ELEMENTS BOOK 7

Elementary Number Theory

[^0]
"Opor.

δ^{\prime}. Мép δ 它, öт $\alpha \nu \mu \grave{\eta} \chi \alpha \tau \alpha \mu \varepsilon \tau \rho \tilde{\eta}$.

 $\mu \varepsilon \tau \rho о$ и́ ε vos $\chi \alpha \tau \grave{\alpha} \pi \varepsilon \rho เ \sigma \sigma o ̀ v ~ \grave{\alpha} \rho เ \vartheta \mu o ́ v . ~$

 $\lambda \alpha \pi \lambda \alpha \sigma \iota \zeta$ ó $\mu \varepsilon \nu о \varsigma$, , кגi $\gamma \varepsilon ́ v \eta \tau \alpha i ́ ~ \tau ı \varsigma . ~$

 $\stackrel{\omega}{\omega}$

Definitions

1. A unit is (that) according to which each existing (thing) is said (to be) one.
2. And a number (is) a multitude composed of units. ${ }^{\dagger}$
3. A number is part of a(nother) number, the lesser of the greater, when it measures the greater. ${ }^{\ddagger}$
4. But (the lesser is) parts (of the greater) when it does not measure it. ${ }^{\S}$
5. And the greater (number is) a multiple of the lesser when it is measured by the lesser.
6. An even number is one (which can be) divided in half.
7. And an odd number is one (which can)not (be) divided in half, or which differs from an even number by a unit.
8. An even-times-even number is one (which is) measured by an even number according to an even number. ${ }^{\top}$
9. And an even-times-odd number is one (which is) measured by an even number according to an odd number.*
10. And an odd-times-odd number is one (which is) measured by an odd number according to an odd number. ${ }^{\$}$
11. A prime ${ }^{\|}$number is one (which is) measured by a unit alone.
12. Numbers prime to one another are those (which are) measured by a unit alone as a common measure.
13. A composite number is one (which is) measured by some number.
14. And numbers composite to one another are those (which are) measured by some number as a common measure.
15. A number is said to multiply a(nother) number when the (number being) multiplied is added (to itself) as many times as there are units in the former (number), and (thereby) some (other number) is produced.
16. And when two numbers multiplying one another make some (other number) then the (number so) created is called plane, and its sides (are) the numbers which multiply one another.
17. And when three numbers multiplying one another make some (other number) then the (number so) created is (called) solid, and its sides (are) the numbers which multiply one another.
18. A square number is an equal times an equal, or (a plane number) contained by two equal numbers.
19. And a cube (number) is an equal times an equal times an equal, or (a solid number) contained by three equal numbers.
20. Numbers are proportional when the first is the same multiple, or the same part, or the same parts, of the second that the third (is) of the fourth.
21. Similar plane and solid numbers are those having proportional sides.
22. A perfect number is that which is equal to its own parts. ${ }^{\dagger \dagger}$
\dagger In other words, a "number" is a positive integer greater than unity.
\ddagger In other words, a number a is part of another number b if there exists some number n such that $n a=b$.
§ In other words, a number a is parts of another number b (where $a<b$) if there exist distinct numbers, m and n, such that $n a=m b$.
${ }^{\text {4 }}$ In other words. an even-times-even number is the product of two even numbers.

* In other words, an even-times-odd number is the product of an even and an odd number.
\$ In other words, an odd-times-odd number is the product of two odd numbers.
|| Literally, "first".
${ }^{\dagger \dagger}$ In other words, a perfect number is equal to the sum of its own factors.

$$
\alpha^{\prime}
$$

$\Delta u ́ o ~ \gamma \dot{\alpha} p[\alpha \dot{\nu i \sigma \omega \nu] ~ \alpha ́ p ı \vartheta \mu \widetilde{\omega} \nu \tau \widetilde{\omega} \nu \mathrm{AB}, \Gamma \Delta \dot{\alpha} \nu \vartheta \cup \varphi \alpha l-~}$

 ó ठè $\mathrm{H} \Gamma$ тòv $\mathrm{Z} \Theta \mu \varepsilon \tau \rho \widetilde{\omega} \nu \lambda \varepsilon เ \tau \varepsilon ́ \tau \omega ~ \mu о \nu \alpha ́ \delta \alpha ~ \tau \eta ̀ \nu ~ \Theta A . ~$

Proposition 1

Two unequal numbers (being) laid down, and the lesser being continually subtracted, in turn, from the greater, if the remainder never measures the (number) preceding it, until a unit remains, then the original numbers will be prime to one another.

For two [unequal] numbers, $A B$ and $C D$, the lesser being continually subtracted, in turn, from the greater, let the remainder never measure the (number) preceding it, until a unit remains. I say that $A B$ and $C D$ are prime to one another-that is to say, that a unit alone measures (both) $A B$ and $C D$.

For if $A B$ and $C D$ are not prime to one another then some number will measure them. Let (some number) measure them, and let it be E. And let $C D$ measuring $B F$ leave $F A$ less than itself, and let $A F$ measuring $D G$ leave $G C$ less than itself, and let $G C$ measuring $F H$ leave a unit, $H A$.

In fact, since E measures $C D$, and $C D$ measures $B F$, E thus also measures $B F .^{\dagger}$ And (E) also measures the whole of $B A$. Thus, (E) will also measure the remainder

$A F{ }^{\ddagger}$ And $A F$ measures $D G$. Thus, E also measures $D G$. And (E) also measures the whole of $D C$. Thus, (E) will also measure the remainder $C G$. And $C G$ measures $F H$. Thus, E also measures $F H$. And (E) also measures the whole of $F A$. Thus, (E) will also measure the remaining unit $A H$, (despite) being a number. The very thing is impossible. Thus, some number does not measure (both) the numbers $A B$ and $C D$. Thus, $A B$ and $C D$ are prime to one another. (Which is) the very thing it was required to show.
${ }^{\dagger}$ Here, use is made of the unstated common notion that if a measures b, and b measures c, then a also measures c, where all symbols denote numbers.
${ }^{\ddagger}$ Here, use is made of the unstated common notion that if a measures b, and a measures part of b, then a also measures the remainder of b, where all symbols denote numbers.
β^{\prime}.

Eỉ $\mu \varepsilon ̀ v ~ o u ̛ ้ \nu ~ o ́ ~ \Gamma \Delta ~ \tau o ̀ v ~ A B ~ \mu \varepsilon \tau р \varepsilon и ̃, ~ \mu \varepsilon \tau р \varepsilon і ̃ ~ ס e ̀ ~ \chi \alpha i ̀ ~ \varepsilon ́ \alpha u \tau o ́ v, ~ o ́ ~$

 BE $\mu \varepsilon \tau \rho \widetilde{\omega} \nu \lambda \varepsilon เ \tau \varepsilon ́ \tau \omega ~ \varepsilon ̇ \alpha \cup \tau o u ̃ ~ \varepsilon ̇ \lambda \alpha ́ \sigma \sigma o v \alpha ~ \tau o ̀ v ~ E A, ~ o ́ ~ \delta e ̀ ~ E A ~ \tau o ̀ v ~$

Proposition 2

To find the greatest common measure of two given numbers (which are) not prime to one another.

Let $A B$ and $C D$ be the two given numbers (which are) not prime to one another. So it is required to find the greatest common measure of $A B$ and $C D$.

In fact, if $C D$ measures $A B, C D$ is thus a common measure of $C D$ and $A B$, (since $C D$) also measures itself. And (it is) manifest that (it is) also the greatest (common measure). For nothing greater than $C D$ can measure $C D$.

But if $C D$ does not measure $A B$ then some number will remain from $A B$ and $C D$, the lesser being continually subtracted, in turn, from the greater, which will measure the (number) preceding it. For a unit will not be left. But if not, $A B$ and $C D$ will be prime to one another [Prop. 7.1]. The very opposite thing was assumed. Thus, some number will remain which will measure the (number) preceding it. And let $C D$ measuring $B E$ leave $E A$ less than itself, and let $E A$ measuring $D F$ leave $F C$ less than itself, and let $C F$ measure $A E$. Therefore, since $C F$ measures $A E$, and $A E$ measures $D F, C F$ will thus also measure $D F$. And it also measures itself. Thus, it will

По́pıб α.

γ^{\prime}.

Tрı $\widetilde{\omega} \nu \dot{\alpha} \rho เ \vartheta \mu \widetilde{\omega} \nu ~ \delta o \vartheta \varepsilon ́ v \tau \omega \nu ~ \mu \grave{\eta} \pi \rho \dot{\omega} \tau \omega \nu \pi \rho o ̀ s ~ \alpha \dot{\alpha} \lambda \lambda \dot{\eta} \lambda o u s ~ \tau o ̀ ~$

 μ е́тpov عن́pعĩ.

also measure the whole of $C D$. And $C D$ measures $B E$. Thus, $C F$ also measures $B E$. And it also measures $E A$. Thus, it will also measure the whole of $B A$. And it also measures $C D$. Thus, $C F$ measures (both) $A B$ and $C D$. Thus, $C F$ is a common measure of $A B$ and $C D$. So I say that (it is) also the greatest (common measure). For if $C F$ is not the greatest common measure of $A B$ and $C D$ then some number which is greater than $C F$ will measure the numbers $A B$ and $C D$. Let it (so) measure ($A B$ and $C D$), and let it be G. And since G measures $C D$, and $C D$ measures $B E, G$ thus also measures $B E$. And it also measures the whole of $B A$. Thus, it will also measure the remainder $A E$. And $A E$ measures $D F$. Thus, G will also measure $D F$. And it also measures the whole of $D C$. Thus, it will also measure the remainder $C F$, the greater (measuring) the lesser. The very thing is impossible. Thus, some number which is greater than $C F$ cannot measure the numbers $A B$ and $C D$. Thus, $C F$ is the greatest common measure of $A B$ and $C D$. [(Which is) the very thing it was required to show].

Corollary

So it is manifest, from this, that if a number measures two numbers then it will also measure their greatest common measure. (Which is) the very thing it was required to show.

Proposition 3

To find the greatest common measure of three given numbers (which are) not prime to one another.

Let A, B, and C be the three given numbers (which are) not prime to one another. So it is required to find the greatest common measure of A, B, and C.

For let the greatest common measure, D, of the two (numbers) A and B have been taken [Prop. 7.2]. So D either measures, or does not measure, C. First of all, let it measure (C). And it also measures A and B. Thus, D

 $\mu \varepsilon ́ \gamma เ \sigma \tau o \nu ~ \chi o เ v o ̀ \nu ~ \mu \varepsilon ́ \tau p o \nu ~ \mu \varepsilon \tau p \eta ́ \sigma \varepsilon ı . ~ \tau o ̀ ~ \delta غ ̀ ~ \tau \widetilde{\omega} \nu \mathrm{~A}, \mathrm{~B} \mu \varepsilon ́ \gamma เ \sigma \tau o \nu$犭oเvòv $\mu \varepsilon ́ \tau \rho o \nu ~ \varepsilon ̇ \sigma \tau i \nu ~ o ́ ~ \Delta \cdot ~ o ́ ~ E ~ a ̆ p \alpha ~ \tau o ̀ \nu ~ \Delta \mu \varepsilon \tau р \varepsilon 亢 ̃ ~ o ́ ~ \mu \varepsilon i ́ \zeta \omega \nu ~$
 ג́pıখ $\tau \widetilde{\omega} \nu \mathrm{A}, \mathrm{B}, \Gamma \mu \varepsilon ́ \gamma เ \sigma \tau o ́ v$ ह̀ $\sigma \tau \iota$ xoเvòv $\mu \varepsilon ́ \tau \rho o \nu$.

Mウ̀ $\mu \varepsilon \tau \rho \varepsilon i ́ \tau \omega$ ò̀̀ ó Δ тòv $\Gamma \cdot \lambda \varepsilon ́ \gamma \omega \pi \rho \widetilde{\omega} \tau o v$ ，őтı oi Γ, Δ

 ס̀̀ toùs $\mathrm{A}, \mathrm{B}, \Gamma \mu \varepsilon \tau \rho \tilde{\omega} \nu$ xaì toùs $\mathrm{A}, \mathrm{B} \mu \varepsilon \tau \rho \eta \dot{\sigma} \varepsilon \iota$ ，x αi tò

 $\mu \varepsilon ́ \gamma เ \sigma \tau o v ~ \chi o l v o ̀ v ~ \mu \varepsilon ́ \tau p o v ~ \mu \varepsilon \tau p \eta ́ \sigma \varepsilon ı . ~ \tau o ̀ ~ \delta e ̀ ~ \tau \widetilde{\omega} \nu \mathrm{~A}, \mathrm{~B} \mu \varepsilon ́ \gamma เ \sigma \tau o v$

 ג́pıখ

δ^{\prime} ．
 グтоا $\mu \varepsilon ́ \rho o s ~ \varepsilon ̇ \sigma \tau i \nu ~ \eta ̀ ~ \mu \varepsilon ́ p \eta . ~$

measures A, B ，and C ．Thus，D is a common measure of A, B ，and C ．So I say that（it is）also the greatest （common measure）．For if D is not the greatest common measure of A, B ，and C then some number greater than D will measure the numbers A, B ，and C ．Let it（so） measure（ A, B ，and C ），and let it be E ．Therefore，since E measures A, B ，and C ，it will thus also measure A and B ．Thus，it will also measure the greatest common mea－ sure of A and B［Prop． 7.2 corr．］．And D is the greatest common measure of A and B ．Thus，E measures D ，the greater（measuring）the lesser．The very thing is impossi－ ble．Thus，some number which is greater than D cannot measure the numbers A, B ，and C ．Thus，D is the great－ est common measure of A, B ，and C ．

So let D not measure C ．I say，first of all，that C and D are not prime to one another．For since A, B, C are not prime to one another，some number will measure them．So the（number）measuring A, B ，and C will also measure A and B ，and it will also measure the greatest common measure，D ，of A and B［Prop． 7.2 corr．］．And it also measures C ．Thus，some number will measure the numbers D and C ．Thus，D and C are not prime to one another．Therefore，let their greatest common measure， E ，have been taken［Prop．7．2］．And since E measures D ，and D measures A and B, E thus also measures A and B ．And it also measures C ．Thus，E measures A, B ， and C ．Thus，E is a common measure of A, B ，and C ．So I say that（it is）also the greatest（common measure）．For if E is not the greatest common measure of A, B ，and C then some number greater than E will measure the num－ bers A, B ，and C ．Let it（so）measure（ A, B ，and C ），and let it be F ．And since F measures A, B ，and C ，it also measures A and B ．Thus，it will also measure the great－ est common measure of A and B［Prop． 7.2 corr．］．And D is the greatest common measure of A and B ．Thus，F measures D ．And it also measures C ．Thus，F measures D and C ．Thus，it will also measure the greatest com－ mon measure of D and C［Prop． 7.2 corr．］．And E is the greatest common measure of D and C ．Thus，F measures E ，the greater（measuring）the lesser．The very thing is impossible．Thus，some number which is greater than E does not measure the numbers A, B ，and C ．Thus，E is the greatest common measure of A, B ，and C ．（Which is）the very thing it was required to show．

Proposition 4

Any number is either part or parts of any（other）num－ ber，the lesser of the greater．

Let A and $B C$ be two numbers，and let $B C$ be the lesser．I say that $B C$ is either part or parts of A ．

 тoũ A .

 A $\mu \varepsilon \tau \rho \varepsilon \tilde{\imath}, \mu \varepsilon ́ \rho o \varsigma ~ \varepsilon ̇ \sigma \tau i \nu ~ o ́ ~ B \Gamma ~ \tau о u ̃ ~ A . ~ \varepsilon i ̉ ~ \delta e ̀ ~ o u ̛, ~ \varepsilon i ̉ \lambda n ́ \varphi \vartheta \omega ~ \tau \widetilde{\omega} \nu$

ε^{\prime}.
 גủtò $\mu \varepsilon ́ p o s ~ n ̃, ~ x \alpha i ~ \sigma u v \alpha \mu \varphi o ́ t \varepsilon p o s ~ \sigma u v a \mu \varphi o \tau \varepsilon ́ p o u ~ t o ̀ ~ \alpha u ̉ t o ̀ ~$ $\mu \varepsilon ́ p o \varsigma$ है $\sigma \tau \alpha l$, ö $\pi \varepsilon \rho$ ó हǐऽ тоũ ह́vós.

For A and $B C$ are either prime to one another, or not. Let A and $B C$, first of all, be prime to one another. So separating $B C$ into its constituent units, each of the units in $B C$ will be some part of A. Hence, $B C$ is parts of A.

So let A and $B C$ be not prime to one another. So $B C$ either measures, or does not measure, A. Therefore, if $B C$ measures A then $B C$ is part of A. And if not, let the greatest common measure, D, of A and $B C$ have been taken [Prop. 7.2], and let $B C$ have been divided into $B E$, $E F$, and $F C$, equal to D. And since D measures A, D is a part of A. And D is equal to each of $B E, E F$, and $F C$. Thus, $B E, E F$, and $F C$ are also each part of A. Hence, $B C$ is parts of A.

Thus, any number is either part or parts of any (other) number, the lesser of the greater. (Which is) the very thing it was required to show.

Proposition 5^{\dagger}

If a number is part of a number, and another (number) is the same part of another, then the sum (of the leading numbers) will also be the same part of the sum (of the following numbers) that one (number) is of another.

For let a number A be part of a [number] $B C$, and

 $\mathrm{B} \mathrm{\Gamma}, \mathrm{EZ}$ тò aủtò $\mu \varepsilon ́ \rho o s ~ \varepsilon ̇ \sigma \tau i ́ v, ~ o ̈ \pi \varepsilon \rho ~ o ̀ ~ A ~ \tau o u ̃ ~ В Г . ~$
'Eлモì үáp, ô $\mu \varepsilon ́ p o s ~ \varepsilon ̇ \sigma \tau i ̀ ~ o ́ ~ A ~ \tau o u ̃ ~ B \Gamma, ~ \tau o ̀ ~ \alpha u ̉ \tau o ̀ ~ \mu \varepsilon ́ p o s ~ \varepsilon ̉ \sigma \tau i ̀ ~$

another (number) D (be) the same part of another (number) $E F$ that A (is) of $B C$. I say that the sum A, D is also the same part of the sum $B C, E F$ that A (is) of $B C$.

For since which(ever) part A is of $B C, D$ is the same part of $E F$, thus as many numbers as are in $B C$ equal to A, so many numbers are also in $E F$ equal to D. Let $B C$ have been divided into $B G$ and $G C$, equal to A, and $E F$ into $E H$ and $H F$, equal to D. So the multitude of (divisions) $B G, G C$ will be equal to the multitude of (divisions) $E H, H F$. And since $B G$ is equal to A, and $E H$ to D, thus $B G, E H$ (is) also equal to A, D. So, for the same (reasons), $G C, H F$ (is) also (equal) to A, D. Thus, as many numbers as [are] in $B C$ equal to A, so many are also in $B C, E F$ equal to A, D. Thus, as many times as $B C$ is (divisible) by A, so many times is the sum $B C, E F$ also (divisible) by the sum A, D. Thus, which(ever) part A is of $B C$, the sum A, D is also the same part of the sum $B C, E F$. (Which is) the very thing it was required to show.
${ }^{\dagger}$ In modern notation, this proposition states that if $a=(1 / n) b$ and $c=(1 / n) d$ then $(a+c)=(1 / n)(b+d)$, where all symbols denote numbers.

$$
\tau^{\prime}
$$

 $\alpha u ̉ \tau \dot{\alpha} \mu \varepsilon ́ \rho \eta ~ \eta ̆, ~ x \alpha i ̀ ~ \sigma u v \alpha \mu \varphi o ́ \tau \varepsilon \rho о s ~ \sigma u v \alpha \mu \varphi о \tau \varepsilon ́ \rho о и ~ \tau \alpha ̀ ~ \alpha u ̉ \tau \alpha ̀ ~$

 $\tau \widetilde{\omega} \nu \Delta \Theta, ~ \Theta E . ~ x \alpha i ̀ ~ \varepsilon ่ ~ \pi \varepsilon i ́, ~ o ̋ ~ \mu \varepsilon ́ p o s ~ \varepsilon ̇ \sigma \tau i \nu ~ o ́ ~ A H ~ \tau о u ̃ ~ \Gamma, ~ \tau o ̀ ~$

Proposition 6^{\dagger}

If a number is parts of a number, and another (number) is the same parts of another, then the sum (of the leading numbers) will also be the same parts of the sum (of the following numbers) that one (number) is of another.

For let a number $A B$ be parts of a number C, and another (number) $D E$ (be) the same parts of another (number) F that $A B$ (is) of C. I say that the sum $A B, D E$ is also the same parts of the sum C, F that $A B$ (is) of C.

For since which(ever) parts $A B$ is of $C, D E$ (is) also the same parts of F, thus as many parts of C as are in $A B$, so many parts of F are also in $D E$. Let $A B$ have been divided into the parts of $C, A G$ and $G B$, and $D E$ into the parts of $F, D H$ and $H E$. So the multitude of (divisions) $A G, G B$ will be equal to the multitude of (divisions) $D H$,

$H E$ ．And since which（ever）part $A G$ is of $C, D H$ is also the same part of F ，thus which（ever）part $A G$ is of C ， the sum $A G, D H$ is also the same part of the sum C, F ［Prop．7．5］．And so，for the same（reasons），which（ever） part $G B$ is of C ，the sum $G B, H E$ is also the same part of the sum C, F ．Thus，which（ever）parts $A B$ is of C ， the sum $A B, D E$ is also the same parts of the sum C, F ． （Which is）the very thing it was required to show．
${ }^{\dagger}$ In modern notation，this proposition states that if $a=(m / n) b$ and $c=(m / n) d$ then $(a+c)=(m / n)(b+d)$ ，where all symbols denote numbers．

ζ^{\prime}.

 ӧтєр ó ö入oऽ тоธ̃ ö入ou．

A E B

＇Apıখ

 ő入ou тои̃ $\Gamma \Delta$ ．

Proposition 7^{\dagger}

If a number is that part of a number that a（part） taken away（is）of a（part）taken away then the remain－ der will also be the same part of the remainder that the whole（is）of the whole．

For let a number $A B$ be that part of a number $C D$ that a（part）taken away $A E$（is）of a part taken away $C F$ ．I say that the remainder $E B$ is also the same part of the remainder $F D$ that the whole $A B$（is）of the whole $C D$ ．

For which（ever）part $A E$ is of $C F$ ，let $E B$ also be the same part of $C G$ ．And since which（ever）part $A E$ is of $C F, E B$ is also the same part of $C G$ ，thus which（ever） part $A E$ is of $C F, A B$ is also the same part of $G F$ ［Prop．7．5］．And which（ever）part $A E$ is of $C F, A B$ is also assumed（to be）the same part of $C D$ ．Thus，also， which（ever）part $A B$ is of $G F,(A B)$ is also the same part of $C D$ ．Thus，$G F$ is equal to $C D$ ．Let $C F$ have been subtracted from both．Thus，the remainder $G C$ is equal to the remainder $F D$ ．And since which（ever）part $A E$ is of $C F, E B$［is］also the same part of $G C$ ，and $G C$（is） equal to $F D$ ，thus which（ever）part $A E$ is of $C F, E B$ is also the same part of $F D$ ．But，which（ever）part $A E$ is of $C F, A B$ is also the same part of $C D$ ．Thus，the remain－ der $E B$ is also the same part of the remainder $F D$ that the whole $A B$（is）of the whole $C D$ ．（Which is）the very thing it was required to show．
${ }^{\dagger}$ In modern notation，this proposition states that if $a=(1 / n) b$ and $c=(1 / n) d$ then $(a-c)=(1 / n)(b-d)$ ，where all symbols denote numbers．

$$
\eta^{\prime}
$$

 $\alpha \not \pi \varepsilon \rho ~ o ́ ~ o ̈ \lambda о \varsigma ~ \tau о \tilde{~} \partial \circ \lambda o u$ ．

Proposition 8^{\dagger}

If a number is those parts of a number that a（part） taken away（is）of a（part）taken away then the remain－ der will also be the same parts of the remainder that the

 ő λ ou тoũ $\Gamma \Delta$.
 тoũ $\Gamma \Delta$, 七̀̀ $\alpha \cup ̛ \tau \grave{\alpha} \mu \varepsilon ́ p \eta ~ \varepsilon ̇ \sigma \tau i ~ x \alpha i ̀ ~ o ̀ ~ A E ~ \tau o u ̃ ~ \Gamma Z . ~ \delta ı n \rho \eta ́ \sigma \vartheta \omega ~ o ́ ~$

 ó HM. ô a̋pa μ ह́pos ह̇ $\sigma \tau i v ~ o ́ ~ H K ~ \tau o u ̃ ~ \Gamma \Delta, ~ \tau o ̀ ~ \alpha u ̉ \tau o ̀ ~ \mu \varepsilon ́ p o s ~ \varepsilon ̇ \sigma \tau i ~$

whole (is) of the whole.

For let a number $A B$ be those parts of a number $C D$ that a (part) taken away $A E$ (is) of a (part) taken away $C F$. I say that the remainder $E B$ is also the same parts of the remainder $F D$ that the whole $A B$ (is) of the whole $C D$.

For let $G H$ be laid down equal to $A B$. Thus, which(ever) parts $G H$ is of $C D, A E$ is also the same parts of $C F$. Let $G H$ have been divided into the parts of $C D, G K$ and $K H$, and $A E$ into the part of $C F, A L$ and $L E$. So the multitude of (divisions) $G K, K H$ will be equal to the multitude of (divisions) $A L, L E$. And since which(ever) part $G K$ is of $C D, A L$ is also the same part of $C F$, and $C D$ (is) greater than $C F, G K$ (is) thus also greater than $A L$. Let $G M$ be made equal to $A L$. Thus, which (ever) part $G K$ is of $C D, G M$ is also the same part of $C F$. Thus, the remainder $M K$ is also the same part of the remainder $F D$ that the whole $G K$ (is) of the whole $C D$ [Prop. 7.5]. Again, since which(ever) part $K H$ is of $C D, E L$ is also the same part of $C F$, and $C D$ (is) greater than $C F, H K$ (is) thus also greater than $E L$. Let $K N$ be made equal to $E L$. Thus, which(ever) part $K H$ (is) of $C D, K N$ is also the same part of $C F$. Thus, the remainder $N H$ is also the same part of the remainder $F D$ that the whole $K H$ (is) of the whole $C D$ [Prop. 7.5]. And the remainder $M K$ was also shown to be the same part of the remainder $F D$ that the whole $G K$ (is) of the whole $C D$. Thus, the sum $M K, N H$ is the same parts of $D F$ that the whole $H G$ (is) of the whole $C D$. And the sum $M K, N H$ (is) equal to $E B$, and $H G$ to $B A$. Thus, the remainder $E B$ is also the same parts of the remainder $F D$ that the whole $A B$ (is) of the whole $C D$. (Which is) the very thing it was required to show.
${ }^{\dagger}$ In modern notation, this proposition states that if $a=(m / n) b$ and $c=(m / n) d$ then $(a-c)=(m / n)(b-d)$, where all symbols denote numbers.

$$
\vartheta^{\prime}
$$

 ठєúтєроऽ тои̃ тєта́คтоu.

Proposition 9^{\dagger}

If a number is part of a number, and another (number) is the same part of another, also, alternately, which(ever) part, or parts, the first (number) is of the third, the second (number) will also be the same part, or

 $\mathrm{H} \Gamma \tau \widetilde{\varphi} \pi \lambda \eta \vartheta \vartheta \varepsilon \iota \tau \widetilde{\omega} \mathrm{E} \Theta, \Theta \mathrm{Z}$.

 $\mathrm{E} \Theta$ ท̀ $\mu \varepsilon ́ \rho \eta$, tò $\alpha u ̛ \tau o ̀ ~ \mu \varepsilon ́ p o s ~ \varepsilon ̇ \sigma \tau i ~ x \alpha \grave{~} \sigma u v \alpha \mu \varphi o ́ \tau \varepsilon \rho о \varsigma ~ o ́ ~ B \Gamma ~$

the same parts, of the fourth.

For let a number A be part of a number $B C$, and another (number) D (be) the same part of another $E F$ that A (is) of $B C$. I say that, also, alternately, which(ever) part, or parts, A is of $D, B C$ is also the same part, or parts, of $E F$.

For since which(ever) part A is of $B C, D$ is also the same part of $E F$, thus as many numbers as are in $B C$ equal to A, so many are also in $E F$ equal to D. Let $B C$ have been divided into $B G$ and $G C$, equal to A, and $E F$ into $E H$ and $H F$, equal to D. So the multitude of (divisions) $B G, G C$ will be equal to the multitude of (divisions) $E H, H F$.

And since the numbers $B G$ and $G C$ are equal to one another, and the numbers $E H$ and $H F$ are also equal to one another, and the multitude of (divisions) $B G, G C$ is equal to the multitude of (divisions) $E H, H C$, thus which(ever) part, or parts, $B G$ is of $E H, G C$ is also the same part, or the same parts, of $H F$. And hence, which(ever) part, or parts, $B G$ is of $E H$, the sum $B C$ is also the same part, or the same parts, of the sum $E F$ [Props. 7.5, 7.6]. And $B G$ (is) equal to A, and $E H$ to D. Thus, which(ever) part, or parts, A is of $D, B C$ is also the same part, or the same parts, of $E F$. (Which is) the very thing it was required to show.

[^1]$$
\therefore^{\prime} .
$$

 tò aủtò μ ह́pos.

 ó Γ тои̃ Z ท̆ тò aủtò μ épos.

Proposition 10^{\dagger}

If a number is parts of a number, and another (number) is the same parts of another, also, alternately, which(ever) parts, or part, the first (number) is of the third, the second will also be the same parts, or the same part, of the fourth.

For let a number $A B$ be parts of a number C, and another (number) $D E$ (be) the same parts of another F. I say that, also, alternately, which(ever) parts, or part,

 $\alpha u ̋ \tau o ̀ ~ \mu \varepsilon ́ p o s ~ \varepsilon ̇ \sigma \tau i ~ x \alpha i ̀ ~ o ̀ ~ H B ~ \tau o u ̃ ~ \Theta E ~ \ddot{\eta} \tau \alpha ̀ ~ \alpha u ̉ \tau \alpha ̀ ~ \mu \varepsilon ́ p \eta ~ x \alpha i ̀ ~ o ̈ ~$

$A B$ is of $D E, C$ is also the same parts, or the same part, of F.

For since which(ever) parts $A B$ is of $C, D E$ is also the same parts of F, thus as many parts of C as are in $A B$, so many parts of F (are) also in $D E$. Let $A B$ have been divided into the parts of $C, A G$ and $G B$, and $D E$ into the parts of $F, D H$ and $H E$. So the multitude of (divisions) $A G, G B$ will be equal to the multitude of (divisions) $D H, H E$. And since which(ever) part $A G$ is of $C, D H$ is also the same part of F, also, alternately, which(ever) part, or parts, $A G$ is of $D H, C$ is also the same part, or the same parts, of F [Prop. 7.9]. And so, for the same (reasons), which(ever) part, or parts, $G B$ is of $H E, C$ is also the same part, or the same parts, of F [Prop. 7.9]. And so [which(ever) part, or parts, $A G$ is of $D H, G B$ is also the same part, or the same parts, of $H E$. And thus, which(ever) part, or parts, $A G$ is of $D H, A B$ is also the same part, or the same parts, of $D E$ [Props. 7.5, 7.6]. But, which(ever) part, or parts, $A G$ is of $D H, C$ was also shown (to be) the same part, or the same parts, of F. And, thus] which(ever) parts, or part, $A B$ is of $D E$, C is also the same parts, or the same part, of F. (Which is) the very thing it was required to show.
${ }^{\dagger}$ In modern notation, this proposition states that if $a=(m / n) b$ and $c=(m / n) d$ then if $a=(k / l) c$ then $b=(k / l) d$, where all symbols denote numbers.
α^{\prime}.

 ő入оv.

 tòv $\Gamma \Delta$.

Proposition 11

If as the whole (of a number) is to the whole (of another), so a (part) taken away (is) to a (part) taken away, then the remainder will also be to the remainder as the whole (is) to the whole.

Let the whole $A B$ be to the whole $C D$ as the (part) taken away $A E$ (is) to the (part) taken away $C F$. I say that the remainder $E B$ is to the remainder $F D$ as the whole $A B$ (is) to the whole $C D$.

(For) since as $A B$ is to $C D$, so $A E$ (is) to $C F$, thus which(ever) part, or parts, $A B$ is of $C D, A E$ is also the same part, or the same parts, of $C F$ [Def. 7.20]. Thus, the remainder $E B$ is also the same part, or parts, of the remainder $F D$ that $A B$ (is) of $C D$ [Props. 7.7, 7.8]. Thus, as $E B$ is to $F D$, so $A B$ (is) to $C D$ [Def. 7.20]. (Which is) the very thing it was required to show.
${ }^{\dagger}$ In modern notation, this proposition states that if $a: b:: c: d$ then $a: b:: a-c: b-d$, where all symbols denote numbers.

$$
\beta^{\prime}
$$

Proposition 12^{\dagger}

If any multitude whatsoever of numbers are proportional then as one of the leading (numbers is) to one of the following so (the sum of) all of the leading (numbers) will be to (the sum of) all of the following.

Let any multitude whatsoever of numbers, A, B, C, D, be proportional, (such that) as A (is) to B, so C (is) to D. I say that as A is to B, so A, C (is) to B, D.

For since as A is to B, so C (is) to D, thus which(ever) part, or parts, A is of B, C is also the same part, or parts, of D [Def. 7.20]. Thus, the sum A, C is also the same part, or the same parts, of the sum B, D that A (is) of B [Props. 7.5, 7.6]. Thus, as A is to B, so A, C (is) to B, D [Def. 7.20]. (Which is) the very thing it was required to show.
${ }^{\dagger}$ In modern notation, this proposition states that if $a: b:: c: d$ then $a: b:: a+c: b+d$, where all symbols denote numbers.
$i \gamma^{\prime}$.
 $\alpha \alpha^{\prime} \lambda$ oүov है́oovtal.

 трòs tòv Δ.

Proposition 13^{\dagger}
If four numbers are proportional then they will also be proportional alternately.

Let the four numbers A, B, C, and D be proportional, (such that) as A (is) to B, so C (is) to D. I say that they will also be proportional alternately, (such that) as A (is) to C, so B (is) to D.

For since as A is to B, so C (is) to D, thus which(ever) part, or parts, A is of B, C is also the same part, or the same parts, of D [Def. 7.20]. Thus, alterately, which(ever) part, or parts, A is of C, B is also the same part, or the same parts, of D [Props. 7.9, 7.10]. Thus, as A is to C, so B (is) to D [Def. 7.20]. (Which is) the very thing it was required to show.
${ }^{\dagger}$ In modern notation, this proposition states that if $a: b:: c: d$ then $a: c:: b: d$, where all symbols denote numbers.

$$
\delta^{\prime}
$$

 $\Delta, \mathrm{E}, \mathrm{Z}$, ©̊s $\mu \mathrm{e} v$ ó A tpòs tòv B , oữ ω s ò Δ tpòs tòv E ,

 Z.

Proposition 14^{\dagger}

If there are any multitude of numbers whatsoever, and (some) other (numbers) of equal multitude to them, (which are) also in the same ratio taken two by two, then they will also be in the same ratio via equality.

Let there be any multitude of numbers whatsoever, A, B, C, and (some) other (numbers), D, E, F, of equal multitude to them, (which are) in the same ratio taken two by two, (such that) as A (is) to B, so D (is) to E, and as B (is) to C, so E (is) to F. I say that also, via equality, as A is to C, so D (is) to F.

For since as A is to B, so D (is) to E, thus, alternately, as A is to D, so B (is) to E [Prop. 7.13]. Again, since as B is to C, so E (is) to F, thus, alternately, as B is

to E, so C (is) to F [Prop. 7.13]. And as B (is) to E, so A (is) to D. Thus, also, as A (is) to D, so C (is) to F. Thus, alternately, as A is to C, so D (is) to F [Prop. 7.13]. (Which is) the very thing it was required to show.
${ }^{\dagger}$ In modern notation, this proposition states that if $a: b:: d: e$ and $b: c:: e: f$ then $a: c:: d: f$, where all symbols denote numbers.

$$
\iota \varepsilon^{\prime} \text {. }
$$

 $\mu \varepsilon \tau \rho \varepsilon i ̃ ~ \varkappa \alpha \grave{~ o ́ ~ B \Gamma ~ \tau o ̀ v ~} \mathrm{EZ}$.

 $\mathrm{H} \Theta, ~ \Theta \Gamma \mu о \nu \alpha ́ \delta \omega \nu \tau \widetilde{\varphi} \pi \lambda \dot{\eta} \vartheta \varepsilon \iota \tau \widetilde{\omega} \nu \mathrm{EK}, \mathrm{K} \Lambda, \Lambda \mathrm{Z} \dot{\alpha} \rho \imath \vartheta \mu \widetilde{\omega} \nu$,

Proposition 15

If a unit measures some number, and another number measures some other number as many times, then, also, alternately, the unit will measure the third number as many times as the second (number measures) the fourth.

For let a unit A measure some number $B C$, and let another number D measure some other number $E F$ as many times. I say that, also, alternately, the unit A also measures the number D as many times as $B C$ (measures) $E F$.

For since the unit A measures the number $B C$ as many times as D (measures) $E F$, thus as many units as are in $B C$, so many numbers are also in $E F$ equal to D. Let $B C$ have been divided into its constituent units, $B G, G H$, and $H C$, and $E F$ into the (divisions) $E K, K L$, and $L F$, equal to D. So the multitude of (units) $B G$, $G H, H C$ will be equal to the multitude of (divisions) $E K, K L, L F$. And since the units $B G, G H$, and $H C$ are equal to one another, and the numbers $E K, K L$, and $L F$ are also equal to one another, and the multitude of the (units) $B G, G H, H C$ is equal to the multitude of the numbers $E K, K L, L F$, thus as the unit $B G$ (is) to the number $E K$, so the unit $G H$ will be to the number $K L$, and the unit $H C$ to the number $L F$. And thus, as one of the leading (numbers is) to one of the following, so (the sum of) all of the leading will be to (the sum of) all of the following [Prop. 7.12]. Thus, as the unit $B G$ (is) to the number $E K$, so $B C$ (is) to $E F$. And the unit $B G$ (is) equal to the unit A, and the number $E K$ to the number D. Thus, as the unit A is to the number D, so $B C$ (is) to $E F$. Thus, the unit A measures the number D as many times as $B C$ (measures) $E F$ [Def. 7.20]. (Which is) the very thing it was required to show.

[^2]$1 f^{\prime}$.

Γ

 ó A тòv Γ. $\pi \alpha ́ \lambda \iota \iota$, غ̇ $\pi \varepsilon \grave{\jmath}$ ó B тòv $\mathrm{A} \pi o \lambda \lambda \alpha \pi \lambda \alpha \sigma \iota \alpha ́ \sigma \alpha \varsigma ~ \tau o ̀ \nu ~ \Delta ~$

Proposition 16^{\dagger}

If two numbers multiplying one another make some (numbers) then the (numbers) generated from them will be equal to one another.

Let A and B be two numbers. And let A make C (by) multiplying B, and let B make D (by) multiplying A. I say that C is equal to D.

For since A has made C (by) multiplying B, B thus measures C according to the units in A [Def. 7.15]. And the unit E also measures the number A according to the units in it. Thus, the unit E measures the number A as many times as B (measures) C. Thus, alternately, the unit E measures the number B as many times as A (measures) C [Prop. 7.15]. Again, since B has made D (by) multiplying A, A thus measures D according to the units in B [Def. 7.15]. And the unit E also measures B according to the units in it. Thus, the unit E measures the number B as many times as A (measures) D. And the unit E was measuring the number B as many times as A (measures) C. Thus, A measures each of C and D an equal number of times. Thus, C is equal to D. (Which is) the very thing it was required to show.
${ }^{\dagger}$ In modern notation, this proposition states that $a b=b a$, where all symbols denote numbers.

$$
\zeta^{\prime}
$$

 $\pi \lambda \alpha \sigma \iota \alpha \sigma \vartheta \varepsilon$ โัбเข.
$\mathrm{A} \longmapsto$

 тòv Γ, oütcos ò Δ тpòs tòv E .
'Eлєi ү̀̀p ò A тòv $\mathrm{B} \pi о \lambda \lambda \alpha \pi \lambda \alpha \sigma ı \alpha ́ \sigma \alpha \varsigma ~ \tau o ̀ \nu ~ \Delta \pi \varepsilon \pi о i ́ \eta \chi \varepsilon \nu, ~$

Proposition $17{ }^{\dagger}$

If a number multiplying two numbers makes some (numbers) then the (numbers) generated from them will have the same ratio as the multiplied (numbers).

$F \longmapsto$
For let the number A make (the numbers) D and E (by) multiplying the two numbers B and C (respectively). I say that as B is to C, so D (is) to E.

For since A has made D (by) multiplying B, B thus measures D according to the units in A [Def. 7.15]. And

the unit F also measures the number A according to the units in it. Thus, the unit F measures the number A as many times as B (measures) D. Thus, as the unit F is to the number A, so B (is) to D [Def. 7.20]. And so, for the same (reasons), as the unit F (is) to the number A, so C (is) to E. And thus, as B (is) to D, so C (is) to E. Thus, alternately, as B is to C, so D (is) to E [Prop. 7.13]. (Which is) the very thing it was required to show.
${ }^{\dagger}$ In modern notation, this proposition states that if $d=a b$ and $e=a c$ then $d: e:: b: c$, where all symbols denote numbers.

$$
i \eta^{\prime} .
$$

 тоїऽ $\pi о \lambda \lambda \alpha \pi \lambda \alpha \sigma \iota \alpha ́ \sigma \alpha \sigma \iota \nu$.

B

 $\mathrm{A} \pi \rho o ̀ s ~ \tau o ̀ v \mathrm{~B}$, oút $\omega \varsigma$ ò Δ tpòs tòv E .

Proposition 18^{\dagger}

If two numbers multiplying some number make some (other numbers) then the (numbers) generated from them will have the same ratio as the multiplying (numbers).

For let the two numbers A and B make (the numbers) D and E (respectively, by) multiplying some number C. I say that as A is to B, so D (is) to E.

For since A has made D (by) multiplying C, C has thus also made D (by) multiplying A [Prop. 7.16]. So, for the same (reasons), C has also made E (by) multiplying B. So the number C has made D and E (by) multiplying the two numbers A and B (respectively). Thus, as A is to B, so D (is) to E [Prop. 7.17]. (Which is) the very thing it was required to show.
${ }^{\dagger}$ In modern notation, this propositions states that if $a c=d$ and $b c=e$ then $a: b:: d: e$, where all symbols denote numbers.

${ }^{19}$.

 $\tau \varepsilon ́ \sigma \sigma \alpha \sigma \rho \varepsilon \varsigma ~ \alpha ̉ p ı \vartheta \mu o i ̀ ~ \alpha ̀ \alpha \alpha \lambda o \gamma o v ~ ह ै \sigma o v \tau \alpha l . ~$

Proposition 19^{\dagger}

If four number are proportional then the number created from (multiplying) the first and fourth will be equal to the number created from (multiplying) the second and third. And if the number created from (multiplying) the first and fourth is equal to the (number created) from (multiplying) the second and third then the four numbers will be proportional.

Let A, B, C, and D be four proportional numbers, (such that) as A (is) to B, so C (is) to D. And let A make E (by) multiplying D, and let B make F (by) multiplying C. I say that E is equal to F.

 ©́s ó Γ tpòs tòv Δ, oütcus ò A tpòs tòv B. xaì ís äp α
 тòv $\Gamma \pi о \lambda \lambda \alpha \pi \lambda \alpha \sigma ı \alpha ́ \sigma \alpha \varsigma ~ t o ̀ v ~ H ~ \pi \varepsilon \pi o i ́ \eta \ell \varepsilon v, ~ \alpha ̀ \lambda \lambda \alpha ̀ ~ \mu \grave{\nu} \nu ~ \chi \alpha i ̀ ~ o ́ ~$

 tòv E . xaì cos äp α ó H tpòs tòv E , oútcus ó H tpòs tòv

For let A make G (by) multiplying C. Therefore, since A has made G (by) multiplying C, and has made E (by) multiplying D, the number A has made G and E by multiplying the two numbers C and D (respectively). Thus, as C is to D, so G (is) to E [Prop. 7.17]. But, as C (is) to D, so A (is) to B. Thus, also, as A (is) to B, so G (is) to E. Again, since A has made G (by) multiplying C, but, in fact, B has also made F (by) multiplying C, the two numbers A and B have made G and F (respectively, by) multiplying some number C. Thus, as A is to B, so G (is) to F [Prop. 7.18]. But, also, as A (is) to B, so G (is) to E. And thus, as G (is) to E, so G (is) to F. Thus, G has the same ratio to each of E and F. Thus, E is equal to F [Prop. 5.9].

So, again, let E be equal to F. I say that as A is to B, so C (is) to D.

For, with the same construction, since E is equal to F, thus as G is to E, so G (is) to F [Prop. 5.7]. But, as G (is) to E, so C (is) to D [Prop. 7.17]. And as G (is) to F, so A (is) to B [Prop. 7.18]. And, thus, as A (is) to B, so C (is) to D. (Which is) the very thing it was required to show.
${ }^{\dagger}$ In modern notation, this proposition reads that if $a: b:: c: d$ then $a d=b c$, and vice versa, where all symbols denote numbers.

x^{\prime}.

 A $\mu \varepsilon \tau р \varepsilon і ̃ ~ \nsim \alpha i ̀ ~ o ́ ~ E Z ~ т o ̀ v ~ B . ~ . ~$

Proposition 20

The least numbers of those (numbers) having the same ratio measure those (numbers) having the same ratio as them an equal number of times, the greater (measuring) the greater, and the lesser the lesser.

For let $C D$ and $E F$ be the least numbers having the same ratio as A and B (respectively). I say that $C D$ measures A the same number of times as $E F$ (measures) B.

 $\pi \lambda \tilde{\eta} \vartheta \circ \varsigma \tau \widetilde{\omega} \nu \Gamma H, H \Delta \tau \widetilde{\varphi} \pi \lambda \eta \dot{\eta} \vartheta \varepsilon \tau \widetilde{\omega} \nu \mathrm{E} \Theta, \Theta Z$, है $\sigma \tau \iota \nu \alpha \sim \alpha \dot{\omega}$

$x \alpha^{\prime}$.

 aủtoĭs.

Ei $\gamma \dot{\alpha} \rho \mu \dot{\eta}$, है $\sigma o v \tau \alpha i ́ ~ \tau เ \nu \varepsilon \varsigma ~ \tau \widetilde{\omega} \nu \mathrm{~A}, \mathrm{~B}$ ह̀入 $\alpha \sigma \sigma o v \varepsilon \varsigma ~ \dot{\alpha} \rho เ \vartheta \mu o i$

For $C D$ is not parts of A. For, if possible, let it be (parts of A). Thus, $E F$ is also the same parts of B that $C D$ (is) of A [Def. 7.20, Prop. 7.13]. Thus, as many parts of A as are in $C D$, so many parts of B are also in $E F$. Let $C D$ have been divided into the parts of $A, C G$ and $G D$, and $E F$ into the parts of $B, E H$ and $H F$. So the multitude of (divisions) $C G, G D$ will be equal to the multitude of (divisions) $E H, H F$. And since the numbers $C G$ and $G D$ are equal to one another, and the numbers $E H$ and $H F$ are also equal to one another, and the multitude of (divisions) $C G, G D$ is equal to the multitude of (divisions) $E H, H F$, thus as $C G$ is to $E H$, so $G D$ (is) to $H F$. Thus, as one of the leading (numbers is) to one of the following, so will (the sum of) all of the leading (numbers) be to (the sum of) all of the following [Prop. 7.12]. Thus, as $C G$ is to $E H$, so $C D$ (is) to $E F$. Thus, $C G$ and $E H$ are in the same ratio as $C D$ and $E F$, being less than them. The very thing is impossible. For $C D$ and $E F$ were assumed (to be) the least of those (numbers) having the same ratio as them. Thus, $C D$ is not parts of A. Thus, (it is) a part (of A) [Prop. 7.4]. And $E F$ is the same part of B that $C D$ (is) of A [Def. 7.20, Prop 7.13]. Thus, $C D$ measures A the same number of times that $E F$ (measures) B. (Which is) the very thing it was required to show.

Proposition 21

Numbers prime to one another are the least of those (numbers) having the same ratio as them.

Let A and B be numbers prime to one another. I say that A and B are the least of those (numbers) having the same ratio as them.

For if not then there will be some numbers less than A and B which are in the same ratio as A and B. Let them be C and D.

$$
x \beta^{\prime} .
$$

"E $\quad \tau \omega \sigma \alpha \nu$ ह̀入 $\alpha ́ \chi เ \sigma \tau o l ~ \alpha ́ p ı \vartheta \mu o i ̀ ~ \tau \widetilde{\omega} \nu ~ \tau o ̀ v ~ \alpha u ̉ \tau o ̀ v ~ \lambda o ́ \gamma o v ~$
 $\dot{\alpha} \lambda \lambda \eta_{n} \lambda$ ous عíбí.

Therefore, since the least numbers of those (numbers) having the same ratio measure those (numbers) having the same ratio (as them) an equal number of times, the greater (measuring) the greater, and the lesser the lesser-that is to say, the leading (measuring) the leading, and the following the following- C thus measures A the same number of times that D (measures) B [Prop. 7.20]. So as many times as C measures A, so many units let there be in E. Thus, D also measures B according to the units in E. And since C measures A according to the units in E, E thus also measures A according to the units in C [Prop. 7.16]. So, for the same (reasons), E also measures B according to the units in D [Prop. 7.16]. Thus, E measures A and B, which are prime to one another. The very thing is impossible. Thus, there cannot be any numbers less than A and B which are in the same ratio as A and B. Thus, A and B are the least of those (numbers) having the same ratio as them. (Which is) the very thing it was required to show.

Proposition 22

The least numbers of those (numbers) having the same ratio as them are prime to one another.

Let A and B be the least numbers of those (numbers) having the same ratio as them. I say that A and B are prime to one another.

For if they are not prime to one another then some number will measure them. Let it (so measure them), and let it be C. And as many times as C measures A, so
 $\tau \widetilde{\varphi}$ E.
 Γ ้้p α тòv $\Delta \pi o \lambda \lambda \alpha \pi \lambda \alpha \sigma เ \alpha ́ \sigma \alpha s ~ \tau o ̀ v ~ A ~ \pi \varepsilon \pi o i ́ \eta \chi \varepsilon v . ~ \delta ı \alpha ̀ ~ \tau \grave{\alpha}$
 ápıখ

$$
x \gamma^{\prime}
$$

$\chi \delta^{\prime}$.

many units let there be in D. And as many times as C measures B, so many units let there be in E.

Since C measures A according to the units in D, C has thus made A (by) multiplying D [Def. 7.15]. So, for the same (reasons), C has also made B (by) multiplying E. So the number C has made A and B (by) multiplying the two numbers D and E (respectively). Thus, as D is to E, so A (is) to B [Prop. 7.17]. Thus, D and E are in the same ratio as A and B, being less than them. The very thing is impossible. Thus, some number does not measure the numbers A and B. Thus, A and B are prime to one another. (Which is) the very thing it was required to show.

Proposition 23

If two numbers are prime to one another then a number measuring one of them will be prime to the remaining (one).

Let A and B be two numbers (which are) prime to one another, and let some number C measure A. I say that C and B are also prime to one another.

For if C and B are not prime to one another then [some] number will measure C and B. Let it (so) measure (them), and let it be D. Since D measures C, and C measures A, D thus also measures A. And (D) also measures B. Thus, D measures A and B, which are prime to one another. The very thing is impossible. Thus, some number does not measure the numbers C and B. Thus, C and B are prime to one another. (Which is) the very thing it was required to show.

Proposition 24

If two numbers are prime to some number then the number created from (multiplying) the former (two numbers) will also be prime to the latter (number).

$\Delta u ́ o ~ \gamma a ̀ p ~ \alpha ́ p ı \vartheta \mu o i ̀ ~ o i ~ A, ~ B ~ \pi p o ́ s ~ \tau ı v \alpha ~ \alpha ́ p ı \vartheta \mu o ̀ v ~ \tau o ̀ v ~ \Gamma ~ \pi \rho \widetilde{̃ \tau т ь ~}$

 $\tau \widetilde{\omega} \nu$ 和

$\chi \varepsilon^{\prime}$.

For let A and B be two numbers (which are both) prime to some number C. And let A make D (by) multiplying B. I say that C and D are prime to one another.

For if C and D are not prime to one another then [some] number will measure C and D. Let it (so) measure them, and let it be E. And since C and A are prime to one another, and some number E measures C, A and E are thus prime to one another [Prop. 7.23]. So as many times as E measures D, so many units let there be in F. Thus, F also measures D according to the units in E [Prop. 7.16]. Thus, E has made D (by) multiplying F [Def. 7.15]. But, in fact, A has also made D (by) multiplying B. Thus, the (number created) from (multiplying) E and F is equal to the (number created) from (multiplying) A and B. And if the (rectangle contained) by the (two) outermost is equal to the (rectangle contained) by the middle (two) then the four numbers are proportional [Prop. 6.15]. Thus, as E is to A, so B (is) to F. And A and E (are) prime (to one another). And (numbers) prime (to one another) are also the least (of those numbers having the same ratio) [Prop. 7.21]. And the least numbers of those (numbers) having the same ratio measure those (numbers) having the same ratio as them an equal number of times, the greater (measuring) the greater, and the lesser the lesser-that is to say, the leading (measuring) the leading, and the following the following [Prop. 7.20]. Thus, E measures B. And it also measures C. Thus, E measures B and C, which are prime to one another. The very thing is impossible. Thus, some number cannot measure the numbers C and D. Thus, C and D are prime to one another. (Which is) the very thing it was required to show.

Proposition 25

If two numbers are prime to one another then the number created from (squaring) one of them will be prime to the remaining (number).

Let A and B be two numbers (which are) prime to

$$
x G^{\prime}
$$

 $\pi \rho o ̀ s ~ \alpha \dot{\alpha} \lambda \eta$ ท́入ous है $\sigma o v \tau \alpha l$.

Zط

 трòs $\alpha \lambda \lambda$ ń λ ous عíбív.

one another. And let A make C (by) multiplying itself. I say that B and C are prime to one another.

For let D be made equal to A. Since A and B are prime to one another, and A (is) equal to D, D and B are thus also prime to one another. Thus, D and A are each prime to B. Thus, the (number) created from (multilying) D and A will also be prime to B [Prop. 7.24]. And C is the number created from (multiplying) D and A. Thus, C and B are prime to one another. (Which is) the very thing it was required to show.

Proposition 26

If two numbers are both prime to each of two numbers then the (numbers) created from (multiplying) them will also be prime to one another.

For let two numbers, A and B, both be prime to each of two numbers, C and D. And let A make E (by) multiplying B, and let C make F (by) multiplying D. I say that E and F are prime to one another.

For since A and B are each prime to C, the (number) created from (multiplying) A and B will thus also be prime to C [Prop. 7.24]. And E is the (number) created from (multiplying) A and B. Thus, E and C are prime to one another. So, for the same (reasons), E and D are also prime to one another. Thus, C and D are each prime to E. Thus, the (number) created from (multiplying) C and D will also be prime to E [Prop. 7.24]. And F is the (number) created from (multiplying) C and D. Thus, E and F are prime to one another. (Which is) the very thing it was required to show.

$$
\chi \zeta^{\prime} .
$$

 тои̃то бицß α íveı].

 ठદ̀ $\Gamma \pi o \lambda \lambda \alpha \pi \lambda \alpha \sigma \iota \alpha ́ \sigma \alpha \varsigma ~ \tau o ̀ \nu ~ \Delta \pi o เ \varepsilon i ́ \tau \omega, ~ o ́ ~ \delta દ ̀ ~ B ~ \varepsilon ́ \alpha u \tau o ̀ \nu ~ \mu \varepsilon ̀ v ~$ $\pi \circ \lambda \lambda \alpha \pi \lambda \alpha \sigma \iota \alpha ́ \sigma \alpha \varsigma ~ \tau o ̀ v ~ E ~ \pi o เ \varepsilon i ́ \tau \omega, ~ \tau o ̀ v ~ \delta e ̀ ~ E ~ \pi o \lambda \lambda \alpha \pi \lambda \alpha \sigma เ \alpha ́ \sigma \alpha \varsigma ~$

Proposition 27^{\dagger}

If two numbers are prime to one another and each makes some (number by) multiplying itself then the numbers created from them will be prime to one another, and if the original (numbers) make some (more numbers by) multiplying the created (numbers) then these will also be prime to one another [and this always happens with the extremes].

Let A and B be two numbers prime to one another, and let A make C (by) multiplying itself, and let it make D (by) multiplying C. And let B make E (by) multiplying itself, and let it make F by multiplying E. I say that C and E, and D and F, are prime to one another.

For since A and B are prime to one another, and A has made C (by) multiplying itself, C and B are thus prime to one another [Prop. 7.25]. Therefore, since C and B are prime to one another, and B has made E (by) multiplying itself, C and E are thus prime to one another [Prop. 7.25]. Again, since A and B are prime to one another, and B has made E (by) multiplying itself, A and E are thus prime to one another [Prop. 7.25]. Therefore, since the two numbers A and C are both prime to each of the two numbers B and E, the (number) created from (multiplying) A and C is thus prime to the (number created) from (multiplying) B and E [Prop. 7.26]. And D is the (number created) from (multiplying) A and C, and F the (number created) from (multiplying) B and E. Thus, D and F are prime to one another. (Which is) the very thing it was required to show.
${ }^{\dagger}$ In modern notation, this proposition states that if a is prime to b, then a^{2} is also prime to b^{2}, as well as a^{3} to b^{3}, etc., where all symbols denote numbers.

$$
x r^{\prime}
$$

Proposition 28

If two numbers are prime to one another then their sum will also be prime to each of them. And if the sum (of two numbers) is prime to any one of them then the original numbers will also be prime to one another.

 ous oi $\mathrm{AB}, \mathrm{B} \mathrm{\Gamma} \cdot \lambda \varepsilon ́ \gamma \omega$, ơtı xall $\sigma u v \alpha \mu \varphi o ́ \tau \varepsilon \rho о \varsigma ~ o ́ ~ A \Gamma ~ \pi \rho o ̀ s ~$

 $\mu \varepsilon \tau \rho \eta ́ \sigma \varepsilon \iota$. $\mu \varepsilon \tau \rho \varepsilon \imath ̃ ~ \delta e ̀ ~ x \alpha i ̀ ~ \tau o ̀ \nu ~ B A \cdot ~ o ́ ~ \Delta ~ \alpha ̈ p \alpha ~ \tau o u ̀ s ~ A B, ~ В Г ~ \mu \varepsilon-~$

 غ́x $\alpha \tau \varepsilon \rho о \nu \tau \widetilde{\omega} \nu \mathrm{AB}, ~ В Г ~ т р \tilde{\omega} \tau o ́ s ~ \varepsilon ̇ \sigma \tau \iota \nu . ~$

$$
\chi v^{\prime}
$$

 ǒtı oi $\mathrm{B}, \mathrm{A} \pi \rho \widetilde{\omega} \tau o l ~ \pi \rho o ̀ s ~ \alpha ~ \alpha \lambda \lambda \eta ́ \lambda o u s ~ \varepsilon i \sigma i ́ v . ~$

D
For let the two numbers, $A B$ and $B C$, (which are) prime to one another, be laid down together. I say that their sum $A C$ is also prime to each of $A B$ and $B C$.

For if $C A$ and $A B$ are not prime to one another then some number will measure $C A$ and $A B$. Let it (so) measure (them), and let it be D. Therefore, since D measures $C A$ and $A B$, it will thus also measure the remainder $B C$. And it also measures $B A$. Thus, D measures $A B$ and $B C$, which are prime to one another. The very thing is impossible. Thus, some number cannot measure (both) the numbers $C A$ and $A B$. Thus, $C A$ and $A B$ are prime to one another. So, for the same (reasons), $A C$ and $C B$ are also prime to one another. Thus, $C A$ is prime to each of $A B$ and $B C$.

So, again, let $C A$ and $A B$ be prime to one another. I say that $A B$ and $B C$ are also prime to one another.

For if $A B$ and $B C$ are not prime to one another then some number will measure $A B$ and $B C$. Let it (so) measure (them), and let it be D. And since D measures each of $A B$ and $B C$, it will thus also measure the whole of $C A$. And it also measures $A B$. Thus, D measures $C A$ and $A B$, which are prime to one another. The very thing is impossible. Thus, some number cannot measure (both) the numbers $A B$ and $B C$. Thus, $A B$ and $B C$ are prime to one another. (Which is) the very thing it was required to show.

Proposition 29

Every prime number is prime to every number which it does not measure.

Let A be a prime number, and let it not measure B. I say that B and A are prime to one another. For if B and A are not prime to one another then some number will measure them. Let C measure (them). Since C measures B, and A does not measure B, C is thus not the same as A. And since C measures B and A, it thus also measures A, which is prime, (despite) not being the same as it. The very thing is impossible. Thus, some number cannot measure (both) B and A. Thus, A and B are prime to one another. (Which is) the very thing it was required to

λ^{\prime}.

 $\Delta \cdot \lambda \varepsilon ́ \gamma \omega$, ơтı ó Δ ह́v $\nu \tau \widetilde{\omega} \nu \mathrm{A}, \mathrm{B} \mu \varepsilon \tau \rho \varepsilon \tau ̃$.

$\lambda \alpha^{\prime}$.
 трعїтац.

show.

Proposition 30

If two numbers make some (number by) multiplying one another, and some prime number measures the number (so) created from them, then it will also measure one of the original (numbers).

For let two numbers A and B make C (by) multiplying one another, and let some prime number D measure C. I say that D measures one of A and B.

For let it not measure A. And since D is prime, A and D are thus prime to one another [Prop. 7.29]. And as many times as D measures C, so many units let there be in E. Therefore, since D measures C according to the units E, D has thus made C (by) multiplying E [Def. 7.15]. But, in fact, A has also made C (by) multiplying B. Thus, the (number created) from (multiplying) D and E is equal to the (number created) from (multiplying) A and B. Thus, as D is to A, so B (is) to E [Prop. 7.19]. And D and A (are) prime (to one another), and (numbers) prime (to one another are) also the least (of those numbers having the same ratio) [Prop. 7.21], and the least (numbers) measure those (numbers) having the same ratio (as them) an equal number of times, the greater (measuring) the greater, and the lesser the lesser-that is to say, the leading (measuring) the leading, and the following the following [Prop. 7.20]. Thus, D measures B. So, similarly, we can also show that if (D) does not measure B then it will measure A. Thus, D measures one of A and B. (Which is) the very thing it was required to show.

Proposition 31

Every composite number is measured by some prime number.

Let A be a composite number. I say that A is measured by some prime number.

For since A is composite, some number will measure it. Let it (so) measure (A), and let it be B. And if B

 $\mu \varepsilon \tau р \grave{\sigma} \sigma \varepsilon$.

$$
\lambda \beta^{\prime} .
$$

Ei μ èv oưv $\pi \rho \widetilde{\tau} \tau o ́ s ~ \varepsilon ̇ \sigma \tau \omega ~ o ́ ~ A, ~ \gamma \varepsilon \gamma o v o ̀ s ~ \alpha ̀ \nu ~ \varepsilon i n ~ \tau o ́ ~$

$$
\lambda \gamma^{\prime}
$$

"Eбт ${ }^{\text {T }}$
 toĩs $\mathrm{A}, \mathrm{B}, \Gamma$.

is prime then that which was prescribed has happened. And if (B is) composite then some number will measure it. Let it (so) measure (B), and let it be C. And since C measures B, and B measures A, C thus also measures A. And if C is prime then that which was prescribed has happened. And if (C is) composite then some number will measure it. So, in this manner of continued investigation, some prime number will be found which will measure (the number preceding it, which will also measure A). And if (such a number) cannot be found then an infinite (series of) numbers, each of which is less than the preceding, will measure the number A. The very thing is impossible for numbers. Thus, some prime number will (eventually) be found which will measure the (number) preceding it, which will also measure A.

Thus, every composite number is measured by some prime number. (Which is) the very thing it was required to show.

Proposition 32

Every number is either prime or is measured by some prime number.

A

Let A be a number. I say that A is either prime or is measured by some prime number.

In fact, if A is prime then that which was prescribed has happened. And if (it is) composite then some prime number will measure it [Prop. 7.31].

Thus, every number is either prime or is measured by some prime number. (Which is) the very thing it was required to show.

Proposition 33

To find the least of those (numbers) having the same ratio as any given multitude of numbers.

Let A, B, and C be any given multitude of numbers. So it is required to find the least of those (numbers) having the same ratio as A, B, and C.

For A, B, and C are either prime to one another, or not. In fact, if A, B, and C are prime to one another then they are the least of those (numbers) having the same ratio as them [Prop. 7.22].

 $\mu \varepsilon ́ t \rho o \nu ~ o ́ ~ \Delta, \chi \alpha i ̀ ~ o ́ \sigma \alpha ́ x ı s ~ o ̀ ~ \Delta ~ \varepsilon ̌ x \alpha \sigma \tau o \nu ~ \tau \widetilde{\omega} \nu \mathrm{~A}, \mathrm{~B}, \Gamma \mu \varepsilon \tau \rho \varepsilon \tilde{\imath}$,

$\lambda \delta^{\prime}$.

 ápıひuóv.
"E $\sigma \tau \omega \sigma \alpha \nu$ oí δ o७

And if not, let the greatest common measure, D, of A, B, and C have be taken [Prop. 7.3]. And as many times as D measures A, B, C, so many units let there be in E, F, G, respectively. And thus E, F, G measure A, B, C, respectively, according to the units in D [Prop. 7.15]. Thus, E, F, G measure A, B, C (respectively) an equal number of times. Thus, E, F, G are in the same ratio as A, B, C (respectively) [Def. 7.20]. So I say that (they are) also the least (of those numbers having the same ratio as A, B, C). For if E, F, G are not the least of those (numbers) having the same ratio as A, B, C (respectively), then there will be [some] numbers less than E, F, G which are in the same ratio as A, B, C (respectively). Let them be H, K, L. Thus, H measures A the same number of times that K, L also measure B, C, respectively. And as many times as H measures A, so many units let there be in M. Thus, K, L measure B, C, respectively, according to the units in M. And since H measures A according to the units in M, M thus also measures A according to the units in H [Prop. 7.15]. So, for the same (reasons), M also measures B, C according to the units in K, L, respectively. Thus, M measures A, B, and C. And since H measures A according to the units in M, H has thus made A (by) multiplying M. So, for the same (reasons), E has also made A (by) multiplying D. Thus, the (number created) from (multiplying) E and D is equal to the (number created) from (multiplying) H and M. Thus, as E (is) to H, so M (is) to D [Prop. 7.19]. And E (is) greater than H. Thus, M (is) also greater than D [Prop. 5.13]. And (M) measures A, B, and C. The very thing is impossible. For D was assumed (to be) the greatest common measure of A, B, and C. Thus, there cannot be any numbers less than E, F, G which are in the same ratio as A, B, C (respectively). Thus, E, F, G are the least of (those numbers) having the same ratio as A, B, C (respectively). (Which is) the very thing it was required to show.

Proposition 34

To find the least number which two given numbers (both) measure.

Let A and B be the two given numbers. So it is re-

 $\pi \lambda \alpha \sigma \iota \alpha ́ \sigma \alpha \varsigma ~ t o ̀ v ~ \Delta ~ \pi \varepsilon \pi o i ́ \eta \ell \varepsilon v, ~ o ́ ~ o ̀ ̀ ~ B ~ t o ̀ v ~ Z ~ \pi o \lambda \lambda \alpha \pi \lambda \alpha \sigma ı \alpha ́ \sigma \alpha \varsigma ~$

 $\mu \varepsilon \tau р \varepsilon і ั \tau \alpha$.

quired to find the least number which they (both) measure.

For A and B are either prime to one another, or not. Let them, first of all, be prime to one another. And let A make C (by) multiplying B. Thus, B has also made C (by) multiplying A [Prop. 7.16]. Thus, A and B (both) measure C. So I say that (C) is also the least (number which they both measure). For if not, A and B will (both) measure some (other) number which is less than C. Let them (both) measure D (which is less than C). And as many times as A measures D, so many units let there be in E. And as many times as B measures D, so many units let there be in F. Thus, A has made D (by) multiplying E, and B has made D (by) multiplying F. Thus, the (number created) from (multiplying) A and E is equal to the (number created) from (multiplying) B and F. Thus, as A (is) to B, so F (is) to E [Prop. 7.19]. And A and B are prime (to one another), and prime (numbers) are the least (of those numbers having the same ratio) [Prop. 7.21], and the least (numbers) measure those (numbers) having the same ratio (as them) an equal number of times, the greater (measuring) the greater, and the lesser the lesser [Prop. 7.20]. Thus, B measures E, as the following (number measuring) the following. And since A has made C and D (by) multiplying B and E (respectively), thus as B is to E, so C (is) to D [Prop. 7.17]. And B measures E. Thus, C also measures D, the greater (measuring) the lesser. The very thing is impossible. Thus, A and B do not (both) measure some number which is less than C. Thus, C is the least (number) which is measured by (both) A and B.

So let A and B be not prime to one another. And let the least numbers, F and E, have been taken having the same ratio as A and B (respectively) [Prop. 7.33].

 Г. $\mu \varepsilon \tau р \varepsilon i ́ \tau \omega \sigma \alpha \nu$ тòv Δ. xג̀ ó $\sigma \alpha ́ x ı \varsigma ~ \mu \varepsilon ̀ \nu ~ o ̀ ~ A ~ \tau o ̀ \nu ~ \Delta ~ \mu \varepsilon \tau р \varepsilon і ̃, ~$

 A тoùs $\mathrm{E}, \mathrm{H} \pi о \lambda \lambda \alpha \pi \lambda \alpha \sigma ı \alpha ́ \sigma \alpha \varsigma$ тoùs $\Gamma, \Delta \pi \varepsilon \pi o i ́ \eta \chi \varepsilon \nu$, है $\sigma \tau \iota$

$\lambda \varepsilon^{\prime}$.

 ن́ $\pi^{\prime} \alpha \cup ๋ \tau \widetilde{\omega} \nu \mu \varepsilon \tau \rho о \cup ́ \mu \varepsilon \nu о \varsigma ~ \tau o ̀ \nu ~ \alpha u ̉ \tau o ̀ v ~ \mu \varepsilon \tau р ท ́ \sigma \varepsilon เ . ~$

 $\mu \varepsilon \tau р \varepsilon і ̃$.

Thus, the (number created) from (multiplying) A and E is equal to the (number created) from (multiplying) B and F [Prop. 7.19]. And let A make C (by) multiplying E. Thus, B has also made C (by) multiplying F. Thus, A and B (both) measure C. So I say that (C) is also the least (number which they both measure). For if not, A and B will (both) measure some number which is less than C. Let them (both) measure D (which is less than C). And as many times as A measures D, so many units let there be in G. And as many times as B measures D, so many units let there be in H. Thus, A has made D (by) multiplying G, and B has made D (by) multiplying H. Thus, the (number created) from (multiplying) A and G is equal to the (number created) from (multiplying) B and H. Thus, as A is to B, so H (is) to G [Prop. 7.19]. And as A (is) to B, so F (is) to E. Thus, also, as F (is) to E, so H (is) to G. And F and E are the least (numbers having the same ratio as A and B), and the least (numbers) measure those (numbers) having the same ratio an equal number of times, the greater (measuring) the greater, and the lesser the lesser [Prop. 7.20]. Thus, E measures G. And since A has made C and D (by) multiplying E and G (respectively), thus as E is to G, so C (is) to D [Prop. 7.17]. And E measures G. Thus, C also measures D, the greater (measuring) the lesser. The very thing is impossible. Thus, A and B do not (both) measure some (number) which is less than C. Thus, C (is) the least (number) which is measured by (both) A and B. (Which is) the very thing it was required to show.

Proposition 35

If two numbers (both) measure some number then the least (number) measured by them will also measure the same (number).

For let two numbers, A and B, (both) measure some number $C D$, and (let) E (be the) least (number measured by both A and B). I say that E also measures $C D$.

For if E does not measure $C D$ then let E leave $C F$ less than itself (in) measuring $D F$. And since A and B (both) measure E, and E measures $D F, A$ and B will thus also measure $D F$. And (A and B) also measure the whole of $C D$. Thus, they will also measure the remainder $C F$, which is less than E. The very thing is impossible. Thus, E cannot not measure $C D$. Thus, (E) measures

$$
\lambda \varepsilon^{\prime} .
$$

 прótepov. $\mu \varepsilon \tau \rho o и ̃ \sigma 兀 ~$ dè xaì oî A, B tòv Δ oi $\mathrm{A}, \mathrm{B}, \Gamma$

 той Δ. $\mu \varepsilon \tau \rho \varepsilon i ́ \tau \omega \sigma \alpha \nu ~ \tau o ̀ v ~ E . ~ غ ̀ л \varepsilon i ̀ ~ o i ~ A, ~ B, ~ Г ~ \tau o ̀ v ~ E ~ \mu \varepsilon \tau р о и ̆ \sigma \tau, ~$

$(C D)$. (Which is) the very thing it was required to show.

Proposition 36

To find the least number which three given numbers (all) measure.

Let A, B, and C be the three given numbers. So it is required to find the least number which they (all) measure.

For let the least (number), D, measured by the two (numbers) A and B have been taken [Prop. 7.34]. So C either measures, or does not measure, D. Let it, first of all, measure (D). And A and B also measure D. Thus, A, B, and C (all) measure D. So I say that (D is) also the least (number measured by A, B, and C). For if not, A, B, and C will (all) measure [some] number which is less than D. Let them measure E (which is less than D). Since A, B, and C (all) measure E then A and B thus also measure E. Thus, the least (number) measured by A and B will also measure [E] [Prop. 7.35]. And D is the least (number) measured by A and B. Thus, D will measure E, the greater (measuring) the lesser. The very thing is impossible. Thus, A, B, and C cannot (all) measure some number which is less than D. Thus, A, B, and C (all) measure the least (number) D.

So, again, let C not measure D. And let the least number, E, measured by C and D have been taken [Prop. 7.34]. Since A and B measure D, and D measures E, A and B thus also measure E. And C also measures [E]. Thus, A, B, and C [also] measure E. So I say that (E is) also the least (number measured by A, B, and C). For if not, A, B, and C will (all) measure some (number) which is less than E. Let them measure F (which is less than E). Since A, B, and C (all) measure F, A and B thus also measure F. Thus, the least (number) measured by A and B will also measure F [Prop. 7.35]. And D is the least (number) measured by A and B. Thus, D measures F. And C also measures F. Thus, D and C (both) measure F. Hence, the least (number) measured by D and C will also measure F [Prop. 7.35]. And E

$\lambda \zeta^{\prime}$.

$\Delta \longmapsto$

$$
\lambda \eta^{\prime} .
$$

 $\mu \varepsilon \tau \rho \eta \vartheta \dot{\eta} \sigma \varepsilon \tau \alpha \iota \tau \widetilde{\varphi} \mu \dot{\varepsilon} \rho \varepsilon \iota$.

 $\mu \varepsilon \tau р \varepsilon$ นั.

is the least (number) measured by C and D. Thus, E measures F, the greater (measuring) the lesser. The very thing is impossible. Thus, A, B, and C cannot measure some number which is less than E. Thus, E (is) the least (number) which is measured by A, B, and C. (Which is) the very thing it was required to show.

Proposition 37

If a number is measured by some number then the (number) measured will have a part called the same as the measuring (number).

For let the number A be measured by some number B. I say that A has a part called the same as B.

For as many times as B measures A, so many units let there be in C. Since B measures A according to the units in C, and the unit D also measures C according to the units in it, the unit D thus measures the number C as many times as B (measures) A. Thus, alternately, the unit D measures the number B as many times as C (measures) A [Prop. 7.15]. Thus, which(ever) part the unit D is of the number B, C is also the same part of A. And the unit D is a part of the number B called the same as it (i.e., a B th part). Thus, C is also a part of A called the same as B (i.e., C is the B th part of A). Hence, A has a part C which is called the same as B (i.e., A has a B th part). (Which is) the very thing it was required to show.

Proposition 38

If a number has any part whatever then it will be measured by a number called the same as the part.

For let the number A have any part whatever, B. And let the [number] C be called the same as the part B (i.e., B is the C th part of A). I say that C measures A.

For since B is a part of A called the same as C, and the unit D is also a part of C called the same as it (i.e.,

$\lambda \vartheta^{\prime}$.

 трои́

 $\alpha \dot{\alpha} เ \vartheta \mu \widetilde{\omega} \nu \mu \varepsilon \tau \rho \eta \vartheta \dot{\eta} \sigma \varepsilon \tau \alpha \iota ~ \tau о і ̃ \varsigma ~ A, ~ B, ~ Г ~ \mu \varepsilon ́ p \varepsilon \sigma เ \nu . ~ \tau о і ̃ \varsigma ~ \delta غ ̀ ~ A, ~ B, ~$

D is the C th part of C), thus which(ever) part the unit D is of the number C, B is also the same part of A. Thus, the unit D measures the number C as many times as B (measures) A. Thus, alternately, the unit D measures the number B as many times as C (measures) A [Prop. 7.15]. Thus, C measures A. (Which is) the very thing it was required to show.

Proposition 39

To find the least number that will have given parts.

Let A, B, and C be the given parts. So it is required to find the least number which will have the parts A, B, and C (i.e., an A th part, a B th part, and a C th part).

For let D, E, and F be numbers having the same names as the parts A, B, and C (respectively). And let the least number, G, measured by D, E, and F, have been taken [Prop. 7.36].

Thus, G has parts called the same as D, E, and F [Prop. 7.37]. And A, B, and C are parts called the same as D, E, and F (respectively). Thus, G has the parts A, B, and C. So I say that (G) is also the least (number having the parts A, B, and C). For if not, there will be some number less than G which will have the parts A, B, and C. Let it be H. Since H has the parts A, B, and C, H will thus be measured by numbers called the same as the parts A, B, and C [Prop. 7.38]. And D, E, and F are numbers called the same as the parts A, B, and C (respectively). Thus, H is measured by D, E, and F. And (H) is less than G. The very thing is impossible. Thus, there cannot be some number less than G which will have the parts A, B, and C. (Which is) the very thing it was required to show.

[^0]: ${ }^{\dagger}$ The propositions contained in Books 7-9 are generally attributed to the school of Pythagoras.

[^1]: ${ }^{\dagger}$ In modern notation, this proposition states that if $a=(1 / n) b$ and $c=(1 / n) d$ then if $a=(k / l) c$ then $b=(k / l) d$, where all symbols denote numbers.

[^2]: ${ }^{\dagger}$ This proposition is a special case of Prop. 7.9.

