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Definitions

1. A solid is a (figure) having length and breadth and
depth.

2. The extremity of a solid (is) a surface.

3. A straight-line is at right-angles to a plane when it
makes right-angles with all of the straight-lines joined to
it which are also in the plane.

4. A plane is at right-angles to a(nother) plane when
(all of) the straight-lines drawn in one of the planes, at
right-angles to the common section of the planes, are at
right-angles to the remaining plane.

5. The inclination of a straight-line to a plane is the
angle contained by the drawn and standing (straight-
lines), when a perpendicular is lead to the plane from
the end of the (standing) straight-line raised (out of the
plane), and a straight-line is (then) joined from the point
(so) generated to the end of the (standing) straight-line
(lying) in the plane.

6. The inclination of a plane to a(nother) plane is the
acute angle contained by the (straight-lines), (one) in
each of the planes, drawn at right-angles to the common
segment (of the planes), at the same point.

7. A plane is said to have been similarly inclined to a
plane, as another to another, when the aforementioned
angles of inclination are equal to one another.

8. Parallel planes are those which do not meet (one
another).

9. Similar solid figures are those contained by equal
numbers of similar planes (which are similarly arranged).

10. But equal and similar solid figures are those con-
tained by similar planes equal in number and in magni-
tude (which are similarly arranged).

11. A solid angle is the inclination (constituted) by
more than two lines joining one another (at the same
point), and not being in the same surface, to all of the
lines. Otherwise, a solid angle is that contained by more
than two plane angles, not being in the same plane, and
constructed at one point.

12. A pyramid is a solid figure, contained by planes,
(which is) constructed from one plane to one point.

13. A prism is a solid figure, contained by planes, of
which the two opposite (planes) are equal, similar, and
parallel, and the remaining (planes are) parallelograms.

14. A sphere is the figure enclosed when, the diam-
eter of a semicircle remaining (fixed), the semicircle is
carried around, and again established at the same (posi-
tion) from which it began to be moved.

15. And the axis of the sphere is the fixed straight-line
about which the semicircle is turned.
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16. And the center of the sphere is the same as that of
the semicircle.

17. And the diameter of the sphere is any straight-
line which is drawn through the center and terminated in
both directions by the surface of the sphere.

18. A cone is the figure enclosed when, one of the
sides of a right-angled triangle about the right-angle re-
maining (fixed), the triangle is carried around, and again
established at the same (position) from which it began to
be moved. And if the fixed straight-line is equal to the re-
maining (straight-line) about the right-angle, (which is)
carried around, then the cone will be right-angled, and if
less, obtuse-angled, and if greater, acute-angled.

19. And the axis of the cone is the fixed straight-line
about which the triangle is turned.

20. And the base (of the cone is) the circle described
by the (remaining) straight-line (about the right-angle
which is) carried around (the axis).

21. A cylinder is the figure enclosed when, one of
the sides of a right-angled parallelogram about the right-
angle remaining (fixed), the parallelogram is carried
around, and again established at the same (position)
from which it began to be moved.

22. And the axis of the cylinder is the stationary
straight-line about which the parallelogram is turned.

23. And the bases (of the cylinder are) the circles
described by the two opposite sides (which are) carried
around.

24. Similar cones and cylinders are those for which
the axes and the diameters of the bases are proportional.

25. A cube is a solid figure contained by six equal
squares.

26. An octahedron is a solid figure contained by eight
equal and equilateral triangles.

27. An icosahedron is a solid figure contained by
twenty equal and equilateral triangles.

28. A dodecahedron is a solid figure contained by
twelve equal, equilateral, and equiangular pentagons.

Proposition 17

Some part of a straight-line cannot be in a reference
plane, and some part in a more elevated (plane).

For, if possible, let some part, AB, of the straight-line
ABC be in a reference plane, and some part, BC, in a
more elevated (plane).

In the reference plane, there will be some straight-line
continuous with, and straight-on to, AB.* Let it be BD.
Thus, AB is a common segment of the two (different)
straight-lines ABC and ABD. The very thing is impos-
sible, inasmuch as if we draw a circle with center B and
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radius AB then the diameters (ABD and ABC) will cut
off unequal circumferences of the circle.
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Thus, some part of a straight-line cannot be in a refer-
ence plane, and (some part) in a more elevated (plane).
(Which is) the very thing it was required to show.

T The proofs of the first three propositions in this book are not at all rigorous. Hence, these three propositions should properly be regarded as

additional axioms.

t This assumption essentially presupposes the validity of the proposition under discussion.
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Proposition 2

If two straight-lines cut one another then they are in
one plane, and every triangle (formed using segments of
both lines) is in one plane.

A D
E
E G
C H K B

For let the two straight-lines AB and C'D have cut
one another at point E. I say that AB and C'D are in one
plane, and that every triangle (formed using segments of
both lines) is in one plane.

For let the random points F' and G have been taken
on EC and EB (respectively). And let CB and FG
have been joined, and let F'H and GK have been drawn
across. I say, first of all, that triangle ECB is in one (ref-
erence) plane. For if part of triangle ECB, either FHC
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or GBK, is in the reference [plane], and the remainder
in a different (plane) then a part of one the straight-lines
EC and EB will also be in the reference plane, and (a
part) in a different (plane). And if the part FCBG of tri-
angle FCB is in the reference plane, and the remainder
in a different (plane) then parts of both of the straight-
lines EC and EB will also be in the reference plane,
and (parts) in a different (plane). The very thing was
shown to be absurb [Prop. 11.1]. Thus, triangle EC'B
is in one plane. And in whichever (plane) triangle EC' B
is (found), in that (plane) EC and EB (will) each also
(be found). And in whichever (plane) FC and EB (are)
each (found), in that (plane) AB and C'D (will) also (be
found) [Prop. 11.1]. Thus, the straight-lines AB and CD
are in one plane, and every triangle (formed using seg-
ments of both lines) is in one plane. (Which is) the very
thing it was required to show.

Proposition 3

If two planes cut one another then their common sec-
tion is a straight-line.

D A
C

For let the two planes AB and BC' cut one another,
and let their common section be the line DB. I say that
the line DB is straight.

For, if not, let the straight-line DE B have been joined
from D to B in the plane AB, and the straight-line DF' B
in the plane BC'. So two straight-lines, DEB and DF' B,
will have the same ends, and they will clearly enclose an
area. The very thing (is) absurd. Thus, DEB and DF B
are not straight-lines. So, similarly, we can show than no
other straight-line can be joined from D to B except DB,
the common section of the planes AB and BC.

Thus, if two planes cut one another then their com-
mon section is a straight-line. (Which is) the very thing it
was required to show.
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Proposition 4

If a straight-line is set up at right-angles to two
straight-lines cutting one another, at the common point
of section, then it will also be at right-angles to the plane
(passing) through them (both).

F

/% /

For let some straight-line FF have (been) set up at
right-angles to two straight-lines, AB and CD, cutting
one another at point F, at E. I say that E'F is also at
right-angles to the plane (passing) through AB and C'D.

For let AE, EB, CE and ED have been cut off from
(the two straight-lines so as to be) equal to one another.
And let GEH have been drawn, at random, through FE
(in the plane passing through AB and C'D). And let AD
and C'B have been joined. And, furthermore, let F'A,
FG, FD, FC, FH, and F'B have been joined from the
random (point) F' (on EF).

For since the two (straight-lines) AF and ED are
equal to the two (straight-lines) CF and EB, and they
enclose equal angles [Prop. 1.15], the base AD is thus
equal to the base C'B, and triangle AED will be equal
to triangle CEB [Prop. 1.4]. Hence, the angle DAE
[is] equal to the angle EBC. And the angle AEG (is)
also equal to the angle BEH [Prop. 1.15]. So AGE
and BEH are two triangles having two angles equal to
two angles, respectively, and one side equal to one side—
(namely), those by the equal angles, AF and EB. Thus,
they will also have the remaining sides equal to the re-
maining sides [Prop. 1.26]. Thus, GE (is) equal to EH,
and AG to BH. And since AF is equal to FB, and F'E
is common and at right-angles, the base F'A is thus equal
to the base F'B [Prop. 1.4]. So, for the same (reasons),
FC is also equal to FF'D. And since AD is equal to CB,
and F'A is also equal to F'B, the two (straight-lines) FA
and AD are equal to the two (straight-lines) F'B and BC,
respectively. And the base F'D was shown (to be) equal
to the base F'C. Thus, the angle FFAD is also equal to
the angle FBC [Prop. 1.8]. And, again, since AG was
shown (to be) equal to BH, but FA (is) also equal to
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F'B, the two (straight-lines) F'A and AG are equal to the
two (straight-lines) F'B and BH (respectively). And the
angle F'AG was shown (to be) equal to the angle FBH.
Thus, the base F'G is equal to the base F'H [Prop. 1.4].
And, again, since GE was shown (to be) equal to FH,
and EF (is) common, the two (straight-lines) GE and
EF are equal to the two (straight-lines) HE and EF
(respectively). And the base F'G (is) equal to the base
FH. Thus, the angle GEF is equal to the angle HEF
[Prop. 1.8]. Each of the angles GEF and HEF (are)
thus right-angles [Def. 1.10]. Thus, F'F is at right-angles
to GH, which was drawn at random through E (in the
reference plane passing though AB and AC). So, simi-
larly, we can show that F'E will make right-angles with
all straight-lines joined to it which are in the reference
plane. And a straight-line is at right-angles to a plane
when it makes right-angles with all straight-lines joined
to it which are in the plane [Def. 11.3]. Thus, F'F is at
right-angles to the reference plane. And the reference
plane is that (passing) through the straight-lines AB and
CD. Thus, FF is at right-angles to the plane (passing)
through AB and CD.

Thus, if a straight-line is set up at right-angles to two
straight-lines cutting one another, at the common point
of section, then it will also be at right-angles to the plane
(passing) through them (both). (Which is) the very thing
it was required to show.

Proposition 5

If a straight-line is set up at right-angles to three
straight-lines cutting one another, at the common point
of section, then the three straight-lines are in one plane.

A
C

For let some straight-line AB have been set up at
right-angles to three straight-lines BC, BD, and BE, at
the (common) point of section B. I say that BC, BD,
and BF are in one plane.

For (if) not, and if possible, let BD and BE be in
the reference plane, and BC in a more elevated (plane).
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And let the plane through AB and BC have been pro-
duced. So it will make a straight-line as a common sec-
tion with the reference plane [Def. 11.3]. Let it make
BF. Thus, the three straight-lines AB, BC, and BF
are in one plane—(namely), that drawn through AB and
BC. And since AB is at right-angles to each of BD and
BE, AB is thus also at right-angles to the plane (passing)
through BD and BE [Prop. 11.4]. And the plane (pass-
ing) through BD and BFE is the reference plane. Thus,
AB is at right-angles to the reference plane. Hence, AB
will also make right-angles with all straight-lines joined
to it which are also in the reference plane [Def. 11.3].
And BF, which is in the reference plane, is joined to it.
Thus, the angle ABF is a right-angle. And ABC was also
assumed to be a right-angle. Thus, angle ABF (is) equal
to ABC. And they are in one plane. The very thing is
impossible. Thus, BC' is not in a more elevated plane.
Thus, the three straight-lines BC, BD, and BE are in
one plane.

Thus, if a straight-line is set up at right-angles to three
straight-lines cutting one another, at the (common) point
of section, then the three straight-lines are in one plane.
(Which is) the very thing it was required to show.

Proposition 6

If two straight-lines are at right-angles to the same
plane then the straight-lines will be parallel.

C A

For let the two straight-lines AB and C'D be at right-
angles to a reference plane. I say that AB is parallel to
CD.

For let them meet the reference plane at points B and
D (respectively). And let the straight-line BD have been
joined. And let DFE have been drawn at right-angles to
BD in the reference plane. And let DE be made equal to
AB. And let BE, AE, and AD have been joined.

And since AB is at right-angles to the reference plane,
it will [thus] also make right-angles with all straight-lines
joined to it which are in the reference plane [Def. 11.3].

430



YTOIXEIOQN .

ELEMENTS BOOK 11

xEWEVR Emnédw: 6pt dpa éotlv Exatépa TV o ABA,
ABE yow@v. O té adtd 0f) xal exotépa @V bno TAB,
I'AE 6p01 éotiv. xol énel Ton éotlv ) AB tfj AE, xown
de 7 BA, 800 81 ai AB, BA duot taic EA, AB foou eiotv-
xal ywviae 6p0dc mepiéyovow Bdoic dpo | AA Bdoer T
BE éotw Ton. xal énel Ton éotlv | AB tfj AE, dAAd xal
n AA tfj BE, 8o &1 ol AB, BE Buot wic EA, AA o
elotv: xal Bdoic adtév xowh | AE yovia deo 7y Undo ABE
yowd i} bno EAA oty Ton. 6p0n 8¢ 1 Und ABE- 60
Gpa xai ) Um0 EAA- /) EA 8po mpoc thv AA 6pd1 Eotw.
got 8¢ xol mpog exatépay TV BA, AT 6p04. 7 EA dpa
Teloty ebdeiong taiic BA, AA, AT npoc dpdac énl tiic depiic
gpéotnuev: ol Tpelc Joo evlelon ol BA, AA, AT év évi eiow
Emnéde. v G 8¢ ol AB, AA, év toltw xal 1) AB- név yap
Tplywvov v évi Eotv Emnéde- ol 8po AB, BA, AT edideion
&v €vi elowv Emnédw. xal Eoty 6pUT Exatépa TéY Lo ABA,
BAT ywvwiésv: napdiinhog dpo oty 1 AB tfj TA.

Edv &pa 800 eddelon 16 adté Emméde npoc 6pdac Hotv,
napdhAniol Ecovtan ol ebdelon dmep Edel Beléan.

And BD and BEFE, which are in the reference plane, are
each joined to AB. Thus, each of the angles ABD and
ABE are right-angles. So, for the same (reasons), each
of the angles CDB and CDE are also right-angles. And
since AB is equal to DE, and BD (is) common, the
two (straight-lines) AB and BD are equal to the two
(straight-lines) ED and DB (respectively). And they
contain right-angles. Thus, the base AD is equal to the
base BE [Prop. 1.4]. And since AB is equal to DF, and
AD (is) also (equal) to BE, the two (straight-lines) AB
and BE are thus equal to the two (straight-lines) ED
and DA (respectively). And their base AF (is) common.
Thus, angle ABFE is equal to angle ED A [Prop. 1.8]. And
ABE (is) a right-angle. Thus, FDA (is) also a right-
angle. ED is thus at right-angles to DA. And it is also at
right-angles to each of BD and DC'. Thus, ED is stand-
ing at right-angles to the three straight-lines BD, DA,
and DC' at the (common) point of section. Thus, the
three straight-lines BD, DA, and DC are in one plane
[Prop. 11.5]. And in which(ever) plane DB and DA (are
found), in that (plane) AB (will) also (be found). For
every triangle is in one plane [Prop. 11.2]. And each of
the angles ABD and BDC is a right-angle. Thus, AB is
parallel to C'D [Prop. 1.28].

Thus, if two straight-lines are at right-angles to
the same plane then the straight-lines will be parallel.
(Which is) the very thing it was required to show.

T In other words, the two straight-lines lie in the same plane, and never meet when produced in either direction.

C/
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Proposition 7

If there are two parallel straight-lines, and random
points are taken on each of them, then the straight-line
joining the two points is in the same plane as the parallel
(straight-lines).

A E B

C F D
Let AB and C'D be two parallel straight-lines, and let
the random points £ and F' have been taken on each of
them (respectively). I say that the straight-line joining
points E and F is in the same (reference) plane as the
parallel (straight-lines).
For (if) not, and if possible, let it be in a more elevated
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(plane), such as EGF'. And let a plane have been drawn
through EGF. So it will make a straight cutting in the
reference plane [Prop. 11.3]. Let it make F'F'. Thus, two
straight-lines (with the same end-points), EGF and EF,
will enclose an area. The very thing is impossible. Thus,
the straight-line joining E to F' is not in a more elevated
plane. The straight-line joining F to F is thus in the plane
through the parallel (straight-lines) AB and CD.

Thus, if there are two parallel straight-lines, and ran-
dom points are taken on each of them, then the straight-
line joining the two points is in the same plane as the
parallel (straight-lines). (Which is) the very thing it was
required to show.

Proposition 8

If two straight-lines are parallel, and one of them is at
right-angles to some plane, then the remaining (one) will
also be at right-angles to the same plane.

A C

E

Let AB and C'D be two parallel straight-lines, and let
one of them, AB, be at right-angles to a reference plane.
I say that the remaining (one), C'D, will also be at right-
angles to the same plane.

For let AB and C'D meet the reference plane at points
B and D (respectively). And let BD have been joined.
AB, CD, and BD are thus in one plane [Prop. 11.7].
Let DE have been drawn at right-angles to BD in the
reference plane, and let DE be made equal to AB, and
let BE, AE, and AD have been joined.

And since AB is at right-angles to the reference
plane, AB is thus also at right-angles to all of the
straight-lines joined to it which are in the reference plane
[Def. 11.3]. Thus, the angles ABD and ABE [are] each
right-angles. And since the straight-line BD has met the
parallel (straight-lines) AB and CD, the (sum of the)
angles ABD and CDB is thus equal to two right-angles
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[Prop. 1.29]. And ABD (is) a right-angle. Thus, CDB
(is) also a right-angle. C'D is thus at right-angles to BD.
And since AB is equal to DFE, and BD (is) common,
the two (straight-lines) AB and BD are equal to the two
(straight-lines) ED and DB (respectively). And angle
ABD (is) equal to angle EDB. For each (is) a right-
angle. Thus, the base AD (is) equal to the base BE
[Prop. 1.4]. And since AB is equal to DFE, and BFE to
AD, the two (sides) AB, BFE are equal to the two (sides)
ED, DA, respectively. And their base AF is common.
Thus, angle ABFE is equal to angle EDA [Prop. 1.8].
And ABF (is) a right-angle. EDA (is) thus also a right-
angle. Thus, ED is at right-angles to AD. And it is also
at right-angles to DB. Thus, ED is also at right-angles
to the plane through BD and DA [Prop. 11.4]. And
ED will thus make right-angles with all of the straight-
lines joined to it which are also in the plane through
BDA. And DC is in the plane through BDA, inas-
much as AB and BD are in the plane through BDA
[Prop. 11.2], and in which(ever plane) AB and BD (are
found), DC is also (found). Thus, ED is at right-angles
to DC. Hence, CD is also at right-angles to DE. And
CD is also at right-angles to BD. Thus, C'D is standing
at right-angles to two straight-lines, DE and DB, which
meet one another, at the (point) of section, D. Hence,
CD is also at right-angles to the plane through DFE and
DB [Prop. 11.4]. And the plane through DFE and DB is
the reference (plane). CD is thus at right-angles to the
reference plane.

Thus, if two straight-lines are parallel, and one of
them is at right-angles to some plane, then the remain-
ing (one) will also be at right-angles to the same plane.
(Which is) the very thing it was required to show.

Proposition 9

(Straight-lines) parallel to the same straight-line, and
which are not in the same plane as it, are also parallel to
one another.

B H A

F G E

D C
K

For let AB and C'D each be parallel to E'F, not being
in the same plane as it. I say that AB is parallel to C'D.
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For let some point G have been taken at random on
EF. And from it let GH have been drawn at right-angles
to EF in the plane through FF and AB. And let GK
have been drawn, again at right-angles to E'F, in the
plane through FE and CD.

And since EF is at right-angles to each of GH and
GK, EF is thus also at right-angles to the plane through
GH and GK [Prop. 11.4]. And EF is parallel to AB.
Thus, AB is also at right-angles to the plane through
HGK [Prop. 11.8]. So, for the same (reasons), CD is
also at right-angles to the plane through HGK. Thus,
AB and CD are each at right-angles to the plane through
HGK. And if two straight-lines are at right-angles
to the same plane then the straight-lines are parallel
[Prop. 11.6]. Thus, AB is parallel to CD. (Which is)
the very thing it was required to show.

Proposition 10

If two straight-lines joined to one another are (respec-
tively) parallel to two straight-lines joined to one another,
(but are) not in the same plane, then they will contain
equal angles.

B C

D

For let the two straight-lines joined to one another,
AB and BC, be (respectively) parallel to the two
straight-lines joined to one another, DE and EF, (but)
not in the same plane. I say that angle ABC is equal to
(angle) DEF.

For let BA, BC, ED, and EF have been cut off (so
as to be, respectively) equal to one another. And let AD,
CF, BE, AC, and DF have been joined.

And since BA is equal and parallel to ED, AD is thus
also equal and parallel to BE [Prop. 1.33]. So, for the
same reasons, C'F is also equal and parallel to BE. Thus,
AD and CF are each equal and parallel to BE. And
straight-lines parallel to the same straight-line, and which
are not in the same plane as it, are also parallel to one an-
other [Prop. 11.9]. Thus, AD is parallel and equal to CF.
And AC and DF join them. Thus, AC is also equal and
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parallel to DF' [Prop. 1.33]. And since the two (straight-
lines) AB and BC' are equal to the two (straight-lines)
DE and EF (respectvely), and the base AC' (is) equal to
the base DF, the angle ABC is thus equal to the (angle)
DEF [Prop. 1.8].

Thus, if two straight-lines joined to one another are
(respectively) parallel to two straight-lines joined to one
another, (but are) not in the same plane, then they will
contain equal angles. (Which is) the very thing it was
required to show.

Proposition 11

To draw a perpendicular straight-line from a given
raised point to a given plane.

A

E H

F/
D
G B

Let A be the given raised point, and the given plane
the reference (plane). So, it is required to draw a perpen-
dicular straight-line from point A to the reference plane.

Let some random straight-line BC' have been drawn
across in the reference plane, and let the (straight-line)
AD have been drawn from point A perpendicular to BC'
[Prop. 1.12]. If, therefore, AD is also perpendicular to
the reference plane then that which was prescribed will
have occurred. And, if not, let DE have been drawn in
the reference plane from point D at right-angles to BC
[Prop. 1.11], and let the (straight-line) AF have been
drawn from A perpendicular to DFE [Prop. 1.12], and let
GH have been drawn through point F, parallel to BC
[Prop. 1.31].

And since BC is at right-angles to each of DA and
DE, BC is thus also at right-angles to the plane through
EDA [Prop. 11.4]. And GH is parallel to it. And if two
straight-lines are parallel, and one of them is at right-
angles to some plane, then the remaining (straight-line)
will also be at right-angles to the same plane [Prop. 11.8].
Thus, GH is also at right-angles to the plane through

C
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ED and DA. And GH is thus at right-angles to all of
the straight-lines joined to it which are also in the plane
through ED and AD [Def. 11.3]. And AF', which is in the
plane through ED and DA, is joined to it. Thus, GH is at
right-angles to FF'A. Hence, F'A is also at right-angles to
HG. And AF is also at right-angles to DFE. Thus, AF is
at right-angles to each of GH and DE. And if a straight-
line is set up at right-angles to two straight-lines cutting
one another, at the point of section, then it will also be
at right-angles to the plane through them [Prop. 11.4].
Thus, F'A is at right-angles to the plane through £ D and
GH. And the plane through £D and GH is the refer-
ence (plane). Thus, AF is at right-angles to the reference
plane.

Thus, the straight-line AF has been drawn from the
given raised point A perpendicular to the reference plane.
(Which is) the very thing it was required to do.

Proposition 12

To set up a straight-line at right-angles to a given
plane from a given point in it.

B
D

A

Let the given plane be the reference (plane), and A a
point in it. So, it is required to set up a straight-line at
right-angles to the reference plane at point A.

Let some raised point B have been assumed, and let
the perpendicular (straight-line) BC have been drawn
from B to the reference plane [Prop. 11.11]. And
let AD have been drawn from point A parallel to BC
[Prop. 1.31].

Therefore, since AD and CB are two parallel straight-
lines, and one of them, BC, is at right-angles to the refer-
ence plane, the remaining (one) AD is thus also at right-
angles to the reference plane [Prop. 11.8].
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Thus, AD has been set up at right-angles to the given
plane, from the point in it, A. (Which is) the very thing it
was required to do.

Proposition 13

Two (different) straight-lines cannot be set up at the
same point at right-angles to the same plane, on the same
side.

B

E

For, if possible, let the two straight-lines AB and AC
have been set up at the same point A at right-angles
to the reference plane, on the same side. And let the
plane through BA and AC have been drawn. So it will
make a straight cutting (passing) through (point) A in
the reference plane [Prop. 11.3]. Let it have made DAE.
Thus, AB, AC, and DAF are straight-lines in one plane.
And since C'A is at right-angles to the reference plane, it
will thus also make right-angles with all of the straight-
lines joined to it which are also in the reference plane
[Def. 11.3]. And DAE, which is in the reference plane, is
joined to it. Thus, angle C AF is a right-angle. So, for the
same (reasons), BAF is also a right-angle. Thus, CAFE
(is) equal to BAE. And they are in one plane. The very
thing is impossible.

Thus, two (different) straight-lines cannot be set up
at the same point at right-angles to the same plane, on
the same side. (Which is) the very thing it was required
to show.

Proposition 14

Planes to which the same straight-line is at right-
angles will be parallel planes.

For let some straight-line AB be at right-angles to
each of the planes CD and EF. I say that the planes
are parallel.
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For, if not, being produced, they will meet. Let them
have met. So they will make a straight-line as a common
section [Prop. 11.3]. Let them have made GH. And let
some random point K have been taken on GH. And let
AK and BK have been joined.

And since AB is at right-angles to the plane EF, AB
is thus also at right-angles to BK, which is a straight-line
in the produced plane F'F' [Def. 11.3]. Thus, angle ABK
is a right-angle. So, for the same (reasons), BAK is also
a right-angle. So the (sum of the) two angles ABK and
BAK in the triangle ABK is equal to two right-angles.
The very thing is impossible [Prop. 1.17]. Thus, planes
CD and EF, being produced, will not meet. Planes C D
and E'F are thus parallel [Def. 11.8].

Thus, planes to which the same straight-line is at
right-angles are parallel planes. (Which is) the very thing
it was required to show.

Proposition 15

If two straight-lines joined to one another are parallel
(respectively) to two straight-lines joined to one another,
which are not in the same plane, then the planes through
them are parallel (to one another).

For let the two straight-lines joined to one another,
AB and BC, be parallel to the two straight-lines joined to
one another, DE and EF (respectively), not being in the
same plane. I say that the planes through AB, BC and
DE, EF will not meet one another (when) produced.

For let BG have been drawn from point B perpendic-
ular to the plane through DF and EF [Prop. 11.11], and
let it meet the plane at point G. And let GH have been
drawn through G parallel to ED, and GK (parallel) to
EF [Prop. 1.31].
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And since BG is at right-angles to the plane through
DE and EF, it will thus also make right-angles with all
of the straight-lines joined to it, which are also in the
plane through DFE and EF [Def. 11.3]. And each of
GH and GK, which are in the plane through DE and
EF, are joined to it. Thus, each of the angles BGH and
BGK are right-angles. And since BA is parallel to GH
[Prop. 11.9], the (sum of the) angles GBA and BGH is
equal to two right-angles [Prop. 1.29]. And BGH (is)
a right-angle. GBA (is) thus also a right-angle. Thus,
GB is at right-angles to BA. So, for the same (reasons),
GB is also at right-angles to BC. Therefore, since the
straight-line GB has been set up at right-angles to two
straight-lines, BA and BC, cutting one another, GB is
thus at right-angles to the plane through BA and BC
[Prop. 11.4]. [So, for the same (reasons), BG is also
at right-angles to the plane through GH and GK. And
the plane through GH and GK is the (plane) through
DE and EF. And it was also shown that GB is at right-
angles to the plane through AB and BC.] And planes
to which the same straight-line is at right-angles are par-
allel planes [Prop. 11.14]. Thus, the plane through AB
and BC is parallel to the (plane) through DFE and EF.

Thus, if two straight-lines joined to one another are
parallel (respectively) to two straight-lines joined to one
another, which are not in the same plane, then the planes
through them are parallel (to one another). (Which is)
the very thing it was required to show.

Proposition 16

If two parallel planes are cut by some plane then their
common sections are parallel.

For let the two parallel planes AB and C'D have been
cut by the plane EFGH. And let EF and GH be their
common sections. I say that E'F is parallel to GH.
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For, if not, being produced, EF and G H will meet ei-
ther in the direction of F', H, or of E, G. Let them be
produced, as in the direction of F, H, and let them, first
of all, have met at K. And since EFK is in the plane
AB, all of the points on FF K are thus also in the plane
AB [Prop. 11.1]. And K is one of the points on FFK.
Thus, K is in the plane AB. So, for the same (reasons),
K is also in the plane C'D. Thus, the planes AB and CD,
being produced, will meet. But they do not meet, on ac-
count of being (initially) assumed (to be mutually) paral-
lel. Thus, the straight-lines EF and GH, being produced
in the direction of F', H, will not meet. So, similarly, we
can show that the straight-lines EF and GH, being pro-
duced in the direction of F, G, will not meet either. And
(straight-lines in one plane which), being produced, do
not meet in either direction are parallel [Def. 1.23]. EF
is thus parallel to GH.

Thus, if two parallel planes are cut by some plane then
their common sections are parallel. (Which is) the very
thing it was required to show.

Proposition 17

If two straight-lines are cut by parallel planes then
they will be cut in the same ratios.

For let the two straight-lines AB and C' D be cut by the
parallel planes GH, KL, and M N at the points A, FE, B,
and C, F, D (respectively). I say that as the straight-line
AFE isto EB, so CF (is) to F D.

For let AC, BD, and AD have been joined, and let
AD meet the plane KL at point O, and let EO and OF
have been joined.

And since two parallel planes KL and M N are cut
by the plane £ BDO, their common sections £O and BD
are parallel [Prop. 11.16]. So, for the same (reasons),
since two parallel planes GH and KL are cut by the
plane AOFC, their common sections AC and OF are
parallel [Prop. 11.16]. And since the straight-line EO
has been drawn parallel to one of the sides BD of trian-

440



YTOIXEIOQN .

ELEMENTS BOOK 11

N AZ mpog EA. ndhwv énel tpryovou tob AAT napd play
w6V mhevpdy Ty AT edldela fixtan 1) EZ, dvdhoydv Eotiv
oc N AE mpog EA, obtwg f I'Z npoc ZA. €delydn de xal
oc N AZ mpoc EA, oltwe 1) AE tpoc EB- xal ¢ dpa ) AE
npoc EB, oltwe ) I'Z npoc ZA.

N
B

A

M

"Edv dpa 00 e0eion Ontod napahA Ay EmEdwY TEUVOV-
Ta, eig ToUg avToug Adyoug Tundicovton: émep €del dellau.

).

‘Edav e00cia émnéde vl mpog 6pddc 1), xol mdvto té Bt
abTiic Eninedo 16 avT EMEdw mEdg 6pddc EoTou.

Edodeio vép tic ) AB 16 Dnoxeiuéve Emmédw npoc 6pddg
gotw Myw, 611 ol mdvta ta S Tiic AB éninedo 16 Ono-
XEWEVE EMTEDW TEOC 6p0dC EOTIv.

"ExBepriodn ydp dut tiic AB éninedov 160 AE, ol éotw
xown) toun 100 AE émnédou xal 1ol Unoxewwévou N I'E; xal
eiMpdw énl tiic I'E tuyov onuelov 16 Z, xol dno tob Z i
I'E npog 6pddc fiydw év 16 AE émnédo 1 ZH.

Kol énet | AB npoc 10 Umoxeipevov éninedov opiv
goTv, %ol mpodg mdoug dpa T antouévag aoThc ebdelag xol
oboag v 16 Umoxewévey Emnédw 6p0R éotv /) AB- dHote
xal mpog ™y T'E 6p0% éotv: 1) dpa Und ABZ ywvia 6p91
gotv. €om Be xal 1) bno HZB 6p07 nopdAinhoc dpa Eotiv
N AB tfj ZH. 7 8¢ AB 16 Unoxeiuéve emméde npoc dpidc
gotiv: xol 1 ZH Gpo 16 Umoxewwévey emnédw mpog 6pvdc
gotiv. xal eninedov mpog Eninedov 6pdov Eotiy, dtav ol Ti
xoWf] Touf] &V Emnédwy mpog 6pddc dyduevon eddeton Ev
EVL TEV ETTEDBLVY T Ao Emmédw mpoc 6p¥dc GHotv. %ol
] xowf] touf] @V émnédwy tfj I'E &v évl tdv eémnédwy

gle ABD, thus, proportionally, as AE is to EB, so AO
(is) to OD [Prop. 6.2]. Again, since the straight-line OF
has been drawn parallel to one of the sides AC of trian-
gle ADC, proportionally, as AO is to OD, so CF (is) to
FD [Prop. 6.2]. And it was also shown that as AO (is)
to OD, so AFE (is) to EB. And thus as AFE (is) to EB, so
CF (is) to F'D [Prop. 5.11].

)=

Thus, if two straight-lines are cut by parallel planes
then they will be cut in the same ratios. (Which is) the
very thing it was required to show.

Proposition 18

If a straight-line is at right-angles to some plane then
all of the planes (passing) through it will also be at right-
angles to the same plane.

For let some straight-line AB be at right-angles to
a reference plane. I say that all of the planes (pass-
ing) through AB are also at right-angles to the reference
plane.

For let the plane DE have been produced through
AB. And let CE be the common section of the plane
DE and the reference (plane). And let some random
point F' have been taken on C'E. And let F'G have been
drawn from F, at right-angles to C'E, in the plane DE
[Prop. 1.11].

And since AB is at right-angles to the reference plane,
AB is thus also at right-angles to all of the straight-
lines joined to it which are also in the reference plane
[Def. 11.3]. Hence, it is also at right-angles to CE. Thus,
angle ABF is a right-angle. And GF'B is also a right-
angle. Thus, AB is parallel to F'G [Prop. 1.28]. And AB
is at right-angles to the reference plane. Thus, F'G is also
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at right-angles to the reference plane [Prop. 11.8]. And
a plane is at right-angles to a(nother) plane when the
straight-lines drawn at right-angles to the common sec-
tion of the planes, (and lying) in one of the planes, are
at right-angles to the remaining plane [Def. 11.4]. And
F@G, (which was) drawn at right-angles to the common
section of the planes, C'F, in one of the planes, DE, was
shown to be at right-angles to the reference plane. Thus,
plane DF is at right-angles to the reference (plane). So,
similarly, it can be shown that all of the planes (passing)
at random through AB (are) at right-angles to the refer-
ence plane.
A

D G

Thus, if a straight-line is at right-angles to some plane
then all of the planes (passing) through it will also be at
right-angles to the same plane. (Which is) the very thing
it was required to show.

Proposition 19

If two planes cutting one another are at right-angles
to some plane then their common section will also be at
right-angles to the same plane.

"

N~

A C
For let the two planes AB and BC be at right-angles

to a reference plane, and let their common section be

BD. 1 say that BD is at right-angles to the reference
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plane.

For (if) not, let DE also have been drawn from point
D, in the plane AB, at right-angles to the straight-line
AD, and DF, in the plane BC, at right-angles to C'D.

And since the plane AB is at right-angles to the refer-
ence (plane), and DFE has been drawn at right-angles to
their common section AD, in the plane AB, DFE is thus at
right-angles to the reference plane [Def. 11.4]. So, simi-
larly, we can show that DF is also at right-angles to the
reference plane. Thus, two (different) straight-lines are
set up, at the same point D, at right-angles to the refer-
ence plane, on the same side. The very thing is impossible
[Prop. 11.13]. Thus, no (other straight-line) except the
common section D B of the planes AB and BC can be set
up at point D, at right-angles to the reference plane.

Thus, if two planes cutting one another are at right-
angles to some plane then their common section will also
be at right-angles to the same plane. (Which is) the very
thing it was required to show.

Proposition 20

If a solid angle is contained by three plane angles then
(the sum of) any two (angles) is greater than the remain-
ing (one), (the angles) being taken up in any (possible

way).
D

B E C

For let the solid angle A have been contained by the
three plane angles BAC, CAD, and DAB. I say that (the
sum of) any two of the angles BAC, CAD, and DAB
is greater than the remaining (one), (the angles) being
taken up in any (possible way).

For if the angles BAC, CAD, and DAB are equal to
one another then (it is) clear that (the sum of) any two
is greater than the remaining (one). But, if not, let BAC
be greater (than CAD or DAB). And let (angle) BAF,
equal to the angle DAB, have been constructed in the
plane through BAC, on the straight-line AB, at the point
A onit. And let AE be made equal to AD. And BEC be-
ing drawn across through point F, let it cut the straight-
lines AB and AC at points B and C (respectively). And
let DB and DC have been joined.

And since DA is equal to AF, and AB (is) common,
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the two (straight-lines AD and AB are) equal to the
two (straight-lines FA and AB, respectively). And an-
gle DAB (is) equal to angle BAE. Thus, the base DB
is equal to the base BE [Prop. 1.4]. And since the (sum
of the) two (straight-lines) BD and DC is greater than
BC [Prop. 1.20], of which DB was shown (to be) equal
to BE, the remainder DC is thus greater than the re-
mainder EC. And since DA is equal to AF, but AC
(is) common, and the base DC is greater than the base
EC, the angle DAC is thus greater than the angle FAC
[Prop. 1.25]. And DAB was also shown (to be) equal to
BAE. Thus, (the sum of) DAB and D AC is greater than
BAC. So, similarly, we can also show that the remain-
ing (angles), being taken in pairs, are greater than the
remaining (one).

Thus, if a solid angle is contained by three plane an-
gles then (the sum of) any two (angles) is greater than
the remaining (one), (the angles) being taken up in any
(possible way). (Which is) the very thing it was required
to show.

Proposition 21

Any solid angle is contained by plane angles (whose
sum is) less [than] four right-angles.f

C

D
B

Let the solid angle A be contained by the plane angles
BAC, CAD, and DAB. 1 say that (the sum of) BAC,
CAD, and DAB is less than four right-angles.

For let the random points B, C, and D have been
taken on each of (the straight-lines) AB, AC, and AD
(respectively). And let BC, CD, and DB have been
joined. And since the solid angle at B is contained
by the three plane angles CBA, ABD, and CBD, (the
sum of) any two is greater than the remaining (one)
[Prop. 11.20]. Thus, (the sum of) CBA and ABD is
greater than C'BD. So, for the same (reasons), (the sum
of) BCA and ACD is also greater than BC D, and (the
sum of) CDA and ADB is greater than CDB. Thus,
the (sum of the) six angles CBA, ABD, BCA, ACD,
CDA, and ADB is greater than the (sum of the) three
(angles) CBD, BCD, and CDB. But, the (sum of the)
three (angles) CBD, BDC, and BCD is equal to two
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right-angles [Prop. 1.32]. Thus, the (sum of the) six an-
glesCBA, ABD, BCA, ACD, CDA, and ADB is greater
than two right-angles. And since the (sum of the) three
angles of each of the triangles ABC, ACD, and ADB
is equal to two right-angles, the (sum of the) nine angles
CBA, ACB, BAC, ACD,CDA, CAD, ADB, DBA, and
BAD of the three triangles is equal to six right-angles, of
which the (sum of the) six angles ABC, BCA, ACD,
CDA, ADB, and DBA is greater than two right-angles.
Thus, the (sum of the) remaining three [angles] BAC,
CAD, and DAB, containing the solid angle, is less than
four right-angles.

Thus, any solid angle is contained by plane angles
(whose sum is) less [than] four right-angles. (Which is)
the very thing it was required to show.

t This proposition is only proved for the case of a solid angle contained by three plane angles. However, the generalization to a solid angle

contained by more than three plane angles is straightforward.
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Proposition 22

If there are three plane angles, of which (the sum of
any) two is greater than the remaining (one), (the an-
gles) being taken up in any (possible way), and if equal
straight-lines contain them, then it is possible to construct
a triangle from (the straight-lines created by) joining the

(ends of the) equal straight-lines.
B . A L

A CD F G K

Let ABC, DEF, and GHK be three plane angles, of
which the sum of any) two is greater than the remain-
ing (one), (the angles) being taken up in any (possible
way)—(that is), ABC and DEF' (greater) than GHK,
DEF and GHK (greater) than ABC, and, further, GHK
and ABC (greater) than DEF. And let AB, BC, DE,
EF, GH, and HK be equal straight-lines. And let AC,
DF, and GK have been joined. I say that that it is possi-
ble to construct a triangle out of (straight-lines) equal to
AC, DF, and GK—that is to say, that (the sum of) any
two of AC, DF, and GK is greater than the remaining
(one).

Now, if the angles ABC, DEF, and GHK are equal
to one another then (it is) clear that, (with) AC, DF,
and GK also becoming equal, it is possible to construct a
triangle from (straight-lines) equal to AC, DF, and GK.
And if not, let them be unequal, and let K H L, equal to
angle ABC, have been constructed on the straight-line
HK, at the point H on it. And let HL be made equal to
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one of AB, BC, DE, EF, GH, and HK. And let KL
and GL have been joined. And since the two (straight-
lines) AB and BC' are equal to the two (straight-lines)
K H and HL (respectively), and the angle at B (is) equal
to KHL, the base AC is thus equal to the base KL
[Prop. 1.4]. And since (the sum of) ABC and GHK
is greater than DEF, and ABC equal to KHL, GHL
is thus greater than DEF. And since the two (straight-
lines) GH and HL are equal to the two (straight-lines)
DEFE and EF (respectively), and angle GHL (is) greater
than DEF, the base GL is thus greater than the base DF
[Prop. 1.24]. But, (the sum of) GK and KL is greater
than GL [Prop. 1.20]. Thus, (the sum of) GK and KL is
much greater than DF. And KL (is) equal to AC. Thus,
(the sum of) AC and GK is greater than the remaining
(straight-line) DF. So, similarly, we can show that (the
sum of) AC and DF is greater than GK, and, further,
that (the sum of) DF and GK is greater than AC. Thus,
it is possible to construct a triangle from (straight-lines)
equal to AC, DF, and GK. (Which is) the very thing it
was required to show.

Proposition 23

To construct a solid angle from three (given) plane
angles, (the sum of) two of which is greater than the re-
maining (one, the angles) being taken up in any (possible
way). So, it is necessary for the (sum of the) three (an-
gles) to be less than four right-angles [Prop. 11.21].
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A CD F G K

Let ABC, DEF, and GHK be the three given plane
angles, of which let (the sum of) two be greater than the
remaining (one, the angles) being taken up in any (pos-
sible way), and, further, (let) the (sum of the) three (be)
less than four right-angles. So, it is necessary to construct
a solid angle from (plane angles) equal to ABC, DEF,
and GHK.

Let AB, BC, DE, EF, GH, and HK be cut off (so
as to be) equal (to one another). And let AC, DF, and
GK have been joined. It is, thus, possible to construct a
triangle from (straight-lines) equal to AC, DF, and GK
[Prop. 11.22]. Let (such a triangle), LM N, have be con-
structed, such that AC is equal to LM, DF to M N, and,
further, GK to NL. And let the circle LM N have been
circumscribed about triangle LM N [Prop. 4.5]. And let
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its center have been found, and let it be (at) O. And let
LO, MO, and NO have been joined.

I say that AB is greater than LO. For, if not, AB is
either equal to, or less than, LO. Let it, first of all, be
equal. And since AB is equal to LO, but AB is equal to
BC, and OL to OM, so the two (straight-lines) AB and
BC are equal to the two (straight-lines) LO and OM, re-
spectively. And the base AC was assumed (to be) equal
to the base LM. Thus, angle ABC is equal to angle
LOM [Prop. 1.8]. So, for the same (reasons), DEF is
also equal to MON, and, further, GHK to NOL. Thus,
the three angles ABC, DEF, and GH K are equal to the
three angles LOM, MON, and NOL, respectively. But,
the (sum of the) three angles LOM, MON, and NOL is
equal to four right-angles. Thus, the (sum of the) three
angles ABC, DEF, and GHK is also equal to four right-
angles. And it was also assumed (to be) less than four
right-angles. The very thing (is) absurd. Thus, AB is
not equal to LO. So, I say that AB is not less than LO
either. For, if possible, let it be (less). And let OP be
made equal to AB, and OQ equal to BC, and let PQ
have been joined. And since AB is equal to BC, OP
is also equal to OQ. Hence, the remainder LP is also
equal to (the remainder) QM. LM is thus parallel to PQ
[Prop. 6.2], and (triangle) LM O (is) equiangular with
(triangle) PQO [Prop. 1.29]. Thus, as OL is to LM, so
OP (is) to PQ [Prop. 6.4]. Alternately, as LO (is) to OP,
so LM (is) to PQ [Prop. 5.16]. And LO (is) greater than
OP. Thus, LM (is) also greater than PQ [Prop. 5.14].
But LM was made equal to AC'. Thus, AC is also greater
than P(Q. Therefore, since the two (straight-lines) AB
and BC are equal to the two (straight-lines) PO and OQ
(respectively), and the base AC is greater than the base
PQ, the angle ABC is thus greater than the angle POQ
[Prop. 1.25]. So, similarly, we can show that DEF is
also greater than MON, and GHK than NOL. Thus,
the (sum of the) three angles ABC, DEF, and GHK is
greater than the (sum of the) three angles LOM, MON,
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and NOL. But, (the sum of) ABC, DEF, and GH K was
assumed (to be) less than four right-angles. Thus, (the
sum of) LOM, MON, and NOL is much less than four
right-angles. But, (it is) also equal (to four right-angles).
The very thing is absurd. Thus, AB is not less than LO.
And it was shown (to be) not equal either. Thus, AB (is)
greater than LO.

So let OR have been set up at point O at right-
angles to the plane of circle LM N [Prop. 11.12]. And
let the (square) on OR be equal to that (area) by which
the square on AB is greater than the (square) on LO
[Prop. 11.23 lem.]. And let RL, RM, and RN have been
joined.

And since RO is at right-angles to the plane of cir-
cle LM N, RO is thus also at right-angles to each of LO,
MO, and NO. And since LO is equal to OM, and OR
is common and at right-angles, the base RL is thus equal
to the base RM [Prop. 1.4]. So, for the same (reasons),
RN is also equal to each of RL and RM. Thus, the three
(straight-lines) RL, RM, and RN are equal to one an-
other. And since the (square) on OR was assumed to
be equal to that (area) by which the (square) on AB is
greater than the (square) on LO, the (square) on AB
is thus equal to the (sum of the squares) on LO and
OR. And the (square) on LR is equal to the (sum of
the squares) on LO and OR. For LOR (is) a right-angle
[Prop. 1.47]. Thus, the (square) on AB is equal to the
(square) on RL. Thus, AB (is) equal to RL. But, each
of BC, DE, EF, GH, and HK is equal to AB, and each
of RM and RN equal to RL. Thus, each of AB, BC,
DE, EF, GH, and HK is equal to each of RL, RM,
and RN. And since the two (straight-lines) LR and RM
are equal to the two (straight-lines) AB and BC (respec-
tively), and the base LM was assumed (to be) equal to
the base AC, the angle LRM is thus equal to the angle
ABC [Prop. 1.8]. So, for the same (reasons), M RN is
also equal to DEF, and LRN to GHK.

Thus, the solid angle R, contained by the angles
LRM, MRN, and LRN, has been constructed out of
the three plane angles LRM, M RN, and LRN, which
are equal to the three given (plane angles) ABC, DEF,
and GHK (respectively). (Which is) the very thing it was
required to do.
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And we can demonstrate, thusly, in which manner to
take the (square) on OR equal to that (area) by which
the (square) on AB is greater than the (square) on LO.
Let the straight-lines AB and LO be set out, and let AB
be greater, and let the semicircle ABC have been drawn
around it. And let AC, equal to the straight-line LO,
which is not greater than the diameter AB, have been
inserted into the semicircle ABC' [Prop. 4.1]. And let
CB have been joined. Therefore, since the angle ACB
is in the semicircle ACB, ACB is thus a right-angle
[Prop. 3.31]. Thus, the (square) on AB is equal to the
(sum of the) squares on AC and C'B [Prop. 1.47]. Hence,
the (square) on AB is greater than the (square) on AC
by the (square) on CB. And AC (is) equal to LO. Thus,
the (square) on AB is greater than the (square) on LO
by the (square) on C'B. Therefore, if we take OR equal
to BC then the (square) on AB will be greater than the
(square) on LO by the (square) on OR. (Which is) the
very thing it was prescribed to do.

Proposition 24

If a solid (figure) is contained by (six) parallel planes
then its opposite planes are both equal and parallelo-
grammic.

B H

D E

For let the solid (figure) C D HG have been contained
by the parallel planes AC, GF, and AH, DF, and BF,
AE. 1 say that its opposite planes are both equal and
parallelogrammic.

For since the two parallel planes BG and CFE are
cut by the plane AC, their common sections are parallel
[Prop. 11.16]. Thus, AB is parallel to DC. Again, since
the two parallel planes BF and AFE are cut by the plane
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AC, their common sections are parallel [Prop. 11.16].
Thus, BC is parallel to AD. And AB was also shown (to
be) parallel to DC'. Thus, AC is a parallelogram. So, sim-
ilarly, we can also show that DF, FG, GB, BF, and AE
are each parallelograms.

Let AH and DF have been joined. And since AB is
parallel to DC, and BH to C'F, so the two (straight-lines)
joining one another, AB and BH, are parallel to the two
straight-lines joining one another, DC' and C'F' (respec-
tively), not (being) in the same plane. Thus, they will
contain equal angles [Prop. 11.10]. Thus, angle ABH
(is) equal to (angle) DCF. And since the two (straight-
lines) AB and BH are equal to the two (straight-lines)
DC and CF (respectively) [Prop. 1.34], and angle ABH
is equal to angle DCF, the base AH is thus equal to the
base DF, and triangle ABH is equal to triangle DCF
[Prop. 1.4]. And parallelogram BG is double (triangle)
ABH, and parallelogram CFE double (triangle) DCF
[Prop. 1.34]. Thus, parallelogram BG (is) equal to paral-
lelogram CE. So, similarly, we can show that AC is also
equal to GF, and AF to BF.

Thus, if a solid (figure) is contained by (six) parallel
planes then its opposite planes are both equal and paral-
lelogrammic. (Which is) the very thing it was required to
show.

Proposition 25

If a parallelipiped solid is cut by a plane which is par-
allel to the opposite planes (of the parallelipiped) then as
the base (is) to the base, so the solid will be to the solid.

X Q R U D Y T
0 B G |
p \Y FI| CLIW|| S
L K A E H M N

For let the parallelipiped solid ABCD have been cut
by the plane F'G which is parallel to the opposite planes
RA and DH. Isay that as the base AEFV (is) to the base
EHCPF, so the solid ABFU (is) to the solid EGCD.

For let AH have been produced in each direction. And
let any number whatsoever (of lengths), AK and KL,
be made equal to AF, and any number whatsoever (of
lengths), HM and M N, equal to EH. And let the paral-
lelograms LP, KV, HW, and M S have been completed,
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and the solids LQ, KR, DM, and MT.

And since the straight-lines LK, KA, and AFE are
equal to one another, the parallelograms LP, KV, and
AF are also equal to one another, and KO, KB, and AG
(are equal) to one another, and, further, LX, K@, and
AR (are equal) to one another. For (they are) opposite
[Prop. 11.24]. So, for the same (reasons), the parallelo-
grams EC, HW, and M S are also equal to one another,
and HG, HI, and IN are equal to one another, and,
further, DH, MY, and NT (are equal to one another).
Thus, three planes of (one of) the solids LQ, KR, and
AU are equal to the (corresponding) three planes (of the
others). But, the three planes (in one of the soilds) are
equal to the three opposite planes [Prop. 11.24]. Thus,
the three solids L@, KR, and AU are equal to one an-
other [Def. 11.10]. So, for the same (reasons), the three
solids ED, DM, and MT are also equal to one another.
Thus, as many multiples as the base LF is of the base AF/,
so many multiples is the solid LU also of the the solid AU.
So, for the same (reasons), as many multiples as the base
NF is of the base F'H, so many multiples is the solid NU
also of the solid HU. And if the base LF is equal to the
base N F then the solid LU is also equal to the solid NU.T
And if the base LI exceeds the base NI then the solid
LU also exceeds the solid NU. And if (LF) is less than
(NF) then (LU) is (also) less than (INU). So, there are
four magnitudes, the two bases AF' and F'H, and the two
solids AU and U H, and equal multiples have been taken
of the base AF' and the solid AU— (namely), the base
LF and the solid LU—and of the base H F' and the solid
HU—(namely), the base NF' and the solid NU. And it
has been shown that if the base LF exceeds the base FFN
then the solid LU also exceeds the [solid] NU, and if
(LF is) equal (to F'N) then (LU is) equal (to NU), and
if (LF is) less than (F'N) then (LU is) less than (NU).
Thus, as the base AF is to the base F'H, so the solid AU
(is) to the solid U H [Def. 5.5]. (Which is) the very thing
it was required to show.

t Here, Euclid assumes that LF % NF implies LU % NU. This is easily demonstrated.

x7 .
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Proposition 26

To construct a solid angle equal to a given solid angle
on a given straight-line, and at a given point on it.

Let AB be the given straight-line, and A the given
point on it, and D the given solid angle, contained by the
plane angles EDC, EDF, and FDC'. So, it is necessary
to construct a solid angle equal to the solid angle D on
the straight-line AB, and at the point A on it.
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For let some random point F have been taken on DF,
and let FG have been drawn from F' perpendicular to
the plane through £D and DC [Prop. 11.11], and let it
meet the plane at G, and let DG have been joined. And
let BAL, equal to the angle EDC, and BAK, equal to
EDG, have been constructed on the straight-line AB at
the point A on it [Prop. 1.23]. And let AK be made equal
to DG. And let KH have been set up at the point K
at right-angles to the plane through BAL [Prop. 11.12].
And let KH be made equal to GF. And let HA have
been joined. I say that the solid angle at A, contained by
the (plane) angles BAL, BAH, and H AL, is equal to the
solid angle at D, contained by the (plane) angles EDC,
EDF, and FDC.

For let AB and DFE have been cut off (so as to be)
equal, and let HB, KB, F'E, and GE have been joined.
And since F'G is at right-angles to the reference plane
(EDC), it will also make right-angles with all of the
straight-lines joined to it which are also in the reference
plane [Def. 11.3]. Thus, the angles FGD and FGE
are right-angles. So, for the same (reasons), the an-
gles HKA and HK B are also right-angles. And since
the two (straight-lines) K A and AB are equal to the two
(straight-lines) GD and DFE, respectively, and they con-
tain equal angles, the base K B is thus equal to the base
GE [Prop. 1.4]. And K H is also equal to GF'. And they
contain right-angles (with the respective bases). Thus,
HB (is) also equal to FE [Prop. 1.4]. Again, since the
two (straight-lines) AK and K H are equal to the two
(straight-lines) DG and GF (respectively), and they con-
tain right-angles, the base AH is thus equal to the base
FD [Prop. 1.4]. And AB (is) also equal to DE. So,
the two (straight-lines) H A and AB are equal to the two
(straight-lines) DF and DFE (respectively). And the base
HB (is) equal to the base FE. Thus, the angle BAH is
equal to the angle FDF [Prop. 1.8]. So, for the same
(reasons), HAL is also equal to FDC. And BAL is also
equal to EDC.

Thus, (a solid angle) has been constructed, equal to
the given solid angle at D, on the given straight-line AB,
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at the given point A on it. (Which is) the very thing it
was required to do.

Proposition 27

To describe a parallelepiped solid similar, and simi-
larly laid out, to a given parallelepiped solid on a given
straight-line.

Let the given straight-line be AB, and the given par-
allelepiped solid C'D. So, it is necessary to describe a
parallelepiped solid similar, and similarly laid out, to the
given parallelepiped solid C'D on the given straight-line
AB.

For, let a (solid angle) contained by the (plane angles)
BAH, HAK, and K AB have been constructed, equal to
solid angle at C, on the straight-line AB at the point A on
it [Prop. 11.26], such that angle BAH is equal to ECF,
and BAK to ECG, and KAH to GCF. And let it have
been contrived that as EC (is) to CG, so BA (is) to AK,
and as GC (is) to CF, so KA (is) to AH [Prop. 6.12].
And thus, via equality, as EC is to CF, so BA (is) to AH
[Prop. 5.22]. And let the parallelogram H B have been
completed, and the solid AL.

D

F
\ H
G \/
C E

And since as EC is to CG, so BA (is) to AK, and
the sides about the equal angles FCG and BAK are
(thus) proportional, the parallelogram GF is thus simi-
lar to the parallelogram K B. So, for the same (reasons),
the parallelogram K H is also similar to the parallelogram
GF, and, further, FE (is similar) to HB. Thus, three
of the parallelograms of solid C'D are similar to three of
the parallelograms of solid AL. But, the (former) three
are equal and similar to the three opposite, and the (lat-
ter) three are equal and similar to the three opposite.
Thus, the whole solid C'D is similar to the whole solid

AL [Def. 11.9].
Thus, AL, similar, and similarly laid out, to the given
parallelepiped solid C'D, has been described on the given

straight-lines AB. (Which is) the very thing it was re-
quired to do.

A B

Proposition 28
If a parallelepiped solid is cut by a plane (passing)
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through the diagonals of (a pair of) opposite planes then
the solid will be cut in half by the plane.

For let the parallelepiped solid AB have been cut by
the plane CDEF (passing) through the diagonals of the
opposite planes CF and DE. I say that the solid AB will
be cut in half by the plane CDEF'.

For since triangle CGF is equal to triangle CF B, and
ADE (is equal) to DEH [Prop. 1.34], and parallelo-
gram C'A is also equal to EB—for (they are) opposite
[Prop. 11.24]—and GFE (equal) to CH, thus the prism
contained by the two triangles CGF and ADE, and the
three parallelograms GE, AC, and CFE, is also equal to
the prism contained by the two triangles CF B and DEH,
and the three parallelograms CH, BE, and CE. For they
are contained by planes (which are) equal in number and
in magnitude [Def. 11.10].* Thus, the whole of solid AB
is cut in half by the plane CDEF. (Which is) the very
thing it was required to show.

T Here, it is assumed that the two diagonals lie in the same plane. The proof is easily supplied.

 However, strictly speaking, the prisms are not similarly arranged, being mirror images of one another.

xd'.

Ta et tfic abtiic fdocwe dvta oteped TapaAnienineda

%ol OO 10 abTo Ooc, BV ol Epectdoot €nl TEY wdTEHY elowy
evdelddy, oo GAAAAOLC EOTiv.
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"Eotw énl tfic adtfic Bdocwe tfic AB oteped mopodhn-

Proposition 29

Parallelepiped solids which are on the same base, and
(have) the same height, and in which the (ends of the
straight-lines) standing up are on the same straight-lines,
are equal to one another.

D E H K

F\R N

For let the parallelepiped solids CM and CN be on

N
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the same base AB, and (have) the same height, and let
the (ends of the straight-lines) standing up in them, AG,
AF, LM, LN, CD, CE, BH, and BK, be on the same
straight-lines, FN and DK. I say that solid CM is equal
to solid C'N.

For since CH and CK are each parallelograms, CB
is equal to each of DH and EK [Prop. 1.34]. Hence,
DH is also equal to EK. Let FH have been subtracted
from both. Thus, the remainder DF is equal to the re-
mainder HK. Hence, triangle DCE is also equal to tri-
angle HBK [Props. 1.4, 1.8], and parallelogram DG to
parallelogram HN [Prop. 1.36]. So, for the same (rea-
sons), traingle AF'G is also equal to triangle M LN. And
parallelogram C'F is also equal to parallelogram BM,
and CG to BN [Prop. 11.24]. For they are opposite.
Thus, the prism contained by the two triangles AFG and
DCEFE, and the three parallelograms AD, DG, and CG, is
equal to the prism contained by the two triangles M LN
and HBK, and the three parallelograms BM, HN, and
BN. Let the solid whose base (is) parallelogram AB, and
(whose) opposite (face is) GEH M, have been added to
both (prisms). Thus, the whole parallelepiped solid C M
is equal to the whole parallelepiped solid C'N.

Thus, parallelepiped solids which are on the same
base, and (have) the same height, and in which the
(ends of the straight-lines) standing up (are) on the same
straight-lines, are equal to one another. (Which is) the
very thing it was required to show.

Proposition 30

Parallelepiped solids which are on the same base, and
(have) the same height, and in which the (ends of the
straight-lines) standing up are not on the same straight-
lines, are equal to one another.

N p K R

ﬁM N /\H
G/ /N0 | \E/ /\Q
\\/AD

L\W B
A C
Let the parallelepiped solids CM and C'N be on the

same base, AB, and (have) the same height, and let the
(ends of the straight-lines) standing up in them, AF, AG,
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LM, LN, CD, CE, BH, and BK, not be on the same
straight-lines. I say that the solid C'M is equal to the
solid C'N.

For let NK and DH have been produced, and let
them have joined one another at R. And, further, let F'M
and GFE have been produced to P and @ (respectively).
And let AO, LP, CQ, and BR have been joined. So, solid
CM, whose base (is) parallelogram ACBL, and oppo-
site (face) FDH M, is equal to solid C P, whose base (is)
parallelogram ACBL, and opposite (face) OQRP. For
they are on the same base, ACBL, and (have) the same
height, and the (ends of the straight-lines) standing up in
them, AF, AO, LM, LP,CD, CQ, BH, and BR, are on
the same straight-lines, F'P and DR [Prop. 11.29]. But,
solid C'P, whose base is parallelogram ACBL, and oppo-
site (face) OQRP, is equal to solid C'N, whose base (is)
parallelogram AC'BL, and opposite (face) GEKN. For,
again, they are on the same base, ACBL, and (have)
the same height, and the (ends of the straight-lines)
standing up in them, AG, AO, CE, CQ, LN, LP, BK,
and BR, are on the same straight-lines, GQ and NR
[Prop. 11.29]. Hence, solid C'M is also equal to solid
CN.

Thus, parallelepiped solids (which are) on the same
base, and (have) the same height, and in which the (ends
of the straight-lines) standing up are not on the same
straight-lines, are equal to one another. (Which is) the
very thing it was required to show.

Proposition 31

Parallelepiped solids which are on equal bases, and
(have) the same height, are equal to one another.

Let the parallelepiped solids AE and C'F' be on the
equal bases AB and CD (respectively), and (have) the
same height. I say that solid AE is equal to solid CF.

So, let the (straight-lines) standing up, HK, BE, AG,
LM, PQ, DF, CO, and RS, first of all, be at right-angles
to the bases AB and C'D. And let RT have been produced
in a straight-line with CR. And let (angle) TRU, equal
to angle AL B, have been constructed on the straight-line
RT, at the point R on it [Prop. 1.23]. And let RT be
made equal to AL, and RU to LB. And let the base RW,
and the solid XU, have been completed.
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And since the two (straight-lines) TR and RU are
equal to the two (straight-lines) AL and LB (respec-
tively), and they contain equal angles, parallelogram
RW is thus equal and similar to parallelogram HL
[Prop. 6.14]. And, again, since AL is equal to RT,
and LM to RS, and they contain right-angles, paral-
lelogram RX is thus equal and similar to parallelogram
AM [Prop. 6.14]. So, for the same (reasons), LFE is also
equal and similar to SU. Thus, three parallelograms of
solid AF are equal and similar to three parallelograms
of solid XU. But, the three (faces of the former solid)
are equal and similar to the three opposite (faces), and
the three (faces of the latter solid) to the three opposite
(faces) [Prop. 11.24]. Thus, the whole parallelepiped
solid AE is equal to the whole parallelepiped solid XU
[Def. 11.10]. Let DR and WU have been drawn across,
and let them have met one another at Y. And let aTb
have been drawn through 7T parallel to DY. And let PD
have been produced to a. And let the solids Y X and
RI have been completed. So, solid XY, whose base is
parallelogram RX, and opposite (face) Y, is equal to
solid XU, whose base (is) parallelogram RX, and oppo-
site (face) UV. For they are on the same base RX, and
(have) the same height, and the (ends of the straight-
lines) standing up in them, RY, RU, Tbh, TW, Se, Sd,
Xc and XV, are on the same straight-lines, YW and
eV [Prop. 11.29]. But, solid XU is equal to AE. Thus,
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solid XY is also equal to solid AE. And since parallel-
ogram RUWT is equal to parallelogram Y7T. For they
are on the same base RT, and between the same par-
allels RT and YW [Prop. 1.35]. But, RUWT is equal
to CD, since (it is) also (equal) to AB. Parallelogram
YT is thus also equal to CD. And DT is another (par-
allelogram). Thus, as base C'D is to DT, so YT (is) to
DT [Prop. 5.7]. And since the parallelepiped solid CT
has been cut by the plane RF, which is parallel to the
opposite planes (of CI), as base C'D is to base DT, so
solid C'F (is) to solid RI [Prop. 11.25]. So, for the same
(reasons), since the parallelepiped solid Y I has been cut
by the plane RX, which is parallel to the opposite planes
(of YI), as base YT is to base T'D, so solid Y X (is) to
solid RI [Prop. 11.25]. But, as base C'D (is) to DT, so
YT (is) to DT. And, thus, as solid CF (is) to solid RI,
so solid Y X (is) to solid RI. Thus, solids CF and Y X
each have the same ratio to RI [Prop. 5.11]. Thus, solid
CF is equal to solid Y X [Prop. 5.9]. But, Y X was show
(to be) equal to AE. Thus, AF is also equal to C'F.
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And so let the (straight-lines) standing up, AG, HK,
BE, LM, CO, PQ, DF, and RS, not be at right-angles
to the bases AB and C'D. Again, I say that solid AF
(is) equal to solid C'F'. For let KN, ET, GU, MV, QW,
FX, OY, and SI have been drawn from points K, F,
G, M, Q, F, O, and S (respectively) perpendicular to
the reference plane (i.e., the plane of the bases AB and
CD), and let them have met the plane at points N, T,
U,V,W, X,Y, and I (respectively). And let NT', NU,
UV, TV, WX, WY, YI, and IX have been joined. So
solid KV is equal to solid QI. For they are on the equal
bases KM and S, and (have) the same height, and the
(straight-lines) standing up in them are at right-angles
to their bases (see first part of proposition). But, solid
KV is equal to solid AE, and QI to CF. For they are
on the same base, and (have) the same height, and the
(straight-lines) standing up in them are not on the same
straight-lines [Prop. 11.30]. Thus, solid AF is also equal
to solid C'F.

Thus, parallelepiped solids which are on equal bases,
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and (have) the same height, are equal to one another.
(Which is) the very thing it was required to show.

Proposition 32

Parallelepiped solids which (have) the same height
are to one another as their bases.

B D K

A C G H

Let AB and CD be parallelepiped solids (having) the
same height. I say that the parallelepiped solids AB and
CD are to one another as their bases. That is to say, as
base AF is to base CF, so solid AB (is) to solid CD.

For let F'H, equal to AFE, have been applied to F'G (in
the angle FFGH equal to angle LC'G) [Prop. 1.45]. And
let the parallelepiped solid GK, (having) the same height
as C'D, have been completed on the base FH. So solid
AB is equal to solid GK. For they are on the equal bases
AFE and FH, and (have) the same height [Prop. 11.31].
And since the parallelepiped solid C K has been cut by
the plane DG, which is parallel to the opposite planes (of
CK), thus as the base CF is to the base F'H, so the solid
CD (is) to the solid DH [Prop. 11.25]. And base F H (is)
equal to base AF, and solid GK to solid AB. And thus
as base AF is to base CF, so solid AB (is) to solid CD.

Thus, parallelepiped solids which (have) the same
height are to one another as their bases. (Which is) the
very thing it was required to show.

Proposition 33

Similar parallelepiped solids are to one another as the
cubed ratio of their corresponding sides.

Let AB and CD be similar parallelepiped solids, and
let AE correspond to C'F. Isay that solid AB has to solid
CD the cubed ratio that AE (has) to CF.

For let K, EL, and EM have been produced in a
straight-line with AF, GE, and HF (respectively). And
let EK be made equal to CF, and EL equal to F'N, and,
further, M equal to FR. And let the parallelogram KL
have been completed, and the solid K P.
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And since the two (straight-lines) KF and EL are
equal to the two (straight-lines) CF and F'N, but angle
KFEL is also equal to angle CF' N, inasmuch as AEG is
also equal to CF'N, on account of the similarity of the
solids AB and C D, parallelogram KL is thus equal [and
similar] to parallelogram C'N. So, for the same (reasons),
parallelogram K M is also equal and similar to [parallel-
ogram] CR, and, further, FP to DF. Thus, three par-
allelograms of solid K P are equal and similar to three
parallelograms of solid CD. But the three (former par-
allelograms) are equal and similar to the three opposite
(parallelograms), and the three (latter parallelograms)
are equal and similar to the three opposite (parallelo-
grams) [Prop. 11.24]. Thus, the whole of solid K P is
equal and similar to the whole of solid C'D [Def. 11.10].
Let parallelogram G K have been completed. And let the
the solids £O and LQ), with bases the parallelograms GK
and KL (respectively), and with the same height as AB,
have been completed. And since, on account of the sim-
ilarity of solids AB and C'D, as AE is to CF, so EG (is)
to I'N, and EH to 'R [Defs. 6.1, 11.9], and CF (is)
equal to FK, and FN to EL, and FR to EM, thus as
AFE isto EK, so GE (is) to EL, and HE to EM. But,
as AE (is) to FK, so [parallelogram] AG (is) to paral-
lelogram GK, and as GF (is) to EL, so GK (is) to KL,
and as HFE (is) to EM, so QF (is) to KM [Prop. 6.1].
And thus as parallelogram AG (is) to GK, so GK (is)
to KL, and QF (is) to K M. But, as AG (is) to GK, so
solid AB (is) to solid FO, and as GK (is) to K L, so solid
OF (is) to solid QL, and as QF (is) to KM, so solid QL
(is) to solid K P [Prop. 11.32]. And, thus, as solid AB
is to EO, so FO (is) to QL, and QL to K P. And if four
magnitudes are continuously proportional then the first
has to the fourth the cubed ratio that (it has) to the sec-
ond [Def. 5.10]. Thus, solid AB has to K P the cubed
ratio which AB (has) to EO. But, as AB (is) to FEO, so
parallelogram AG (is) to GK, and the straight-line AE
to EK [Prop. 6.1]. Hence, solid AB also has to K P the
cubed ratio that AF (has) to EK. And solid KP (is)
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otepeod Uoc.

"Ectwoav ydp npdtepov ol Epeotnxuion ol AH, EZ, AB,
OK, I'M, NE, OA, IIP npoc épdac tolc Bdocoty adtdEv:
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n I'M npoc v AH.

Ei uev odv lon otiv 1) EO Bdow tfj NII Bdoet, €oti 6¢
xal 10 AB otepedv 16 I'A oteped loov, €otan xod  I'M T
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TpOC IAANAG EoTv (¢ ol Bdoelg. ol Eoton ¢ 1) EO Bdolc
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equal to solid C'D, and straight-line FK to CF. Thus,
solid AB also has to solid C'D the cubed ratio which its
corresponding side AE (has) to the corresponding side
CF.

B o)
H Q

M
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Thus, similar parallelepiped solids are to one another
as the cubed ratio of their corresponding sides. (Which
is) the very thing it was required to show.

Corollary

So, (it is) clear, from this, that if four straight-lines are
(continuously) proportional then as the first is to the
fourth, so the parallelepiped solid on the first will be to
the similar, and similarly described, parallelepiped solid
on the second, since the first also has to the fourth the
cubed ratio that (it has) to the second.

Proposition 34f

The bases of equal parallelepiped solids are recip-
rocally proportional to their heights. And those paral-
lelepiped solids whose bases are reciprocally proportional
to their heights are equal.

Let AB and CD be equal parallelepiped solids. I say
that the bases of the parallelepiped solids AB and C'D
are reciprocally proportional to their heights, and (so) as
base F'H is to base NQ, so the height of solid C'D (is) to
the height of solid AB.

For, first of all, let the (straight-lines) standing up,
AG, EF, LB, HK, CM, NO, PD, and QR, be at right-
angles to their bases. I say that as base FH is to base
NQ, so CM (is) to AG.

Therefore, if base E'H is equal to base N(@Q, and solid
AB is also equal to solid CD, CM will also be equal to
AG. For parallelepiped solids of the same height are to
one another as their bases [Prop. 11.32]. And as base
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EH (is) to NQ@, so CM will be to AG. And (so it is) clear
that the bases of the parallelepiped solids AB and C'D
are reciprocally proportional to their heights.
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So let base EH not be equal to base NQ, but let EH
be greater. And solid AB is also equal to solid C'D. Thus,
CM is also greater than AG. Therefore, let CT be made
equal to AG. And let the parallelepiped solid V' C have
been completed on the base N@Q, with height CT. And
since solid AB is equal to solid C'D, and CV (is) extrinsic
(to them), and equal (magnitudes) have the same ratio to
the same (magnitude) [Prop. 5.7], thus as solid AB is to
solid C'V, so solid C'D (is) to solid C'V. But, as solid AB
(is) to solid C'V, so base EH (is) to base NQ. For the
solids AB and C'V (are) of equal height [Prop. 11.32].
And as solid C'D (is) to solid C'V, so base M@ (is) to base
TQ [Prop. 11.25], and C M to CT [Prop. 6.1]. And, thus,
as base FH is to base NQ, so MC (is) to AG. And CT
(is) equal to AG. And thus as base EH (is) to base NQ,
so MC (is) to AG. Thus, the bases of the parallelepiped
solids AB and C'D are reciprocally proportional to their
heights.

So, again, let the bases of the parallelepipid solids AB
and C'D be reciprocally proportional to their heights, and
let base F'H be to base NQ, as the height of solid C'D (is)
to the height of solid AB. I say that solid AB is equal to
solid C'D. [For] let the (straight-lines) standing up again
be at right-angles to the bases. And if base FH is equal
to base N(@, and as base F'H is to base N@, so the height
of solid C'D (is) to the height of solid AB, the height of
solid CD is thus also equal to the height of solid AB.
And parallelepiped solids on equal bases, and also with
the same height, are equal to one another [Prop. 11.31].
Thus, solid AB is equal to solid CD.

So, let base FH not be equal to [base] N@Q, but let
EH be greater. Thus, the height of solid C'D is also
greater than the height of solid AB, that is to say CM
(greater) than AG. Let C'T again be made equal to AG,
and let the solid C'V have been similarly completed.
Since as base F'H is to base NQ, so MC (is) to AG,
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and AG (is) equal to CT, thus as base EH (is) to base
NQ@, so CM (is) to CT. But, as [base] EH (is) to base
NQ, so solid AB (is) to solid C'V. For solids AB and CV
are of equal heights [Prop. 11.32]. And as CM (is) to
CT, so (is) base M(Q to base QT [Prop. 6.1], and solid
CD to solid C'V [Prop. 11.25]. And thus as solid AB (is)
to solid C'V, so solid C'D (is) to solid C'V. Thus, AB and
CD each have the same ratio to CV. Thus, solid AB is
equal to solid C'D [Prop. 5.9].
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So, let the (straight-lines) standing up, F'F, BL, GA,
KH, ON, DP, MC, and RQ, not be at right-angles to
their bases. And let perpendiculars have been drawn to
the planes through EH and NQ from points F', G, B, K,
O, M, R, and D, and let them have joined the planes at
(points) S, T, U, V, W, X, Y, and a (respectively). And
let the solids F'V and OY have been completed. In this
case, also, I say that the solids AB and C'D being equal,
their bases are reciprocally proportional to their heights,
and (so) as base FH is to base NQ, so the height of solid
CD (is) to the height of solid AB.

Since solid AB is equal to solid CD, but AB is equal
to BT'. For they are on the same base F'K, and (have) the
same height [Props. 11.29, 11.30]. And solid C'D is equal
is equal to DX . For, again, they are on the same base RO,
and (have) the same height [Props. 11.29, 11.30]. Solid
BT is thus also equal to solid DX. Thus, as base F K (is)
to base OR, so the height of solid DX (is) to the height
of solid BT (see first part of proposition). And base F'K
(is) equal to base FH, and base OR to NQ. Thus, as
base F'H is to base N, so the height of solid DX (is) to

R
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the height of solid BT'. And solids DX, BT are the same
height as (solids) DC, BA (respectively). Thus, as base
EH is to base NQ, so the height of solid DC (is) to the
height of solid AB. Thus, the bases of the parallelepiped
solids AB and C'D are reciprocally proportional to their
heights.

So, again, let the bases of the parallelepiped solids
AB and CD be reciprocally proportional to their heights,
and (so) let base EH be to base NQ, as the height of
solid C'D (is) to the height of solid AB. I say that solid
AB is equal to solid C'D.

For, with the same construction (as before), since as
base F'H is to base NQ, so the height of solid C'D (is) to
the height of solid AB, and base FH (is) equal to base
FK, and NQ@Q to OR, thus as base F'K is to base OR,
so the height of solid C'D (is) to the height of solid AB.
And solids AB, CD are the same height as (solids) BT,
DX (respectively). Thus, as base F'K is to base OR, so
the height of solid DX (is) to the height of solid BT.
Thus, the bases of the parallelepiped solids BT and DX
are reciprocally proportional to their heights. Thus, solid
BT is equal to solid DX (see first part of proposition).
But, BT is equal to BA. For [they are] on the same base
FK, and (have) the same height [Props. 11.29, 11.30].
And solid DX is equal to solid DC' [Props. 11.29, 11.30].
Thus, solid AB is also equal to solid CD. (Which is) the
very thing it was required to show.

T This proposition assumes that (a) if two parallelepipeds are equal, and have equal bases, then their heights are equal, and (b) if the bases of

two equal parallelepipeds are unequal, then that solid which has the lesser base has the greater height.
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Proposition 35

If there are two equal plane angles, and raised
straight-lines are stood on the apexes of them, containing
equal angles respectively with the original straight-lines
(forming the angles), and random points are taken on
the raised (straight-lines), and perpendiculars are drawn
from them to the planes in which the original angles are,
and straight-lines are joined from the points created in
the planes to the (vertices of the) original angles, then
they will enclose equal angles with the raised (straight-
lines).

Let BAC and EDF be two equal rectilinear angles.
And let the raised straight-lines AG and DM have been
stood on points A and D, containing equal angles respec-
tively with the original straight-lines. (That is) M DFE
(equal) to GAB, and M DF (to) GAC. And let the ran-
dom points G and M have been taken on AG and DM
(respectively). And let the GL and M N have been drawn
from points G and M perpendicular to the planes through
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BAC and EDF (respectively). And let them have joined
the planes at points L and N (respectively). And let LA
and N D have been joined. I say that angle GAL is equal
to angle M DN.

G

H

B
A K L
~

D/ >IN
F

Let AH be made equal to DM. And let H K have been
drawn through point H parallel to GL. And GL is per-
pendicular to the plane through BAC. Thus, HK is also
perpendicular to the plane through BAC [Prop. 11.8].
And let KC, NF, KB, and NE have been drawn from
points K and N perpendicular to the straight-lines AC,
DF, AB, and DE. And let HC, CB, MF, and FE have
been joined. Since the (square) on HA is equal to the
(sum of the squares) on HK and K A [Prop. 1.47], and
the (sum of the squares) on KC and CA is equal to the
(square) on K A [Prop. 1.47], thus the (square) on HA
is equal to the (sum of the squares) on HK, KC, and
CA. And the (square) on HC is equal to the (sum of
the squares) on HK and KC [Prop. 1.47]. Thus, the
(square) on HA is equal to the (sum of the squares)
on HC and CA. Thus, angle HCA is a right-angle
[Prop. 1.48]. So, for the same (reasons), angle DF M
is also a right-angle. Thus, angle ACH is equal to (an-
gle) DFM. And HAC is also equal to MDF'. So, MDF
and HAC are two triangles having two angles equal to
two angles, respectively, and one side equal to one side—
(namely), that subtending one of the equal angles —(that
is), HA (equal) to M D. Thus, they will also have the re-
maining sides equal to the remaining sides, respectively
[Prop. 1.26]. Thus, AC is equal to DF'. So, similarly, we
can show that AB is also equal to DE. Therefore, since
AC is equal to DF, and AB to DE, so the two (straight-
lines) CA and AB are equal to the two (straight-lines)
FD and DE (respectively). But, angle C AB is also equal
to angle FF'DE. Thus, base BC is equal to base E'F, and
triangle (ACB) to triangle (DF'E), and the remaining
angles to the remaining angles (respectively) [Prop. 1.4].
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Thus, angle ACB (is) equal to DF'E. And the right-angle
ACK is also equal to the right-angle DFN. Thus, the
remainder BCK is equal to the remainder EFN. So,
for the same (reasons), CBK is also equal to FEN.
So, BCK and EFN are two triangles having two an-
gles equal to two angles, respectively, and one side equal
to one side—(namely), that by the equal angles—(that
is), BC (equal) to EFF. Thus, they will also have the re-
maining sides equal to the remaining sides (respectively)
[Prop. 1.26]. Thus, CK is equal to F'N. And AC (is) also
equal to DF. So, the two (straight-lines) AC and CK are
equal to the two (straight-lines) DF and F'N (respec-
tively). And they enclose right-angles. Thus, base AK is
equal to base DN [Prop. 1.4]. And since AH is equal to
DM, the (square) on AH is also equal to the (square) on
DM. But, the the (sum of the squares) on AK and K H
is equal to the (square) on AH. For angle AKH (is) a
right-angle [Prop. 1.47]. And the (sum of the squares)
on DN and NM (is) equal to the square on DM . For an-
gle DN M (is) a right-angle [Prop. 1.47]. Thus, the (sum
of the squares) on AK and K H is equal to the (sum of
the squares) on DN and N M, of which the (square) on
AK is equal to the (square) on DN. Thus, the remaining
(square) on K H is equal to the (square) on NM. Thus,
HK (is) equal to M N. And since the two (straight-lines)
HA and AK are equal to the two (straight-lines) M D
and DN, respectively, and base HK was shown (to be)
equal to base M N, angle HAK is thus equal to angle
MDN [Prop. 1.8].

Thus, if there are two equal plane angles, and so on
of the proposition. [(Which is) the very thing it was re-
quired to show].

Corollary

So, it is clear, from this, that if there are two equal
plane angles, and equal raised straight-lines are stood
on them (at their apexes), containing equal angles re-
spectively with the original straight-lines (forming the
angles), then the perpendiculars drawn from (the raised
ends of) them to the planes in which the original angles
lie are equal to one another. (Which is) the very thing it
was required to show.

Proposition 36

If three straight-lines are (continuously) proportional
then the parallelepiped solid (formed) from the three
(straight-lines) is equal to the equilateral parallelepiped
solid on the middle (straight-line which is) equiangular
to the aforementioned (parallelepiped solid).
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Let A, B, and C be three (continuously) proportional
straight-lines, (such that) as A (is) to B, so B (is) to C.
I say that the (parallelepiped) solid (formed) from A, B,
and C is equal to the equilateral solid on B (which is)
equiangular with the aforementioned (solid).

Let the solid angle at F, contained by DEG, GEF,
and FED, be set out. And let DE, GE, and EF each
be made equal to B. And let the parallelepiped solid
EK have been completed. And (let) LM (be made)
equal to A. And let the solid angle contained by NLO,
OLM, and M LN have been constructed on the straight-
line LM, and at the point L on it, (so as to be) equal
to the solid angle E [Prop. 11.23]. And let LO be made
equal to B, and LN equal to C. And since as A (is)
to B, so B (is) to C, and A (is) equal to LM, and B
to each of LO and ED, and C to LN, thus as LM (is)
to EF, so DE (is) to LN. And (so) the sides around
the equal angles NLM and DEF are reciprocally pro-
portional. Thus, parallelogram M N is equal to parallel-
ogram DF' [Prop. 6.14]. And since the two plane recti-
linear angles DEF and NLM are equal, and the raised
straight-lines stood on them (at their apexes), LO and
EG, are equal to one another, and contain equal angles
respectively with the original straight-lines (forming the
angles), the perpendiculars drawn from points G and O
to the planes through NLM and DEF (respectively) are
thus equal to one another [Prop. 11.35 corr.]. Thus, the
solids LH and EK (have) the same height. And paral-
lelepiped solids on equal bases, and with the same height,
are equal to one another [Prop. 11.31]. Thus, solid HL
is equal to solid £ K. And LH is the solid (formed) from
A, B, and C, and EK the solid on B. Thus, the par-
allelepiped solid (formed) from A, B, and C is equal to
the equilateral solid on B (which is) equiangular with the
aforementioned (solid). (Which is) the very thing it was
required to show.

Proposition 371

If four straight-lines are proportional then the similar,
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and similarly described, parallelepiped solids on them
will also be proportional. And if the similar, and similarly
described, parallelepiped solids on them are proportional
then the straight-lines themselves will be proportional.

@ @
A B C D
N

M

E F

G H

Let AB, CD, EF, and GH, be four proportional
straight-lines, (such that) as AB (is) to CD, so EF (is)
to GH. And let the similar, and similarly laid out, par-
allelepiped solids KA, LC, M E and NG have been de-
scribed on AB, CD, EF, and GH (respectively). I say
that as KA isto LC, so M E (is) to NG.

For since the parallelepiped solid K A is similar to LC,
K A thus has to LC the cubed ratio that AB (has) to CD
[Prop. 11.33]. So, for the same (reasons), M F also has to
NG the cubed ratio that EF (has) to GH [Prop. 11.33].
And since as AB is to CD, so EF (is) to GH, thus, also,
as AK (is) to LC, so M E (is) to NG.

And so let solid AK be to solid LC, as solid M E (is)
to NG. I say that as straight-line AB isto CD, so E'F (is)
to GH.

For, again, since K A has to LC the cubed ratio that
AB (has) to CD [Prop. 11.33], and M F also has to NG
the cubed ratio that £F' (has) to GH [Prop. 11.33], and
as KAisto LC, so ME (is) to NG, thus, also, as AB (is)
to CD, so EF (is) to GH.

Thus, if four straight-lines are proportional, and so
on of the proposition. (Which is) the very thing it was
required to show.

T This proposition assumes that if two ratios are equal then the cube of the former is also equal to the cube of the latter, and vice versa.

A
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TV Emnédwvy xal N 100 x0Bou dduetpoc diya téuvoucty
SAAAAOC.

Proposition 38

If the sides of the opposite planes of a cube are cut
in half, and planes are produced through the pieces, then
the common section of the (latter) planes and the diam-
eter of the cube cut one another in half.
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For let the opposite planes CF and AH of the cube
AF have been cut in half at the points K, L, M, N, O,
Q, P, and R. And let the planes K N and OR have been
produced through the pieces. And let US be the common
section of the planes, and DG the diameter of cube AF.
I say that UT is equal to T'S, and DT to TG.

For let DU, UFE, BS, and SG have been joined. And
since DO is parallel to PF, the alternate angles DOU and
UPE are equal to one another [Prop. 1.29]. And since
DO is equal to PE, and OU to UP, and they contain
equal angles, base DU is thus equal to base UFE, and tri-
angle DOU is equal to triangle PUF, and the remaining
angles (are) equal to the remaining angles [Prop. 1.4].
Thus, angle OU D (is) equal to angle PUE. So, for this
(reason), DUE is a straight-line [Prop. 1.14]. So, for
the same (reason), BSG is also a straight-line, and BS
equal to SG. And since C'A is equal and parallel to DB,
but C'A is also equal and parallel to EG, DB is thus also
equal and parallel to EG [Prop. 11.9]. And the straight-
lines DFE and BG join them. DE is thus parallel to BG
[Prop. 1.33]. Thus, angle EDT (is) equal to BGT. For
(they are) alternate [Prop. 1.29]. And (angle) DTU (is
equal) to GT'S [Prop. 1.15]. So, DTU and GT'S are two
triangles having two angles equal to two angles, and one
side equal to one side—(namely), that subtended by one
of the equal angles—(that is), DU (equal) to GSS. For
they are halves of DE and BG (respectively). (Thus),
they will also have the remaining sides equal to the re-
maining sides [Prop. 1.26]. Thus, DT (is) equal to TG,
and UT to T'S.

Thus, if the sides of the opposite planes of a cube are
cut in half, and planes are produced through the pieces,
then the common section of the (latter) planes and the
diameter of the cube cut one another in half. (Which is)
the very thing it was required to show.
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Proposition 39

If there are two equal height prisms, and one has a
parallelogram, and the other a triangle, (as a) base, and
the parallelogram is double the triangle, then the prisms
will be equal.

B D M p

A C

H

E F G K

Let ABCDEF and GHKLMN be two equal height
prisms, and let the former have the parallelogram AF,
and the latter the triangle GH K, as a base. And let par-
allelogram AF be twice triangle GH K. I say that prism
ABCDEF is equal to prism GHKLMN.

For let the solids AO and GP have been com-
pleted. Since parallelogram AF is double triangle GH K,
and parallelogram HK is also double triangle GHK
[Prop. 1.34], parallelogram AF is thus equal to paral-
lelogram HK. And parallelepiped solids which are on
equal bases, and (have) the same height, are equal to
one another [Prop. 11.31]. Thus, solid AO is equal to
solid GP. And prism ABCDEF is half of solid AO, and
prism GH K LM N half of solid GP [Prop. 11.28]. Prism
ABCDEF is thus equal to prism GHKLMN.

Thus, if there are two equal height prisms, and one
has a parallelogram, and the other a triangle, (as a) base,
and the parallelogram is double the triangle, then the
prisms are equal. (Which is) the very thing it was re-
quired to show.
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