with $K L$. And as $C H$ (is) to $K L$, so $C K$ (is) to $K M$ [Prop. 6.1]. $C K$ is thus commensurable (in length) with $K M$ [Prop. 10.11]. Therefore, since $C M$ and $M F$ are two unequal straight-lines, and the (rectangle contained) by $C K$ and $K M$, equal to the fourth part of the (square) on $F M$, has been applied to $C M$, falling short by a square figure, and $C K$ is commensurable (in length) with $K M$, the square on $C M$ is thus greater than (the square on) $M F$ by the (square) on (some straight-line) commensurable in length with ($C M$) [Prop. 10.17]. And $C M$ is commensurable in length with the (previously) laid down rational (straight-line) $C D$. Thus, $C F$ is a first apotome [Def. 10.15].

Thus, the (square) on an apotome, applied to a rational (straight-line), produces a first apotome as breadth. (Which is) the very thing it was required to show.

Proposition 98

The (square) on a first apotome of a medial (straightline), applied to a rational (straight-line), produces a second apotome as breadth.

Let $A B$ be a first apotome of a medial (straight-line),

 HB $\mu \varepsilon ́ \sigma \alpha l ~ \varepsilon i \sigma i ̀ ~ \delta u v \alpha ́ \mu \varepsilon ı ~ \mu o ́ v o v ~ \sigma u ́ \mu \mu \varepsilon \tau \rho o l ~ ค ̣ \eta \tau o ̀ v ~ \pi \varepsilon p l e ́ \chi o u \sigma \alpha l . ~$

 $\mathrm{Z} \Lambda$, oút

and $C D$ a rational (straight-line). And let $C E$, equal to the (square) on $A B$, have been applied to $C D$, producing $C F$ as breadth. I say that $C F$ is a second apotome.

For let $B G$ be an attachment to $A B$. Thus, $A G$ and $G B$ are medial (straight-lines which are) commensurable in square only, containing a rational (area) [Prop. 10.74]. And let $C H$, equal to the (square) on $A G$, have been applied to $C D$, producing $C K$ as breadth, and $K L$, equal to the (square) on $G B$, producing $K M$ as breadth. Thus, the whole of $C L$ is equal to the (sum of the squares) on $A G$ and $G B$. Thus, $C L$ (is) also a medial (area) [Props. 10.15, 10.23 corr.]. And it is applied to the rational (straight-line) $C D$, producing $C M$ as breadth. $C M$ is thus rational, and incommensurable in length with $C D$ [Prop. 10.22]. And since $C L$ is equal to the (sum of the squares) on $A G$ and $G B$, of which the (square) on $A B$ is equal to $C E$, the remainder, twice the (rectangle contained) by $A G$ and $G B$, is thus equal to $F L$ [Prop. 2.7]. And twice the (rectangle contained) by $A G$ and $G B$ [is] rational. Thus, $F L$ (is) rational. And it is applied to the rational (straight-line) $F E$, producing $F M$ as breadth. $F M$ is thus also rational, and commensurable in length with $C D$ [Prop. 10.20]. Therefore, since the (sum of the squares) on $A G$ and $G B$-that is to say, $C L$-is medial, and twice the (rectangle contained) by $A G$ and $G B-$ that is to say, $F L$-(is) rational, $C L$ is thus incommensurable with $F L$. And as $C L$ (is) to $F L$, so $C M$ is to $F M$ [Prop. 6.1]. Thus, $C M$ (is) incommensurable in length with $F M$ [Prop. 10.11]. And they are both rational (straight-lines). Thus, $C M$ and $M F$ are rational (straight-lines which are) commensurable in square only. $C F$ is thus an apotome [Prop. 10.73]. So, I say that (it is) also a second (apotome).

For let $F M$ have been cut in half at N. And let $N O$ have been drawn through (point) N, parallel to $C D$. Thus, $F O$ and $N L$ are each equal to the (rectangle contained) by $A G$ and $G B$. And since the (rectangle contained) by $A G$ and $G B$ is the mean proportional to the squares on $A G$ and $G B$ [Prop. 10.21 lem.], and the (square) on $A G$ is equal to $C H$, and the (rectangle contained) by $A G$ and $G B$ to $N L$, and the (square) on

 غ் $\alpha \cup \tilde{n} \mu \dot{\eta} x \varepsilon \iota . ~ x \alpha i ́ l ~ \varepsilon ̇ \sigma \tau เ \nu ~ \dot{\eta} \pi \rho о \sigma \alpha \rho \mu o ́ \zeta о \cup \sigma \alpha ~ \dot{\eta}$ ZM $\sigma \dot{\mu} \mu \mu \varepsilon \tau \rho о \varsigma ~$
 ठєutépa.

 ठєĭ̧al.

$4 \vartheta^{\prime}$.

 $\beta \alpha \lambda \lambda o ́ \mu \varepsilon \nu o \nu ~ \pi \lambda \alpha ́ \tau o \varsigma ~ \pi о เ \varepsilon \imath ̃ ~ \alpha ́ \pi о \tau о \mu \grave{\eta} \nu \tau \rho i ́ \tau \eta \nu . ~$

 $\mu \varepsilon ́ \sigma \alpha l ~ \varepsilon i \sigma i ̀ ~ \delta u v \alpha ́ \mu \varepsilon ı ~ \mu o ́ v o v ~ \sigma u ́ \mu \mu \varepsilon \tau \rho o l ~ \mu \varepsilon ́ \sigma o v ~ \pi \varepsilon p ı \varepsilon ́ \chi O \cup \sigma \alpha l . ~ \chi \alpha i ̀ ~$

$B G$ to $K L, N L$ is thus also the mean proportional to $C H$ and $K L$. Thus, as $C H$ is to $N L$, so $N L$ (is) to $K L$ [Prop. 5.11]. But, as $C H$ (is) to $N L$, so $C K$ is to $N M$, and as $N L$ (is) to $K L$, so $N M$ is to $M K$ [Prop. 6.1]. Thus, as $C K$ (is) to $N M$, so $N M$ is to $K M$ [Prop. 5.11]. The (rectangle contained) by $C K$ and $K M$ is thus equal to the (square) on $N M$ [Prop. 6.17]-that is to say, to the fourth part of the (square) on $F M$ [and since the (square) on $A G$ is commensurable with the (square) on $B G, C H$ is also commensurable with $K L$-that is to say, $C K$ with $K M]$. Therefore, since $C M$ and $M F$ are two unequal straight-lines, and the (rectangle contained) by $C K$ and $K M$, equal to the fourth part of the (square) on $M F$, has been applied to the greater $C M$, falling short by a square figure, and divides it into commensurable (parts), the square on $C M$ is thus greater than (the square on) $M F$ by the (square) on (some straight-line) commensurable in length with ($C M$) [Prop. 10.17]. The attachment $F M$ is also commensurable in length with the (previously) laid down rational (straight-line) $C D . C F$ is thus a second apotome [Def. 10.16].

Thus, the (square) on a first apotome of a medial (straight-line), applied to a rational (straight-line), produces a second apotome as breadth. (Which is) the very thing it was required to show.

Proposition 99

The (square) on a second apotome of a medial (straight-line), applied to a rational (straight-line), produces a third apotome as breadth.

Let $A B$ be the second apotome of a medial (straightline), and $C D$ a rational (straight-line). And let $C E$, equal to the (square) on $A B$, have been applied to $C D$, producing $C F$ as breadth. I say that $C F$ is a third apotome.

For let $B G$ be an attachment to $A B$. Thus, $A G$ and $G B$ are medial (straight-lines which are) commensurable in square only, containing a medial (area) [Prop. 10.75]. And let $C H$, equal to the (square) on $A G$, have been applied to $C D$, producing $C K$ as breadth. And let $K L$,

 $\dot{\eta}$ ГZ. $\lambda \varepsilon ́ \gamma \omega$ ón, ötı xail трítŋ.

 трín.

equal to the (square) on $B G$, have been applied to $K H$, producing $K M$ as breadth. Thus, the whole of $C L$ is equal to the (sum of the squares) on $A G$ and $G B$ [and the (sum of the squares) on $A G$ and $G B$ is medial]. $C L$ (is) thus also medial [Props. 10.15, 10.23 corr.]. And it has been applied to the rational (straight-line) $C D$, producing $C M$ as breadth. Thus, $C M$ is rational, and incommensurable in length with $C D$ [Prop. 10.22]. And since the whole of $C L$ is equal to the (sum of the squares) on $A G$ and $G B$, of which $C E$ is equal to the (square) on $A B$, the remainder $L F$ is thus equal to twice the (rectangle contained) by $A G$ and $G B$ [Prop. 2.7]. Therefore, let $F M$ have been cut in half at point N. And let $N O$ have been drawn parallel to $C D$. Thus, $F O$ and $N L$ are each equal to the (rectangle contained) by $A G$ and $G B$. And the (rectangle contained) by $A G$ and $G B$ (is) medial. Thus, $F L$ is also medial. And it is applied to the rational (straight-line) $E F$, producing $F M$ as breadth. $F M$ is thus rational, and incommensurable in length with $C D$ [Prop. 10.22]. And since $A G$ and $G B$ are commensurable in square only, $A G$ [is] thus incommensurable in length with $G B$. Thus, the (square) on $A G$ is also incommensurable with the (rectangle contained) by $A G$ and $G B$ [Props. 6.1, 10.11]. But, the (sum of the squares) on $A G$ and $G B$ is commensurable with the (square) on $A G$, and twice the (rectangle contained) by $A G$ and $G B$ with the (rectangle contained) by $A G$ and $G B$. The (sum of the squares) on $A G$ and $G B$ is thus incommensurable with twice the (rectangle contained) by $A G$ and $G B$ [Prop. 10.13]. But, $C L$ is equal to the (sum of the squares) on $A G$ and $G B$, and $F L$ is equal to twice the (rectangle contained) by $A G$ and $G B$. Thus, $C L$ is incommensurable with $F L$. And as $C L$ (is) to $F L$, so $C M$ is to $F M$ [Prop. 6.1]. $C M$ is thus incommensurable in length with $F M$ [Prop. 10.11]. And they are both rational (straight-lines). Thus, $C M$ and $M F$ are rational (straight-lines which are) commensurable in square only. $C F$ is thus an apotome [Prop. 10.73]. So, I say that (it is) also a third (apotome).

For since the (square) on $A G$ is commensurable with the (square) on $G B, C H$ (is) thus also commensurable with $K L$. Hence, $C K$ (is) also (commensurable in length) with $K M$ [Props. 6.1, 10.11]. And since the (rectangle contained) by $A G$ and $G B$ is the mean proportional to the (squares) on $A G$ and $G B$ [Prop. 10.21 lem.], and $C H$ is equal to the (square) on $A G$, and $K L$ equal to the (square) on $G B$, and $N L$ equal to the (rectangle contained) by $A G$ and $G B, N L$ is thus also the mean proportional to $C H$ and $K L$. Thus, as $C H$ is to $N L$, so $N L$ (is) to $K L$. But, as $C H$ (is) to $N L$, so $C K$ is to $N M$, and as $N L$ (is) to $K L$, so $N M$ (is) to $K M$ [Prop. 6.1].

$$
\rho^{\prime} \text {. }
$$

 बטү $\frac{1}{}$

Thus, as $C K$ (is) to $M N$, so $M N$ is to $K M$ [Prop. 5.11]. Thus, the (rectangle contained) by $C K$ and $K M$ is equal to the [(square) on $M N$-that is to say, to the] fourth part of the (square) on $F M$ [Prop. 6.17]. Therefore, since $C M$ and $M F$ are two unequal straight-lines, and (some area), equal to the fourth part of the (square) on $F M$, has been applied to $C M$, falling short by a square figure, and divides it into commensurable (parts), the square on $C M$ is thus greater than (the square on) $M F$ by the (square) on (some straight-line) commensurable (in length) with ($C M$) [Prop. 10.17]. And neither of $C M$ and $M F$ is commensurable in length with the (previously) laid down rational (straight-line) $C D . C F$ is thus a third apotome [Def. 10.13].

Thus, the (square) on a second apotome of a medial (straight-line), applied to a rational (straight-line), produces a third apotome as breadth. (Which is) the very thing it was required to show.

Proposition 100

The (square) on a minor (straight-line), applied to a rational (straight-line), produces a fourth apotome as breadth.

A
B \quad G

Let $A B$ be a minor (straight-line), and $C D$ a rational (straight-line). And let $C E$, equal to the (square) on $A B$, have been applied to the rational (straight-line) $C D$, producing $C F$ as breadth. I say that $C F$ is a fourth apotome.

For let $B G$ be an attachment to $A B$. Thus, $A G$ and $G B$ are incommensurable in square, making the sum of the squares on $A G$ and $G B$ rational, and twice the (rectangle contained) by $A G$ and $G B$ medial [Prop. 10.76]. And let $C H$, equal to the (square) on $A G$, have been applied to $C D$, producing $C K$ as breadth, and $K L$, equal to the (square) on $B G$, producing $K M$ as breadth. Thus, the whole of $C L$ is equal to the (sum of the squares) on $A G$ and $G B$. And the sum of the (squares) on $A G$ and $G B$ is rational. $C L$ is thus also rational. And it is applied to the rational (straight-line) $C D$, producing $C M$ as breadth. Thus, $C M$ (is) also rational, and commensurable in length with $C D$ [Prop. 10.20]. And since the

 غ̇எтì $\dot{\eta}$ ГZ. $\lambda \varepsilon ́ \gamma \omega$ [$\delta \dot{\eta}]$, ơтı x $\alpha \grave{l} \tau \varepsilon \tau \alpha ́ p \tau \eta . ~$

 $\mu \varepsilon ́ \sigma o \nu ~ \alpha ̉ v \alpha ́ \lambda o \gamma o ́ v ~ \varepsilon ̇ \sigma \tau \iota ~ \tau o ̀ ~ ن ́ \pi o ̀ ~ \tau డ ̃ \nu ~ A H, ~ H B, ~ x \alpha i ́ ~ \varepsilon ̇ \sigma \tau \iota \nu ~ l ̂ \sigma o v ~$

 $\dot{\eta} \alpha \not \rho \alpha$ ГZ $\dot{\alpha} \pi о \tau о \mu \dot{n}$ ह̉ $\sigma \tau l ~ \tau \varepsilon \tau \alpha ́ \rho \tau \eta . ~$

whole of $C L$ is equal to the (sum of the squares) on $A G$ and $G B$, of which $C E$ is equal to the (square) on $A B$, the remainder $F L$ is thus equal to twice the (rectangle contained) by $A G$ and $G B$ [Prop. 2.7]. Therefore, let $F M$ have been cut in half at point N. And let $N O$ have been drawn through N, parallel to either of $C D$ or $M L$. Thus, $F O$ and $N L$ are each equal to the (rectangle contained) by $A G$ and $G B$. And since twice the (rectangle contained) by $A G$ and $G B$ is medial, and is equal to $F L$, $F L$ is thus also medial. And it is applied to the rational (straight-line) $F E$, producing $F M$ as breadth. Thus, $F M$ is rational, and incommensurable in length with $C D$ [Prop. 10.22]. And since the sum of the (squares) on $A G$ and $G B$ is rational, and twice the (rectangle contained) by $A G$ and $G B$ medial, the (sum of the squares) on $A G$ and $G B$ is [thus] incommensurable with twice the (rectangle contained) by $A G$ and $G B$. And $C L$ (is) equal to the (sum of the squares) on $A G$ and $G B$, and $F L$ equal to twice the (rectangle contained) by $A G$ and $G B . C L$ [is] thus incommensurable with $F L$. And as $C L$ (is) to $F L$, so $C M$ is to $M F$ [Prop. 6.1]. $C M$ is thus incommensurable in length with $M F$ [Prop. 10.11]. And both are rational (straight-lines). Thus, $C M$ and $M F$ are rational (straight-lines which are) commensurable in square only. $C F$ is thus an apotome [Prop. 10.73]. [So], I say that (it is) also a fourth (apotome).

For since $A G$ and $G B$ are incommensurable in square, the (square) on $A G$ (is) thus also incommensurable with the (square) on $G B$. And $C H$ is equal to the (square) on $A G$, and $K L$ equal to the (square) on $G B$. Thus, $C H$ is incommensurable with $K L$. And as $C H$ (is) to $K L$, so $C K$ is to $K M$ [Prop. 6.1]. $C K$ is thus incommensurable in length with $K M$ [Prop. 10.11]. And since the (rectangle contained) by $A G$ and $G B$ is the mean proportional to the (squares) on $A G$ and $G B$ [Prop. 10.21 lem.], and the (square) on $A G$ is equal to $C H$, and the (square) on $G B$ to $K L$, and the (rectangle contained) by $A G$ and $G B$ to $N L, N L$ is thus the mean proportional to $C H$ and $K L$. Thus, as $C H$ is to $N L$, so $N L$ (is) to $K L$. But, as $C H$ (is) to $N L$, so $C K$ is to $N M$, and as $N L$ (is) to $K L$, so $N M$ is to $K M$ [Prop. 6.1]. Thus, as $C K$ (is) to $M N$, so $M N$ is to $K M$ [Prop. 5.11]. The (rectangle contained) by $C K$ and $K M$ is thus equal to the (square) on $M N$-that is to say, to the fourth part of the (square) on $F M$ [Prop. 6.17]. Therefore, since $C M$ and $M F$ are two unequal straight-lines, and the (rectangle contained) by $C K$ and $K M$, equal to the fourth part of the (square) on $M F$, has been applied to $C M$, falling short by a square figure, and divides it into incommensurable (parts), the square on $C M$ is thus greater than (the square on) $M F$ by the (square) on (some straight-line) incommensurable

$$
\rho \alpha^{\prime} .
$$

 $\dot{\alpha} \pi о \tau о \mu \grave{n}$ ह̀ $\sigma \tau \iota ~ \pi \varepsilon ́ \mu \pi \tau \eta$.

 òn, ötı жаі̀ $\pi \varepsilon ́ \mu \pi \tau \eta$.

(in length) with ($C M$) [Prop. 10.18]. And the whole of $C M$ is commensurable in length with the (previously) laid down rational (straight-line) $C D$. Thus, $C F$ is a fourth apotome [Def. 10.14].

Thus, the (square) on a minor, and so on ...

Proposition 101

The (square) on that (straight-line) which with a rational (area) makes a medial whole, applied to a rational (straight-line), produces a fifth apotome as breadth.

Let $A B$ be that (straight-line) which with a rational (area) makes a medial whole, and $C D$ a rational (straight-line). And let $C E$, equal to the (square) on $A B$, have been applied to $C D$, producing $C F$ as breadth. I say that $C F$ is a fifth apotome.

Let $B G$ be an attachment to $A B$. Thus, the straightlines $A G$ and $G B$ are incommensurable in square, making the sum of the squares on them medial, and twice the (rectangle contained) by them rational [Prop. 10.77]. And let $C H$, equal to the (square) on $A G$, have been applied to $C D$, and $K L$, equal to the (square) on $G B$. The whole of $C L$ is thus equal to the (sum of the squares) on $A G$ and $G B$. And the sum of the (squares) on $A G$ and $G B$ together is medial. Thus, $C L$ is medial. And it has been applied to the rational (straight-line) $C D$, producing $C M$ as breadth. $C M$ is thus rational, and incommensurable (in length) with $C D$ [Prop. 10.22]. And since the whole of $C L$ is equal to the (sum of the squares) on $A G$ and $G B$, of which $C E$ is equal to the (square) on $A B$, the remainder $F L$ is thus equal to twice the (rectangle contained) by $A G$ and $G B$ [Prop. 2.7]. Therefore, let $F M$ have been cut in half at N. And let $N O$ have been drawn through N, parallel to either of $C D$ or $M L$. Thus, $F O$ and $N L$ are each equal to the (rectangle contained) by $A G$ and $G B$. And since twice the (rectangle contained) by $A G$ and $G B$ is rational, and [is] equal to $F L, F L$ is thus rational. And it is applied to the rational (straight-line) $E F$, producing $F M$ as breadth. Thus, $F M$ is rational, and commensurable in length with $C D$ [Prop. 10.20]. And since $C L$ is medial, and $F L$ rational,

Tò α สò tñs $\mu \varepsilon \tau \grave{\alpha} \mu \varepsilon ́ \sigma o u ~ \mu \varepsilon ́ \sigma o v ~ t o ̀ ~ o ̈ \lambda o v ~ \pi o เ o u ́ \sigma \eta s ~ \pi \alpha p \alpha ̀ ~$

"E $\sigma \tau \omega \dot{\eta} \mu \varepsilon \tau \grave{\alpha} \mu \varepsilon ́ \sigma o u ~ \mu \varepsilon ́ \sigma o v ~ \tau o ̀ ~ o ̈ \lambda o v ~ \pi o เ o u ̃ \sigma \alpha ~ \dot{\eta} \mathrm{AB}, \dot{\rho} \eta \tau \grave{\eta}$

 AH, HB $\mu \varepsilon ́ \sigma o \nu ~ x \alpha i ~ \alpha ̆ \sigma u ́ \mu \mu \varepsilon \tau \rho o \nu ~ \tau \grave{\alpha} \alpha \dot{\alpha} \pi o ̀ ~ \tau \widetilde{\omega} \nu \mathrm{AH}, \mathrm{HB} \tau \widetilde{\varphi}$
$C L$ is thus incommensurable with $F L$. And as $C L$ (is) to $F L$, so $C M$ (is) to $M F$ [Prop. 6.1]. $C M$ is thus incommensurable in length with $M F$ [Prop. 10.11]. And both are rational. Thus, $C M$ and $M F$ are rational (straightlines which are) commensurable in square only. $C F$ is thus an apotome [Prop. 10.73]. So, I say that (it is) also a fifth (apotome).

For, similarly (to the previous propositions), we can show that the (rectangle contained) by $C K M$ is equal to the (square) on $N M$-that is to say, to the fourth part of the (square) on $F M$. And since the (square) on $A G$ is incommensurable with the (square) on $G B$, and the (square) on $A G$ (is) equal to $C H$, and the (square) on $G B$ to $K L, C H$ (is) thus incommensurable with $K L$. And as $C H$ (is) to $K L$, so $C K$ (is) to $K M$ [Prop. 6.1]. Thus, $C K$ (is) incommensurable in length with $K M$ [Prop. 10.11]. Therefore, since $C M$ and $M F$ are two unequal straight-lines, and (some area), equal to the fourth part of the (square) on $F M$, has been applied to $C M$, falling short by a square figure, and divides it into incommensurable (parts), the square on $C M$ is thus greater than (the square on) $M F$ by the (square) on (some straight-line) incommensurable (in length) with ($C M$) [Prop. 10.18]. And the attachment $F M$ is commensurable with the (previously) laid down rational (straightline) $C D$. Thus, $C F$ is a fifth apotome [Def. 10.15]. (Which is) the very thing it was required to show.

Proposition 102

The (square) on that (straight-line) which with a medial (area) makes a medial whole, applied to a rational (straight-line), produces a sixth apotome as breadth.

Let $A B$ be that (straight-line) which with a medial (area) makes a medial whole, and $C D$ a rational (straight-line). And let $C E$, equal to the (square) on $A B$, have been applied to $C D$, producing $C F$ as breadth. I say that $C F$ is a sixth apotome.

For let $B G$ be an attachment to $A B$. Thus, $A G$ and $G B$ are incommensurable in square, making the sum of the squares on them medial, and twice the (rectangle
 $\mu \varepsilon ̀ v ~ \alpha ̇ o ̀ ~ \tau \tilde{\eta} \varsigma ~ A H$ '̛oov tò $\Gamma \Theta \pi \lambda \alpha ́ \tau o s ~ \pi o เ o u ̃ \nu ~ \tau \eta ̀ \nu ~ \Gamma K, ~ \tau \widetilde{̣}$

 $\dot{\eta} \Gamma \mathrm{M}$ трòs $\tau \grave{\eta} \nu \mathrm{MZ}$ • $\alpha \sigma \dot{\prime} \mu \mu \varepsilon \tau \rho \circ \varsigma$ ä $\rho \alpha$ ह̇ $\sigma \tau i \nu \dot{\eta} \Gamma \mathrm{M} \tau \tilde{n} \mathrm{MZ}$

 $\alpha \dot{\alpha} o ̀ ~ \tau \widetilde{\omega} \nu \mathrm{AH}, \mathrm{HB} \mu \varepsilon ́ \sigma o \nu ~ \alpha ̀ \nu \alpha ́ \lambda o \gamma o ́ v ~ \varepsilon ̇ \sigma \tau \iota ~ \tau o ̀ ~ u ́ \pi o ̀ ~ \tau \widetilde{\omega} \nu \mathrm{AH}$,

contained) by $A G$ and $G B$ medial, and the (sum of the squares) on $A G$ and $G B$ incommensurable with twice the (rectangle contained) by $A G$ and $G B$ [Prop. 10.78]. Therefore, let $C H$, equal to the (square) on $A G$, have been applied to $C D$, producing $C K$ as breadth, and $K L$, equal to the (square) on $B G$. Thus, the whole of $C L$ is equal to the (sum of the squares) on $A G$ and $G B$. $C L$ [is] thus also medial. And it is applied to the rational (straight-line) $C D$, producing $C M$ as breadth. Thus, $C M$ is rational, and incommensurable in length with $C D$ [Prop. 10.22]. Therefore, since $C L$ is equal to the (sum of the squares) on $A G$ and $G B$, of which $C E$ (is) equal to the (square) on $A B$, the remainder $F L$ is thus equal to twice the (rectangle contained) by $A G$ and $G B$ [Prop. 2.7]. And twice the (rectangle contained) by $A G$ and $G B$ (is) medial. Thus, $F L$ is also medial. And it is applied to the rational (straight-line) $F E$, producing $F M$ as breadth. $F M$ is thus rational, and incommensurable in length with $C D$ [Prop. 10.22]. And since the (sum of the squares) on $A G$ and $G B$ is incommensurable with twice the (rectangle contained) by $A G$ and $G B$, and $C L$ equal to the (sum of the squares) on $A G$ and $G B$, and $F L$ equal to twice the (rectangle contained) by $A G$ and $G B, C L$ [is] thus incommensurable with $F L$. And as $C L$ (is) to $F L$, so $C M$ is to $M F$ [Prop. 6.1]. Thus, $C M$ is incommensurable in length with $M F$ [Prop. 10.11]. And they are both rational. Thus, $C M$ and $M F$ are rational (straight-lines which are) commensurable in square only. $C F$ is thus an apotome [Prop. 10.73]. So, I say that (it is) also a sixth (apotome).

For since $F L$ is equal to twice the (rectangle contained) by $A G$ and $G B$, let $F M$ have been cut in half at N, and let $N O$ have been drawn through N, parallel to $C D$. Thus, $F O$ and $N L$ are each equal to the (rectangle contained) by $A G$ and $G B$. And since $A G$ and $G B$ are incommensurable in square, the (square) on $A G$ is thus incommensurable with the (square) on $G B$. But, $C H$ is equal to the (square) on $A G$, and $K L$ is equal to the (square) on $G B$. Thus, $C H$ is incommensurable with $K L$. And as $C H$ (is) to $K L$, so $C K$ is to $K M$ [Prop. 6.1]. Thus, $C K$ is incommensurable (in length) with $K M$ [Prop. 10.11]. And since the (rectangle contained) by $A G$ and $G B$ is the mean proportional to the (squares) on $A G$ and $G B$ [Prop. 10.21 lem.], and $C H$ is equal to the (square) on $A G$, and $K L$ equal to the (square) on $G B$, and $N L$ equal to the (rectangle contained) by $A G$ and $G B, N L$ is thus also the mean proportional to $C H$ and $K L$. Thus, as $C H$ is to $N L$, so $N L$ (is) to $K L$. And for the same (reasons as the preceding propositions), the square on $C M$ is greater than (the square on) $M F$ by the (square) on (some straight-line)
$p \gamma^{\prime}$.
 $\tau \alpha ́ \xi \varepsilon ા \dot{\eta} \alpha \dot{u} \tau \dot{\eta}$.

 rñ AB .

 AB].

 $\mathrm{Z} \Delta$.

incommensurable (in length) with ($C M$) [Prop. 10.18]. And neither of them is commensurable with the (previously) laid down rational (straight-line) $C D$. Thus, $C F$ is a sixth apotome [Def. 10.16]. (Which is) the very thing it was required to show.

Proposition 103

A (straight-line) commensurable in length with an apotome is an apotome, and (is) the same in order.

Let $A B$ be an apotome, and let $C D$ be commensurable in length with $A B$. I say that $C D$ is also an apotome, and (is) the same in order as $A B$.

For since $A B$ is an apotome, let $B E$ be an attachment to it. Thus, $A E$ and $E B$ are rational (straight-lines which are) commensurable in square only [Prop. 10.73]. And let it have been contrived that the (ratio) of $B E$ to $D F$ is the same as the ratio of $A B$ to $C D$ [Prop. 6.12]. Thus, also, as one is to one, (so) all [are] to all [Prop. 5.12]. And thus as the whole $A E$ is to the whole $C F$, so $A B$ (is) to $C D$. And $A B$ (is) commensurable in length with $C D . A E$ (is) thus also commensurable (in length) with $C F$, and $B E$ with $D F$ [Prop. 10.11]. And $A E$ and $B E$ are rational (straight-lines which are) commensurable in square only. Thus, $C F$ and $F D$ are also rational (straight-lines which are) commensurable in square only [Prop. 10.13]. [$C D$ is thus an apotome. So, I say that (it is) also the same in order as $A B$.]

Therefore, since as $A E$ is to $C F$, so $B E$ (is) to $D F$, thus, alternately, as $A E$ is to $E B$, so $C F$ (is) to $F D$ [Prop. 5.16]. So, the square on $A E$ is greater than (the square on) $E B$ either by the (square) on (some straight-line) commensurable, or by the (square) on (some straight-line) incommensurable, (in length) with ($A E$). Therefore, if the (square) on $A E$ is greater than (the square on) $E B$ by the (square) on (some straight-line) commensurable (in length) with ($A E$) then the square on $C F$ will also be greater than (the square on) $F D$ by the (square) on (some straight-line) commensurable (in length) with ($C F$) [Prop. 10.14]. And if $A E$ is commensurable in length with a (previously) laid down rational (straight-line) then so (is) $C F$ [Prop. 10.12], and if $B E$ (is commensurable), so (is) $D F$, and if neither of $A E$ or $E B$ (are commensurable), neither (are) either of $C F$ or $F D$ [Prop. 10.13]. And if the (square) on $A E$ is greater [than (the square on) $E B$] by the (square) on (some straight-line) incommensurable (in

 $\tau \alpha \dot{\xi} \varepsilon \iota \dot{\eta} \alpha \cup \dot{\tau} \dot{\eta} \tau \tilde{n} \mathrm{AB}$.

 BE трòs тウ̀̀ ΔZ. $\sigma u ́ \mu \mu \varepsilon \tau \rho o s ~ \alpha ̈ p \alpha ~[\varepsilon ̇ \sigma \tau i] ~ \chi \alpha i ̀ ~ \dot{\eta} \mathrm{AE} \mathrm{\tau} \mathrm{\tilde{} \mathrm{\eta}} \Gamma \mathrm{Z}$, $\dot{\eta}$ ठè $\mathrm{BE} \tau \tilde{\eta} \Delta \mathrm{Z}$. ai $\delta \grave{e ̀ ~} \mathrm{AE}$, $\mathrm{EB} \mu \varepsilon ́ \sigma \alpha l ~ \varepsilon i \sigma i ̀ ~ \delta u v \alpha ́ \mu \varepsilon ı ~ \mu o ́ v o v ~$

 x $\alpha \grave{1} \tau \tilde{n} \tau \alpha \xi \varepsilon ા ~ \varepsilon ̇ \sigma \tau i \nu ~ \dot{\eta} \alpha u ̉ \tau \grave{\eta} \tau \tilde{n} \mathrm{AB}$.
 $\pi \rho o ̀ s ~ \tau \grave{\eta} \nu \mathrm{Z} \Delta\left[\dot{\alpha} \lambda \lambda{ }^{\circ} \dot{\omega} \varsigma \mu \bar{\varepsilon} \nu \dot{\eta} \mathrm{AE} \pi \rho o ̀ s ~ \tau \grave{\eta} \nu \mathrm{~EB}\right.$, oü $\tau \omega \varsigma$ tò

 $\mathrm{Z} \Delta$.

length) with ($A E$) then the (square) on $C F$ will also be greater than (the square on) $F D$ by the (square) on (some straight-line) incommensurable (in length) with ($C F$) [Prop. 10.14]. And if $A E$ is commensurable in length with a (previously) laid down rational (straightline), so (is) $C F$ [Prop. 10.12], and if $B E$ (is commensurable), so (is) $D F$, and if neither of $A E$ or $E B$ (are commensurable), neither (are) either of $C F$ or $F D$ [Prop. 10.13].

Thus, $C D$ is an apotome, and (is) the same in order as $A B$ [Defs. 10.11-10.16]. (Which is) the very thing it was required to show.

Proposition 104

A (straight-line) commensurable (in length) with an apotome of a medial (straight-line) is an apotome of a medial (straight-line), and (is) the same in order.

Let $A B$ be an apotome of a medial (straight-line), and let $C D$ be commensurable in length with $A B$. I say that $C D$ is also an apotome of a medial (straight-line), and (is) the same in order as $A B$.

For since $A B$ is an apotome of a medial (straightline), let $E B$ be an attachment to it. Thus, $A E$ and $E B$ are medial (straight-lines which are) commensurable in square only [Props. 10.74, 10.75]. And let it have been contrived that as $A B$ is to $C D$, so $B E$ (is) to $D F$ [Prop. 6.12]. Thus, $A E$ [is] also commensurable (in length) with $C F$, and $B E$ with $D F$ [Props. 5.12, 10.11]. And $A E$ and $E B$ are medial (straight-lines which are) commensurable in square only. $C F$ and $F D$ are thus also medial (straight-lines which are) commensurable in square only [Props. 10.23, 10.13]. Thus, $C D$ is an apotome of a medial (straight-line) [Props. 10.74, 10.75]. So, I say that it is also the same in order as $A B$.
[For] since as $A E$ is to $E B$, so $C F$ (is) to $F D$ [Props. 5.12, 5.16] [but as $A E$ (is) to $E B$, so the (square) on $A E$ (is) to the (rectangle contained) by $A E$ and $E B$, and as $C F$ (is) to $F D$, so the (square) on $C F$ (is) to the (rectangle contained) by $C F$ and $F D$], thus as the (square) on $A E$ is to the (rectangle contained) by $A E$ and $E B$, so the (square) on $C F$ also (is) to the (rectangle contained) by $C F$ and $F D$ [Prop. 10.21 lem.] [and, alternately, as the (square) on $A E$ (is) to the (square) on $C F$, so the (rectangle contained) by $A E$ and $E B$ (is) to the (rectangle contained) by $C F$ and $F D$]. And the (square) on $A E$ (is) commensurable with the (square)

 oứt

 tò $\dot{\alpha} \pi \grave{o}$ тñऽ $\mathrm{AE} \pi \rho o ̀ \varsigma ~ \tau o ̀ ~ u ́ \pi o ̀ ~ \tau \omega ̃ \nu ~ A E, ~ E B, ~ o u ̛ ̃ \omega \varsigma ~ \tau o ̀ ~ \alpha ́ \alpha o ̀ ~$

 $\dot{\cup} \pi^{\prime} \alpha u ̋ \tau \widetilde{\omega} \nu \mu \varepsilon ́ \sigma o \nu$.

on $C F$. Thus, the (rectangle contained) by $A E$ and $E B$ is also commensurable with the (rectangle contained) by $C F$ and $F D$ [Props. 5.16, 10.11]. Therefore, either the (rectangle contained) by $A E$ and $E B$ is rational, and the (rectangle contained) by $C F$ and $F D$ will also be rational [Def. 10.4], or the (rectangle contained) by $A E$ and $E B$ [is] medial, and the (rectangle contained) by $C F$ and $F D$ [is] also medial [Prop. 10.23 corr.].

Therefore, $C D$ is the apotome of a medial (straightline), and is the same in order as $A B$ [Props. 10.74, 10.75]. (Which is) the very thing it was required to show.

Proposition 105

A (straight-line) commensurable (in length) with a minor (straight-line) is a minor (straight-line).

For let $A B$ be a minor (straight-line), and (let) $C D$ (be) commensurable (in length) with $A B$. I say that $C D$ is also a minor (straight-line).

For let the same things have been contrived (as in the former proposition). And since $A E$ and $E B$ are (straight-lines which are) incommensurable in square [Prop. 10.76], $C F$ and $F D$ are thus also (straight-lines which are) incommensurable in square [Prop. 10.13]. Therefore, since as $A E$ is to $E B$, so $C F$ (is) to $F D$ [Props. 5.12, 5.16], thus also as the (square) on $A E$ is to the (square) on $E B$, so the (square) on $C F$ (is) to the (square) on $F D$ [Prop. 6.22]. Thus, via composition, as the (sum of the squares) on $A E$ and $E B$ is to the (square) on $E B$, so the (sum of the squares) on $C F$ and $F D$ (is) to the (square) on $F D$ [Prop. 5.18], [also alternately]. And the (square) on $B E$ is commensurable with the (square) on $D F$ [Prop. 10.104]. The sum of the squares on $A E$ and $E B$ (is) thus also commensurable with the sum of the squares on $C F$ and $F D$ [Prop. 5.16, 10.11]. And the sum of the (squares) on $A E$ and $E B$ is rational [Prop. 10.76]. Thus, the sum of the (squares) on $C F$ and $F D$ is also rational [Def. 10.4]. Again, since as the (square) on $A E$ is to the (rectangle contained) by $A E$ and $E B$, so the (square) on $C F$ (is) to the (rectangle contained) by $C F$ and $F D$ [Prop. 10.21 lem.], and the square on $A E$ (is) commensurable with the square on $C F$, the (rectangle contained) by $A E$ and $E B$ is thus also commensurable with the (rectangle contained) by $C F$ and $F D$. And the (rectangle contained) by $A E$ and $E B$ (is) medial [Prop. 10.76]. Thus, the (rectangle contained) by $C F$ and $F D$ (is) also medial [Prop. 10.23 corr.]. $C F$ and

Abstract

$p q^{\prime}$. ${ }^{`} H$ тñ $\mu \varepsilon \tau \alpha ̀ ~ \rho ́ \eta \tau o u ̃ ~ \mu \varepsilon ́ \sigma o v ~ \tau o ̀ ~ o ̈ \lambda o v ~ \pi o เ o u ́ \sigma n ~ \sigma u ́ \mu \mu \varepsilon \tau \rho o s ~$

 tò ö̀ov π oเoũ $\sigma \alpha ́ ~ \varepsilon ̇ \sigma \tau เ \nu . ~$
＂E $\sigma \tau \omega \gamma \dot{\alpha} \rho \tau \tilde{n} \mathrm{AB} \pi \rho o \sigma \alpha \rho \mu o ́ \zeta o v \sigma \alpha \dot{\eta} \mathrm{BE} \cdot \alpha \mathrm{AE}, \mathrm{EB}$ 的 α
 $\tau \widetilde{\omega} \nu \dot{\alpha} \pi o ̀ ~ \tau \widetilde{\omega} \nu \mathrm{AE}, \mathrm{EB} \tau \varepsilon \tau \rho \alpha \gamma \dot{\omega} \nu \omega \nu \mu \varepsilon ́ \sigma o \nu$ ，七ò $\delta^{\prime} \dot{\cup} \pi^{\prime} \alpha \cup \tau \widetilde{\omega} \nu$

 EB，xai $\sigma u ́ \mu \mu \varepsilon \tau \rho o ́ v ~ \varepsilon ̇ \sigma \tau l ~ t o ̀ ~ \sigma u \gamma x \varepsilon i ́ \mu \varepsilon v o v ~ \varepsilon ่ x ~ \tau \widetilde{\omega} \nu ~ \dot{\alpha} \pi o ̀ ~ \tau \widetilde{\omega} \nu$
 $\mathrm{Z} \Delta$ тєтраү⿳㇒⿵冂一兀⿴囗⿱一一

$$
\rho \zeta^{\prime} .
$$

${ }^{3} \mathrm{E} \sigma \tau \omega \mu \varepsilon \tau \grave{\alpha} \mu \varepsilon ́ \sigma o \cup \mu \varepsilon ́ \sigma o \nu$ đò ö̀ov π oเoṽ $\sigma \alpha \dot{\eta} \mathrm{AB}, x \alpha \grave{\imath} \tau \tilde{\eta}$
$F D$ are thus（straight－lines which are）incommensurable in square，making the sum of the squares on them ratio－ nal，and the（rectangle contained）by them medial．

Thus，$C D$ is a minor（straight－line）［Prop．10．76］． （Which is）the very thing it was required to show．

Proposition 106

A（straight－line）commensurable（in length）with a （straight－line）which with a rational（area）makes a me－ dial whole is a（straight－line）which with a rational（area） makes a medial whole．

Let $A B$ be a（straight－line）which with a rational （area）makes a medial whole，and（let）$C D$（be）com－ mensurable（in length）with $A B$ ．I say that $C D$ is also a （straight－line）which with a rational（area）makes a me－ dial（whole）．

For let $B E$ be an attachment to $A B$ ．Thus，$A E$ and $E B$ are（straight－lines which are）incommensurable in square，making the sum of the squares on $A E$ and $E B$ medial，and the（rectangle contained）by them rational ［Prop．10．77］．And let the same construction have been made（as in the previous propositions）．So，similarly to the previous（propositions），we can show that $C F$ and $F D$ are in the same ratio as $A E$ and $E B$ ，and the sum of the squares on $A E$ and $E B$ is commensurable with the sum of the squares on $C F$ and $F D$ ，and the（rectangle contained）by $A E$ and $E B$ with the（rectangle contained） by $C F$ and $F D$ ．Hence，$C F$ and $F D$ are also（straight－ lines which are）incommensurable in square，making the sum of the squares on $C F$ and $F D$ medial，and the（rect－ angle contained）by them rational．
$C D$ is thus a（straight－line）which with a rational （area）makes a medial whole［Prop．10．77］．（Which is） the very thing it was required to show．

Proposition 107

A（straight－line）commensurable（in length）with a （straight－line）which with a medial（area）makes a me－ dial whole is itself also a（straight－line）which with a me－ dial（area）makes a medial whole．

Let $A B$ be a（straight－line）which with a medial（area）
 $\mu \varepsilon ́ \sigma o \nu ~ \tau o ̀ ~ o ̈ \lambda o \nu ~ \pi o เ o u ̃ \sigma \alpha ́ ~ \varepsilon ̇ \sigma \tau \tau \nu . ~$

 $\mu \varepsilon ́ \sigma o \nu ~ \chi \alpha i ̀ ~ t o ̀ ~ ن ́ \pi ’ ~ \alpha u ̉ \tau \widetilde{\omega \nu} \mu \varepsilon ́ \sigma o \nu ~ \chi \alpha i ~ ह ै \tau ा ~ \alpha ̇ \sigma u ́ \mu \mu \varepsilon \tau р о \nu ~ \tau o ̀ ~$

 $\tau \rho \alpha \gamma \omega \dot{\nu} \omega \nu] \tau \widetilde{\varphi} \dot{\sim} \pi^{\prime} \alpha \cup \tau \widetilde{\omega} \nu$.
 ӧ $\pi \varepsilon \rho$ है $\delta \varepsilon \iota ~ \delta \varepsilon і ̈ \xi \alpha$.

$$
\rho \eta^{\prime}
$$

'A ơtı $\dot{\eta}$ tò $\lambda о \iota \pi o ̀ v ~ \delta u v \alpha \mu e ́ v \eta ~ \tau o ̀ ~ E \Gamma ~ \mu i ́ \alpha ~ \delta u ́ o ~ \alpha ́ \lambda o ́ \gamma \omega \nu ~ \gamma i ́ v e \tau \alpha l ~$

makes a medial whole, and let $C D$ be commensurable (in length) with $A B$. I say that $C D$ is also a (straight-line) which with a medial (area) makes a medial whole.

For let $B E$ be an attachment to $A B$. And let the same construction have been made (as in the previous propositions). Thus, $A E$ and $E B$ are (straight-lines which are) incommensurable in square, making the sum of the squares on them medial, and the (rectangle contained) by them medial, and, further, the sum of the squares on them incommensurable with the (rectangle contained) by them [Prop. 10.78]. And, as was shown (previously), $A E$ and $E B$ are commensurable (in length) with $C F$ and $F D$ (respectively), and the sum of the squares on $A E$ and $E B$ with the sum of the squares on $C F$ and $F D$, and the (rectangle contained) by $A E$ and $E B$ with the (rectangle contained) by $C F$ and $F D$. Thus, $C F$ and $F D$ are also (straight-lines which are) incommensurable in square, making the sum of the squares on them medial, and the (rectangle contained) by them medial, and, further, the sum of the [squares] on them incommensurable with the (rectangle contained) by them.

Thus, $C D$ is a (straight-line) which with a medial (area) makes a medial whole [Prop. 10.78]. (Which is) the very thing it was required to show.

Proposition 108

A medial (area) being subtracted from a rational (area), one of two irrational (straight-lines) arise (as) the square-root of the remaining area-either an apotome, or a minor (straight-line).

For let the medial (area) $B D$ have been subtracted from the rational (area) $B C$. I say that one of two irrational (straight-lines) arise (as) the square-root of the remaining (area), $E C$-either an apotome, or a minor (straight-line).

For let the rational (straight-line) $F G$ have been laid out, and let the right-angled parallelogram $G H$, equal to $B C$, have been applied to $F G$, and let $G K$, equal to $D B$, have been subtracted (from $G H$). Thus, the remainder $E C$ is equal to $L H$. Therefore, since $B C$ is a rational (area), and $B D$ a medial (area), and $B C$ (is) equal to

 бициદ́трои $\hat{\eta}$ oű.
 ӨZ бú $\mu \mu \varepsilon \tau \rho о \varsigma ~ \tau \tilde{n}$ ह̉xx

$p \vartheta^{\prime}$.

 ớtı $\dot{\eta}$ tò $\lambda о \iota \pi o ̀ v ~ \tau o ̀ ~ E \Gamma ~ \delta u v \alpha \mu e ́ v \eta ~ \mu i ́ \alpha ~ \delta u ́ o ~ \alpha ̀ \lambda o ́ \gamma \omega \nu ~ \gamma i v e \tau \alpha l ~$

${ }^{3}$ Еxx

 ג̇лò $\alpha \sigma \cup \mu \mu$ étpou.
$G H$, and $B D$ to $G K, G H$ is thus a rational (area), and $G K$ a medial (area). And they are applied to the rational (straight-line) $F G$. Thus, $F H$ (is) rational, and commensurable in length with $F G$ [Prop. 10.20], and $F K$ (is) also rational, and incommensurable in length with $F G$ [Prop. 10.22]. Thus, $F H$ is incommensurable in length with $F K$ [Prop. 10.13]. $F H$ and $F K$ are thus rational (straight-lines which are) commensurable in square only. Thus, $K H$ is an apotome [Prop. 10.73], and $K F$ an attachment to it. So, the square on $H F$ is greater than (the square on) $F K$ by the (square) on (some straightline which is) either commensurable, or not (commensurable), (in length with $H F$).

First, let the square (on it) be (greater) by the (square) on (some straight-line which is) commensurable (in length with $H F$). And the whole of $H F$ is commensurable in length with the (previously) laid down rational (straight-line) $F G$. Thus, $K H$ is a first apotome [Def. 10.1]. And the square-root of an (area) contained by a rational (straight-line) and a first apotome is an apotome [Prop. 10.91]. Thus, the square-root of $L H$-that is to say, (of) $E C$-is an apotome.

And if the square on $H F$ is greater than (the square on) $F K$ by the (square) on (some straight-line which is) incommensurable (in length) with ($H F$), and (since) the whole of FH is commensurable in length with the (previously) laid down rational (straight-line) $F G, K H$ is a fourth apotome [Prop. 10.14]. And the square-root of an (area) contained by a rational (straight-line) and a fourth apotome is a minor (straight-line) [Prop. 10.94]. (Which is) the very thing it was required to show.

Proposition 109

A rational (area) being subtracted from a medial (area), two other irrational (straight-lines) arise (as the square-root of the remaining area)-either a first apotome of a medial (straight-line), or that (straight-line) which with a rational (area) makes a medial whole.

For let the rational (area) $B D$ have been subtracted from the medial (area) $B C$. I say that one of two irrational (straight-lines) arise (as) the square-root of the remaining (area), $E C$-either a first apotome of a medial (straight-line), or that (straight-line) which with a rational (area) makes a medial whole.

For let the rational (straight-line) $F G$ be laid down, and let similar areas (to the preceding proposition) have been applied (to it). So, accordingly, $F H$ is rational, and incommensurable in length with $F G$, and $K F$ (is) also rational, and commensurable in length with $F G$. Thus, $F H$ and $F K$ are rational (straight-lines which are) com-

 ӧ $\pi \varepsilon \rho$ है $\delta \varepsilon \iota ~ \delta \varepsilon i ̋ \xi \alpha เ . ~$

pi'.

 $\mu \varepsilon \tau \alpha ̀ \mu \varepsilon ́ \sigma o u ~ \mu \varepsilon ́ \sigma o v ~ t o ̀ ~ o ̈ \lambda o v ~ \pi o เ o v ̃ \sigma \alpha . ~$
'А φ пр

mensurable in square only [Prop. 10.13]. $K H$ is thus an apotome [Prop. 10.73], and $F K$ an attachment to it. So, the square on $H F$ is greater than (the square on) $F K$ either by the (square) on (some straight-line) commensurable (in length) with ($H F$), or by the (square) on (some straight-line) incommensurable (in length with $H F$).

Therefore, if the square on $H F$ is greater than (the square on) $F K$ by the (square) on (some straight-line) commensurable (in length) with ($H F$), and (since) the attachment $F K$ is commensurable in length with the (previously) laid down rational (straight-line) $F G, K H$ is a second apotome [Def. 10.12]. And $F G$ (is) rational. Hence, the square-root of $L H$-that is to say, (of) $E C$-is a first apotome of a medial (straight-line) [Prop. 10.92].

And if the square on $H F$ is greater than (the square on) $F K$ by the (square) on (some straight-line) incommensurable (in length with $H F$), and (since) the attachment $F K$ is commensurable in length with the (previously) laid down rational (straight-line) $F G, K H$ is a fifth apotome [Def. 10.15]. Hence, the square-root of $E C$ is that (straight-line) which with a rational (area) makes a medial whole [Prop. 10.95]. (Which is) the very thing it was required to show.

Proposition 110

A medial (area), incommensurable with the whole, being subtracted from a medial (area), the two remaining irrational (straight-lines) arise (as) the (square-root of the area) -either a second apotome of a medial (straightline), or that (straight-line) which with a medial (area) makes a medial whole.

For, as in the previous figures, let the medial (area) $B D$, incommensurable with the whole, have been subtracted from the medial (area) $B C$. I say that the squareroot of $E C$ is one of two irrational (straight-lines) either a second apotome of a medial (straight-line), or that (straight-line) which with a medial (area) makes a medial whole.

For since $B C$ and $B D$ are each medial (areas), and $B C$ (is) incommensurable with $B D$, accordingly, $F H$ and $F K$ will each be rational (straight-lines), and incommensurable in length with $F G$ [Prop. 10.22]. And since $B C$ is incommensurable with $B D$-that is to say, $G H$ with $G K-H F$ (is) also incommensurable (in length) with $F K$ [Props. 6.1, 10.11]. Thus, $F H$ and $F K$ are rational (straight-lines which are) commensurable in square only. $K H$ is thus as apotome [Prop. 10.73], [and $F K$ an attachment (to it). So, the square on $F H$ is greater than (the square on) $F K$ either by the (square) on (some straight-line) commensurable, or by the (square) on (some straight-line) incommensurable, (in length) with $(F H)$.]

So, if the square on $F H$ is greater than (the square on) $F K$ by the (square) on (some straight-line) commensurable (in length) with ($F H$), and (since) neither of $F H$ and $F K$ is commensurable in length with the (previously) laid down rational (straight-line) $F G, K H$ is a third apotome [Def. 10.3]. And $K L$ (is) rational. And the rectangle contained by a rational (straight-line) and a third apotome is irrational, and the square-root of it is that irrational (straight-line) called a second apotome of a medial (straight-line) [Prop. 10.93]. Hence, the squareroot of $L H$-that is to say, (of) $E C$-is a second apotome of a medial (straight-line).

And if the square on $F H$ is greater than (the square on) $F K$ by the (square) on (some straight-line) incommensurable [in length] with ($F H$), and (since) neither of $H F$ and $F K$ is commensurable in length with $F G, K H$ is a sixth apotome [Def. 10.16]. And the square-root of the (rectangle contained) by a rational (straight-line) and a sixth apotome is that (straight-line) which with a medial (area) makes a medial whole [Prop. 10.96]. Thus, the square-root of $L H$-that is to say, (of) $E C$-is that (straight-line) which with a medial (area) makes a medial whole. (Which is) the very thing it was required to
show.
pi α^{\prime}.

 $\tau \tilde{n}$ èx δ ல́o óvoú́t $\tau \omega$.

Proposition 111

An apotome is not the same as a binomial.

Let $A B$ be an apotome. I say that $A B$ is not the same as a binomial.

For, if possible, let it be (the same). And let a rational (straight-line) $D C$ be laid down. And let the rectangle $C E$, equal to the (square) on $A B$, have been applied to $C D$, producing $D E$ as breadth. Therefore, since $A B$ is an apotome, $D E$ is a first apotome [Prop. 10.97]. Let $E F$ be an attachment to it. Thus, $D F$ and $F E$ are rational (straight-lines which are) commensurable in square only, and the square on $D F$ is greater than (the square on) $F E$ by the (square) on (some straight-line) commensurable (in length) with ($D F$), and $D F$ is commensurable in length with the (previously) laid down rational (straightline) $D C$ [Def. 10.10]. Again, since $A B$ is a binomial, $D E$ is thus a first binomial [Prop. 10.60]. Let ($D E$) have been divided into its (component) terms at G, and let $D G$ be the greater term. Thus, $D G$ and $G E$ are rational (straight-lines which are) commensurable in square only, and the square on $D G$ is greater than (the square on) $G E$ by the (square) on (some straight-line) commensurable (in length) with ($D G$), and the greater (term) $D G$ is commensurable in length with the (previously) laid down rational (straight-line) $D C$ [Def. 10.5]. Thus, $D F$ is also commensurable in length with $D G$ [Prop. 10.12]. The remainder $G F$ is thus commensurable in length with $D F$ [Prop. 10.15]. [Therefore, since $D F$ is commensurable with $G F$, and $D F$ is rational, $G F$ is thus also rational. Therefore, since $D F$ is commensurable in length with $G F] D$,$F (is) incommensurable in length with E F$. Thus, $F G$ is also incommensurable in length with $E F$ [Prop. 10.13]. $G F$ and $F E$ [are] thus rational (straightlines which are) commensurable in square only. Thus,

Abstract

[Пópıб μ.]

Tò $\mu \varepsilon ̀ v ~ \gamma \alpha ̀ \rho ~ \alpha ̇ \pi o ̀ ~ \mu \varepsilon ́ \sigma \eta s ~ \pi \alpha p \alpha ̀ ~ \rho ं \eta t \eta ̀ \nu ~ \pi \alpha p \alpha \beta \alpha \lambda \lambda o ́ \mu \varepsilon v o v ~$ то $\mu \grave{\eta} \nu \pi \varepsilon ́ \mu \pi \tau \eta \nu$, тò $\delta \varepsilon ̀ ~ \alpha ́ \alpha o ̀ ~ \tau n ̃ s ~ \mu \varepsilon \tau \alpha ̀ ~ \mu \varepsilon ́ \sigma o u ~ \mu \varepsilon ́ \sigma o v ~ \tau o ̀ ~ o ̋ \lambda o v ~$ $\pi \dot{\alpha} \sigma \alpha \varsigma \dot{\alpha} \lambda o ́ \gamma o u s \overline{\mathfrak{l}}$,

$E G$ is an apotome [Prop. 10.73]. But, (it is) also rational. The very thing is impossible.

Thus, an apotome is not the same as a binomial. (Which is) the very thing it was required to show.

[Corollary]

The apotome and the irrational (straight-lines) after it are neither the same as a medial (straight-line) nor (the same) as one another.

For the (square) on a medial (straight-line), applied to a rational (straight-line), produces as breadth a rational (straight-line which is) incommensurable in length with the (straight-line) to which (the area) is applied [Prop. 10.22]. And the (square) on an apotome, applied to a rational (straight-line), produces as breadth a first apotome [Prop. 10.97]. And the (square) on a first apotome of a medial (straight-line), applied to a rational (straight-line), produces as breadth a second apotome [Prop. 10.98]. And the (square) on a second apotome of a medial (straight-line), applied to a rational (straightline), produces as breadth a third apotome [Prop. 10.99]. And (square) on a minor (straight-line), applied to a rational (straight-line), produces as breadth a fourth apotome [Prop. 10.100]. And (square) on that (straight-line) which with a rational (area) produces a medial whole, applied to a rational (straight-line), produces as breadth a fifth apotome [Prop. 10.101]. And (square) on that (straight-line) which with a medial (area) produces a medial whole, applied to a rational (straight-line), produces as breadth a sixth apotome [Prop. 10.102]. Therefore, since the aforementioned breadths differ from the first (breadth), and from one another-from the first, because it is rational, and from one another since they are not the same in order-clearly, the irrational (straightlines) themselves also differ from one another. And since it has been shown that an apotome is not the same as a binomial [Prop. 10.111], and (that) the (irrational straight-lines) after the apotome, being applied to a rational (straight-line), produce as breadth, each according to its own (order), apotomes, and (that) the (irrational straight-lines) after the binomial themselves also (produce as breadth), according (to their) order, binomials, the (irrational straight-lines) after the apotome are thus different, and the (irrational straight-lines) after the binomial (are also) different, so that there are, in order, 13 irrational (straight-lines) in all:

Méбทレ，

＇Еぇ δ ט́o $\mu \varepsilon ́ \sigma \omega \nu \pi \rho \omega ́ \tau \eta \nu$,
＇Еथ ठúo $\mu \varepsilon ́ \sigma \omega \nu ~ \delta \varepsilon \cup \tau \varepsilon ́ p \alpha \nu$,
Mعіًova，

Δ ט́o $\mu \varepsilon ́ \sigma \alpha ~ \delta u v \alpha \mu \varepsilon ́ v \eta \nu, ~$
＇Алотоци́v，
Méons à $\pi о \tau о \mu \grave{\nu} \nu \pi \rho \omega ́ \tau \eta \nu$ ，

＇E入人́ббov α ，

Meт $\alpha \mu \varepsilon ́ \sigma o u ~ \mu \varepsilon ́ \sigma o \nu ~ \tau o ̀ ~ o ̈ \lambda o \nu ~ \pi o เ o u ̃ \sigma \alpha \nu . ~$
pi β^{\prime} ．
Tò á $\pi o ̀ ~ p ̊ \eta \tau n ̃ s ~ \pi \alpha p \alpha ̀ ~ \tau \eta ̀ \nu ~ ह ̉ x ~ \delta u ́ o ~ o ̉ v o \mu \alpha ́ \tau \omega \nu ~ \pi \alpha p \alpha-~$

 ėx ठúo ỏvo $\alpha \dot{\alpha} \tau \omega \nu$ ．

 ӨK $\pi \rho o ̀ s ~ o ̈ \lambda \eta \nu ~ \tau \grave{\eta} \nu \mathrm{KZ}$ ह̇ $\sigma \tau \nu, \dot{\omega} \varsigma \dot{\eta} \mathrm{ZK} \pi \rho o ̀ s ~ K E \cdot \dot{\omega} \varsigma ~ \gamma \dot{\alpha} \rho$ हैv

Medial，
Binomial，
First bimedial，
Second bimedial，
Major，
Square－root of a rational plus a medial（area），
Square－root of（the sum of）two medial（areas），
Apotome，
First apotome of a medial，
Second apotome of a medial，
Minor，
That which with a rational（area）produces a medial whole，

That which with a medial（area）produces a medial whole．

Proposition 112^{\dagger}

The（square）on a rational（straight－line），applied to a binomial（straight－line），produces as breadth an apo－ tome whose terms are commensurable（in length）with the terms of the binomial，and，furthermore，in the same ratio．Moreover，the created apotome will have the same order as the binomial．

Let A be a rational（straight－line），and $B C$ a binomial （straight－line），of which let $D C$ be the greater term．And let the（rectangle contained）by $B C$ and $E F$ be equal to the（square）on A ．I say that $E F$ is an apotome whose terms are commensurable（in length）with $C D$ and $D B$ ， and in the same ratio，and，moreover，that $E F$ will have the same order as $B C$ ．

For，again，let the（rectangle contained）by $B D$ and G be equal to the（square）on A ．Therefore，since the（rect－ angle contained）by $B C$ and $E F$ is equal to the（rectan－ gle contained）by $B D$ and G ，thus as $C B$ is to $B D$ ，so G （is）to $E F$［Prop．6．16］．And $C B$（is）greater than $B D$ ． Thus，G is also greater than $E F$［Props．5．16，5．14］．Let $E H$ be equal to G ．Thus，as $C B$ is to $B D$ ，so $H E$（is）to $E F$ ．Thus，via separation，as $C D$ is to $B D$ ，so $H F$（is） to $F E$［Prop．5．17］．Let it have been contrived that as $H F$（is）to $F E$ ，so $F K$（is）to $K E$ ．And，thus，the whole $H K$ is to the whole $K F$ ，as $F K$（is）to $K E$ ．For as one of the leading（proportional magnitudes is）to one of the

 KE $\alpha \nu \alpha ́ \lambda o \gamma o ́ v ~ \varepsilon i \sigma เ \nu . ~ \sigma u ́ \mu \mu \varepsilon \tau p o s ~ \alpha ้ p \alpha ~ \dot{\eta} \Theta K ~ \tau \tilde{n} K E \mu \eta ́ x \varepsilon เ . ~$

 «̈p α モ̇ $\sigma \tau i \nu \dot{\eta}$ EZ.
 $\dot{\varepsilon} \alpha \cup \tau \tilde{n} \hat{\eta} \tau \widetilde{\varphi} \alpha \dot{\alpha} \pi \grave{\alpha} \alpha{ }^{\alpha} \sigma \cup \mu \mu \varepsilon ́ \tau \rho o \cup$.

following, so all of the leading (magnitudes) are to all of the following [Prop. 5.12]. And as $F K$ (is) to $K E$, so $C D$ is to $D B$ [Prop. 5.11]. And, thus, as $H K$ (is) to $K F$, so $C D$ is to $D B$ [Prop. 5.11]. And the (square) on $C D$ (is) commensurable with the (square) on $D B$ [Prop. 10.36]. The (square) on $H K$ is thus also commensurable with the (square) on $K F$ [Props. 6.22, 10.11]. And as the (square) on $H K$ is to the (square) on $K F$, so $H K$ (is) to $K E$, since the three (straight-lines) $H K, K F$, and $K E$ are proportional [Def. 5.9]. $H K$ is thus commensurable in length with $K E$ [Prop. 10.11]. Hence, $H E$ is also commensurable in length with $E K$ [Prop. 10.15]. And since the (square) on A is equal to the (rectangle contained) by $E H$ and $B D$, and the (square) on A is rational, the (rectangle contained) by $E H$ and $B D$ is thus also rational. And it is applied to the rational (straight-line) $B D$. Thus, $E H$ is rational, and commensurable in length with $B D$ [Prop. 10.20]. And, hence, the (straight-line) commensurable (in length) with it, $E K$, is also rational [Def. 10.3], and commensurable in length with $B D$ [Prop. 10.12]. Therefore, since as $C D$ is to $D B$, so $F K$ (is) to $K E$, and $C D$ and $D B$ are (straight-lines which are) commensurable in square only, $F K$ and $K E$ are also commensurable in square only [Prop. 10.11]. And $K E$ is rational. Thus, $F K$ is also rational. $F K$ and $K E$ are thus rational (straight-lines which are) commensurable in square only. Thus, $E F$ is an apotome [Prop. 10.73].

And the square on $C D$ is greater than (the square on) $D B$ either by the (square) on (some straight-line) commensurable, or by the (square) on (some straight-line) incommensurable, (in length) with ($C D$).

Therefore, if the square on $C D$ is greater than (the square on) $D B$ by the (square) on (some straight-line) commensurable (in length) with [$C D$] then the square on $F K$ will also be greater than (the square on) $K E$ by the (square) on (some straight-line) commensurable (in length) with ($F K$) [Prop. 10.14]. And if $C D$ is commensurable in length with a (previously) laid down rational (straight-line), (so) also (is) $F K$ [Props. 10.11, 10.12]. And if $B D$ (is commensurable), (so) also (is) $K E$ [Prop. 10.12]. And if neither of $C D$ or $D B$ (is commensurable), neither also (are) either of $F K$ or $K E$.

And if the square on $C D$ is greater than (the square on) $D B$ by the (square) on (some straight-line) incommensurable (in length) with ($C D$) then the square on $F K$ will also be greater than (the square on) $K E$ by the (square) on (some straight-line) incommensurable (in length) with ($F K$) [Prop. 10.14]. And if $C D$ is commensurable in length with a (previously) laid down rational (straight-line), (so) also (is) $F K$ [Props. 10.11, 10.12]. And if $B D$ (is commensurable), (so) also (is) $K E$
[Prop. 10.12]. And if neither of $C D$ or $D B$ (is commensurable), neither also (are) either of $F K$ or $K E$. Hence, $F E$ is an apotome whose terms, $F K$ and $K E$, are commensurable (in length) with the terms, $C D$ and $D B$, of the binomial, and in the same ratio. And $(F E)$ has the same order as $B C$ [Defs. 10.5-10.10]. (Which is) the very thing it was required to show.
${ }^{\dagger}$ Heiberg considers this proposition, and the succeeding ones, to be relatively early interpolations into the original text.

pir'.

$\underset{\vdash}{\mathrm{K}} \underset{\sim}{\mathrm{Z}} \quad \Theta$

 $\mathrm{B} \Delta, \mathrm{K} \Theta$, $\alpha v \alpha ́ \lambda o \gamma o v ~ \alpha \alpha p \alpha ~ \varepsilon ́ \sigma \tau i \nu ~ \dot{\omega} \varsigma \dot{\eta} \Gamma \mathrm{~B}$ трòs $\mathrm{B} \Delta$, oưt $\omega \varsigma \dot{\eta}$

 $\Gamma \Delta$, oút ω ц $\dot{\eta} \mathrm{K} \Theta$ трòs $\Theta \mathrm{E}$. үعүovét $\omega \dot{\omega} \varsigma \dot{\eta} \mathrm{K} \Theta$ трòs $\Theta \mathrm{E}$,

 ВГ, Г Δ бuvá $\mu \varepsilon ı \mu o ́ v o v ~[\varepsilon i \sigma i] ~ \sigma u ́ \mu \mu \varepsilon \tau \rho o l \cdot ~ \chi \alpha i ~ \alpha i ~ K Z, ~ Z \Theta ~ \alpha ̈ p \alpha ~$
 $\Theta \mathrm{E}, \dot{\eta} \mathrm{KZ}$ трòs $\mathrm{Z} \Theta, \dot{\alpha} \lambda \lambda^{\circ}$ ís $\dot{\eta} \mathrm{K} \Theta$ трòs $\Theta \mathrm{E}, \dot{\eta} \Theta \mathrm{Z}$ трòs

Proposition 113

The (square) on a rational (straight-line), applied to an apotome, produces as breadth a binomial whose terms are commensurable with the terms of the apotome, and in the same ratio. Moreover, the created binomial has the same order as the apotome.

Let A be a rational (straight-line), and $B D$ an apotome. And let the (rectangle contained) by $B D$ and $K H$ be equal to the (square) on A, such that the square on the rational (straight-line) A, applied to the apotome $B D$, produces $K H$ as breadth. I say that $K H$ is a binomial whose terms are commensurable with the terms of $B D$, and in the same ratio, and, moreover, that $K H$ has the same order as $B D$.

For let $D C$ be an attachment to $B D$. Thus, $B C$ and $C D$ are rational (straight-lines which are) commensurable in square only [Prop. 10.73]. And let the (rectangle contained) by $B C$ and G also be equal to the (square) on A. And the (square) on A (is) rational. The (rectangle contained) by $B C$ and G (is) thus also rational. And it has been applied to the rational (straight-line) $B C$. Thus, G is rational, and commensurable in length with $B C$ [Prop. 10.20]. Therefore, since the (rectangle contained) by $B C$ and G is equal to the (rectangle contained) by $B D$ and $K H$, thus, proportionally, as $C B$ is to $B D$, so $K H$ (is) to G [Prop. 6.16]. And $B C$ (is) greater than $B D$. Thus, $K H$ (is) also greater than G [Prop. 5.16, 5.14]. Let $K E$ be made equal to G. $K E$ is thus commensurable in length with $B C$. And since as $C B$ is to $B D$, so $H K$ (is) to $K E$, thus, via conversion, as $B C$ (is) to $C D$, so $K H$ (is) to $H E$ [Prop. 5.19 corr.]. Let it have been contrived that as $K H$ (is) to $H E$, so $H F$ (is) to $F E$. And thus the remainder $K F$ is to $F H$, as $K H$ (is) to $H E$-that is to say, [as] $B C$ (is) to $C D$ [Prop. 5.19]. And $B C$ and $C D$ [are] commensurable in square only.

 ठúo ỏvouát $\omega \nu$ ह̇бтì $\alpha \not p \alpha \dot{\eta} K \Theta$.

 $\tau \tilde{n}$ モ̇xx

 $\tau \widetilde{\omega} \nu \mathrm{B}, \Gamma \Delta$, oủठє $\frac{1}{\rho} \rho \alpha \tau \widetilde{\omega} \nu \mathrm{KZ}, \mathrm{Z} \Theta$.

$K F$ and $F H$ are thus also commensurable in square only [Prop. 10.11]. And since as $K H$ is to $H E$, (so) $K F$ (is) to $F H$, but as $K H$ (is) to $H E$, (so) $H F$ (is) to $F E$, thus, also as $K F$ (is) to $F H$, (so) $H F$ (is) to $F E$ [Prop. 5.11]. And hence as the first (is) to the third, so the (square) on the first (is) to the (square) on the second [Def. 5.9]. And thus as $K F$ (is) to $F E$, so the (square) on $K F$ (is) to the (square) on $F H$. And the (square) on $K F$ is commensurable with the (square) on $F H$. For $K F$ and $F H$ are commensurable in square. Thus, $K F$ is also commensurable in length with $F E$ [Prop. 10.11]. Hence, $K F$ [is] also commensurable in length with $K E$ [Prop. 10.15]. And $K E$ is rational, and commensurable in length with $B C$. Thus, $K F$ (is) also rational, and commensurable in length with $B C$ [Prop. 10.12]. And since as $B C$ is to $C D$, (so) $K F$ (is) to $F H$, alternately, as $B C$ (is) to $K F$, so $D C$ (is) to $F H$ [Prop. 5.16]. And $B C$ (is) commensurable (in length) with $K F$. Thus, $F H$ (is) also commensurable in length with $C D$ [Prop. 10.11]. And $B C$ and $C D$ are rational (straight-lines which are) commensurable in square only. $K F$ and $F H$ are thus also rational (straight-lines which are) commensurable in square only [Def. 10.3, Prop. 10.13]. Thus, $K H$ is a binomial [Prop. 10.36].

Therefore, if the square on $B C$ is greater than (the square on) $C D$ by the (square) on (some straight-line) commensurable (in length) with ($B C$), then the square on $K F$ will also be greater than (the square on) $F H$ by the (square) on (some straight-line) commensurable (in length) with ($K F$) [Prop. 10.14]. And if $B C$ is commensurable in length with a (previously) laid down rational (straight-line), (so) also (is) $K F$ [Prop. 10.12]. And if $C D$ is commensurable in length with a (previously) laid down rational (straight-line), (so) also (is) $F H$ [Prop. 10.12]. And if neither of $B C$ or $C D$ (are commensurable), neither also (are) either of $K F$ or $F H$ [Prop. 10.13].

And if the square on $B C$ is greater than (the square on) $C D$ by the (square) on (some straight-line) incommensurable (in length) with ($B C$) then the square on $K F$ will also be greater than (the square on) $F H$ by the (square) on (some straight-line) incommensurable (in length) with ($K F$) [Prop. 10.14]. And if $B C$ is commensurable in length with a (previously) laid down rational (straight-line), (so) also (is) $K F$ [Prop. 10.12]. And if $C D$ is commensurable, (so) also (is) $F H$ [Prop. 10.12]. And if neither of $B C$ or $C D$ (are commensurable), neither also (are) either of $K F$ or $F H$ [Prop. 10.13].
$K H$ is thus a binomial whose terms, $K F$ and $F H$, [are] commensurable (in length) with the terms, $B C$ and $C D$, of the apotome, and in the same ratio. Moreover,
pio'.

 $\lambda o ́ \gamma \varphi$.

 p̀ntท́ モ̇எтเข.
$K H$ will have the same order as $B C$ [Defs. 10.5-10.10]. (Which is) the very thing it was required to show.

Proposition 114

If an area is contained by an apotome, and a binomial whose terms are commensurable with, and in the same ratio as, the terms of the apotome then the square-root of the area is a rational (straight-line).

For let an area, the (rectangle contained) by $A B$ and $C D$, have been contained by the apotome $A B$, and the binomial $C D$, of which let the greater term be $C E$. And let the terms of the binomial, $C E$ and $E D$, be commensurable with the terms of the apotome, $A F$ and $F B$ (respectively), and in the same ratio. And let the square-root of the (rectangle contained) by $A B$ and $C D$ be G. I say that G is a rational (straight-line).

For let the rational (straight-line) H be laid down. And let (some rectangle), equal to the (square) on H, have been applied to $C D$, producing $K L$ as breadth. Thus, $K L$ is an apotome, of which let the terms, $K M$ and $M L$, be commensurable with the terms of the binomial, $C E$ and $E D$ (respectively), and in the same ratio [Prop. 10.112]. But, $C E$ and $E D$ are also commensurable with $A F$ and $F B$ (respectively), and in the same ratio. Thus, as $A F$ is to $F B$, so $K M$ (is) to $M L$. Thus, alternately, as $A F$ is to $K M$, so $B F$ (is) to $L M$ [Prop. 5.16]. Thus, the remainder $A B$ is also to the remainder $K L$ as $A F$ (is) to $K M$ [Prop. 5.19]. And $A F$ (is) commensurable with $K M$ [Prop. 10.12]. $A B$ is thus also commensurable with $K L$ [Prop. 10.11]. And as $A B$ is to $K L$, so the (rectangle contained) by $C D$ and $A B$ (is) to the (rectangle contained) by $C D$ and $K L$ [Prop. 6.1]. Thus, the (rectangle contained) by $C D$ and $A B$ is also commensurable with the (rectangle contained) by $C D$ and $K L$ [Prop. 10.11]. And the (rectangle contained) by $C D$ and $K L$ (is) equal to the (square) on H. Thus, the (rectangle contained) by $C D$ and $A B$ is commensurable with the (square) on H. And the (square) on G is equal to the (rectangle contained) by $C D$ and $A B$. The (square) on G

По́рьб μ.

Kaì үЕ́үovev ñuĩv xai סıà toútou pavepóv, ötı סuvatóv

ple'.

is thus commensurable with the (square) on H. And the (square) on H (is) rational. Thus, the (square) on G is also rational. G is thus rational. And it is the square-root of the (rectangle contained) by $C D$ and $A B$.

Thus, if an area is contained by an apotome, and a binomial whose terms are commensurable with, and in the same ratio as, the terms of the apotome, then the square-root of the area is a rational (straight-line).

Corollary

And it has also been made clear to us, through this, that it is possible for a rational area to be contained by irrational straight-lines. (Which is) the very thing it was required to show.

Proposition 115

An infinite (series) of irrational (straight-lines) can be created from a medial (straight-line), and none of them is the same as any of the preceding (straight-lines).

Let A be a medial (straight-line). I say that an infinite (series) of irrational (straight-lines) can be created from A, and that none of them is the same as any of the preceding (straight-lines).

Let the rational (straight-line) B be laid down. And let the (square) on C be equal to the (rectangle contained) by B and A. Thus, C is irrational [Def. 10.4]. For an (area contained) by an irrational and a rational (straight-line) is irrational [Prop. 10.20]. And (C is) not the same as any of the preceding (straight-lines). For the (square) on none of the preceding (straight-lines), applied to a rational (straight-line), produces a medial (straight-line) as breadth. So, again, let the (square) on D be equal to the (rectangle contained) by B and C. Thus, the (square) on D is irrational [Prop. 10.20]. D is thus irrational [Def. 10.4]. And (D is) not the same as any of the preceding (straight-lines). For the (square) on none of the preceding (straight-lines), applied to a rational (straight-line), produces C as breadth. So, similarly, this arrangement being advanced to infinity, it is clear that an infinite (series) of irrational (straight-lines) can be created from a medial (straight-line), and that none of them is the same as any of the preceding (straight-lines). (Which is) the very thing it was required to show.

[^0]: ${ }^{\dagger}$ The theory of incommensurable magntidues set out in this book is generally attributed to Theaetetus of Athens. In the footnotes throughout this book, k, k^{\prime}, etc. stand for distinct ratios of positive integers.

[^1]: ${ }^{\dagger}$ In other words, two magnitudes α and β are commensurable if $\alpha: \beta:: 1: k$, and incommensurable otherwise.
 \ddagger Literally, "in power".
 § In other words, two straight-lines of length α and β are commensurable in square if $\alpha: \beta:: 1: k^{1 / 2}$, and incommensurable in square otherwise. Likewise, the straight-lines are commensurable in length if $\alpha: \beta:: 1: k$, and incommensurable in length otherwise.
 『To be more exact, straight-lines can either be commensurable in square only, incommensurable in length only, or commenusrable/incommensurable in both length and square, with an assigned straight-line.

 * Let the length of the assigned straight-line be unity. Then rational straight-lines have lengths expressible as k or $k^{1 / 2}$, depending on whether the lengths are commensurable in length, or in square only, respectively, with unity. All other straight-lines are irrational.
 \$ The square-root of an area is the length of the side of an equal area square.
 $\|$ The area of the square on the assigned straight-line is unity. Rational areas are expressible as k. All other areas are irrational. Thus, squares whose sides are of rational length have rational areas, and vice versa.

[^2]: \dagger Literally, "from two names".
 \ddagger Thus, a binomial straight-line has a length expressible as $1+k^{1 / 2}$ [or, more generally, $\rho\left(1+k^{1 / 2}\right)$, where ρ is rational-the same proviso applies to the definitions in the following propositions]. The binomial and the corresponding apotome, whose length is expressible as $1-k^{1 / 2}$

[^3]: † Literally, "second from two medials".
 \ddagger Since, by hypothesis, the squares on $A B$ and $B C$ are commensurable-see Props. 10.15, 10.23.
 ${ }^{\S}$ Thus, a second bimedial straight-line has a length expressible as $k^{1 / 4}+k^{1 / 2} / k^{1 / 4}$. The second bimedial and the corresponding second apotome of a medial, whose length is expressible as $k^{1 / 4}-k^{\prime 1 / 2} / k^{1 / 4}$ (see Prop. 10.75), are the positive roots of the quartic $x^{4}-2\left[\left(k+k^{\prime}\right) / \sqrt{k}\right] x^{2}+$

[^4]: ${ }^{\dagger}$ If the rational straight-line has unit length then the length of a second binomial straight-line is $k / \sqrt{1-k^{\prime 2}}+k$. This, and the second apotome,

[^5]: \dagger If the rational straight-line has unit length then this proposition states that the square-root of a first binomial straight-line is a binomial straightline: i.e., a first binomial straight-line has a length $k+k \sqrt{1-k^{\prime 2}}$ whose square-root can be written $\rho\left(1+\sqrt{k^{\prime \prime}}\right)$, where $\rho=\sqrt{k\left(1+k^{\prime}\right) / 2}$ and $k^{\prime \prime}=\left(1-k^{\prime}\right) /\left(1+k^{\prime}\right)$. This is the length of a binomial straight-line (see Prop. 10.36), since ρ is rational.

[^6]: ${ }^{\dagger}$ If the rational straight-line has unit length then this proposition states that the square-root of a fourth binomial straight-line is a major straightline: i.e., a fourth binomial straight-line has a length $k\left(1+1 / \sqrt{1+k^{\prime}}\right)$ whose square-root can be written $\rho \sqrt{\left[1+k^{\prime \prime} /\left(1+k^{\prime \prime 2}\right)^{1 / 2}\right] / 2}+$ $\rho \sqrt{\left[1-k^{\prime \prime} /\left(1+k^{\prime \prime 2}\right)^{1 / 2}\right] / 2}$, where $\rho=\sqrt{k}$ and $k^{\prime \prime 2}=k^{\prime}$. This is the length of a major straight-line (see Prop. 10.39), since ρ is rational.
 $\nu \eta^{\prime}$.

 ## Proposition 58

 If an area is contained by a rational (straight-line) and a fifth binomial (straight-line) then the square-root of the area is the irrational (straight-line which is) called the square-root of a rational plus a medial (area). ${ }^{\dagger}$

[^7]: ${ }^{\dagger}$ If the rational straight-line has unit length then this proposition states that the square-root of a fifth binomial straight-line is the square root of a rational plus a medial area: i.e., a fifth binomial straight-line has a length $k\left(\sqrt{1+k^{\prime}}+1\right)$ whose square-root can be written $\rho \sqrt{\left[\left(1+k^{\prime \prime 2}\right)^{1 / 2}+k^{\prime \prime}\right] /\left[2\left(1+k^{\prime \prime 2}\right)\right]}+\rho \sqrt{\left[\left(1+k^{\prime \prime 2}\right)^{1 / 2}-k^{\prime \prime}\right] /\left[2\left(1+k^{\prime \prime 2}\right)\right]}$, where $\rho=\sqrt{k\left(1+k^{\prime \prime 2}\right)}$ and $k^{\prime \prime 2}=k^{\prime}$. This is the length of

[^8]: ${ }^{\dagger}$ If the rational straight-line has unit length then this proposition states that the square-root of a sixth binomial straight-line is the square root of the sum of two medial areas: i.e., a sixth binomial straight-line has a length $\sqrt{k}+\sqrt{k^{\prime}}$ whose square-root can be written
 $k^{1 / 4}\left(\sqrt{\left[1+k^{\prime \prime} /\left(1+k^{\prime 2}\right)^{1 / 2}\right] / 2}+\sqrt{\left[1-k^{\prime \prime} /\left(1+k^{\prime \prime 2}\right)^{1 / 2}\right] / 2}\right)$, where $k^{\prime \prime 2}=\left(k-k^{\prime}\right) / k^{\prime}$. This is the length of the square-root of the sum of

[^9]: ${ }^{\dagger}$ See footnote to Prop. 10.37.

[^10]: \dagger See footnote to Prop. 10.53.

