ELEMENTS BOOK 2

Fundamentals of Geometric Algebra
${ }^{\circ}$ Opor.

 ยที่ยะハ๘้.
β^{\prime}. Паvтòऽ ס̀̀ $\pi \alpha \rho \alpha \lambda \lambda \eta \lambda о \gamma \rho \alpha ́ \mu \mu о и ~ \chi \omega р i ́ o u ~ \tau \omega ̃ \nu ~ \pi \varepsilon \rho i ̀ ~ \tau \grave{̀ \nu}$

$$
\alpha^{\prime} .
$$

 $\tau \widetilde{\varphi}$

 $\ddot{\eta} \chi \vartheta \omega \dot{\eta} \mathrm{H} \Theta, \delta \iota \dot{\alpha} \delta \dot{\varepsilon} \tau \widetilde{\omega} \nu \Delta, \mathrm{E}, \Gamma \tau \tilde{n} \mathrm{BH} \tau \alpha \rho \dot{\alpha} \lambda \lambda \eta \lambda o \iota ~ \eta ँ \chi \vartheta \omega \sigma \alpha \nu$ ai $\Delta \mathrm{K}, \mathrm{E} \Lambda, \Gamma \Theta$.

Definitions

1. Any rectangular parallelogram is said to be contained by the two straight-lines containing the rightangle.
2. And in any parallelogrammic figure, let any one whatsoever of the parallelograms about its diagonal, (taken) with its two complements, be called a gnomon.

Proposition 1^{\dagger}

If there are two straight-lines, and one of them is cut into any number of pieces whatsoever, then the rectangle contained by the two straight-lines is equal to the (sum of the) rectangles contained by the uncut (straight-line), and every one of the pieces (of the cut straight-line).

A

Let A and $B C$ be the two straight-lines, and let $B C$ be cut, at random, at points D and E. I say that the rectangle contained by A and $B C$ is equal to the rectangle(s) contained by A and $B D$, by A and $D E$, and, finally, by A and $E C$.

For let $B F$ have been drawn from point B, at rightangles to $B C$ [Prop. 1.11], and let $B G$ be made equal to A [Prop. 1.3], and let $G H$ have been drawn through (point) G, parallel to $B C$ [Prop. 1.31], and let $D K, E L$, and $C H$ have been drawn through (points) D, E, and C (respectively), parallel to $B G$ [Prop. 1.31].

So the (rectangle) $B H$ is equal to the (rectangles) $B K, D L$, and $E H$. And $B H$ is the (rectangle contained) by A and $B C$. For it is contained by $G B$ and $B C$, and $B G$ (is) equal to A. And $B K$ (is) the (rectangle contained) by A and $B D$. For it is contained by $G B$ and $B D$, and $B G$ (is) equal to A. And $D L$ (is) the (rectangle contained) by A and $D E$. For $D K$, that is to say $B G$ [Prop. 1.34], (is) equal to A. Similarly, $E H$ (is) also the (rectangle contained) by A and $E C$. Thus, the (rectangle contained) by A and $B C$ is equal to the (rectangles contained) by A

and $B D$, by A and $D E$, and, finally, by A and $E C$.
Thus, if there are two straight-lines, and one of them is cut into any number of pieces whatsoever, then the rectangle contained by the two straight-lines is equal to the (sum of the) rectangles contained by the uncut (straight-line), and every one of the pieces (of the cut straight-line). (Which is) the very thing it was required to show.
${ }^{\dagger}$ This proposition is a geometric version of the algebraic identity: $a(b+c+d+\cdots)=a b+a c+a d+\cdots$.

「Z.
 тò á $\pi o ̀ ~ \tau n ̃ ऽ ~ A B ~ \tau \varepsilon \tau \rho \alpha ́ \gamma \omega \nu o v, ~ \tau o ̀ ~ \delta \grave{\varepsilon} \mathrm{AZ}$ tò ú $\pi o ̀ ~ \tau \widetilde{\omega} \nu \mathrm{BA}$,

Proposition 2^{\dagger}

If a straight-line is cut at random then the (sum of the) rectangle(s) contained by the whole (straight-line), and each of the pieces (of the straight-line), is equal to the square on the whole.

For let the straight-line $A B$ have been cut, at random, at point C. I say that the rectangle contained by $A B$ and $B C$, plus the rectangle contained by $B A$ and $A C$, is equal to the square on $A B$.

For let the square $A D E B$ have been described on $A B$ [Prop. 1.46], and let $C F$ have been drawn through C, parallel to either of $A D$ or $B E$ [Prop. 1.31].

So the (square) $A E$ is equal to the (rectangles) $A F$ and $C E$. And $A E$ is the square on $A B$. And $A F$ (is) the rectangle contained by the (straight-lines) $B A$ and $A C$. For it is contained by $D A$ and $A C$, and $A D$ (is) equal to $A B$. And $C E$ (is) the (rectangle contained) by $A B$ and $B C$. For $B E$ (is) equal to $A B$. Thus, the (rectangle contained) by $B A$ and $A C$, plus the (rectangle contained) by $A B$ and $B C$, is equal to the square on $A B$.

Thus, if a straight-line is cut at random then the (sum of the) rectangle(s) contained by the whole (straightline), and each of the pieces (of the straight-line), is equal to the square on the whole. (Which is) the very thing it was required to show.
${ }^{\dagger}$ This proposition is a geometric version of the algebraic identity：$a b+a c=a^{2}$ if $a=b+c$ ．

γ^{\prime}.

Eủvยĩ $\gamma \dot{\alpha} \rho \dot{\eta} \mathrm{AB} \tau \varepsilon \tau \mu \dot{\gamma} \sigma \vartheta \omega$ ，$\dot{\omega} \varsigma$ है $\tau \cup \chi \varepsilon \nu, x \alpha \tau \grave{\alpha}$ 七ò Γ ．

 $\mu \varepsilon \tau \grave{\alpha}$ тои̃ $\alpha \pi o ̀ ~ \tau \tilde{\eta} \varsigma ~ В \Gamma ~ \tau \varepsilon \tau \rho \alpha \gamma \omega ́ v o u . ~$

 тєтраү⿳㇒⿵冂一兀寸。и．

 ठєĭそ α ．

Proposition 3^{\dagger}

If a straight－line is cut at random then the rectangle contained by the whole（straight－line），and one of the pieces（of the straight－line），is equal to the rectangle con－ tained by（both of）the pieces，and the square on the aforementioned piece．

For let the straight－line $A B$ have been cut，at random， at（point）C ．I say that the rectangle contained by $A B$ and $B C$ is equal to the rectangle contained by $A C$ and $C B$ ，plus the square on $B C$ ．

For let the square $C D E B$ have been described on $C B$ ［Prop．1．46］，and let $E D$ have been drawn through to F ，and let $A F$ have been drawn through A ，parallel to either of $C D$ or $B E$［Prop．1．31］．So the（rectangle）$A E$ is equal to the（rectangle）$A D$ and the（square）$C E$ ．And $A E$ is the rectangle contained by $A B$ and $B C$ ．For it is contained by $A B$ and $B E$ ，and $B E$（is）equal to $B C$ ．And $A D$（is）the（rectangle contained）by $A C$ and $C B$ ．For $D C$（is）equal to $C B$ ．And $D B$（is）the square on $C B$ ． Thus，the rectangle contained by $A B$ and $B C$ is equal to the rectangle contained by $A C$ and $C B$ ，plus the square on $B C$ ．

Thus，if a straight－line is cut at random then the rect－ angle contained by the whole（straight－line），and one of the pieces（of the straight－line），is equal to the rectangle contained by（both of）the pieces，and the square on the aforementioned piece．（Which is）the very thing it was required to show．
${ }^{\dagger}$ This proposition is a geometric version of the algebraic identity：$(a+b) a=a b+a^{2}$ ．

$$
\delta^{\prime} .
$$

Proposition 4^{\dagger}

If a straight－line is cut at random then the square on the whole（straight－line）is equal to the（sum of the） squares on the pieces（of the straight－line），and twice the
$\gamma \omega v i ́ \varphi$.

 EB $\pi \alpha p \alpha ́ \lambda \lambda \eta \lambda o s ~ \eta ̈ \chi \vartheta \omega \dot{\eta} \Gamma Z$, ठı̀ $\delta \varepsilon ̀ ~ \tau о \tilde{u} H$ ó $\pi о \tau \varepsilon ́ p \alpha ~ \tau \widetilde{\omega} \nu \mathrm{AB}$,

 òpখorevíc.

rectangle contained by the pieces.

For let the straight-line $A B$ have been cut, at random, at (point) C. I say that the square on $A B$ is equal to the (sum of the) squares on $A C$ and $C B$, and twice the rectangle contained by $A C$ and $C B$.

For let the square $A D E B$ have been described on $A B$ [Prop. 1.46], and let $B D$ have been joined, and let $C F$ have been drawn through C, parallel to either of $A D$ or $E B$ [Prop. 1.31], and let $H K$ have been drawn through G, parallel to either of $A B$ or $D E$ [Prop. 1.31]. And since $C F$ is parallel to $A D$, and $B D$ has fallen across them, the external angle $C G B$ is equal to the internal and opposite (angle) $A D B$ [Prop. 1.29]. But, $A D B$ is equal to $A B D$, since the side $B A$ is also equal to $A D$ [Prop. 1.5]. Thus, angle $C G B$ is also equal to $G B C$. So the side $B C$ is equal to the side $C G$ [Prop. 1.6]. But, $C B$ is equal to $G K$, and $C G$ to $K B$ [Prop. 1.34]. Thus, $G K$ is also equal to $K B$. Thus, $C G K B$ is equilateral. So I say that (it is) also right-angled. For since $C G$ is parallel to $B K$ [and the straight-line $C B$ has fallen across them], the angles $K B C$ and $G C B$ are thus equal to two right-angles [Prop. 1.29]. But $K B C$ (is) a right-angle. Thus, $B C G$ (is) also a rightangle. So the opposite (angles) $C G K$ and $G K B$ are also right-angles [Prop. 1.34]. Thus, $C G K B$ is right-angled. And it was also shown (to be) equilateral. Thus, it is a square. And it is on $C B$. So, for the same (reasons), $H F$ is also a square. And it is on $H G$, that is to say [on] $A C$ [Prop. 1.34]. Thus, the squares $H F$ and $K C$ are on $A C$ and $C B$ (respectively). And the (rectangle) $A G$ is equal to the (rectangle) $G E$ [Prop. 1.43]. And $A G$ is the (rectangle contained) by $A C$ and $C B$. For $G C$ (is) equal to $C B$. Thus, $G E$ is also equal to the (rectangle contained) by $A C$ and $C B$. Thus, the (rectangles) $A G$ and $G E$ are equal to twice the (rectangle contained) by $A C$ and $C B$. And $H F$ and $C K$ are the squares on $A C$ and $C B$ (respectively). Thus, the four (figures) $H F, C K$, $A G$, and $G E$ are equal to the (sum of the) squares on

$A C$ and $B C$, and twice the rectangle contained by $A C$ and $C B$. But, the (figures) $H F, C K, A G$, and $G E$ are (equivalent to) the whole of $A D E B$, which is the square on $A B$. Thus, the square on $A B$ is equal to the (sum of the) squares on $A C$ and $C B$, and twice the rectangle contained by $A C$ and $C B$.

Thus, if a straight-line is cut at random then the square on the whole (straight-line) is equal to the (sum of the) squares on the pieces (of the straight-line), and twice the rectangle contained by the pieces. (Which is) the very thing it was required to show.
${ }^{\dagger}$ This proposition is a geometric version of the algebraic identity: $(a+b)^{2}=a^{2}+b^{2}+2 a b$.

$$
\varepsilon^{\prime}
$$

Proposition 5^{\ddagger}

If a straight-line is cut into equal and unequal (pieces) then the rectangle contained by the unequal pieces of the whole (straight-line), plus the square on the (difference) between the (equal and unequal) pieces, is equal to the square on half (of the straight-line).

For let any straight-line $A B$ have been cut-equally at C, and unequally at D. I say that the rectangle contained by $A D$ and $D B$, plus the square on $C D$, is equal to the square on $C B$.

For let the square $C E F B$ have been described on $C B$ [Prop. 1.46], and let $B E$ have been joined, and let $D G$ have been drawn through D, parallel to either of $C E$ or $B F$ [Prop. 1.31], and again let $K M$ have been drawn through H, parallel to either of $A B$ or $E F$ [Prop. 1.31], and again let $A K$ have been drawn through A, parallel to either of $C L$ or $B M$ [Prop. 1.31]. And since the complement $C H$ is equal to the complement $H F$ [Prop. 1.43], let the (square) $D M$ have been added to both. Thus, the whole (rectangle) $C M$ is equal to the whole (rectangle) $D F$. But, (rectangle) $C M$ is equal to (rectangle) $A L$, since $A C$ is also equal to $C B$ [Prop. 1.36]. Thus, (rectangle) $A L$ is also equal to (rectangle) $D F$. Let (rectangle) CH have been added to both. Thus, the whole (rectangle) $A H$ is equal to the gnomon $N O P$. But, $A H$

 A $\Delta, \Delta \mathrm{B} \pi \varepsilon \rho เ \varepsilon \chi o ́ \mu \varepsilon v o v ~ o ̉ p \vartheta o \gamma(\omega) v i o v ~ \mu \varepsilon \tau \alpha ̀ ~ \tau о u ̃ ~ \alpha ̉ \pi o ̀ ~ \tau \tilde{\eta} \varsigma \Gamma \Delta$

is the (rectangle contained) by $A D$ and $D B$. For $D H$ (is) equal to $D B$. Thus, the gnomon $N O P$ is also equal to the (rectangle contained) by $A D$ and $D B$. Let $L G$, which is equal to the (square) on $C D$, have been added to both. Thus, the gnomon $N O P$ and the (square) $L G$ are equal to the rectangle contained by $A D$ and $D B$, and the square on $C D$. But, the gnomon $N O P$ and the (square) $L G$ is (equivalent to) the whole square $C E F B$, which is on $C B$. Thus, the rectangle contained by $A D$ and $D B$, plus the square on $C D$, is equal to the square on $C B$.

Thus, if a straight-line is cut into equal and unequal (pieces) then the rectangle contained by the unequal pieces of the whole (straight-line), plus the square on the (difference) between the (equal and unequal) pieces, is equal to the square on half (of the straight-line). (Which is) the very thing it was required to show.
${ }^{\dagger}$ Note the (presumably mistaken) double use of the label M in the Greek text.
${ }^{\ddagger}$ This proposition is a geometric version of the algebraic identity: $a b+[(a+b) / 2-b]^{2}=[(a+b) / 2]^{2}$.

$$
\varsigma^{\prime}
$$

Proposition 6^{\dagger}

If a straight-line is cut in half, and any straight-line added to it straight-on, then the rectangle contained by the whole (straight-line) with the (straight-line) having being added, and the (straight-line) having being added, plus the square on half (of the original straight-line), is equal to the square on the sum of half (of the original straight-line) and the (straight-line) having been added.

For let any straight-line $A B$ have been cut in half at point C, and let any straight-line $B D$ have been added to it straight-on. I say that the rectangle contained by $A D$ and $D B$, plus the square on $C B$, is equal to the square on $C D$.

For let the square $C E F D$ have been described on $C D$ [Prop. 1.46], and let $D E$ have been joined, and let $B G$ have been drawn through point B, parallel to either of $E C$ or $D F$ [Prop. 1.31], and let $K M$ have been drawn through point H, parallel to either of $A B$ or $E F$ [Prop. 1.31], and finally let $A K$ have been drawn

 тєтраү⿳㇒⿵冂一兀．

through A ，parallel to either of $C L$ or $D M$［Prop．1．31］．
Therefore，since $A C$ is equal to $C B$ ，（rectangle）$A L$ is also equal to（rectangle）$C H$［Prop．1．36］．But，（rectan－ gle）$C H$ is equal to（rectangle）$H F$［Prop．1．43］．Thus， （rectangle）$A L$ is also equal to（rectangle）$H F$ ．Let（rect－ angle）$C M$ have been added to both．Thus，the whole （rectangle）$A M$ is equal to the gnomon $N O P$ ．But，$A M$ is the（rectangle contained）by $A D$ and $D B$ ．For $D M$ is equal to $D B$ ．Thus，gnomon $N O P$ is also equal to the ［rectangle contained］by $A D$ and $D B$ ．Let $L G$ ，which is equal to the square on $B C$ ，have been added to both． Thus，the rectangle contained by $A D$ and $D B$ ，plus the square on $C B$ ，is equal to the gnomon $N O P$ and the （square）$L G$ ．But the gnomon $N O P$ and the（square） $L G$ is（equivalent to）the whole square $C E F D$ ，which is on $C D$ ．Thus，the rectangle contained by $A D$ and $D B$ ， plus the square on $C B$ ，is equal to the square on $C D$ ．

Thus，if a straight－line is cut in half，and any straight－ line added to it straight－on，then the rectangle contained by the whole（straight－line）with the（straight－line）hav－ ing being added，and the（straight－line）having being added，plus the square on half（of the original straight－ line），is equal to the square on the sum of half（of the original straight－line）and the（straight－line）having been added．（Which is）the very thing it was required to show．
${ }^{\dagger}$ This proposition is a geometric version of the algebraic identity：$(2 a+b) b+a^{2}=(a+b)^{2}$ ．

$$
\zeta^{\prime}
$$

 тєтраү⿳㇒⿵冂一兀．

Proposition $7{ }^{\dagger}$

If a straight－line is cut at random then the sum of the squares on the whole（straight－line），and one of the pieces（of the straight－line），is equal to twice the rectan－ gle contained by the whole，and the said piece，and the square on the remaining piece．

For let any straight－line $A B$ have been cut，at random， at point C ．I say that the（sum of the）squares on $A B$ and $B C$ is equal to twice the rectangle contained by $A B$ and

 жаı $\varkappa \alpha \tau \alpha \gamma \varepsilon \gamma \rho \alpha ́ \varphi \vartheta \vartheta \omega$ тò $\sigma \chi \tilde{\eta} \mu \alpha$ ．

$B C$ ，and the square on $C A$ ．
For let the square $A D E B$ have been described on $A B$ ［Prop．1．46］，and let the（rest of）the figure have been drawn．

Therefore，since（rectangle）$A G$ is equal to（rectan－ gle）$G E$［Prop．1．43］，let the（square）$C F$ have been added to both．Thus，the whole（rectangle）$A F$ is equal to the whole（rectangle）$C E$ ．Thus，（rectangle）$A F$ plus （rectangle）$C E$ is double（rectangle）$A F$ ．But，（rectan－ gle）$A F$ plus（rectangle）$C E$ is the gnomon $K L M$ ，and the square $C F$ ．Thus，the gnomon $K L M$ ，and the square $C F$ ，is double the（rectangle）$A F$ ．But double the（rect－ angle）$A F$ is also twice the（rectangle contained）by $A B$ and $B C$ ．For $B F$（is）equal to $B C$ ．Thus，the gnomon $K L M$ ，and the square $C F$ ，are equal to twice the（rect－ angle contained）by $A B$ and $B C$ ．Let $D G$ ，which is the square on $A C$ ，have been added to both．Thus，the gnomon $K L M$ ，and the squares $B G$ and $G D$ ，are equal to twice the rectangle contained by $A B$ and $B C$ ，and the square on $A C$ ．But，the gnomon $K L M$ and the squares $B G$ and $G D$ is（equivalent to）the whole of $A D E B$ and $C F$ ，which are the squares on $A B$ and $B C$（respectively）． Thus，the（sum of the）squares on $A B$ and $B C$ is equal to twice the rectangle contained by $A B$ and $B C$ ，and the square on $A C$ ．

Thus，if a straight－line is cut at random then the sum of the squares on the whole（straight－line），and one of the pieces（of the straight－line），is equal to twice the rect－ angle contained by the whole，and the said piece，and the square on the remaining piece．（Which is）the very thing it was required to show．
${ }^{\dagger}$ This proposition is a geometric version of the algebraic identity：$(a+b)^{2}+a^{2}=2(a+b) a+b^{2}$ ．

η^{\prime} ．

 тєтраү⿳㇒⿵冂一叩．

 $\sigma \chi \tilde{\eta} \mu \alpha$ ．

Proposition 8^{\dagger}

If a straight－line is cut at random then four times the rectangle contained by the whole（straight－line），and one of the pieces（of the straight－line），plus the square on the remaining piece，is equal to the square described on the whole and the former piece，as on one（complete straight－ line）．

For let any straight－line $A B$ have been cut，at random， at point C ．I say that four times the rectangle contained by $A B$ and $B C$ ，plus the square on $A C$ ，is equal to the square described on $A B$ and $B C$ ，as on one（complete straight－line）．

For let $B D$ have been produced in a straight－line ［with the straight－line $A B$ ］，and let $B D$ be made equal to $C B$［Prop．1．3］，and let the square $A E F D$ have been described on $A D$［Prop．1．46］，and let the（rest of the） figure have been drawn double．

Therefore, since $C B$ is equal to $B D$, but $C B$ is equal to $G K$ [Prop. 1.34], and $B D$ to $K N$ [Prop. 1.34], $G K$ is thus also equal to $K N$. So, for the same (reasons), $Q R$ is equal to $R P$. And since $B C$ is equal to $B D$, and $G K$ to $K N$, (square) $C K$ is thus also equal to (square) $K D$, and (square) $G R$ to (square) $R N$ [Prop. 1.36]. But, (square) $C K$ is equal to (square) $R N$. For (they are) complements in the parallelogram $C P$ [Prop. 1.43]. Thus, (square) $K D$ is also equal to (square) $G R$. Thus, the four (squares) $D K, C K, G R$, and $R N$ are equal to one another. Thus, the four (taken together) are quadruple (square) $C K$. Again, since $C B$ is equal to $B D$, but $B D$ (is) equal to $B K$-that is to say, $C G$-and $C B$ is equal to $G K$ - that is to say, $G Q-C G$ is thus also equal to $G Q$. And since $C G$ is equal to $G Q$, and $Q R$ to $R P$, (rectangle) $A G$ is also equal to (rectangle) $M Q$, and (rectangle) $Q L$ to (rectangle) $R F$ [Prop. 1.36]. But, (rectangle) $M Q$ is equal to (rectangle) $Q L$. For (they are) complements in the parallelogram $M L$ [Prop. 1.43]. Thus, (rectangle) $A G$ is also equal to (rectangle) $R F$. Thus, the four (rectangles) $A G, M Q, Q L$, and $R F$ are equal to one another. Thus, the four (taken together) are quadruple (rectangle) $A G$. And it was also shown that the four (squares) $C K, K D, G R$, and $R N$ (taken together are) quadruple (square) $C K$. Thus, the eight (figures taken together), which comprise the gnomon $S T U$, are quadruple (rectangle) $A K$. And since $A K$ is the (rectangle contained) by $A B$ and $B D$, for $B K$ (is) equal to $B D$, four times the (rectangle contained) by $A B$ and $B D$ is quadruple (rectangle) $A K$. But the gnomon $S T U$ was also shown (to be equal to) quadruple (rectangle) $A K$. Thus, four times the (rectangle contained) by $A B$ and $B D$ is equal to the gnomon $S T U$. Let $O H$, which is equal to the square on $A C$, have been added to both. Thus, four times the rectangle contained by $A B$ and $B D$, plus the square on $A C$, is equal to the gnomon $S T U$, and the (square) $O H$. But,

the gnomon $S T U$ and the (square) $O H$ is (equivalent to) the whole square $A E F D$, which is on $A D$. Thus, four times the (rectangle contained) by $A B$ and $B D$, plus the (square) on $A C$, is equal to the square on $A D$. And $B D$ (is) equal to $B C$. Thus, four times the rectangle contained by $A B$ and $B C$, plus the square on $A C$, is equal to the (square) on $A D$, that is to say the square described on $A B$ and $B C$, as on one (complete straight-line).

Thus, if a straight-line is cut at random then four times the rectangle contained by the whole (straight-line), and one of the pieces (of the straight-line), plus the square on the remaining piece, is equal to the square described on the whole and the former piece, as on one (complete straight-line). (Which is) the very thing it was required to show.
${ }^{\dagger}$ This proposition is a geometric version of the algebraic identity: $4(a+b) a+b^{2}=[(a+b)+a]^{2}$.

ϑ^{\prime}.

 тєтраүढ́vou.

 ЕАГ, АЕГ $\mu \iota \tilde{\alpha}$ ỏpখñ

Proposition 9^{\dagger}

If a straight-line is cut into equal and unequal (pieces) then the (sum of the) squares on the unequal pieces of the whole (straight-line) is double the (sum of the) square on half (the straight-line) and (the square) on the (difference) between the (equal and unequal) pieces.

For let any straight-line $A B$ have been cut-equally at C, and unequally at D. I say that the (sum of the) squares on $A D$ and $D B$ is double the (sum of the squares) on $A C$ and $C D$.

For let $C E$ have been drawn from (point) C, at rightangles to $A B$ [Prop. 1.11], and let it be made equal to each of $A C$ and $C B$ [Prop. 1.3], and let $E A$ and $E B$ have been joined. And let $D F$ have been drawn through (point) D, parallel to $E C$ [Prop. 1.31], and (let) $F G$ (have been drawn) through (point) F, (parallel) to $A B$ [Prop. 1.31]. And let $A F$ have been joined. And since $A C$ is equal to $C E$, the angle $E A C$ is also equal to the (angle) $A E C$ [Prop. 1.5]. And since the (angle) at C is a right-angle, the (sum of the) remaining angles (of triangle $A E C$), $E A C$ and $A E C$, is thus equal to one right-

angle [Prop. 1.32]. And they are equal. Thus, (angles) $C E A$ and $C A E$ are each half a right-angle. So, for the same (reasons), (angles) $C E B$ and $E B C$ are also each half a right-angle. Thus, the whole (angle) $A E B$ is a right-angle. And since $G E F$ is half a right-angle, and $E G F$ (is) a right-angle-for it is equal to the internal and opposite (angle) $E C B$ [Prop. 1.29]-the remaining (angle) $E F G$ is thus half a right-angle [Prop. 1.32]. Thus, angle $G E F$ [is] equal to $E F G$. So the side $E G$ is also equal to the (side) $G F$ [Prop. 1.6]. Again, since the angle at B is half a right-angle, and (angle) $F D B$ (is) a right-angle-for again it is equal to the internal and opposite (angle) $E C B$ [Prop. 1.29]-the remaining (angle) $B F D$ is half a right-angle [Prop. 1.32]. Thus, the angle at B (is) equal to $D F B$. So the side $F D$ is also equal to the side $D B$ [Prop. 1.6]. And since $A C$ is equal to $C E$, the (square) on $A C$ (is) also equal to the (square) on $C E$. Thus, the (sum of the) squares on $A C$ and $C E$ is double the (square) on $A C$. And the square on $E A$ is equal to the (sum of the) squares on $A C$ and $C E$. For angle $A C E$ (is) a right-angle [Prop. 1.47]. Thus, the (square) on $E A$ is double the (square) on $A C$. Again, since $E G$ is equal to $G F$, the (square) on $E G$ (is) also equal to the (square) on $G F$. Thus, the (sum of the squares) on $E G$ and $G F$ is double the square on $G F$. And the square on $E F$ is equal to the (sum of the) squares on $E G$ and $G F$ [Prop. 1.47]. Thus, the square on $E F$ is double the (square) on $G F$. And $G F$ (is) equal to $C D$ [Prop. 1.34]. Thus, the (square) on $E F$ is double the (square) on $C D$. And the (square) on $E A$ is also double the (square) on $A C$. Thus, the (sum of the) squares on $A E$ and $E F$ is double the (sum of the) squares on $A C$ and $C D$. And the square on $A F$ is equal to the (sum of the squares) on $A E$ and $E F$. For the angle $A E F$ is a right-angle [Prop. 1.47]. Thus, the square on $A F$ is double the (sum of the squares) on $A C$ and $C D$. And the (sum of the squares) on $A D$ and $D F$ (is) equal to the (square) on $A F$. For the angle at D is a right-angle [Prop. 1.47]. Thus, the (sum of the squares) on $A D$ and $D F$ is double the (sum of the) squares on $A C$ and $C D$. And $D F$ (is) equal to $D B$. Thus, the (sum of the) squares on $A D$ and $D B$ is double the (sum of the) squares on $A C$ and $C D$.

Thus, if a straight-line is cut into equal and unequal (pieces) then the (sum of the) squares on the unequal pieces of the whole (straight-line) is double the (sum of the) square on half (the straight-line) and (the square) on the (difference) between the (equal and unequal) pieces. (Which is) the very thing it was required to show.
${ }^{\dagger}$ This proposition is a geometric version of the algebraic identity: $a^{2}+b^{2}=2\left[([a+b] / 2)^{2}+([a+b] / 2-b)^{2}\right]$.

i^{\prime}.

 $\pi \varepsilon \sigma о \tilde{u} \nu \tau \alpha l$. غ̇x $\beta \varepsilon \beta \lambda \dot{\eta} \sigma \vartheta \omega \sigma \alpha \nu$ x $\alpha \grave{\imath} \sigma \cup \mu \pi \iota \pi \tau \varepsilon ́ \tau \omega \sigma \alpha \nu x \alpha \tau \grave{\alpha}$ 七ò H ,

Proposition 10^{\dagger}

If a straight-line is cut in half, and any straight-line added to it straight-on, then the sum of the square on the whole (straight-line) with the (straight-line) having been added, and the (square) on the (straight-line) having been added, is double the (sum of the square) on half (the straight-line), and the square described on the sum of half (the straight-line) and (straight-line) having been added, as on one (complete straight-line).

For let any straight-line $A B$ have been cut in half at (point) C, and let any straight-line $B D$ have been added to it straight-on. I say that the (sum of the) squares on $A D$ and $D B$ is double the (sum of the) squares on $A C$ and $C D$.

For let $C E$ have been drawn from point C, at rightangles to $A B$ [Prop. 1.11], and let it be made equal to each of $A C$ and $C B$ [Prop. 1.3], and let $E A$ and $E B$ have been joined. And let $E F$ have been drawn through E, parallel to $A D$ [Prop. 1.31], and let $F D$ have been drawn through D, parallel to $C E$ [Prop. 1.31]. And since some straight-line $E F$ falls across the parallel straight-lines $E C$ and $F D$, the (internal angles) $C E F$ and $E F D$ are thus equal to two right-angles [Prop. 1.29]. Thus, $F E B$ and $E F D$ are less than two right-angles. And (straight-lines) produced from (internal angles whose sum is) less than two right-angles meet together [Post. 5]. Thus, being produced in the direction of B and D, the (straight-lines) $E B$ and $F D$ will meet. Let them have been produced, and let them meet together at G, and let $A G$ have been joined. And since $A C$ is equal to $C E$, angle $E A C$ is also equal to (angle) $A E C$ [Prop. 1.5]. And the (angle) at C (is) a right-angle. Thus, $E A C$ and $A E C$ [are] each half a right-angle [Prop. 1.32]. So, for the same (reasons), $C E B$ and $E B C$ are also each half a right-angle. Thus, (angle) $A E B$ is a right-angle. And since $E B C$ is half a right-angle, $D B G$ (is) thus also half a rightangle [Prop. 1.15]. And $B D G$ is also a right-angle. For it is equal to $D C E$. For (they are) alternate (angles)

[Prop. 1.29]. Thus, the remaining (angle) $D G B$ is half a right-angle. Thus, $D G B$ is equal to $D B G$. So side $B D$ is also equal to side $G D$ [Prop. 1.6]. Again, since $E G F$ is half a right-angle, and the (angle) at F (is) a right-angle, for it is equal to the opposite (angle) at C [Prop. 1.34], the remaining (angle) $F E G$ is thus half a right-angle. Thus, angle $E G F$ (is) equal to $F E G$. So the side $G F$ is also equal to the side $E F$ [Prop. 1.6]. And since [$E C$ is equal to $C A$] the square on $E C$ is [also] equal to the square on $C A$. Thus, the (sum of the) squares on $E C$ and $C A$ is double the square on $C A$. And the (square) on $E A$ is equal to the (sum of the squares) on $E C$ and $C A$ [Prop. 1.47]. Thus, the square on $E A$ is double the square on $A C$. Again, since $F G$ is equal to $E F$, the (square) on $F G$ is also equal to the (square) on $F E$. Thus, the (sum of the squares) on $G F$ and $F E$ is double the (square) on $E F$. And the (square) on $E G$ is equal to the (sum of the squares) on $G F$ and $F E$ [Prop. 1.47]. Thus, the (square) on $E G$ is double the (square) on $E F$. And $E F$ (is) equal to $C D$ [Prop. 1.34]. Thus, the square on $E G$ is double the (square) on $C D$. But it was also shown that the (square) on $E A$ (is) double the (square) on $A C$. Thus, the (sum of the) squares on $A E$ and $E G$ is double the (sum of the) squares on $A C$ and $C D$. And the square on $A G$ is equal to the (sum of the) squares on $A E$ and $E G$ [Prop. 1.47]. Thus, the (square) on $A G$ is double the (sum of the squares) on $A C$ and $C D$. And the (sum of the squares) on $A D$ and $D G$ is equal to the (square) on $A G$ [Prop. 1.47]. Thus, the (sum of the) [squares] on $A D$ and $D G$ is double the (sum of the) [squares] on $A C$ and $C D$. And $D G$ (is) equal to $D B$. Thus, the (sum of the) [squares] on $A D$ and $D B$ is double the (sum of the) squares on $A C$ and $C D$.

Thus, if a straight-line is cut in half, and any straightline added to it straight-on, then the sum of the square on the whole (straight-line) with the (straight-line) having been added, and the (square) on the (straight-line) having been added, is double the (sum of the square) on half (the straight-line), and the square described on the sum of half (the straight-line) and (straight-line) having been added, as on one (complete straight-line). (Which is) the very thing it was required to show.
${ }^{\dagger}$ This proposition is a geometric version of the algebraic identity: $(2 a+b)^{2}+b^{2}=2\left[a^{2}+(a+b)^{2}\right]$.

$$
\alpha^{\prime}
$$

Proposition 11^{\dagger}

To cut a given straight-line such that the rectangle contained by the whole (straight-line), and one of the pieces (of the straight-line), is equal to the square on the remaining piece.

 $\tau \mu \dot{\mu} \mu \alpha \tau о \varsigma ~ \tau \varepsilon \tau \rho \alpha \gamma \omega ́ v \omega$.

 EZ, xal̀ $\alpha \nu \alpha \gamma \varepsilon \gamma \rho \alpha ́ \varphi \vartheta \omega$ árò $\tau \tilde{n} \varsigma \mathrm{AZ} \tau \varepsilon \tau \rho \alpha ́ \gamma \omega \nu o \nu$ tò $Z \Theta$, xà̀

 $\tau \widetilde{\varphi}$ а̉лò $\Theta \mathrm{A} \tau \varepsilon \tau \rho \alpha \gamma \omega ่ \nu \varphi$.

Let $A B$ be the given straight-line. So it is required to cut $A B$ such that the rectangle contained by the whole (straight-line), and one of the pieces (of the straightline), is equal to the square on the remaining piece.

For let the square $A B D C$ have been described on $A B$ [Prop. 1.46], and let $A C$ have been cut in half at point E [Prop. 1.10], and let $B E$ have been joined. And let $C A$ have been drawn through to (point) F, and let $E F$ be made equal to $B E$ [Prop. 1.3]. And let the square $F H$ have been described on $A F$ [Prop. 1.46], and let $G H$ have been drawn through to (point) K. I say that $A B$ has been cut at H such as to make the rectangle contained by $A B$ and $B H$ equal to the square on $A H$.

For since the straight-line $A C$ has been cut in half at E, and $F A$ has been added to it, the rectangle contained by $C F$ and $F A$, plus the square on $A E$, is thus equal to the square on $E F$ [Prop. 2.6]. And $E F$ (is) equal to $E B$. Thus, the (rectangle contained) by $C F$ and $F A$, plus the (square) on $A E$, is equal to the (square) on $E B$. But, the (sum of the squares) on $B A$ and $A E$ is equal to the (square) on $E B$. For the angle at A (is) a right-angle [Prop. 1.47]. Thus, the (rectangle contained) by $C F$ and $F A$, plus the (square) on $A E$, is equal to the (sum of the squares) on $B A$ and $A E$. Let the square on $A E$ have been subtracted from both. Thus, the remaining rectangle contained by $C F$ and $F A$ is equal to the square on $A B$. And $F K$ is the (rectangle contained) by $C F$ and $F A$. For $A F$ (is) equal to $F G$. And $A D$ (is) the (square) on $A B$. Thus, the (rectangle) $F K$ is equal to the (square) $A D$. Let (rectangle) $A K$ have been subtracted from both. Thus, the remaining (square) $F H$ is equal to the (rectangle) $H D$. And $H D$ is the (rectangle contained) by $A B$ and $B H$. For $A B$ (is) equal to $B D$. And $F H$ (is) the (square) on $A H$. Thus, the rectangle contained by $A B$
and $B H$ is equal to the square on $H A$.
Thus, the given straight-line $A B$ has been cut at (point) H such as to make the rectangle contained by $A B$ and $B H$ equal to the square on $H A$. (Which is) the very thing it was required to do.
\dagger This manner of cutting a straight-line—so that the ratio of the whole to the larger piece is equal to the ratio of the larger to the smaller piece-is
sometimes called the "Golden Section".

$$
\beta^{\prime}
$$

 $\gamma \omega \nu i \alpha$.

Proposition 12^{\dagger}

In obtuse-angled triangles, the square on the side subtending the obtuse angle is greater than the (sum of the) squares on the sides containing the obtuse angle by twice the (rectangle) contained by one of the sides around the obtuse angle, to which a perpendicular (straight-line) falls, and the (straight-line) cut off outside (the triangle) by the perpendicular (straight-line) towards the obtuse angle.

Let $A B C$ be an obtuse-angled triangle, having the angle $B A C$ obtuse. And let $B D$ be drawn from point B, perpendicular to $C A$ produced [Prop. 1.12]. I say that the square on $B C$ is greater than the (sum of the) squares on $B A$ and $A C$, by twice the rectangle contained by $C A$ and $A D$.

For since the straight-line $C D$ has been cut, at random, at point A, the (square) on $D C$ is thus equal to the (sum of the) squares on $C A$ and $A D$, and twice the rectangle contained by $C A$ and $A D$ [Prop. 2.4]. Let the (square) on $D B$ have been added to both. Thus, the (sum of the squares) on $C D$ and $D B$ is equal to the (sum of the) squares on $C A, A D$, and $D B$, and twice the [rectangle contained] by $C A$ and $A D$. But, the (square) on $C B$ is equal to the (sum of the squares) on $C D$ and $D B$. For the angle at D (is) a right-angle [Prop. 1.47]. And the (square) on $A B$ (is) equal to the (sum of the squares) on $A D$ and $D B$ [Prop. 1.47]. Thus, the square on $C B$ is equal to the (sum of the) squares on $C A$ and $A B$, and twice the rectangle contained by $C A$ and $A D$. So the square on $C B$ is greater than the (sum of the) squares on

$C A$ and $A B$ by twice the rectangle contained by $C A$ and $A D$.

Thus, in obtuse-angled triangles, the square on the side subtending the obtuse angle is greater than the (sum of the) squares on the sides containing the obtuse angle by twice the (rectangle) contained by one of the sides around the obtuse angle, to which a perpendicular (straight-line) falls, and the (straight-line) cut off outside (the triangle) by the perpendicular (straight-line) towards the obtuse angle. (Which is) the very thing it was required to show.
${ }^{\dagger}$ This proposition is equivalent to the well-known cosine formula: $B C^{2}=A B^{2}+A C^{2}-2 A B A C \cos B A C$, since $\cos B A C=-A D / A B$.

$$
' \gamma^{\prime}
$$

 $\tau \widetilde{\omega} \nu \dot{\alpha} \pi \grave{o} \tau \widetilde{\omega} \nu \tau \grave{\eta} \nu$ ỏ $\xi \varepsilon i ̃ \alpha \nu \gamma \omega \nu i ́ \alpha \nu \pi \varepsilon \rho เ \varepsilon \chi о \cup \sigma \widetilde{\omega} \nu \pi \lambda \varepsilon \cup \rho \widetilde{\omega} \nu \tau \varepsilon-$

Proposition 13^{\dagger}

In acute-angled triangles, the square on the side subtending the acute angle is less than the (sum of the) squares on the sides containing the acute angle by twice the (rectangle) contained by one of the sides around the acute angle, to which a perpendicular (straight-line) falls, and the (straight-line) cut off inside (the triangle) by the perpendicular (straight-line) towards the acute angle.

Let $A B C$ be an acute-angled triangle, having the angle at (point) B acute. And let $A D$ have been drawn from point A, perpendicular to $B C$ [Prop. 1.12]. I say that the square on $A C$ is less than the (sum of the) squares on $C B$ and $B A$, by twice the rectangle contained by $C B$ and $B D$.

For since the straight-line $C B$ has been cut, at random, at (point) D, the (sum of the) squares on $C B$ and $B D$ is thus equal to twice the rectangle contained by $C B$ and $B D$, and the square on $D C$ [Prop. 2.7]. Let the square on $D A$ have been added to both. Thus, the (sum of the) squares on $C B, B D$, and $D A$ is equal to twice the rectangle contained by $C B$ and $B D$, and the (sum of the) squares on $A D$ and $D C$. But, the (square) on $A B$ (is) equal to the (sum of the squares) on $B D$ and $D A$. For the angle at (point) D is a right-angle [Prop. 1.47].
$\tau \widetilde{\omega} \nu \dot{\alpha} \pi o ̀ ~ \tau \widetilde{\omega} \nu \Gamma \mathrm{~B}, \mathrm{BA} \tau \varepsilon \tau \rho \alpha \not \omega \dot{\nu \omega \nu} \tau \widetilde{\varphi}$ $\delta i \varsigma ~ ن ́ \pi o ̀ ~ \tau \widetilde{\omega} \nu \Gamma \mathrm{~B}, \mathrm{~B} \Delta$

And the (square) on $A C$ (is) equal to the (sum of the squares) on $A D$ and $D C$ [Prop. 1.47]. Thus, the (sum of the squares) on $C B$ and $B A$ is equal to the (square) on $A C$, and twice the (rectangle contained) by $C B$ and $B D$. So the (square) on $A C$ alone is less than the (sum of the) squares on $C B$ and $B A$ by twice the rectangle contained by $C B$ and $B D$.

Thus, in acute-angled triangles, the square on the side subtending the acute angle is less than the (sum of the) squares on the sides containing the acute angle by twice the (rectangle) contained by one of the sides around the acute angle, to which a perpendicular (straight-line) falls, and the (straight-line) cut off inside (the triangle) by the perpendicular (straight-line) towards the acute angle. (Which is) the very thing it was required to show.
${ }^{\dagger}$ This proposition is equivalent to the well-known cosine formula: $A C^{2}=A B^{2}+B C^{2}-2 A B B C \cos A B C$, since $\cos A B C=B D / A B$.
δ^{\prime}.
 $\vartheta \alpha l$.

 $\mathrm{BE}, \mathrm{E} \Delta \mu \varepsilon i \zeta \omega \nu$ ह̀бтí. हैन $\tau \omega \mu \varepsilon i \zeta \omega \nu \dot{\eta} \mathrm{BE}, x \alpha i$ ह̇x $\beta \varepsilon \beta \lambda \dot{\eta} \sigma \vartheta \omega$ ย̇лì tò Z , x αi x

Proposition 14

To construct a square equal to a given rectilinear figure.

Let A be the given rectilinear figure. So it is required to construct a square equal to the rectilinear figure A.

For let the right-angled parallelogram $B D$, equal to the rectilinear figure A, have been constructed [Prop. 1.45]. Therefore, if $B E$ is equal to $E D$ then that (which) was prescribed has taken place. For the square $B D$, equal to the rectilinear figure A, has been constructed. And if not, then one of the (straight-lines) $B E$ or $E D$ is greater (than the other). Let $B E$ be greater, and let it have been produced to F, and let $E F$ be made equal to $E D$ [Prop. 1.3]. And let $B F$ have been cut in half at (point) G [Prop. 1.10]. And, with center G, and radius one of the (straight-lines) $G B$ or $G F$, let the semi-circle $B H F$ have been drawn. And let $D E$ have been produced to H, and let $G H$ have been joined.

Therefore, since the straight-line $B F$ has been cutequally at G, and unequally at E-the rectangle con-

 $\pi o เ ท ̃ \sigma \alpha l$.
tained by $B E$ and $E F$, plus the square on $E G$, is thus equal to the square on $G F$ [Prop. 2.5]. And $G F$ (is) equal to $G H$. Thus, the (rectangle contained) by $B E$ and $E F$, plus the (square) on $G E$, is equal to the (square) on $G H$. And the (sum of the) squares on $H E$ and $E G$ is equal to the (square) on $G H$ [Prop. 1.47]. Thus, the (rectangle contained) by $B E$ and $E F$, plus the (square) on $G E$, is equal to the (sum of the squares) on $H E$ and $E G$. Let the square on $G E$ have been taken from both. Thus, the remaining rectangle contained by $B E$ and $E F$ is equal to the square on $E H$. But, $B D$ is the (rectangle contained) by $B E$ and $E F$. For $E F$ (is) equal to $E D$. Thus, the parallelogram $B D$ is equal to the square on $H E$. And $B D$ (is) equal to the rectilinear figure A. Thus, the rectilinear figure A is also equal to the square (which) can be described on $E H$.

Thus, a square-(namely), that (which) can be described on $E H$-has been constructed, equal to the given rectilinear figure A. (Which is) the very thing it was required to do.

