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3.2 Korányi-Cygan metric structure 33
3.3 Lie group structure 35
3.4 More structures of the Heisenberg group 38

3.4.1 CR structures 38
3.5 Contact structure 41

4 Quasiconformal mappings in the Heisenberg group 43

4.1 Metric definition 43
4.2 Quasiconformal contact transformations 44
4.3 Analytic definition 49
4.4 Geometric definition 52
4.5 Quasiconformal deformations 56

5 Elements of Horizontal Geometry of Surfaces in H 59

5.1 Regular Surfaces-Horizontal Normal Vector Field 59
5.2 The Induced 1-Form. Contactomorphisms. Horizontal Flow 63



CONTENTS ix

5.3 Horizontal Mean Curvature 65
5.4 Horizontal Area and Horizontal Area Integral 68
5.5 Regular Surfaces and Contact–Quasiconformal Transformations 69
5.6 Modulus of Surface Families 71
5.7 The Modulus Inequality 72

6 Further developments and some open problems 75

6.1 Gromov hyperbolic spaces 75
6.2 Spaces with controlled geometry 76
6.3 Extremal problems 77
6.4 Complex hyperbolic quasi-Fuchsaian space and the holy grail 78

References 81





FOREWORD

Applicants for wisdom do what I have done: inquire within.

– Heraclitus 535-475 B.C.

Knowledge is a treasure, but practice is the key to it.

– Lao Zi
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beautiful Korányi-Reimann theory and its many developments by themselves in the
future.
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CHAPTER 1

INTRODUCTION

1.1 Conformal mappings

LetU andU ′ be domains (that is, open, connected sets) of Rn. A conformal mapping
f : U → U ′ is a sense-preserving diffeomorphism such that f∗, the derivative of f ,
is a scalar multiple of an orthogonal transformation at each point of U . In other
words, f is angle preserving and thus in the tangent space it maps infinitesimal balls
to infinitesimal balls.

Of special interest is the case n = 2: Let f(x, y) = (u(x, y), v(x, y)). Then

f∗ =

(
ux uy

vx vy

)

and suppose that det(f∗) = uxvy − uyvx > 0 so that f is sense-preserving. If f is
conformal and p ∈ U , there exists an element Rφ of SO+(2), say

Rφ =

(
cosφ − sinφ

sinφ cosφ

)
, φ ∈ R

Quasiconformal mappings in the Heisenberg group,
Changsha, PRC, 2018.
By Ioannis D. Platis Copyright c© 2018 John Wiley & Sons, Inc.
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2 INTRODUCTION

so that at each point p ∈ U , f∗ = c(p)Rφ for some scalar c(p) depending on p. That
is equivalent to say that at p we must have

ux = vy and uy = −vx,

that is, f is conformal if at each point the Cauchy-Riemann equations hold.
Conformal mappings in R2 = C (also known by their German name as schlicht

mappings) are extremely important in the context of complex analysis. Several im-
portant results appear from their study; we mention here the following

Theorem 1.1 Riemann Mapping Theorem: IfU is a non-empty simply connected1

open subset of the complex plane C which is not all of C, then there exists a bi-
holomorphic mapping f (i.e., a bijective holomorphic mapping whose inverse is also
holomorphic) from U onto the open unit disk

D = {z ∈ C : |z| < 1}.

This is a really striking theorem; it actually tells us that all simply connected domains
of C (besides C itself) are conformally equivalent and thus the study of geometric
and analytic properties of any such random domain may be reduced to the study of
the open unit disk.

The complex case though is somewhat idyllic; for n > 2 a conformal mapping is
necessarily a Möbius transformation. We have the following:

Theorem 1.2 Liouville’s Theorem: Conformal mappings of the one-point com-
pactification R̂n = Rn ∪ {∞} of Rn, n > 2, form a Lie group which is isomorphic
to a connected component of the identity of SO+(n, 1).

We conclude that the class of conformal mappings is quite rigid; a new class had
to be introduced and in what follows we will briefly describe how this was happened.

1.2 Gauss and smooth quaasiconformal maps

The first hint of what is known as a quasiconformal mapping of the plane C appeared
in the work of C.F. Gauss. Let U ⊂ R2 be an open set and let σ : U → R3,

σ(u, v) = (x(u, v), y(u, v), z(u, v)),

be a smooth surface patch: that is, σ is adequately smooth and rank(σ∗) = 2 every-
where in U . The first fundamental form of the surface patch σ is then

ds2 = Edu2 + 2Fdudv +Gdv2,

where
E = σu · σu, F = σu · σv, G = σv · σv.

1Recall here that a simply connected subset of C is a subset which has no holes. Strictly speaking, the
fundamental group at each point of the subset is trivial.
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(Here, · denotes scalar multiplication). The coordinates (u, v) of the patch σ are
called isothermal if

E = G and F = 0;

in this case, ds2 = λ2(u, v)(du2 + dv2), a positive multiple of the first fundamental
form of a piece of the plane. The question arising now is if we can always introduce
isothermal coordinates on a surface, or in other words, if a surface is locally diffeo-
morphic to the plane. For this, let z = u + iv be a complex coordinate; after pretty
tedious but straightforward calculations we may write

ds = λ(z)|dz + µ(z)dz|,

where

µ =
E −G+ 2iF

E +G+ 2
√
EG− F 2

.

Note that ‖µ‖ < 1. Thus we have isothermal coordinates iff µ = 0 and furthermore
we may find an admissible change of coordinates f to isothermal coordinates if we
can solve the partial differential equation2

fz = µfz. (1.2.1)

This equation is the famous Beltrami equation and once it is solved, the isothermal
coordinates are provided by σ ◦ f−1. In this way we have our first pretty strong
definition for quasiconformal mappings:

Definition 1.3 Quasiconformal diffeomorphisms: A C1 diffeomorphic solution f
of the Beltrami equation 1.2.1 with ‖µ‖∞ ≤ k < 1 is called a K-quasiconformal
mapping with dilation µ. Here, K = (1 + k)/(1− k).

Some remarks follow: First, the maximal distortion K = Kf of f is defined as

K =
1 + ‖µ|∞
1− ‖µ‖∞

and f is also called K-quasiconformal. We will elaborate on the definition fur-
ther in the next section; for the moment we stress that although we have spoken
about sufficiently smooth maps (in fact, C1 maps) we will eventually see below why
smoothness is not necessary for a map to be quasiconformal.

2Recall here that if z = u+ iv then

fz =
1

2
(fu − ifv), fz =

1

2
(fu + ifv).
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1.2.1 Grötzsh’s definition for smooth quasiconformal maps

Before we go onto actually solving Grötzsch’s problem in the next section, we now
discuss Definition 1.3 and give an equivalent definition due to Grötzsch below. Let
f : U → U ′ be a smooth (C1 at least) diffeomorphism and let w = f(z). We have

dw = df = fzdz + fzdz.

Being a diffeomorphism, f is well approximated at each point z0 of U by the differ-
ential df at z0, which is of course a linear map. Now the linear map df(z0) maps the
unit circle of the z-plane onto an ellipse of the w-plane such that its major and its
minor axes have lengths α and β respectively. Since the Jacobian Jf of f is

Jf = |fz|2 − |fz|2,

assuming that f is sense-preserving we obtain |fz| > |fz|. Now the distortion
Kf (z0) is defined by

Kf (z0) =
|fz(z0)|+ |fz(z0)|
|fz(z0)| − |fz(z0)|

=
α

β
.

Let the complex dilation µf (z0) be

µf (z0) =
fz(z0)

fz(z0)
.

Clearly,

Kf (z0) =
1 + |µf (z0)|
1− |µf (z0)|

.

We may now give the following equivalent version of the definition for C1 qc maps;
this is Grötzsch’s definition:

Definition 1.4 AC1 diffeomorphism is quasiconformal if its distortion functionKf (z)
is bounded in U . It is K-quasiconformal if Kf (z) ≤ K.

The maximal distortion Kf of f is thus the infimum of all K for which f is K-
quasiconformal.

Definitions 1.3 and 1.4 are equivalent: If a C1 f : U → U ′ is quasiconformal
according to Definition 1.3 then Kf (z) is bounded in U . The bound is the real
number K = (1 + k)/(1− k) = Kf ≥ 1, the maximal distortion of f . On the other
hand, if the distortion of f is bounded by K > 1, then the complex dilation

µf (z) = fz/fz

satisfies
|µf (z)| = |fz|/|fz| ≤ (K − 1)/(K + 1) = k ∈ [0, 1).
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We conclude these comments by stating the following results whose proof msy br
found for instance in [11]:

AC1 diffeomorphism is conformal if and only if is 1-quasiconformal as this fol-
lows by the Cauchy-Riemann equations: f is conformal implies fz = 0 which
is the complex version of the Cauchy-Riemann equations, therefore Kf ≡ 1
and vice-versa.

If f is C1 K-quasiconformal, then f−1 is K-quasiconformal as well.

If f, g are C1 K1 and K2 quasiconformal mappings, respectively, then f ◦ g is
K1K2-quasiconformal.

1.3 Grötzsch’s problem

A corollary of the Riemann Mapping Theorem is the following:

Proposition 1.5 Let U and U ′ be simply connected subsets of C other than C itself
and let z1, z2, z3 and w1, w2, w3 two triples of pairwise distinct points of ∂U and
∂U ′, respectively. Then there exists a unique conformal mapping f from U onto U ′

such that f(zi) = wi, i = 1, 2, 3.

Uniqueness follows here by pre-composing (or post-composing) our Riemann map
with the unique Möbius transformation of the plane which maps zi to wi, i = 1, 2, 3.
But how about if we have two specific quadruples z = (z1, . . . , z4) and w =
(w1, . . . , w4) on the respective boundaries of our sets? Those can be mapped onto
each other by a Möbius transformation if and only if their respective cross-ratios

X(z) =
(z4 − z2)(z3 − z1)

(z4 − z1)(z3 − z2)
, X(w) =

(w4 − w2)(w3 − w1)

(w4 − w1)(w3 − w2)

are equal. Taking this under account, Grötzsch addressed in 1928 the following
problem:

Grötzsch’s problem: Let R and R′ be two rectangles with sides parallel to the
coordinate axes and with side lengths a, b and a′, b′ respectively. Find the closets
to a conformal map f that maps R onto R′ in a manner so that if z = (z1, . . . , z4)
and z′ = (z′1, . . . , z

′
4) are the quadruples of their respective vertices taken in the

counter-clockwise manner, then f(zi) = z′i, i = 1, . . . , 4.

1.3.1 Solution to Grötzsch’s problem

In the formulation given in the previous section, consider the affine map

f(z) =
1

2

(
a′

a
+
b′

b

)
z +

1

2

(
a′

a
− b′

b

)
z.
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This maps the rectangle R with vertices (0, a, a + bi, bi) to the rectangle R′ with
vertices (0, a, a′ + b′i, b′i) so that

f(0) = 0, f(a) = a′, f(a+ bi) = a′ + b′i, f(bi) = b′i.

We also have

fz =
1

2

(
a′

a
− b′

b

)
, fz =

1

2

(
a′

a
+
b′

b

)
an thus the linear map has constant maximal distortion

Kf =
a′/b′

a/b
.

We will show in what follows that this is the solution to Grötzsch’s problem. The
method is standard and we will come back to it later in the course. Suppose that a
mapping g has the required properties and choose a horizontal line segment γ ∈ R,
γ = γ(s), s ∈ [0, a], joining its vertical sides. Then if ` denotes curve length we
have by chain rule

‖ġ(γ(s))‖ = |gz(γ(s))γ̇(s) + gz(γ(s))γ̇(s)|

a′ ≤ `(g(γ)) =

∫ a

0

‖ġ(γ(s))‖ds

=

∫ a

0

|gz(γ(s))γ̇(s) + gz(γ(s))γ̇(s)|ds

=

∫ a

0

|gz||1 + µg|dx

because γ is a straight line (s = x). By integrating with respect to y,

a′b ≤
∫∫

R

|gz||1 + µg|dxdy

=

∫∫
R

|gz||1 + µg| ·
J

1/2
g

J
1/2
g

dxdy

=

∫∫
R

|1 + µg|
(1− |µg|2)1/2

· J1/2
g dxdy.

At this point, we apply Cauchy-Schwarz Inequality to obtain

a′b ≤
(∫∫

R

|1 + µg|2

1− |µg|2
dxdy

)1/2(∫∫
R

Jgdxdy

)1/2

.

This gives
a′b2

b′
≤
∫∫

R

|1 + µg|2

1− |µg|2
dxdy ≤

∫∫
R

Kgdxdy

and thus
a′/b′

a/b
≤ Kg.
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1.4 From Lavrentiev and Teichmüller to Ahlfors-bers Theory

Grötzsch’s work of quasiconformal mappings remained pretty much in obscurity un-
til 1937 when Teichmüller used it in an essential manner for his study of the famous

Riemann Moduli Problem: Let Σ be a closed (compact and without boundary)
surface and consider the set of its conformal equivalence classes.3 Describe this set
by a finite set of parameters.

It had also appeared in the work of Lavrentiev (1936) towards the direction of
elliptic partial differential equations. The work of Ahlfors and Bers spanned almost
four decades starting from the 1930’s and it was culminated in the

Theorem 1.6 Measurable Riemann Mapping Theorem: Let the Beltrami equa-
tion 1.2.1 with µ measurable and essentially bounded by 1. Then it has a quasicon-
formal4 solution which is unique u to composition with conformal mappings.

This theorem is the cornerstone for the staudy of Teichmüller spaces. The theory
based on and also around it is now known as Ahlfors-Bers theory of quasiconfor-
mal mappings of the plane and it is a basic tool for the study of the properties of
Teichmüller spaces. For the interested reader, the books of Ahlfors, [1], and also of
Lehto-Virtanen, [27], which appeared in that period remain seminal in this context.

1.5 Quasiconformal mappings in Euclidean spaces

Concentrated in the context of Analysis, the theory of quasiconformal mappings
was initiated by Gehring and Väisälä around the beginning of the 1960’s. We have
already given a definition of quasiconformal mappings which, however, depends
strongly on the analytic nature of the complex plane. It is transparent that mov-
ing to higher dimensions need a more flexible definition. This is known as the metric
definition:

Definition 1.7 Metric definition of quasiconformal mappings in Rn: Let U,U ′ ⊂
Rn be open sets and let also f : U → U ′ be a homeomorphism. If for each x ∈ U

H(x) = lim
r→0

sup
sup|x−y|=r |f(x)− f(y)|
inf |x−y|=r |f(x)− f(y)|

is uniformly bounded in U , then f is quasiconformal.

Compare that definition with the remarks we have given after the analytic defini-
tion in the complex plane case. This definition is very important and it has been

3This set would thereafter be named the Teichmüller space of Σ.
4Here quasiconformal is meant according to the metric definition, see next sextion and also next chapter.
It will turn out that such a solution lies in the Sobolev space W 1,2

loc , it is a.e. differentiable and also its
distortion is bounded by some K.
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shown that is equivalent to an analytic definition (setting a distrortion condition on
the derivative) and also to a geometric definition (using capacities or moduli) as we
shall see further on.

The suspected reader must have already observed that the metric definition above
can be easily extended to any metric space. We shall come back to it later in our
course.

1.6 From Mostow Rigidity to Pansu and Korányi-Reimann theory

We state the celebrated 1968 rigidity result of Mostow.

Theorem 1.8 Mostow Rigidity Theorem: In dimensions n > 2 diffeomorphic
compact Riemennian manifolds with constant negative curvature are isometric, in
particular they are conformally equivalent.

The proof of this result relies heavily in the use of quasiconformal mappings of
Rn. The beginning of the study of quasiconformal mappings in a non-Riemannian
setting may be considered as Mostow’s attempt (see [29]) to extended this result to
the setting of symmetric spaces of rank 1 of non compact type: those are hyperbolic
spaces Hn

K where K can be the set of real numbers R (except when n = 2), the set
of complex numbers C, the set of quaternions H, or the set of octonions O (the latter
only when n = 2). To obtain this, Mostow had to develop quasiconformal mappings
on the boundary of these spaces as an indispensable tool. In rough lines, Mostow’s
proof in the case K = C and n = 2 goes as follows. Let G and G′ be two cocompact
lattices, i.e. M = H2

C/G and M ′ = H2
C/G

′ are compact and suppose that ρ : G→
G′ is an isomorphism. From ρ it is possible to define a quasi-isometric self map F
of H2

C which is equivariant; this map need not to be even continuous but has the
property that it takes geodesics to quasi-geodesics. Due to a fundamental result in
Gromov hyperbolic spaces, from this property F is extended to a boundary map F∞ :
∂H2

C → H2
C which is in fact a quasiconformal homeomorphism of ∂H2

C with respect
to a metric comparable with the Korányi–Cygan metric. After showing that F∞ has
enough smoothness, Mostow proves that a (G,G′)−equivariant quasiconformal self
map of the boundary is associated with the action of an element of the isometry group
of H2

C and the proof is concluded from the equivariance of the resulting isometry.
We refer the interested reader to [7], pp. 135–140, for a short but more detailed
description of Mostow’s proof.

It was Pansu who obtained an even stronger rigidity statement for the cases K =
H and K = O in [31]. By using Mostow’s methods, Pansu proved the following
property which does not hold for real and complex hyperbolic spaces:

Theorem 1.9 Pansu Rigidity Theorem: Every quasi-isometry of quaternionic or
octonionic spaces has bounded distance from an isometry.

From this result, by using the conformal geometry of the boundary which is modelled
on a nilpotent group HK with a Carnot–Carathéodory metric (i.e. a Carnot group),
and general properties of Loewner spaces, (we postpone the definitions of all these
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for later), he proved that any quasiconformal (in fact quasisymmetric) homeomor-
phism of HK is actually conformal.

This result does not apply for the case K = C and it is an open problem to
understand the intrinsic reason for this phenomenon.

Mostow’s rigidity had serious consequences; perhaps two of them are the most
significant:

The moduli space of hyperbolic metrics on a surface, i.e. the Teichmüller space
of the surface, which is the case K = R and n = 2 in the above setting, is just a
counterexample of rigidity. The proof fails there, since it involves absolute con-
tinuity in measure of the boundary quasiconformal (actually quasisymmetric)
mappings: in S1 = ∂H2

R this does not hold.

The theory of quasiconformal mappings of the Heisenberg group emerged, after
the pioneering articles [22], [23] of Korányi–Reimann and Pansu, [31]. These
works ignited the research of quasiconformal mappings in various other spaces;
only some of them are CR−manifolds, Carnot groups, metric spaces with con-
trolled geometry, etc. We will give further details about them throughout the
course.

1.6.1 Measurable Riemann Mapping Theorem in the non-complex case

We have already highlighted the Measurable Mapping Theorem as the cornerstone
of Ahlfors-Bers theory. Unfortunately, such a result is not available to Euclidean di-
mensions greater than 3, or to non-Reimannian cases like the Heisenberg group case.
However, in the Korányi-Reimann theory of quasiconformal mappings of the Heisen-
berg group (which for the moment we should think as the boundary of complex
hyperbolic plane minus one point) there exists a less powerful but extremely useful
result; this is an infinitesimal version of Measurable Riemann Mapping Theorem and
states that particular vector fields generate flows of quasiconformal mappings. Those
vector fields are called quasiconformal deformations and the huge importance of this
result lies on the fact that they actually exist non-trivial quasiconformal mappings in
the Heisenberg group.

1.7 Heinonen-Koskela and beyond

Recently, the theory of quasiconformal mappings revolves around to what is called
metric spaces with controlled geometry. We have already underlined that we can
define quasiconformal mappings in any metric space; the question really is if any of
such mapping do actually exist! For this, if you pick your favourite metric space, then
your first step is to find the proper analytic definition of quasiconformal mappings
and show its equivalence with the metric one.

The work of Heinonen and Koskela is about these questions; they consider spaces
where the metric definition is equivalent to an analytic definition which in turn is
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equivalent to a geometric definition which uses capacities (or moduli of curve fami-
lies).



CHAPTER 2

QUASICONFORMAL MAPPINGS IN THE
COMPLEX PLANE

We recall the metric definition for quasiconformal mappings in C:

Definition 2.1 Metric definition of quasiconformal mappings in C: Let U,U ′ ⊂
Rn be open subsets of the complex plane C and let also f : U → U ′ be a homeo-
morphism. If for each z ∈ U

H(z) = lim
r→0

sup
sup|z−w|=r |f(z)− f(w)|
inf |z−w|=r |f(z)− f(w)|

is uniformly bounded in U , then f is quasiconformal. If also H(z) ≤ K then f is
called K-quasiconformal.

In this chapter we are going to describe the manner of how from that from that
definition all analytic properties of a quasiconformal mapping are revealed. We start
from a geometric definition first.

Quasiconformal mappings in the Heisenberg group,
Changsha, PRC, 2018.
By Ioannis D. Platis Copyright c© 2018 John Wiley & Sons, Inc.
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2.1 Moduli of curve familes and the geometric definition

2.1.1 Absolute continuity

Let I = [a, b] be an interval in the real line R. A function f : I → R is absolutely
continuous on I if for every positive number ε, there is a positive number δ such
that whenever a finite sequence of pairwise disjoint sub-intervals (xk, yk) of I with
xk, yk ∈ I satisfies ∑

k

(yk − xk) < δ

then ∑
k

|f(yk)− f(xk)| < ε.

The collection of all absolutely continuous functions on I is usually denoted by
AC(I).

The following conditions on a real-valued function f on a closed interval [a, b]
are equivalent:

1. f is absolutely continuous;

2. f has a derivative f ′ a.e., the derivative is Lebesgue integrable, and

f(x) = f(a) +

∫ x

a

f ′(t) dt for all x ∈ [a, b];

3. there exists a Lebesgue integrable function g defined on [a, b] such that

f(x) = f(a) +

∫ x

a

g(t) dt

for all x ∈ [a, b].

If these equivalent conditions are satisfied then necessarily g = f a.e..
Equivalence between (1) and (3) is known as the fundamental theorem of Lebesgue

integral calculus, which is due to Lebesgue. The notion of absolute continuity is gen-
eralised in an obvious way to any metric space. For instance if we replace R by C,
then f is absolutely continuous if and only if the coordinate functions are absolutely
continuous. We further note that every absolutely continuous function is uniformly
continuous and, therefore, continuous. Every Lipschitz-continuous function is abso-
lutely continuous.

2.1.2 Modulus of curve families

Let γ : [a, b]→ C be a curve. If

a = t0 ≤ t1 ≤ · · · ≤ tn = b
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is a subdivision of [a, b] and if

`(γ) = sup

n∑
k=1

|γ(tk)− γ(tk−1)| ≤ ∞,

where the supremum is taken over all subdivisions of [a, b], then γ is called rectifi-
able. It is called locally rectifiable if every closed sub-curve is rectifiable.

If γ is a rectifiable curve, then it can be parametrised by arc-length

s(t) = `(γ[a, t]),

and s is an increasing continuous function. It can be shown that if γ is a closed recti-
fiable curve then s is absolutely continuous if and only if γ is absolutely continuous.1

In this manner, suppose that ρ : C→ R+ is Borel,we can define its curve integral by∫
γ

ρds =

∫ `(γ)

0

ρ(γ(s))ds =

∫ b

a

ρ(γ(t)|γ̇(t)|dt,

where γ is a closed rectifiable curve.
Suppose now that Γ is a family of (at least absolutely continuous) curves whose

images lie in a region U ⊂ C. A Borel function ρ : U → R+ shall be called
admissible for Γ if ∫

γ

ρds ≥ 1

and the set of all admissible functions for Γ shall be denoted by Adm(Γ).

Definition 2.2 The modulus Mod(Γ) of Γ is

Mod(Γ) = inf
ρ∈Adm(Γ)

∫∫
U

ρ2dµL

where dµL is the standard Lebesgue measure in the complex plane.2

We further notice that if there is a ρ which realises the infimum in the definition, then
it is called an extremal density for Γ.

We give below some examples of moduli of curve families inside specific regions.
To calculate moduli we follow a certain strategic which will become transparent from
the examples.

1Recall that an absolutely continuous map is differentiable a.e.
2For any p ≥ 1 we can actually define the p-modulus by

Modp(Γ) = inf
ρ∈Adm(Γ)

∫∫
U
ρpdµL.

Thus our definition concerns the 2-modulus.
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2.1.3 Modulus of a rectangle

We consider the rectangleR(0, a, a+bi, bi) and the family Γ of curves which connect
the sides (0, bi) and (a, a + bi). We consider the sub-family Γ1 comprising of line
segments connecting the two sides, that is,

Γ1 = {γy : γy(t) = t+ iy, t ∈ [0, a], y ∈ [0, b]}.

If ρ ∈ Adm(Γ1) then for each γy we have γ̇y(t) = 1 and by putting t = x we have

1 ≤
∫
γy

ρds =

∫ a

0

ρ(x+ iy)dx.

We know apply Cauchy-Schwarz inequality in the right hand-side to the functions ρ
and 1 to obtain:3

1 ≤
(∫ a

0

ρ2(x+ iy)dx

)1/2

· a1/2,

which we may write as

1/a ≤
∫ a

0

ρ2(x+ iy)dx.

By integrating the above inequality with respect to y we have

b/a ≤
∫∫

R

ρ2dxdy.

By then taking the infimum over all ρ ∈ Adm(Γ1) we obtain

Mod(Γ1) ≥ b/a

and since Γ1 ⊂ Γ we also have

Mod(Γ) ≥ b/a.

This concludes the first step of our calculation; in order to show equality in the
above inequality we trace an extremal desnsity for Γ. To do so, we must think of a
function ρ0 that realises equality in the above Cauchy-Schwarz inequality. Indeed,
this function is

ρ0(x+ iy) = 1/a.

In the first place, ∫∫
R

(1/a2)dxdy = b/a

3Cauchy-Schwarz Inequality: if f, g ∈ L2([a, b]) then∫ b

a
|f · g| ≤

(∫ b

a
|f |2

)1/2 (∫ b

a
|g|2
)1/2

.

Equality holds if and only if f is a constant multiple of g.
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and moreover, ρ0 ∈ Adm(Γ): If γ ∈ Γ then∫
γ

ρ0ds = (1/a)`(γ) ≥ 1,

since the length `(γ) of γ is always greater or equal than the length of a line segment
parallel to the x-axis that joins the two sides. This concludes our proof because we
have

Mod(Γ) ≤
∫∫

R

ρ2dµL = b/a.

In the same lines of the above proof the interested reader may show that the modulus
of the family of curves inside the rectangle that connect the sides (0, a) and (bi, a+
bi) is a/b with extremal density 1/b.

We comment at this point the geometrical meaning of this example: The modulus
equals to the similarity ratio of the rectangle R. It is worth to notice that most books
on the quasiconformal mappings of the plane take a considerable amount of effort
to give the geometric definition of quasiconformal mappings by dealing first with
moduli of quadrilaterals. By a guadrilateralQ(z1, z2, z3, z4) here we mean a simply
connected domain in C with four mutually disjoint prescribed points z1, z2, z3, z4

(the vertices of the quadrilateral) on its boundary. Due to standard complex analytic
arguments any such quadrilateral can be mapped into a rectangle in a manner that the
vertices of the quadrilateral are mapped onto the vertices of the rectangle. Since this
is something that can happen only in the complex plane, we shall use a more general
route.

2.1.4 Moduli of curve families inside the annulus

Let 0 < a < b and consider the annulus

Aa,b = {z ∈ C : a < |z| < b}.

By a modification of the Riemann mapping Theorem, each doubly connected region
in C can be conformally mapped to an annulus Aa,b.4 We consider two families of
curves inside the annulus: First, the family Γ of curves that connect the two boundary
circles. To calculate its modulus, also called the capacity Cap(Aa,b) we consider the
sub-family of radial curves

Γ1 = {γt : γt(r) = reit, r ∈ [a, b], t ∈ [0, 2π)}.

If ρ ∈ Adm(Γ1) then γ̇t(r) = eit and

1 ≤
∫
γt

ρds =

∫ b

a

ρ(reit)dr =

∫ b

a

ρ(reit)r1/2 · 1

r1/2
dr.

4We stress here that the annulus in question is unique in the following sense: If Γ is the family of boundary
connected curves, then its modulus has to be equal to π/ log(b/a).
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Applying Cauchy-Schwarz inequality and taking it to the square we have

1/ log(b/a) ≤
∫ b

a

ρ(reit)rdr.

By integrating with respect to t and using the Change of Variables Theorem we have
after taking the infimum over all ρ ∈ Adm(Γ1) that

2π/ log(b/a) ≤ Mod(Γ1) ≤ Mod(Γ).

Our task now is to find an extremal density for Γ. By inspecting the above Cauchy-
Schwarz inequality we take

ρ0 = c/r, c = 1/ log(b/a).

Indeed, ∫∫
Aa,b

ρ2
0(reit)rdrdt = c2 · 2π log(b/a) = 2π/ log(b/a).

On the other hand, if γ ∈ Γ, we may suppose γ(s) = r(s)eit(s), s ∈ [0, `(γ)] and
such that r(0) = a and r(`(γ)) = b. We may also suppose that ṙ(s) ≥ 0. Then

|γ̇(s)| = |ṙ(s) + iṫ(s)| ≥ ṙ(s).

Then ∫
γ

ρ0ds =
1

log(b/a)

∫ `(γ)

0

|γ̇(s)|
r(s)

ds ≥ 1

log(b/a)

∫ `(γ)

0

ṙ(s)

r(s)
ds = 1.

This shows that
Mod(Γ) = 2π log(b/a).

We next consider the family Γ′ of curves inside the annulus that wind around the
origin. To calculate Mod(Γ′) we take the sub-family of circles

Γ2 = {γr : γr(t) = reit, r ∈ [a, b], t ∈ [0, 2π)}.

If ρ ∈ Adm(Γ2) then γ̇r(t) = ireit and

1 ≤
∫
γ

ρds =

∫ 2π

0

ρ(reit)rdr =

∫ 2π

0

ρ(reit)r1/2 · r1/2dt.

Again, by applying Cauchy-Schwarz inequality and taking the inequality to the
square we have

1/(2πr) ≤
∫ 2π

0

ρ(reit)rdt.

Now by integrating with respect to r and by using again the Change of Variables
Theorem we have after taking the infimum over all ρ ∈ Adm(Γ2) that

log(b/a)

2π
≤ Mod(Γ2) ≤ Mod(Γ′).



MODULI OF CURVE FAMILES AND THE GEOMETRIC DEFINITION 17

By inspecting equality in the above Cauchy-Schwarz inequality we take

ρ0 = 1/(2πr).

Then ∫∫
Aa,b

ρ2
0(reit)rdrdt = log(b/a)/(2π).

Finally, if γ ∈ Γ′, we may suppose γ(s) = r(s)eit(s), s ∈ [0, 2π] and such that
γ(0) = γ(2π). Now,∫

γ

ρ0ds =
1

2π

∫ 2π

0

|γ̇(s)|
r(s)

ds ≥
∣∣∣∣ 1

2π

∫ 2π

0

γ̇(s)

γ(s)
ds

∣∣∣∣ ,
which is the winding number of γ, that is greater or equal to 1. Our proof is complete.

2.1.5 Modulus Inequality

It is now time to show that the modulus of curve families is a conformal invariant.
For this we shal need the following Lemma.

Lemma 2.3 Let f : U → U ′ be a C1 sense-preserving diffeomorphic map of do-
mains of C. Then for each absolutely continuous curve γ lying inside U we have

(|fz(γ(t))| − |fz(γ(t))|)|γ̇(t)| ≤ | ˙(f ◦ γ)(t)| ≤ (|fz(γ(t))|+ |fz(γ(t))|)|γ̇(t)|.

Proof : By Chain Rule,

˙(f ◦ γ)(t) = fz(γ(t))γ̇(t) + fz(γ(t))γ̇(t).

By taking absolute velues and using triangle Inequality we obtain the desired result.

Theorem 2.4 Modulus Inequality: Let f : U → U ′ be a C1 sense-preserving K-
quasiconformal map of domains of C. Let Γ be a family of curves inside U and let
also Kf (z) be the distortion function of f . Then if ρ ∈ Adm(Γ) we have

Mod(f(Γ)) ≤
∫∫

U

Kf (z)ρ2(z)dµL(z).

Moreover,
(1/K)Mod(Γ) ≤ Mod(f(Γ)) ≤ KMod(Γ).

Proof : If ρ ∈ Adm(Γ) we consider the push-forward density

ρ′ =
ρ

|fz| − |fz|
◦ f−1.

In the first place ρ′ ∈ Adm(f(Γ)): if f(γ) ∈ f(Γ), then by supposing that γ is
parametrised in some [a, b] we get by using the left hand-side of Lemma that∫
f(γ)

ρ′ds =

∫ b

a

ρ(γ(t))| ˙(f ◦ γ)(t)|
|fz(γ(t))| − |fz(γ(t))|

dt ≥
∫ b

a

ρ(γ(t))|γ̇(t)|dt =

∫
γ

ρds ≥ 1.
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Now

Mod(f(Γ)) ≤
∫∫

U ′
(ρ′)2(w)dµL(w) =

∫∫
U ′

(
ρ

|fz| − |fz|

)2

(f−1(w))dµL(w).

We set w = f(z) and use the Change of Variables Theorem:

Mod(f(Γ)) ≤
∫∫

U

ρ2(z)

(|fz| − |fz|)2
Jf (z)dµL(z) =

∫∫
U

Kf (z)ρ2(z)dµL(z)

since Jf (z) = |fz|2 − |fz|2. Since also Kf (z) ≤ K we have

Mod(f(Γ)) ≤ K
∫∫

U

ρ2dµL

and by taking infima in both sides we obtain

Mod(f(Γ)) ≤ KMod(Γ).

We leave as an exercise to the reader to show that

(1/K)Mod(Γ) ≤ Mod(f(Γ)).

(Hint: If f is K-quasiconformal, then f−1 is K-quadiconformal.)

Definition 2.5 Geometric definition: A C1 diffeomorphism f : U → U ′ is K-
quasiconformal if for every curve family Γ lying inside U we have

(1/K)Mod(Γ) ≤ Mod(f(Γ)) ≤ KMod(Γ).

It may be proved that Definitions 1.4 and 2.5 are equivalent but we shall not be
concerned with this. The interested reader may concult [11], Theorem 3.2.1.

Here, we remark that Theorem 2.4 actually shows that Definition 1.4 implies Def-
inition 2.5. Now we will show that if we assume that the geometric definition holds
for homeomorphisms, then it implies the metric definition. We start with the follow-
ing.

Definition 2.6 A generalised annulus AC0,C1
(or, condenser) is a domain whose

complement consists of two connected components C0 and C1. The modulus Mod
(AC0,C1

) is the modulus of the family of curves which connect ∂C0 and ∂C1.

It can be shown (see [35]) that Mod(AC0,C1
) equals to the capacity Cap(C0, C1)

which is defined as follows. Consider C1 functions u : C → R such that u ≡ 0 on
∂C0 and u ≡ 1 on ∂C1. If ∇ denotes the gradient, then

Cap(C0, C1) = inf

∫∫
AC0,C1

‖∇u‖2dµL,
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where the infimum is taken over all admissible functions.

We shall make use of the following Lemma which we will use without proof.

Lemma 2.7 There is a constant k with the following property: if for the generalised
annulus AC0,C1

the component C0 contains 0 and a point in the unit circle and if C1

contains∞ and a point in the unit circle, then

Mod(AC0,C1
) ≥ k/2.

Theorem 2.8 Assume that there exists a constant K ≥ 1 such that for the homeo-
morphism f : U → U ′ between domains of C the Modulus Inequality holds. Then f
is quasiconformal according to the Metric Definition.

Proof : Let z ∈ U and consider the annulus Aβ,α with centre f(z) and radii

α = sup
|z−w|=r

|f(z)− f(w)| and β = inf
|z−w|=r

|f(z)− f(w)|.

If r is sufficiently small, this annulus lies entirely in U ′. Its f -pre-image is a gener-
alised annulus AC0,C1

such that C0 comprises z and a path which connects it with
the circle S = {w : |z − w| = r} and C1 comprises∞ and a path which connects it
with S. Since

Mod(Aβ,α) =
2π

log(α/β)
,

we use the previous lemma and Modulus Inequality to obtain

k/2 ≤ Mod(AC0,C1
) ≤ KMod(Aβ,α) =

2πK

log(α/β)
,

therefore
log(α/β) ≤ 4πK/k

and thus
H(z) ≤ e4πK/k

and f is quasiconformal according to the Metric Definition.

Remark 2.9 It can be shown (see [15]) that the mappings of the above theorem are
actually K-quasiconformal.

2.2 Analytic definition

2.2.1 Weak (generalised) derivatives and Sobolev spaces

Let u be a function in L1([a, b]). We say that v ∈ L1([a, b]) is a weak derivative of
u if, ∫ b

a

u(t)ϕ′(t)dt = −
∫ b

a

v(t)ϕ(t)dt
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for all infinitely differentiable functions ϕ with ϕ(a) = ϕ(b) = 0. This definition is
of course motivated by the integration by parts formula.

We may generalise to n dimensions: if u and v are in the space L1
loc(U) of locally

integrable functions for some open set U ⊂ Rn, and if α is a multi-index, then v is
the αth-weak derivative of u if∫

U

uDαϕ = (−1)|α|
∫
U

vϕ,

for all ϕ ∈ C∞c (U). That is, for all infinitely differentiable functions ϕwith compact
support in U . The multi-index partial derivative Dαϕ is defined as

Dαϕ =
∂|α|ϕ

∂xα1
1 . . . ∂xαn

n
.

If u u has a weak derivative, we denote it by Dαu; this is reasonable since weak
derivatives are uniquely defined a.e.

If a function f is defined in a subset of R we say that it belongs to the Sobolev
spaceW k,p if f and its weak derivatives up to some order k are in Lp norm, 1 ≤ p ≤
∞. It turns out that it is enough to suppose only that the weak (k − 1)-th derivative
of f is differentiable a.e. and is equal a.e. to the Lebesgue integral of its derivative.

Thus instead of the norm

‖f‖k,p =

(
k∑
i=0

∥∥∥f (i)
∥∥∥p
p

) 1
p

=

(
k∑
i=0

∫ ∣∣∣f (i)(t)
∣∣∣p dt)

1
p

,

which turns W k,p into s a Banach space, we can use the equivalent norm which is
defined by ∥∥∥f (k)

∥∥∥
p

+ ‖f‖p.

This definition generalises to higher dimensions: If U ⊂ Rn, the Sobolev space
W k,p(U) is defined to be the set of all functions f : U → R such that for every
multi-index α with |α| ≤ k, the mixed partial derivative

∂|α|f

∂xα1
1 . . . ∂xαn

n

exists in the weak sense and is in Lp(U), therefore

W k,p(U) = {f ∈ Lp(Ω) : Dαf ∈ Lp(Ω) ∀|α| 6 k} .

2.2.2 Absolute continuity in lines

Definition 2.10 A continuous real-valued function u is said to be absolutely contin-
uous on lines (ACL) in the domain U ⊂ C if for each closed rectangle contained in
U , almost every restriction of the function to each horizontal and vertical closed line
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segment of the rectangle is absolutely continuous. A complex valued function is ACL
in U if its real and imaginary parts are ACL in U .

Nikodym established in 1933 the following ACL characterisation of Sobolev
spaces: Let 1 ≤ p ≤ ∞. If f ∈ W 1,p(U), then perhaps except on a set of mea-
sure zero, the restriction to almost every line parallel to the coordinate directions in
Rn is absolutely continuous, i.e. f is ACL. Moreover, the usual derivative along the
lines parallel to the coordinate directions are in Lp(U). Conversely, if the restriction
of f to a.e. line parallel to the coordinate directions is absolutely continuous, then
f ∈ W 1,p(U) provided f and all the weak first derivatives are all in Lp(U). In par-
ticular, in this case the weak partial derivatives of f and pointwise partial derivatives
of f are the same a.e.

We now have the following theorem which is mainly due to Pflüger and Morrey:

Theorem 2.11 If f : U → U is quasiconformal according to the metric definition,
then it is ACL in U .

The proof of this theorem is rather long and pretty technical. For a nice exposition,
see [1] for the complex case and also for greater dimensions see the notes of Butler,

http://math.uchicago.edu/∼cbutler/Quasiconformality.pdf

There, it is exposed the variant of Gehring, which constitutes the proof for Rn.
Mostow proved in 1973 the ACL property for quasiconformal mappings between
boundaries of symmetric spaces of rank one-that is, between mappings on the Heisen-
berg group. But, it wasn’t only till 1990 when it was realised that Mostow’s proof
contained an error; this was fixed by Mostow, Korányi and Reimann.

Recall now

Rademacher’s Theorem: If U is an open subset of Rn and f : U → Rm is
Lipschitz continuous, then f is differentiable a.e. in U .

The following generalisation is due to Stepanov:

Stepanov’s Theorem: Let U ⊆ Rn be measurable and let also f : U → Rm be
a measurable function. Then f is a.e. differentiable on the set{

x ∈ U : limsupy→x
|f(x)− f(y)|
|x− y|

<∞
}
.

Proofs of Rademacher-Stepanov Theorem may be found in standard books of analy-
sis; see for instance [36].

Now, what we have from the above in other words, is that the function If : U →
R, where

If (x) = limsup|x−y|=r
|f(x)− f(y)|

r
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is bounded a.e. in U . Suppose now that f : U → U ′ is a quasiconformal mapping
and for each z ∈ U and r > 0 set B(z, r) to be the open disk centred at z and with
radius r. Let

Jf (z) = limsupr→0

µL(f(B(z, r)))

µL(B(z, r))
.

It is known by Lebesque’s density theorem that Jf is bounded. Now

If (z)2 ≤ H(z)2Jf (z)

and since H(z) ≤ H we obtain from Stepanov’s Theorem the following:

Theorem 2.12 Quasicconformal mappings between domains of C are a.e. differen-
tiable.

Note that then
Jf = |fz|2 − |fz|2

is the Jacobian determinant of f .

Suppose now that the quasiconformal f is differentiable at z ∈ U . Denote by
f∗(z) the derivative of f at z. Then we can show that, see [27]

Kf (z) =
|fz|+ |fz|
|fz| − |fz|

≤ K,

where K = H2. In a more general way,

‖f∗‖2 ≤ KJf ,

where
‖f∗‖2 = tr2(f∗) = (|fz|+ |fz|)2.

2.2.3 Beltrami equation

We finally state again:

Theorem 2.13 Measurable Riemann Mapping Theorem: Suppose that U is a
simply connected domain in C that is not equal to C, and suppose that µ : U → C
is Lebesgue measurable and satisfies ‖µ‖∞ < 1. Then there is a quasiconformal
homeomorphism f : U → D where D is the unit disk which is in the Sobolev
space W 1,2(U) and satisfies the corresponding Beltrami equation in the distribu-
tional sense. The map f is unique up to Möbius transformations.

The proof (by Ahlfors and Bers) can be found in many standard books, see for in-
stance [1] and [11]. This is of central importance in the theory of quasiconformal
mappings in the plane: It generalizes the Riemann Mapping Theorem from confor-
mal to quasiconformal homeomorphisms. There is no analogue of this theorem to
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greater dimensions. In the next paragraph we shall see how we can compensate with
this fact. For the moment we state

Definition 2.14 Analytic definition: A homeomorphism f : U → U ′, between
domains in C is an orientation-preserving K-quasiconformal mapping if f

(i) is ACL;

(ii) is a.e. differentiable, and

(iii) satisfies a.e. a Beltrami equation of the form 1.2.1, where µ is a complex func-
tion in U such that ‖µ‖∞ < 1.

An analogous definition holds for orientation-reversing quasiconformal mappings.
An equivalent definition is:

Definition 2.15 (Analytic definition) A homeomorphism f : U → U ′, between do-
mains in C is an orientation-preserving K−quasiconformal mapping if f ∈ HW 1,2

(U,C) and if
‖f∗,z‖2 ≤ KJf (z)

for almost all z ∈ U .

2.3 Quasiconformal deformations

By fµ we shall denote the mapping with complex dilatation µ, normalized so that it
fixes 0, 1 and∞. From such an fµ we may define a family of complex dilatations
by

µt(z) =
µ(z)

|µ(z)|
tanh

(
t

logK
tanh−1 |µ(z)|

)
.

According to the Measurable Riemann Mapping Theorem, for each t ∈ R there
exists a unique normalised solution given by f(t, z) = fµt(z). We comment on
the definition of the homotopy µt(z): µt is chosen so that µt(z) is the point on
the radius through µ(z) such that in the unit hyperbolic disk the hyperbolic distance
dh(0, µt(z)) is the hyperbolic distance dh(0, µ(z)) multiplied by the factor t/ logK.
It takes little effort to show that

µt(z) =
µ(z)

|µ(z)|
· K(z, t)− 1

K(z, t) + 1
, K(z, t) =

(
1 + |µ(z)|
1− |µ(z)|

)t/ logK

.

Note here that by taking derivatives5 with respect to t we have

∂µt(z)

∂t
=

2

(K(z, t) + 1)2
·Kt(z, t),

5We assume here that µ and thus µt(z) is C1. If this does not happen, there exists a sequence µn of C1

and essentially bounded by k = (K − 1)/(K + 1) complex dilations which converge a.e. to µ and are
such that the sequence of corresponding normalised solutions fµn converge locally uniformly to f , see
[27].
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and

Kt(z, t) =
K(z, t) · log(K(z, logK))

logK
≤ K(z, t).

Therefore∣∣∣∣∂µt(z)∂t

∣∣∣∣ =
∂|µt(z)|
∂t

≤ 2K(z, t)

(K(z, t) + 1)2
=

1

2
(1− |µt(z)|2). (2.3.1)

We now define a vector field v(z, t) by the differential equation

V (f(z, t), t) =
∂f(z, t)

∂t
,

with initial condition f(z, logK) = fµ(z). We will show now using Eq. 2.3.1 that

|Vz(z, t)| ≤ 1/2.

In fact, by differentiating fz(z, t) = µt(z)fz(z, t) with respect to t we have

∂µt
∂t

fz(z, t) =
∂2f(z, t)

∂z∂t
− µt(z)

∂2f(z, t)

∂z∂t
.

We now use the differential equation to write

∂2f(z, t)

∂z∂t
= Vzfz(z, t) + Vzf(z, t)z,

∂2f(z, t)

∂z∂t
= Vzfz(z, t) + Vzf(z, t)z.

Hence

∂µt
∂t

fz(z, t) = Vz(f(z, t)z − µt(z)f(z, t)z) = Vzf(z, t)z(1− |µt(z)|
2)

and by taking absolute values we have

|Vz| =

∣∣∣∂µt(z)
∂t

∣∣∣
1− |µt(z)|2

.

Our desired result now follows from Eq. 2.3.1. We have the following important
theorem due to Gehring and Reich, [14] which summarises the above discussion:

Theorem 2.16 Parametric representation: If f : C → C is K-quasiconformal
then there exists a vectorfield V (z, t), t ∈ [0, logK] with bounded z-derivative by
1/2 a.e. such that its flow f(z, t) comprises of et-quasiconformal mappings with
f(z, 0) = id. and f(z, logK) = f(z).

We have already noted in the introduction the importance of this theorem: it lies
in the fact that it admits generalisations to higher dimensions (and to the Heisenberg
group!) whereas there is no known equivalent of the Existence Theorem neither in
Rn, n > 2 nor in other spaces.



EXTREMAL PROBLEMS AND MODULUS METHOD 25

2.4 Extremal problems and Modulus method

In this section we are concerned with the following problem: Let U be a domain
in U , ρ : U → R+ a Borel function and let Kf (z) = K(f, z) be the distortion
functions of quasiconformal mappings f : U → U ′.

Problem: To find, if it exists, a quasiconformal f0 : U → U ′ such that its
maximal distortion is minimal among the maximal distortions of all quasiconformal
f : U → U ′.

A solution f0 for that problem is called extremal. The theory of extremal map-
pings is rich, starting from the works of Teichmüller and later of Strebel and Reich
among others, see [37].

The mean distortion integral is defined by

M(f, ρ) =

∫∫
U
Kf (z)ρ2(z)dµL(z)∫∫
U
ρ2(z)dµL(z)

.

Problem: To find, if it exists, a quasiconformal f0 : U → U ′ such that

M(f0, ρ) ≤M(f, ρ),

for each quasiconformal f : U → U ′.

A method of solving that problem is described below; it is known as the Modulus
Method for the detection of minimisers of the mean distortion integral.

Step 1. Assume that there exists a curve family Γ0 such that ρ ∈ Adm(Γ1) and it
satisfies

Mod(Γ0) =

∫∫
U

ρ2dµL.

Step 2. Assume that there exists a quasiconformal f0 : U → U ′ such that:

Mod(f0(Γ0)) =

∫∫
U

Kf0(z)ρ2(z)dµL(z).

Step 3. Assume that there exists a curve family Γ containing Γ0 such that

ρ ∈ Adm(Γ0)

and moreover,
Mod(f0(Γ0)) ≤ Mod(f(Γ)),

for each quasiconformal f : U → U ′.

Then f0 is the desired minimiser: From Modulus inequality and our assumptions
we have∫∫

U

Kf0(z)ρ2(z)dµL(z) = Mod(f0(Γ0)) ≤ Mod(f(Γ)) ≤
∫∫

U

Kf (z)ρ2(z)dµL(z).
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Dividing by
∫∫
U
ρ2dµL we obtain then

M(f0, ρ) ≤M(f, ρ)

for all ρ, and thus f0 is a minimiser.

We remark that whereas the Modulus Method is elementary, it has a lot of as-
sumptions which are not obvious at all in most cases. However, the method can be
applied also to mappings that have only bounded distortion (they are not necessarily
ACL). For an implementation of this method, see [2] and the references therein.

Note that if a minimiser f0 for the mean distortion functional has constant maxi-
mal distortionKf0 , then due to the Modulus Inequality we have that f0 is a minimiser
for the maximal distortion among quasiconformal maps f : U → U ′.

Exercise! Formulate and solve the Grötzsch problem using the Modulus Method.

(Hint: If your rectangle is R(0, a, a + bi, bi) take ρ = 1/a, Γ0 the family of line
segments paralle to the x-axis and f0 the linear map.

We state two questions which appear here:

When a minimiser for the mean distortion exists? Is it unique?

When a minimiser for the maximal distortion is a minimiser for the mean dis-
tortion integral as well?



ADDITIONAL REMARKS 27

2.5 Additional remarks

We summarise below some important properties of quasiconformal mappings of the
complex plane. The interested reader should refer to [11] for instance, for further
details.

2.5.1 Hölder continuity

The following theorem is due to Mori and it proves Hölder continuity of quasicon-
formal maps:

Theorem 2.17 Let f be a K-quasiconformal self-mapping of the unit disk D with
f(0) = 0. Then for each z1, z2 ∈ D,

|f(z10− f(z2)| ≤ 16|z1 − z2|1/K ,

and therefore f is 1/K-Hölder continuous. The constant 16 is sharp.

2.5.2 Compactness properties

SupposeF is a family of normalised quasiconformal mappings of the extended plane
Ĉ. It can be proved that F is a compact subset of the set of homeomorphisms of Ĉ
with respect to the C0 topology.

2.5.3 Quasisymmetric and quasi-isometric mappings

If f : H→ H is a quasiconformal self-mapping of the upper half-plane

H = {z ∈ C : =(z) > 0},

then it can be extended to C \ R to a quasiconformal map f̃ defined by

f̃(z) =

{
f(z) z ∈ H
f(z) z ∈ C \H

One can check that f and f̃ have the same maximal distortion. The quastion is
now if f̃ can be extended to the whole plane C. The answer is positive: Given a
quasiconformal mapping of Ĉ \ {γ}, where γ is a Jordan curve, then the mapping
can be extended on the whole sphere, in other words, Jordan curves are removable
singularities for quasiconformal mappings. The extension also fixes ∞. A nice
geometrical property hold for the restriction of the extended mapping on the real line
R: There exists a constant M > 0 such that for all x ∈ R and t > 0,

1

M
≤ f̂(x+ t)− f̂(x)

f̂(x)− f̂(x− t)
≤M. (2.5.1)
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This property follows from the consequent lemma:

Lemma 2.18 If four pairwise distinct points z1, z2, z3, z4 lie in a compact subset E
of the sphere Ĉ which does not contain 0, 1,∞, then there exists a compact F ⊂ Ĉ
which does not contain 0, 1,∞ and is such that the cross-ratio X(z1, z2, z3, z4) ∈ F .

Definition 2.19 A homeomorphism f̂ of the real line which satisfies 2.5.1 is called a
quasisymmetric mapping.

Quasisymmetric mappings are very important: It has been proved by Beurling and
Ahlfors that they can be extended to quasiconformal mappings of the upper half-
plane (Beurling-Ahlfors extension). Another notable extension is the barycentric
extension done by Douady-Earle.

Definition 2.20 A homeomorphism f : H → H is called (K, a)-quasi-isometric, if
there exists positive K and a such that for each z, w ∈ H we have

dH(z, w)

K
− a ≤ dH(z, w) ≤ KdH(z, w) + a.

It can be proved that the extension of a quasi-isometric map which preserves ∞ to
the real line is a quasisymmetric map. Moreover, a K-quasiconformal self-map of
the upper half-plane is a (K, a(K)) quasi-isometric map, where a(K) is a constant
depending only on the constant of quasiconformality K.



CHAPTER 3

THE HEISENBERG GROUP

3.1 Complex hyperbolic plane and the Heisenberg group

The Heisenberg group appears naturally in certain ways; the one we are interested in
is as the boundary of complex hyperbolic plane minus one point. This is in analogy
of the real line R (viewed as the additive group (R,+) appearing as the boundary of
real hyperbolic plane minus one point. The material in this section concerning the
complex hyperbolic plane is standard; the definitions and results presented here can
be found in [12], [29], [32] and [7].

3.1.1 Complex hyperbolic plane

We revisit the definition of complex hyperbolic plane first. Following Mostow [29],
we define C2,1 to be the vector space C3 with the Hermitian form of signature (2, 1)
given by

〈z,w〉 = w∗Jz = z1w3 + z2w2 + z3w1

Quasiconformal mappings in the Heisenberg group,
Changsha, PRC, 2018.
By Ioannis D. Platis Copyright c© 2018 John Wiley & Sons, Inc.
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with matrix

J =

0 0 1

0 1 0

1 0 0

 .

Motivated by relativity, we consider the following subspaces of C2,1:

V− =
{
z ∈ C2,1 : 〈z, z〉 < 0

}
,

V0 =
{
z ∈ C2,1 \ {0} : 〈z, z〉 = 0

}
.

If P : C2,1 \ {0} −→ CP 2 is the canonical projection onto complex projective
space, then we define complex hyperbolic plane H2

C to be PV−. Its boundary ∂H2
C

is PV0.
Specifically, C2,1 \ {0} may be covered with three charts H1, H2, H3 where Hj

comprises those points in C2,1\{0} for which zj 6= 0. It is clear that V− is contained
inH3. The canonical projection fromH3 to C2 is given by P(z) = (z1/z3, z2/z3) =
z. Therefore we can write H2

C = P(V−) as

H2
C =

{
(z1, z2) ∈ C2 : 2<(z1) + |z2|2 < 0

}
.

In this manner, H2
C is the Siegel domain in C2; see [12]. There are distinguished

points in V0 which we denote by o and∞:

o =

0

0

1

 , ∞ =

1

0

0

 .

Then V0 \{∞} is contained in H3 and V0 \{o} (in particular∞) is contained in H1.
Let Po = o and P∞ =∞. Then we can write ∂H2

C = P(V0) as

∂H2
C \ {∞} =

{
(z1, z2) ∈ C2 : 2<(z1) + |z2|2 = 0

}
.

In particular o = (0, 0) ∈ C2.
Conversely, we may lift a point z = (z1, z2) ∈ C2 = CP 2 to a point z in

C2,1called the standard lift of z, by writing z in non-homogeneous coordinates as

z =

z1

z2

1

 .

The Bergman metric on H2
C is defined by the distance function ρ given by the formula

cosh2

(
ρ(z, w)

2

)
=
〈z,w〉 〈w, z〉
〈z, z〉 〈w,w〉

=

∣∣〈z,w〉∣∣2
|z|2|w|2
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where z and w in V− are the standard lifts of z and w in H2
C and |z| =

√
−〈z, z〉.

Alternatively,

ds2 = − 4

〈z, z〉2
det

[
〈z, z〉 〈dz, z〉
〈z, dz〉 〈dz, dz〉

]
.

The holomorphic sectional curvature of H2
C equals to −1 and its real sectional cur-

vature is pinched between −1 and −1/4.

3.1.2 Isometries, complex lines, Lagrangian planes

Let U(2, 1) be the group of unitary matrices for the Hermitian form 〈·, ·〉. Each such
matrix A satisfies the relation A−1 = JA∗J where A∗ is the Hermitian transpose of
A.

The full group of holomorphic isometries of complex hyperbolic space is the pro-
jective unitary group PU(2, 1) = U(2, 1)/U(1), where U(1) = {eiθI, θ ∈ [0, 2π)}
and I is the 3× 3 identity matrix. It is convenient sometimes to consider instead the
group SU(2, 1) of matrices which are unitary with respect to 〈·, ·〉, and have determi-
nant 1. This is in accordance with the standard fact H2

C = SU(2, 1)/U(2). We have
PU(2, 1) = SU(2, 1)/{I, ωI, ω2I}, where ω is a non real cube root of unity, and so
SU(2, 1) is a 3-fold covering of PU(2, 1). This is the direct analogue of the fact that
SL(2,C) is the double cover of PSL(2,C).

We note here that A ∈ SU(2, 1) is of the form

A =

a b c

d e f

g h j


with inverse

A−1 =

j f c

h e b

g d a


There are various relations between the entries of A; these follow from the relations

AA−1 = A−1A = I,

where I is the 3× 3 identity matrix.
Isometric embeddings of H2

R (that is the Beltrami–Klein model for the usual hy-
perbolic plane) and H1

C (that is the Poincaré model for the usual hyperbolic plane)
induce 2–dimensional geodesic submanifolds of the complex hyperbolic plane: a
complex line is an isometric image of the embedding of H1

C into H2
C. A Lagrangian

plane is an isometric image of H2
R into H2

C. In fact, and in contrast to the case of real
hyperbolic spaces, complex lines and Lagrangian planes are the only 2–dimensional
geodesic submmanifolds and there are no geodesic submanifolds of dimension 3.
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3.1.3 Group structure of the boundary

A finite point z is in the boundary of the Siegel domain if its standard lift to C2,1 is
z where

z =

z1

z2

1

 where z1 + z̄1 + |z2|2 = 0.

We write z = z2/
√

2 ∈ C and this condition becomes 2<(z1) = −2|z|2. Hence we
may write z1 = −|z|2 + it for t ∈ R. That is for z ∈ C and t ∈ R:

z =

−|z|
2 + it√
2z

1

 .

Therefore we may identify the boundary of the Siegel domain with the one point
compactification of C × R. It is clear that the identification is via the mapping
Φ : ∂H2

C → C× R where

Φ(z1, z2) = (z2/
√

2,=(z1)).

Its inverse Φ−1 : C× R→ ∂H2
C is given exactly by

Φ−1(z, t) = (−|z|2 + it,
√

2z).

The map Φ is called the parametrisation of the Heisenberg group by the boundary of
the siegel domain. Let

{∂z, ∂z, ∂t},
be the natural basis of the tangent space of C×R. Then its derivative is given by the
matrix

(Φ−1)∗(z, t) =


−z −z i

−z −z −i√
2 0 0

0
√

2 0

 .

Therefore

(Φ−1)∗

(
∂

∂z

)
= − z2√

2

(
∂

∂z1

)
− z2√

2

(
∂

∂z1

)
+
√

2

(
∂

∂z2

)
,

(Φ−1)∗

(
∂

∂z

)
= − z2√

2

(
∂

∂z1

)
− z2√

2

(
∂

∂z1

)
+
√

2

(
∂

∂z2

)
,

(Φ−1)∗

(
∂

∂t

)
= i

(
∂

∂z1

)
− i
(

∂

∂z1

)
.

For further use, we make here the following observation: if

Z = ∂z + iz∂t, Z = ∂z − iz∂t, T = ∂t,
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then

(Φ−1)∗(Z) =
√

2 (∂z2 − z2∂z1) , (3.1.1)

(Φ−1)∗(Z) =
√

2 (∂z2 − z2∂z1) , (3.1.2)
(Φ−1)∗(T ) = i∂z1 − i∂z1 . (3.1.3)

We shall come back to those vector fields in the next section. We now turn our
attention to the way that C× R is endowed with a natural group structure. Consider
the stabiliser of infinity:

Stab(∞) = {A ∈ SU(2, 1) : A(∞) =∞}.

One can show that this set comprises elements of SU(2, 1) that are upper triangular
with diagonal entries all equal to 1. The action of the stabiliser of infinity Stab(∞)
gives to the set of these points the structure of a non Abelian group as follows. We
identify (z, t) with the element

T (z, t) =

1 −
√

2z −|z|2 + it

0 1
√

2z

0 0 1

 .

Via this identification we obtain the group law ∗ in C× R:

(z, t) ∗ (w, s) = T−1(T (z, t)T (w, s)) = (z + w, t+ s+ 2=(zw)).

Definition 3.1 The Heisenberg group H is the group (C× R, ∗).

From the definition it follows that (z, t)−1 = (−z,−t), the identity element is
(0, 0) and H is non-Abelian. But the Heisenberg group is a 2-step nilopotent group:
Recall that a group G is an n-step nilpotent if it has a central series of finite length
n. That is, a series of normal subgroups

{1} = G0 / G1 / · · · / Gn = G

where Gi+1/Gi ≤ Z(G/Gi), or equivalently [G,Gi+1] ≤ Gi.
Elementary calculations show that Z(H) = {0}×R and we have the central series

{1} / Z(H) / H.

3.2 Korányi-Cygan metric structure

The Heisenberg norm (Korányi gauge) is given by

|(z, t)| =
∣∣|z|2 − it∣∣1/2 .
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Note that despite its name the Heisenberg norm is not a norm in the usual sense. From
this norm we obtain a metric, the Korányi-Cygan (K-C) (or Heisenberg) metric on
H, by the relation

dH ((z1, t1), (z2, t2)) =
∣∣(z1, t1)−1 ∗ (z2, t2)

∣∣ .
Or, in other words1

dH ((z1, t1), (z2, t2)) =
∣∣|z1 − z2|2 − it1 + it2 − 2i=(z1z̄2)

∣∣1/2 .
We consider the following transformations of H; they all extend trivially to ∂H2

C:

1. Left translations: for (ζ, s) ∈ H we define

T(ζ,s)(z, t) = (ζ, s) ∗ (z, t).

These include Heisenberg vertical translations T(0,s).

2. Rotations about the vertical axis: for θ ∈ R we define

Rθ(z, t) = (zeiθ, t).

3. Conjugation: This is defined by

j(z, t) = (z,−t).

Left translations are left actions of H onto itself and rotations are induced by the ac-
tion of U(1) on H. It is easy to see that the metric dH is invariant by both left transla-
tions, rotations and conjugation. These transformations form the group Isom(H, dH)
of Heisenberg isometries.

There are two other kinds of transformations that we consider, namely

(3) Dilations: For δ > 0 we define

Dδ(z, t) = (δz, δ2t).

For every (z, t), (z′, t′) ∈ ∂H2
C we have

dH (Dδ(z, t), Dδ(z
′, t′)) = δ dH ((z, t), (z′, t′))

and thus the metric dH is scaled up to multiplicative constants by the action of
dilations.

1This is actually given by the usual formula

dH ((z1, t1), (z2, t2)) =

∣∣∣∣∣∣∣
〈−|z1|

2 + it1√
2z1

1

 ,

−|z2|
2 + it2√
2z2

1

〉
∣∣∣∣∣∣∣
1/2

.
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(4) Inversion: It is the transformation R given by

R(z, t) =

(
z

−|z|2 + it
,

−it
|−|z|2 + it|2

)
, if (z, t) 6= o,∞; ;

it can be extended to the whole boundary by setting

R(o) =∞, R(∞) = o.

Inversion R is a (holomorphic) involution of ∂H2
C. Moreover, for all p =

(z, t), p′ = (z′, t′) ∈ H \ {o} we have the inversion formula

dH(R(p), o) =
1

dH(p, o)
, dH(R(p), R(p′)) =

dH(p, p′)

dH(p, o) dH(o, p′)
.

In analogy to the classical case, it is proved that the action of SU(2, 1) on the bound-
ary ∂H2

C is completely described by (compositions of the above transformations,
that is, if g is an isometry of complex hyperbolic plane, then it is the composition of
transformations of the form (1)–(6).

We finally remark that the K-C metric is not a path metric, that is, there exist pairs
of points such that the distance between them is strictly shorter than the length of
any path joining those points.

3.3 Lie group structure

The Heisenberg group is a 3-dimensional Lie group: Its underlying manifold is C×R
and the mapping H× H→ H where

((z, t), (w, s)) 7→ (z, t)−1 ∗ (w, s)

is differemtiable. A left-invariant basis for its Lie algebra h (that is, its tangent space)
comprises the vector fields

X =
∂

∂x
+ 2y

∂

∂t
, Y =

∂

∂y
− 2x

∂

∂t
, T =

∂

∂t
.

As before, instead of X and Y we will mainly consider the complex fields

Z =
1

2
(X − iY ) =

∂

∂z
+ iz

∂

∂t
, Z =

1

2
(X + iY ) =

∂

∂z
− iz ∂

∂t
.

The only non-trivial Lie bracket equation is

[X,Y ] = −4T.

We deduce that if h is the Lie algebra of H, then

[h, h] = [h1], h1 = 〈∂t〉,
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and
[h, h1] = 0

This is to say that the Heisenberg group is a 2-step nilpotent Lie group: Recall that
a k-step nilpotent Lie group is a Lie group G which is connected and whose Lie
algebra is a k-step nilpotent Lie algebra g. That is, its Lie algebra lower central
series

g1 = [g, g], g2 = [g, g1], ...

eventually vanishes in the k-th step: gk = 0. Actually, it can be proved that the
Heisenberg Lie algebra h is the unique simply connected 2-step nilpotent Lie algebra;
it follows that the Heisenberg group can be recovered in a unique way from its Lie
algebra: In Lie group theory, simply connected nilpotent Lie groups G are identified
via the exponential map

g 3 X 7→ exp(tX) ∈ G

with their Lie algebras (and hence with some Rm. The group law is then obtained
by the Campbell-Hausdorff formula

expX ∗ expY = exp(X + Y + (1/2)[X,Y ] +R(X,Y )),

where R(X,Y ) is a polunomial of the commutators of X , Y of order at least 3. In
the case of the Heisenberg group we have R(X,Y ) = 0 and therefore

expX ∗ expY = exp(X + Y + (1/2)[X,Y ]) = exp(X + Y − 2T ).

But there is more to it: the Heisenberg group is a Carnot group: Recall that a Carnot
group G is a simply connected nilpotent Lie group with a derivation α on its Lie
algebra g such that V 1 = ker(α − 1) generates g. By setting V i+1 = [V 1, V i] we
obtain a grading:

g = ⊕ri=1V
i, [V i, V j ] ⊂ V i+j

and α |V j= jidV j . In the Heisenberg group case the derivation α is given in terms
of the basis by

α(X) = X, α(Y ) = Y, α(T ) = 2T

and thus
h = V 1 ⊕ V 2,

where
V 1 = spanR{X,Y } and V 2 = spanR{T}.

We now show why the dilations, the Heisenberg norm and the Korányi distance are
actually Carnot group aspects in the Heisenberg group. Now in a Carnot Group G
with coordinates

(x11, . . . , x1n1
, . . . xr1, . . . xrnr

)

which follow from the identification with Rm, m = n1 + . . . nr via the derivation α,
gives rise to dilations Ds where

Ds(x11, . . . x1n1
, . . . , xr1r

. . . xrnr
) = (sx11, . . . sx1n1

, . . . , srxr1r
. . . srxrnr

).



LIE GROUP STRUCTURE 37

Then the expression

‖x‖2r! =

r∑
i=1

 ni∑
j=1

|xij |2
 r!

i

is homogeneous with respect to Ds, that is

‖Ds(x)‖ = s‖x‖.

The left-invariant distance function defined by

d(x, y) = ‖x−1 ∗ y‖

satisfies
d(Ds(x), Ds(y)) = s d(x, y).

In general, this does not satisfy the Triangle Inequality; in the Heisenberg group case
though the Korányi distance does this exactly.

In a Carnot group G the subspace V 1 of g is called the horizontal space of G and
is of fundamental importance. If we fix a metric | · | for V 1, a curve γ : [0, 1] → G
is called horizontal if γ̇(t) ∈ V 1 for all t. Then distance dCC can be defined in G as
follows: For every x, y ∈ G set

dCC(x, y) = inf

∫ 1

0

|γ̇(t)|dt,

where the infimum is taken over all horizontal γ joining x and y. Such curves always
exist: This fact was first proven by Carathéodory in the beginning of the 20th century
and by Chow in its full generality; it constitutes the cornerstone of sub-Riemannian
geometry.

The horizontal length `h(γ) is

`(γ) =

∫ 1

0

|γ̇(t)|dt.

The distances d and dCC on a Carnot group are equivalent: They are both left-
invariant and are homogeneous with respect to dilations. We shall come back to the
CC distance in the Heisenberg group below. For the moment we state our final facts
for carnot groups:

The Haar measure on G is bi-invariant and nothing but a (constant multiple of
the) Lebesque measure µL of the underlying space Rm.

The Jacobian determinant of the dilation Ds is sQ,

Q =

m∑
j=1

jrj , rj = dim(V j).
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From this we obtain that

µL(B(r)) = rQµL(B(1)),

where B(r) can be the metric ball of radius r for either of the two metrics d or
dCC . We will see later that this tells us exactly that G is a Q-regyular space.

The number Q is called the homogeneous or Hausdorff dimension of G and in the
case of the Heisenberg group Q = 4.

3.4 More structures of the Heisenberg group

The Heisenberg group H is also the prototype for a CR manifold of codimension 1.
In the next section we recall some standard facts about CR structures.

3.4.1 CR structures

There are two equivalent definitions of an abstract CR structure. Suppose first that
M is a (2p + s)-dimensional real manifold. A CR structure of codimension s in M
is a pair (D, J) where D is a 2p-dimensional smooth subbundle of T (M) and J is a
bundle automorphism of D such that:

(i) J2 = −id. and

(ii) if X and Y are sections of D then the same holds for [X,Y ] − [JX, JY ],
[JX, Y ] + [X, JY ] and moreover

J ([X,Y ]− [JX, JY ]) = [JX, Y ] + [X,JY ].

On the other hand, let M be a (2p+ s)-dimensional real manifold and let TC(M) be
its complexified tangent bundle. A CR structure of codimension s inM is a complex
p-complex dimensional smooth subbundleH of TC(M) such that:

(i) H ∩H = {0} and

(ii) H is involutive, that is for any vector fields Z and W inH we have

[Z,W ] ∈ H.

The two definitions are equivalent; see for instance Theorem 1.1, Chpt. VI of [5]. A
manifold endowed with a CR structure is called a CR manifold. A special class of
CR manifolds are the CR submanifolds: Suppose that N be a complex manifold of
complex dimension n with complex structure J , and let M be a submanifold of N
of real dimension m. Then

H = T (M) ∩ J(T (M)),
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is the maximal invariant subspace of T (M) under the action of J , it is also a smooth
subbundle on M and M is called a CR submanifold of (N, J). A CR submanifold is
in fact a CR manifold (see for instance Theorem 2.1, p.135 of [5]). The CR structure
is (H, J), where here by J we denote the bundle automorphism induced by the
restriction of J inH. The corresponding complex subbundle is

H(1,0) = {Z ∈ TC(M) | Z = X − iJX, X ∈ H},

and we have

X ∈ H if and only if Z = X − iJX ∈ H(1,0).

Suppose now that M is a CR submanifold of the n-complex dimensional complex
manifold N with n = p + s, such that dimR(M) = 2p + s, where 2p = dimRH;
that is, M is a codimension s CR submanifold of N . 2

CR diffeomorphisms are defined as follows: Let M and M ′ be CR manifolds
of the same dimension m = 2p + s with CR structures H and H′ respectively, of
the same dimension s. A diffeomorphism F : M → M ′ is a CR diffeomorphism
if it preserves CR structures; that is F∗H = H′. In other words, F is a CR dif-
feomorphism if and only if for each Z ∈ H we have F∗Z ∈ H′. In terms of the
corresponding real distributions (D, J) and (D′, J ′) we may say that F is CR if for
each X ∈ D we have F∗(JX) = J ′(F∗X).

For our purposes we are going to be concerned in particular with CR structures in
subvarieties of C2. We consider the manifold C2, with the natural complex coordi-
nates (z1, z2), zi = xi+ iyi, i = 1, 2. Denote also by J the natural complex structure
of C2. An 3-dimensional smooth subvariety of C2 is defined by an equation

ρ(z1, z2) = 0.

The set M consisting of points of the subvariety at which the matrix

D =
(
∂ρ
∂x1

∂ρ
∂x2

∂ρ
∂y1

∂ρ
∂y2

)
,

is of constant rank 1 is a real submanifold of C2 with dim(M) = 3. Its tangent space
Tx(M) at a point x ∈M is identified to the set

Tx(M) = {X ∈ Tx(C2) | (dρ)x(X) = 0.}.

The maximal complex subspace Hx at each x ∈M comprises of X ∈ Tx(C2) such
that

(dρ)x(X) = 0 and (dcρ)x(X) = 0,

2Let V be a complementary toH subbundle of M :

T (M) = H⊕ V,

Note that dimR Vx = s. If
J(V) ∩ T (M) = {0},

we call M an antiholomorphic CR submanifold of N .
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where
(dcρ)x(X) = −(dρ)x(JX).

Let
H(1,0)
x = {Z = X − iJX ∈ T (1,0)(C2) | X ∈ Hx}.

ThenH(1,0)
x comprises of Z ∈ T (1,0)

x (C2) such that

(∂ρ)x(Z) = 0,

and one verifies that

X ∈ Hx if and only if Z = X − iJX ∈ H(1,0)
x .

Denote by H(1,0) the complex subbundle comprising of H(1,0)
x , x ∈ M . At points

x ∈M consider the matrix

D(1,0) =
(
∂ρ
∂z1

∂ρ
∂z2

)
,

and let M ′ ⊂ M be the set at which D(1,0) is of constant rank l. Then H(1,0) is
defined at M ′, dimCH(1,0) = 3 − l = 2. Moreover, the integrability condition
holds obviously ([Z,Z] = 0). Therefore, H(1,0) is a CR structure of codimension
1 = 4− 3.3

The single vector field generating the CR structure is

Z = − ∂ρ

∂z2
· ∂

∂z1
+

∂ρ

∂z1
· ∂

∂z2
.

Now, the Levi form (L)p : H(1,0)
p → R2 is defined in M ′ by

Zp 7→ L(p) = ddcρ(Z,Z)p,

where

L(p) =
(
− ∂ρ
∂z2

∂ρ
∂z1

)
p
·


∂2ρ

∂z1∂z1

∂2ρ
∂z1∂z2

∂2ρ
∂z2∂z1

∂2ρ
∂z2∂z2


p

·

−
∂ρ
∂z2

∂ρ
∂z1


p

.

An important case occurs when L(p) > 0 for each p. Then we call the CR structure
strongly pseudoconvex. The reason for that name is justified from complex analysis
in several variables: A domain U ⊂ C2 with defining equation ρ, that is, the set of
points (z1, z2) such that

ρ(z1, z2) < 0,

is called strongly pseudoconvex, if the Levi form is positive definite in the boundary
set of points defined by ρ(z1, z2) = 0.

3We call the set S = M \M ′ the singular set of the CR structure.
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Proposition 3.2 The boundary of the Siegel domain

S = {(z1, z2) ∈ C2 : 2<(z1) + |z2|2 < 0}

admits a strongly pseudoconvex CR structure.

Proof : Let
ρ(z1, z2) = 2<(z1) + |z2|2 = 0.

Using the notation of the above discussion we have

D =
(
1 2x2 0 2y2

)
,

which is of constant rank 1 everywhere,

D(1,0) =
(
1 z2

)
and therefore

Z = −z2 ·
∂

∂z1
+

∂

∂z2

generates the CR structure. Note that at each p = (z1, z2) ∈ ∂S we have

L(p) =
(
−z2 1

)
·

0 0

0 1

 ·
−z2

1

 = 1.

Suppose

3.5 Contact structure

There are two ways to reach the contact structure of the Heisenberg group H: By
regarding H as a 2-step nilpotent Lie group with underlying manifold C × R first,
we consider its left invariant vector fields X,Y, T (or alternatively, Z,Z, T ) and its
Lie bracket relations. Then the contact form ω of H is defined as the unique 1-
form satisfying X,Y ∈ kerω, ω(T ) = 1. Explicitly, in Heisenberg coordinates
z = x+ iy, t,

ω = dt+ 2(xdy − ydx) = dt+ 2i=(zdz).

Uniqueness here is modulo change of coordinates as it follows by the Darboux’s
Theorem. The distribution H in H defined by H = V 1 = ker ω is called the
horizontal distribution. The vector field T whiuch generates V 2 is called the Reeb
vector field and satisfies [X,Y ] = −4T (or equivalently, [Z,Z] = −2iT ), ω(T ) =
1, T ∈ ker dω.
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The contact structure of H (and of ∂H2
C) may be also obtained by the strongly

pseudoconvex CR structure of H. Consider the 1-form ω = − 1
2d
cρ, where ρ is the

defining function of the Siegel domain S ,

ρ(z1, z2) = 2<(z1) + |z2|2.

Then through the map Φ we may identify ∂S and H.
The volume form on H is ω ∧ dω = 4dx ∧ dy ∧ dt, i.e. a multiple of the usual

volume form obtained by the Lebesgue measure in C× R.
Finally, we make some remarks about the horizontal curves and the CC distance.

An absolutely continuous curve γ : [a, b]→ H (in the Euclidean sense) with

γ(s) = (z(s), t(s)) ∈ C× R.

is horizontal if

γ̇(s) ∈ Hγ(s)(H) for almost every t ∈ [a, b].

This is equivalent to
ṫ(s) = −2=(z(s)ż(s)),

which gives

t(s) = −2

∫ s

0

=(z(u)ż(u))du

It can be proved that a curve γ : [a, b] → H is absolutely continuous with respect
to the Korányi distance dH if and only if it is a horizontal curve. Moreover, the
horizontal length of a smooth rectifiable curve γ(s) = (z(s), t(s)) with respect to
dH is given by the integral over the (Euclidean) norm of the horizontal part of the
tangent vector,

`h(γ) =

∫ b

a

|ż(s)| ds,

see [23].
Horizontal curves are geodesics for the Carnot-Caratheodorý metric. It can be

shown that the CC-length of a horizontal curve is its horizontal length defined above.
Like the metric dH, the CC-metric dCC is invariant under left translations and ro-
tations, and is also scaled up to the positive constant δ under dilations Dδ . The
relation of dH (which is not a geodesic metric) and dCC is given as follows: there
exist universal constants C1, C2 > 0 so that

C1dH(p, 0) ≤ dCC(p, 0) ≤ C2dH(p, 0)

for each p ∈ H.



CHAPTER 4

QUASICONFORMAL MAPPINGS IN THE
HEISENBERG GROUP

4.1 Metric definition

Definition 4.1 Metric definition: Given two domains Ω,Ω′ in H, a homeomor-
phism f : Ω→ Ω′ is called quasiconformal if

Hf (p) = lim sup
r→0

maxdH(p,q)=r dH(f(p), f(q))

mindH(p,q)=r dH(f(p), f(q))
, p ∈ Ω, (4.1.1)

is uniformly bounded from above. It is calledK-quasiconformal if there is a constant
K ≥ 1 such that

ess supp∈ΩH(p) ≤ K.

We note that we obtain an equivalent definition if we substitute dH by the CC-
metric; the constant of quasiconformality does not change. We will see additionally
that conformal mappings (i.e., elements of SU(2, 1) acting on H) are 1-quasiconformal
and the he converse is also true: a 1-quasiconformal mapping is necessarily an ele-
ment of SU(2, 1).

Quasiconformal mappings in the Heisenberg group,
Changsha, PRC, 2018.
By Ioannis D. Platis Copyright c© 2018 John Wiley & Sons, Inc.
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4.2 Quasiconformal contact transformations

Contact transformations between domains of H play an important role in the theory
of quasiconformal mappings of H.

Definition 4.2 A contact transformation f : Ω → Ω′ on H is a C1 diffeomorphism
between domains Ω and Ω′ in H which preserves the contact structure, i.e.

f∗ω = λω (4.2.1)

for some non-vanishing real valued function λ.1

Therefore contact transformations map hrizontal vector fields to horizontal vector
fields: If V ∈ H(Ω) then since

ω(f∗V ) = (f∗ω)(V ) = λω(V ) = 0,

it follows that f∗V ∈ H(Ω′).
We usually write f = (fI , f3), fI = f1 + if2 for maps in h. If such a map is

differentiable, its derivative f∗ is terms of the basis

Z,Z, T

and its dual basis
dz, dz, ω

is given by

f∗ =

d(fI)(Z) d(fI)(Z) d(fI)(T )

d(fI)(Z) d(fI)(Z) d(fI)(T )

(f∗ω)(Z) (f∗ω)(Z) f∗(ω)(T )

 .

We have

d(fI)(Z) = ZfI , d(fI)(Z) = ZfI , d(fI)(T ) = TfI ,

d(fI)(Z) = ZfI , d(fI)(Z) = ZfI , d(fI)(T ) = TfI ,

1Notation clarification: Let F : M → N be a differentiable mapping between manifolds M and N ,
dim(M) = m and dim(N) = n. Let also ω be a differential 1-form in N . The pullback F ∗ω of ω is
the differential 1-form on M defined by the formula:

(F ∗ω)p(X) = ωF (p)(dFp(X)),

for any p ∈ M and X ∈ TpM . Here, dFp is the derivative of F at p. It follows that if (x1, . . . , xm)
and (y1, . . . , yn) are coordinate neighbourhoods around p and F (p), respectively, so that ωF (p) =∑n
i=1 ai(dyi)F (p), then

(F ∗ω)p =

n∑
i=1

m∑
j=1

ai
∂yi

∂xj
(p)(dxj)p.
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and if f is contact then

(f∗ω)(Z) = λω(Z) = 0, (f∗ω)(Z) = λω(Z) = 0, (f∗ω)(T ) = λω(T ) = 1.

Therefore for f contact we have that its derivative is given by /6+ 8*e

f∗ =

ZfI ZfI TfI

ZfI ZfI TfI

0 0 λ

 . (4.2.2)

Now since

0 = (f∗ω)(Z) = ω(f∗Z) = (df3 + 2=(fIdfI)))(Z),

0 = (f∗ω)(Z) = ω(f∗Z) = (df3 + 2=(fIdfI)))(Z),

λ = (f∗ω)(T ) = ω(f∗Z) = (df3 + 2=(fIdfI)))(T ),

we obtain

f IZfI − fIZf I + iZf3 = 0 (4.2.3)
fIZf I − f IZfI − iZf3 = 0 (4.2.4)
−i(f ITfI − fITf I + iTf3) = λ. (4.2.5)

Thus a contact map f is completely determined by fI in the sense that the contact
condition 4.2.1 is equivalent to the above (overdetermined) system of partial differ-
ential equations.

Observe now that the jacobian Jf of f is

Jf = λJhf ,

where

Jhf = det

(
ZfI ZfI

ZfI ZfI

)
.

Proposition 4.3 If the contact map f is sense-preserving and C2 then

det Jf = λ2,

Proof : It suffices to prove that Jhf = λ. We have

dω = 2idz ∧ dz

hence
f∗(dω) = 2idfI ∧ dfI .

Therefore

(f∗(dω))(Z,Z) = 2i(dfI ∧ dfI)(Z,Z)

= 2i(ZfI · ZfI − ZfI · ZfI))
= 2iJhf .
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On the other hand,2

f∗(dω) = d(f∗ω) = d(λω) = dλ ∧ ω + λdω

and so
(f∗(dω))(Z,Z) = λdω(Z,Z) = 2iλ.

The proof is complete.

Proposition 4.4 Left-translations, rotations, dilations, conjugation and inversion
are all contact transformations of h.

The proof of this proposition is left as an exercise.

We now consider the Pansu or horizontal derivative fh∗ of f given by the matrix

f∗ =

(
ZfI ZfI

ZfI ZfI

)
. (4.2.6)

By requiring f to be C2 and sense-preserving we have that det(fh∗ ) = λ. At each p,
the horizontal (sub-Riemannian) norm in Hp is given for each vector Vp = aXp +
bYp = 2<(a+ bi)Zp) by

‖Vp‖ = (a2 + b2)1/2.

We define

λ1(p) = sup
‖Vp‖=1

|f∗Vp|,

λ2(p) = inf
‖Vp‖=1

|f∗Vp|.

Here,

|f∗Vp| = |f∗((a+ bi)Zp + (a− bi)Zp)|
= |(a+ bi)(f∗(Zp)) + (a− bi)(f∗(Zp)|
= |(a+ bi)(ZfI · Zp + ZfI · Zp) + (a− bi)(ZfI · Zp + ZfI · Zp)|
= |[(a+ ib)ZfI + (a− ib)Zf)] · Zp + [(a+ ib)ZfI − (a− ib)ZfI ] · Zp)|
= |(a+ ib)ZfI + (a− ib)ZfI |.

Since a2+b2 = 1 and |ZfI(p)| > |ZfI(p)| (Jhf (p) = λ(p) > 0) we have by triangle
inequality that

|ZfI(p)| − |ZfI(p)| ≤ |f∗Vp| ≤ |ZfI(p)|+ |ZfI(p)|.

We examine when equality is attained in both sides of the above inequality. Set
a+ bi = eiφ. Then

|eiφZfI(p)+e−iφZfI(p)|2 = |ZfI(p)|2 + |ZfI(p)|2 +2<
(
e2iφZfI(p) · Zf I(p)

)
.

2The C2 requirement for f lies exactly in this equation.
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Equality is attained in the right hand-side when

e2iφZfI(p) · Zf I(p) ≥ 0,

that is,

2φ = arg

(
ZfI(p)

ZfI(p)

)
,

whereas equality is attained in the left hand-side when

e2iφZfI(p) · Zf I(p) ≤ 0,

that is,

2φ = π + arg

(
ZfI(p)

ZfI(p)

)
.

Therefore if f is contact,

λ1(p) = |ZfI(p)|+ |ZfI(p)|,
λ2(p) = |ZfI(p)| − |ZfI(p)|,

and the distortion function Kf (p) of f is just

Kf (p) =
λ1(p)

λ2(p)
=
|ZfI(p)|+ |ZfI(p)|
|ZfI(p)| − |ZfI(p)|

.

Definition 4.5 Quasiconformal C2 contact transformations: A sense-preserving
C2 contact map f : Ω→ Ω′ is K-quasiconformal (K ≥ 1) if

Kf (p) ≤ K, a.e. in Ω.

The infimum Kf of all K such that f is K-quasiconformal shall be called the maxi-
mal distortion of f .

Quasiconformal mappings according to the metric definition which are also C2 have
to be contact transformations. This is verified via the following theorems, see [22].

Theorem 4.6 A C2 diffeomorphism f : Ω → Ω′ between domains in H which is
quasiconformal according to the metric definition satisfies

λ1(p)

λ2(p)
≤ Hf (p).

Proof : If p ∈ Ω, by pre-composing or post-composing by a Heisenberg similarity
we may assume that p = (0, 0) and F (0, 0) = (0, 0). Thus it suffices to prove

λ1(0, 0)

λ2(0, 0)
≤ Hf (0, 0).
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We consider the Taylor expansion of second order of f3 := g at (0, 0):

g(z, t) = gz(0, 0)z + gz(0, 0)z + gt(0, 0)t

+
1

2

(
gzz(0, 0)z2 + gzz(0, 0)z2 + 2gzz(0, 0)|z|2

+ gzt(0, 0)zt+ gzt(0, 0)zt+ gtt(0, 0)t2
)

+O(|z|2 + t2).

From the contact conditions we then have

gz(0, 0) = Zf3(0, 0) = 0,

gz(0, 0) = Zf3(0, 0) = 0,

gt(0, 0) = Tf3(0, 0) = λ(0, 0).

For the second order terms we shall express the usual derivatives in terms of the
derivatives w.r.t. Z,Z and T . For instance,

∂2

∂z2
= (Z − izT )(Z − izT )

= Z(Z − izT )− izT (Z − izT )

= ZZ − izZT − izTZ − z2TT

One then uses again the contact conditions and shows that the only possibly non-
vanishing partial derivatives of second order are

gzt(0, 0), gzt(0, 0), gtt(0, 0).

We conclude that

f(z, t) = λ(0, 0) · t+
1

2
(gzt(0, 0)z + gzt(0, 0)z + gtt(0, 0)t) · t+O(|z|2 + t2),

and thus the plane t = 0 is preserved up to terms of second order.

Theorem 4.7 A contact transformation which is C2 and satisfies

λ1(p)

λ2(p)
≤ K,

is a K-quasiconformal mapping.

Proof : See the proof of Theorem 4 in [22].

Corollary 4.8 The group SU(2, 1) acts on H as a group of 1-quasiconformal (con-
formal) mappings.
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4.3 Analytic definition

Before stating the analytic definition of qc mappings we need to define the notions
of the P -differentiability of mappings between domains of H and that of the absolute
continuity in lines (ACL). The notion of P -differentiability is due to Pansu [32], and
is the natural generalisation of differentiability in Euclidean spaces to the Heisenberg
setting.

Definition 4.9 A mapping f : Ω→ Ω′ between domains of H is calledP -differentiable
at p ∈ Ω if for c→ 0 the mappings

D−1
c ◦ T−1

f(p) ◦ f ◦ Tf(p) ◦Dc

converge locally uniformly to a homomorphism fP∗,p from Tp(H) to Tf(p)(H) which
preserves the horizontal space H(H). Here D and T are dilations and left transla-
tions, respectively.

In terms of the standard basis comprisingZ,Z, T , theP -derivative of f = (fI , f3)
at a point p is in matrix form

fP∗,p =

ZfI ZfI 0

ZfI ZfI 0

0 0 |ZfI |2 − |ZfI |2


p

,

where here all derivatives are in the distributional sense. Pansu proved in [31] that
quasiconformal mappings between domains in H are a.e. P -differentiable. In partic-
ular, (see Proposition 6 of [23]), we have the following:

Proposition 4.10 If f is P -differentiable at p ∈ H with derivative fP∗,p, then the
restriction of f to the plane{

p exp(xX + yY ) | (x, y) ∈ R2
}

is differentiable at p in the Euclidean sense and its derivative f∗,p is the restriction
of fP∗,p in horizontal spaces; in matrix form, it is given by

fP∗,p =

(
ZfI ZfI

ZfI ZfI

)
p

,

The following also hold for a P -differentiable at p quasiconformal mapping f :

1. ‖fP∗,p‖ := max
{
‖fh∗,p(V )‖ | |V | = 1

}
= |ZfI(p)|+ |ZfI(p)| a.e.;

2. Jf (p) = det fP∗,p = (det f∗,p)
2 =

(
|ZfI(p)|2 − |ZfI(p)|2

)2
;
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3.

K(p, f)2 =
‖f∗,p‖4

Jf (p)
=

(
|ZfI(p)|+ |ZfI(p)|
|ZfI(p)| − |ZfI(p)|

)2

≤ K2
f = K.

The function p 7→ K(p, f) ∈ [1,∞) is the distortion function of f and the con-
stant of quasiconformality K = K2

f is also called the maximal distortion of f .

We have seen that the basic property concerning the regularity of quasiconformal
mappings on the complex plane (and more generally, on Euclidean spaces of arbi-
trary dimension) is absolute continuity in lines (ACL): mappings with this property
are absolutely continuous on a.e. fiber of any smooth fibration.

In the case of the Heisenberg group H, absolute continuity holds on almost all
fibers of smooth horizontal fibrations. For such a fibration, the fibers γp can be
parametrised by the flow fs of a horizontal unit vector field V : i.e. V is of the form
aX + bY with |a|2 + |b|2 = 1.

The following theorem is due to Mostow (Theorem A in [23]); its Euclidean coun-
terpart was proved by Gehring in [13]. The proof in the Euclidean case is consider-
ably easier.

Theorem 4.1 Quasiconformal mappings are absolutely continuous on a.e. fiber γ
of any given fibration ΓV determined by a left invariant horizontal vector field V .

About the Beltrami Equations: According to Theorem C in [23], if f = (fI , f3)
is an orientation preserving K-quasiconformal mapping between domains Ω and Ω′

in H then it satisfies a.e. the Beltrami type system of equations

ZfI = µZfI , (4.3.1)
ZfII = µZfII , (4.3.2)

where fII = f3 + i|fI |2 and µ is a complex function in Ω such that

1 + ‖µ‖∞
1− ‖µ‖∞

≤ K a.e.

and
‖µ‖∞ = esssup{|µ(z, t)| | (z, t) ∈ Ω}.

For each p = (z, t) ∈ Ω, the function

µ(p) = µf (p) =
ZfI(p)

ZfI(p)

is called the Beltrami coefficient (complex dilation) of f . Note that if K = Kf is the
maximal distortion and K(p, f) is the distortion function of f respectively, then the
following hold:

|µf (p)| = K(p, f)− 1

K(p, f) + 1
, K(p, f) =

1 + |µf (p)|
1− |µf (p)|

, ‖µf‖ =
Kf − 1

Kf + 1
.



ANALYTIC DEFINITION 51

We now state the analytic definition of quasiconformality in H.

Definition 4.11 Analytic definition: A homeomorphism f : Ω→ Ω′, f = (fI , f3),
between domains in H is an orientation preserving K-quasiconformal mapping if f

(i) is ACL;

(ii) is a.e. P -differentiable, and

(iii) satisfies a.e. a system of Beltrami equations of the form 4.3.1, 4.3.2 where µ is
a complex function in Ω such that ‖µ‖∞ < 1.

An analogous definition holds for orientation-reversing quasiconformal mappings.

There are various analytic definitions of quasiconformality in H which are all
equivalent to the metric definition. For instance, we refer the reader to [8], [17] and
[42].

For the definition we are about to state, see [3] and the references therein. To
state it, we first have to define the horizontal Sobolev space HW 1,4(Ω,H). We say
that a function u : Ω → C is in HW 1,4(Ω,H) if it is in L4(Ω,H) and if there exist
functions v, w ∈ L4(Ω,H) such that∫

Ω

vφdµL = −
∫

Ω

uZφdµL and
∫

Ω

wφdµL = −
∫

Ω

uZφdµL,

for all φ ∈ C∞0 (Ω,C). Now a mapping f : Ω → H, f = (fI , f3) is said to be
in HW 1,4(Ω,H) if both fI , f3 are in HW 1,4(Ω,H). Such a mapping which also
satisfies conditions (4.2.3) and (4.2.4) a.e. is called weakly contact and one can
define its formal horizontal differential fh∗,p at almost all p, which in matrix form is
given by

fh∗,p =

(
ZfI ZfI

ZfI ZfI

)
p

.

This is extended to a Lie algebra homomorphism which is the Pansu derivative fP∗,p,
as defined above, see [32]:

f∗,p =

ZfI ZfI 0

ZfI ZfI 0

0 0 |ZfI |2 − |ZfI |2


p

.

Now let

1. ‖fh∗,p‖ := max
{
‖(fh∗,p)(V )‖ | |V | = 1

}
= |ZfI(p)|+ |ZfI(p)| a.e.;

2. Jf (p) = det(fh∗,p) = (det(f∗,p)
2 =

(
|ZfI(p)|2 − |ZfI(p)|2

)2
;
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3.

K(p, f)2 =
‖fh∗,p‖

4

Jf (p)
=

(
|ZfI(p)|+ |ZfI(p)|
|ZfI(p)| − |ZfI(p)|

)2

.

Definition 4.12 (Analytic definition) A homeomorphism f : Ω→ Ω′, f = (fI , f3),
between domains in H is an orientation preserving K−quasiconformal mapping if
f ∈ HW 1,4(Ω,H) is weakly contact and if

‖fh∗,p‖4 ≤ KJf (p)

for almost all p.

4.4 Geometric definition

Korányi and Reimann proved the equivalence of Metric and Analytic Definitions of
quasiconformality in the Heisenberg group by showing that both are equivalent to a
third definition which they called the geometric definition. Before going into it we
need some notions first.

Definition 4.13 If u : H ⊃ U → R is a smooth function and p ∈ U , then its
horizontal gradient∇pu is defined by

∇p(u) = (Xpu)Xp + (Ypu)Yp.

The horizontal gradient is the analogue in Heisenberg geometry of the usual gradient
of a function in the geometry of Euclidean space.

Definition 4.14 By (E,G) we denote the open bounded subset U = H \ (E ∪ F )
where E and F are disjoint connected closed subsets of H and moreover E is com-
pact. Such a set shall be called a condenser. The capacity Cap(E,F ) of (E,G) in
H is

Cap(E,F ) = inf

∫
H

|∇hu|4dµL,

where the infimum is taken among all smooth functions u in G with u|E ≥ 1 and
u|F = 0.

For details about capacities, see Section 3 in [23].

Definition 4.15 (Geometric definition I) Let f : Ω → Ω′ be a homeomorphism
between domains in H. Then f is quasiconformal if there exists a K ≥ 1 such that
for each ring domain (E,F ) in Ω we have the capacity inequality

Cap(E,F ) ≤ K2Capf(E,F ).
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In what follows we will give a geometric definition which involves the notion of
the modulus of families of curves. As in the classical case, the geometric definition of
quasiconformal mappings that we present here, involves the notion of the modulus
of a family Γ of rectifiable with respect to dH curves lying in a domain Ω ⊂ H,
i.e. they have finite length with respect to dH (or in other words, they have finite
horizontal length). If ρ : H → [0,∞] is a non–negative Borel function and γ is a
parametrisation of a rectifiable curve γ(t) = (γI(t), γ3(t)), t ∈ [a, b], we define∫

γ

ρds =

∫ b

a

ρ(γ(t))|γ̇I(t)|dt.

Let adm(Γ) be the set of these non–negative Borel functions ρ defined in H which
satisfy ∫

γ

ρds ≥ 1, for all rectifiable γ ∈ Γ.

Definition 4.16 The modulus Mod(Γ) of Γ is defined as

Mod(Γ) = inf
ρ∈adm(Γ)

∫
H

ρ4dµL,

where dL3 is the volume element of the usual Lebesque measure in C× R.

The following inequality may be found in [3].

Theorem 4.17 (Modulus Inequality) Let f : Ω → Ω′ be a K−quasiconformal
mapping between domains in H and let Γ be a family of curves in Ω. Then

1

K2
Mod(Γ) ≤ Mod(f(Γ)) ≤ K2Mod(Γ). (4.4.1)

It follows that the modulus is a conformal invariant; if f is conformal then Mod(f(Γ)) =
Mod(Γ).

The following lemma will be useful in establishing the Modulus Inequality in the
smooth case.

Lemma 4.18 Let f : Ω → H be a H map on a domain Ω ⊂ H1 and let further be
γ : [a, b]→ Ω a horizontal curve. Then

˙(fI ◦ γ)(s) = ZfI(γ(s))γ̇I(s) + ZfI(γ(s))γ̇I(s) a.e. s ∈ [a, b].

Proof : Note that a horizontal curve is by our definition absolutely continuous and
hence almost everywhere differentiable. Let s be such a point of differentiability.
From the complex notation it follows that

ZfI(γ(s))γ̇I(s) + ZfI(γ(s))γ̇I(s) =(γ̇1(s)Xf1(γ(s)) + γ̇2(s)Y f1(γ(s)))

+ i(γ̇2(s)Y f2(γ(s)) + γ̇1(s)Xf2(γ(s))).
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The right-hand side can be further simplified by using the horizontality of γ. It
follows

ZfI(γ(s))γ̇I(s) + ZfI(γ(s))γ̇I(s)

=
∂fI
∂x

(γ(s))γ̇1(s) +
∂fI
∂y

(γ(s))γ̇2(s) +
∂fI
∂t

(γ(s))γ̇3(s).

By the chain rule, the last expression is equal to ˙(fI ◦ γ)(s), which concludes the
proof.

We now prove the modulus inequality under additional smoothness assumptions
on the curves and on the mapping. We denote by

f(Γ) := {f ◦ γ : γ ∈ Γ}

the f -image of a given family of curves Γ.

Proposition 4.19 Let f : Ω → Ω′ be a C2 orientation-preserving quasiconformal
map with non-singular derivative between domains in H. For any family Γ of C1

horizontal curves in Ω we have

Mod(f(Γ)) ≤
∫

Ω

K(p, f)2ρ4(p) dµL(p) for all ρ ∈ adm(Γ).

Proof : To each density ρ ∈ adm(Γ), we assign a push-forward density

ρ′(ζ, τ) :=
ρ(f−1(ζ, τ))

|ZfI(f−1(ζ, τ))| − |ZfI(f−1(ζ, τ))|

=
ρ

|ZfI | − |ZfI |
◦ f−1(ζ, τ) for (ζ, τ) ∈ Ω′,

and

ρ′(ζ, τ) = 0 elsewhere.

Since f is an orientation-preserving quasiconformal map, this is a Borel function.
We will show that ρ′ is admissible for the image family f(Γ). To this end, we first
observe that for any γ ∈ Γ, γ(s) = (z(s), t(s)), the image f ◦γ is again a horizontal
curve since f is quasiconformal and hence in particular a contact transformation. By
Lemma 4.18 it follows

|( ˙fI ◦ γ)| ≥ (|ZfI(γ(s))ż(s)| − |ZfI(γ(s))ż(s)|) = (|ZfI(γ(s))| − |ZfI(γ(s))|)|ż(s)|.
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Therefore,∫
f◦γ

ρ′ d` =

∫ b

a

ρ′(f(γ(s)))| ˙(fI ◦ γ)(s)| ds

≥
∫ b

a

ρ(γ(s))

|ZfI(γ(s))| − |ZfI(γ((s))|
(|ZfI(γ(s))| − |ZfI(γ(s))|)|ż(s)| ds

=

∫ b

a

ρ(γ(s))|ż(s)| ds

=

∫
γ

ρ d` ≥ 1,

which shows that ρ′ is indeed admissible for f(Γ).
We now compute

∫
Ω′ ρ
′4 dµL. This computation will involve the Change of

Variables Theorem; for this purpose, recall that the Jacobian determinant of f is
given by

det Jf = (|ZfI |2 − |ZfI |2)2 = λ2.

We now have∫
Ω′
ρ′4(ζ, τ) dµLζ, τ) =

∫
Ω′

(
ρ

|ZfI | − |ZfI |

)4

◦ f−1(ζ, τ) dµL(ζ, τ)

=

∫
Ω

(
ρ

|ZfI | − |ZfI |

)4

◦ f−1(f(z, t))Jf (z, t) dµL(z, t)

(??)
=

∫
Ω

ρ4(z, t)
(|ZfI(z, t)|2 − |ZfI(z, t)|)2

(|ZfI(z, t)| − |ZfI(z, t)|)4
dµL(z, t)

=

∫
Ω

ρ4(z, t)K((z, t), f)2 dµL(z, t).

Then we can conclude the proof as follows:

Mod(f(Γ)) = inf
ρ̃∈adm(f(Γ))

∫
Ω′
ρ̃4(ζ, τ) dµL(ζ, τ)

≤ inf
ρ∈adm(Γ)

∫
Ω′
ρ′4(ζ, τ) dµL(ζ, τ)

= inf
ρ∈adm(Γ)

∫
Ω

ρ4(z, t)K((z, t), f)2 dµL(z, t)

≤
∫

Ω

ρ4(z, t)K((z, t), f)2 dµL(z, t).

Remark 4.20 If the map f is conformal, then it is a smooth map with ZfI = 0 and
it follows from the detail of the proof that Mod(f(Γ)) = Mod(Γ).

Now the second geometric definition of quasiconformality stands as follows.
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Definition 4.21 (Geometric definition II) Let f : Ω → Ω′ be a homeomorphism
between domains in H. Then f is K-quasiconformal if there exists a K ≥ 1 such
that for each curve family Γ in Ω the modulus inequality 4.4.1 holds.

Since the capacity of a ring domain (E,G) is equal to the modulus of the family
of horizontal curves joining E and F in U , see [10] or Proposition 2.4 of [19], geo-
metric definition II implies geometric definition I. The converse may be derived via
quasisymmetric mappings, see below.

It turns out that alike the classical case, quasiconformal mappings are strongly
related to quasisymmetric mppings:.

Definition 4.22 A mapping f : Ω → Ω′ between domains of H is called locally
η-quasisymmetric if there exists an increasing self homeomorphism η of [0,∞) such
that for each Whitney ball B ⊂ Ω,

dH(f(p), f(q))

dH(f(p), f(r))
≤ η

(
dH(p, q)

dH(p, r)

)
for all p, q, r ∈ B, p 6= r. Recall that a Whitney ball B ⊂ Ω satisfies 2B ⊂ Ω.

The next theorem, which in its full generality is in [21], Theorem 9.8, clarifies
the equivalence of all the afore stated definitions of quasiconformality. (See also
Theorem 6.33 in [7]).

Theorem 4.23 Let f : Ω → Ω′ be a homeomorphism between domains of H. The
following are equivalent.

1. f is quasiconformal according to the metric definition ;

2. f is locally η−quasisymmetric;

3. f is quasiconformal according to the geometric definition 4.21.

It follows that (1)–(3) in Theorem 4.23 are all equivalent to the analytic definition
and to geometric definition 4.15 as well.

4.5 Quasiconformal deformations

Perhaps one of the most striking results in the original work of Korányi and Reimann,
is their generalisation to the Heisenberg setting of the famous measurable Riemann
Mapping Theorem in its infinitesimal version, see Theorem 4.4 below. Besides its
genuine importance, this theorem enables us to construct as many quasiconformal
mappings on H as we wish, out of quasiconformal deformations. Let fs : H → H,
fs = fs(z, t), s ∈ R, be a C1 one-parameter group of transformations of H with
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infinitesimal generator V , satisfying the initial condition f0(z, t) = id. Then the
following differential equation holds:

d

ds
fs(z, t) = V (fs(z, t)).

We are interested primarily in one-parameter groups of contact transformations since
we have seen that smooth enough quasiconformal mappings are contact. Infinitesi-
mal generators of one-parameter groups of contact transformations have been studied
by Liebermann and are of a special form given the following theorem (Theorem 5 in
[22]).

Theorem 4.2 C1 vector fields of the form

V = −1

4
[(Y p)X −X(p)Y ] + pT =

i

2

[
(Zp)Z − (Zp)Z

]
+ pT, (4.5.1)

where p is an arbitrary real valued function, generate local one-parameter groups
of contact transformations. Conversely, every C1 vector field V which generates
a local one-parameter group of contact transformations is necessarily of this form
with p = ω(V ).

The following theorem (Theorem 6 in [22]), gives a precise estimate for the con-
stant of quasiconformality of a one-parameter group of quasiconformal mappings
generated by a C2 vector field.

Theorem 4.3 Let V be a C2 vector field of the form (4.5.1) generating a one-parameter
group {fs} of contact transformations. If

|ZZp| ≤ c2/2

then fs is K−quasiconformal with the constant of quasiconformality K = K(s) of
fs satisfying

K +
1

K
≤ 2ec|s|.

The above result is improved as follows (Theorem H in [?]).

Theorem 4.4 Let V be a continuous vector field of the form (4.5.1) with compact
suport in H. If the (distributional) derivatives ZZp are bounded in H and if

|ZZp| ≤ c2/2

then fs is K−quasiconformal with the constant of quasiconformality K = K(s) of
fs satisfying

K +
1

K
≤ 2ec|s|.

As we already remarked, Theorem 4.4 is the infinitesimal analogue of the mea-
surable Riemann mapping theorem of Ahlfors and Bers in the Heisenberg setting,
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but there is no result assuring the existence of a solution to the Beltrami system of
equations (4.3.1) and (4.3.2). However, this is also the key step to pass from quasi-
conformal deformations of the Heisenberg group H to quasiconformal deformations
of the complex hyperbolic plane H2

C. In the following we describe this passage,
restricting ourselves to the smooth case. Assuming enough smoothness, quasicon-
formal mappings of H2

C are necessarily symplectic transformations, i.e. diffeomor-
phisms F such that F ∗ Ω = Ω, where Ω is the symplectic form in H2

C derived
by its Kähler metric. If J is the natural complex structure in H2

C, then F defines
another complex structure Jµ = F−1

∗ ◦ J ◦ F in H2
C and there is an associated

complex antilinear self-mapping of the (1, 0)-tangent bundle T (1,0)(H2
C) such that

the (1, 0)-tangent bundle of Jµ is {Z − µZ | Z ∈ T (1,0)}. The map µ is called
the complex dilation of F and there is a description of µ via a Beltrami system of
equations, see pp. 401–402 in [9]. The following proposition describes the connec-
tion between quasiconformal symplectic transformations of the complex hyperbolic
plane and quasiconformal contact transformations of the Heisenberg group, see [24]
and [25].

Proposition 4.24 (i) A (quasiconformal) symplectic transformation F of the com-
plex hyperbolic plane H2

C extends to a (quasiconformal) contact transformation
of the boundary.

(ii) A quasiconformal deformation of the boundary extends to a quasiconformal
deformation in the interior.

In both cases, the constant of quasiconformality remains the same.



CHAPTER 5

ELEMENTS OF HORIZONTAL
GEOMETRY OF SURFACES IN H

5.1 Regular Surfaces-Horizontal Normal Vector Field

Definition 5.1 Aregular surface S embedded in the Heisenberg group H is an ori-
ented regular surface of R3, i.e., a countable collection of surface patches σα :
Uα → Vα where Uα and Vα are open sets of R2 and R3 respectively, such that

1. each σα is a smooth (at least C21) homeomorphism, and

2. the differential (σα)∗ : R2 → R3 is of rank 2 everywhere.

Let S : U → R3 be a regular surface and suppose that a surface patch σ is defined
in an open domain U ⊂ R2 by

σ(u, v) = (x(u, v), y(u, v), t(u, v)),

so that its differential σ∗ is of rank 2. The tangent plane Tσ(S) of S at σ is

Tσ(S) = span

{
σu = σ∗

∂

∂u
, σv = σ∗

∂

∂v

}
,

1I know of no definition of surfaces inside H whose smoothness is not Euclidean.

Quasiconformal mappings in the Heisenberg group,
Changsha, PRC, 2018.
By Ioannis D. Platis Copyright c© 2018 John Wiley & Sons, Inc.
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which is also defined by the normal vector

Nσ = σu ∧ σv =
∂(y, t)

∂(u, v)

∂

∂x
+
∂(t, x)

∂(u, v)

∂

∂y
+
∂(x, y)

∂(u, v)

∂

∂t
,

where ∧ is the vector product in R3. That is

Tσ(S) = {Vσ ∈ Tσ(R3) : Nσ · Vσ = 0},

where the dot is the standard scalar product in R3. The unit normal vector field of S
is uniquely defined at each local chart by the relation

νσ =
σu ∧ σv
|σu ∧ σv|

,

where | · | is the Euclidean norm in R3.

Definition 5.2 Let S be a regular surface and p ∈ S. The horizontal plane Hp(S)
of S at p is the horizontal plane Hp(H).

For arbitrary p ∈ S , we wish to find the relation between the horizontal plane
Hp(S) and the tangent plane Tp(S). We begin by defining a suitable wedge product.

Definition 5.3 For p ∈ H, the Heisenberg wedge product ∧Hp is a mapping Tp(H)×
Tp(H)→ Tp(H) which assigns to each two vectors

a = a1X + a2Y + a3T and b = b1X + b2Y + b3T

of Tp(H) the vector a ∧H b ∈ Tp(H), which is given by the formal determinant

a ∧H b =

∣∣∣∣∣∣∣
X Y T

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣ =

∣∣∣∣∣a2 a3

b2 b3

∣∣∣∣∣X +

∣∣∣∣∣a3 a1

b3 b1

∣∣∣∣∣Y +

∣∣∣∣∣a1 a2

b1 b2

∣∣∣∣∣T.
Obviously a ∧H b = −b ∧H a and the following clock rule holds:

X ∧H Y = T, Y ∧H T = X, T ∧H X = Y.

Thus defined,and in accordance to the euclidean case, this wedge product leads to
the following:

Definition 5.4 If σ : U → R3 is a surface patch of a regular surface S, the horizon-
tal normal Nh

σ to σ is the horizontal part of

σu ∧H σv = σ∗
∂

∂u
∧H σ∗

∂

∂v
,
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that is
Nh
σ = (σu ∧H σv)h = σu ∧H σv − ω

(
σu ∧H σv

)
T. (5.1.1)

One may show that if σ̃ : Ũ → R3 is a surface patch such that σ(U) = σ̃(Ũ) and
φ : Ũ → U is a diffeomorphism, then

Nh
σ̃ = det(Jφ)Nh

σ ,

where det(Jφ) is the determinant of the Jacobian matrix of φ.

Definition 5.5 The unit horizontal normal νhσ to σ is

νhσ =
Nh
σ

‖Nh
σ ‖
,

where ‖ · ‖ denotes the norm of the product 〈·, ·〉 in H (recall relations (??).

We have

νhσ =
(σu ∧H σv)h

‖(σu ∧H σv)h‖
.

Observe that Nh
σ is not the horizontal part of Nσ .

Exercise: Prove the formula:

Nh
σ =

(
∂(y, t)

∂(u, v)
+ 2y

∂(x, y)

∂(u, v)

)
X +

(
∂(t, x)

∂(u, v)
− 2x

∂(x, y)

∂(u, v)

)
Y.

From its very definition, it is immediately derived that the horizontal normal Nh
p

at a point p ∈ S depends on the choice of the surface patch in the following way:
Suppose that (U, σ) and (Ũ , σ̃) are two overlapping patches at p. Then if Φ = σ−1◦σ̃
is the transition mapping, we may find from (5.1.1) that around p we have

Nh
σ̃ = det(JΦ)Nh

σ ,

where det(JΦ) > 0 since we have already presupposed that S is oriented. At this
point, we would have been ready to define the unit horizontal normal vector field in
S in accordance with the unit normal vector field, which is defined everywhere in a
regular surface embedded into Euclidean space, but there is no assurance that

1. Nh
p 6= 0 at all p ∈ S and

2. νhp is not in Tp(S).

To this end we give the following definition:

Definition 5.6 Let S be a regular surface. A point p ∈ S is called non characteristic
if Nh

p 6= 0. The set of characteristic points

C(S) = {p ∈ S | Nh
p = 0}
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is called the characteristic locus of S .

Corollary 5.7 The points of C(S) are given in a local chart (U, σ) by the equations

∂(y, t)

∂(u, v)
+ 2y

∂(x, y)

∂(u, v)
= 0 and

∂(t, x)

∂(u, v)
− 2x

∂(x, y)

∂(u, v)
= 0.

An equivalent, but not depending on coordinates definition, will be given in the next
section. It remains to show that at non characteristic points of S, νhp is not in Tp(S):

Proposition 5.8 A point p = (x, y, t) ∈ S is non characteristic if and only if Np ·
Nh
p 6= 0. Moreover, Np = Nh

p as vectors in R3 if and only if x = y = 0 or
∂(x, y) = 0. In this case,

Np = (∂(y, t), ∂(t, x), 0), Nh
p = ∂(y, t)X + ∂(t, x)Y and |Np| = ‖Nh

p ‖

and the surface at p is tangent to a plane passing through p, which is orthogonal to
the complex plane.

Proof : If p = σ(u, v), then Nh
p may be written as a vector of R3 as follows:

Nh
p =

(
(∂(y, t) + 2y∂(x, y)), (∂(t, x)− 2x∂(x, y)), 4(x2 + y2)∂(x, y)

)
,

where we have denoted ∂(y, t)/∂(u, v) by ∂(y, t) etc. By taking the Euclidean dot
product with Np we find

Np ·Nh
p = (∂(y, t) + 2y∂(x, y))

2
+ (∂(t, x)− 2x∂(x, y))

2
,

and this vanishes if and only if p is characteristic. Our second claim is immediate.

Corollary 5.9 Let S be a regular surface of H. Then, away from the characteristic
locus, (5.1) defines a nowhere vanishing vector field νhS ∈ H(S), such that ‖νhS‖ = 1.

Denote by J the complex operator acting in H(H) by the relations

JX = Y, JY = −X.

The operator J acts in the horizontal space of a regular surface S, and if νhS =
ν1X + ν2Y then

JνhS = −ν2X + ν1Y.
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5.2 The Induced 1-Form. Contactomorphisms. Horizontal Flow

Let now S be a regular surface in H and denote by ιS the inclusion map ιS : S ↪→ H,
given locally by a parametrisation σ(u, v) = (x(u, v), y(u, v), t(u, v)). Let ω =
dt+2xdy−2ydx be the contact form of H; the pullback ωS = ι∗Sω defines a 1-form
on S which in the local parametrisation is given by

ωS = σ∗ω = (tu + 2xyu − 2yxu)du+ (tv + 2xyv − 2yxv)dv.

Proposition 5.10 The characteristic locus C(S) is the (closed) set of points of S at
which ωS = 0.

Proof. We have:

ωS(p) = 0 for some p ∈ S
⇐⇒ ωp(σu) = ωp(σv) = 0 for each chart (U, σ) containing p
⇐⇒ σu and σv ∈ Hp(S) for each chart (U, σ) containing p
⇐⇒ (σu × σv)h = 0 for each chart (U, σ) containing p
⇐⇒ p ∈ C(S).

The proof is complete. 2

Regular surfaces in H with empty characteristic locus is of special interest but we
will not go into details here. We refer for instance to [33].

Definition 5.11 Let S and S̃ be regular surfaces and f : S → S̃ be a smooth
diffeomorphism. We may assume a weaker condition, that is we will require f to be
a local diffeomorphism outside the characteristic loci of S and S̃. The mapping f is
called a local contactomorphism of S and S̃ if there exists a smooth function λ so
that

f∗ωS̃ = λωS .

Since f is a local diffeomorphism, if σ : U → R3 is a surface patch for S, then
σ̃ = f ◦ σ is a surface patch for S̃ (with the possible exception of characteristic
points). It follows that f : S → S̃ is a contactomorphism if and only if

ωσ̃(u, v) = λ(u, v)ωσ(u, v) for almost all (u, v) ∈ U. (5.2.1)

Definition 5.12 A surface curve on a regular surface S is a smooth mapping γ :
I → S, where I is an open interval of R.

We wish to find conditions, so that a surface curve is horizontal, i.e., its horizontal
tangent γ̇h(s) ∈ Hγ(s)(S).



64 ELEMENTS OF HORIZONTAL GEOMETRY OF SURFACES IN H

Proposition 5.13 Suppose that σ : U → H is a surface patch and

γ(s) = σ(u(s), v(s)), s ∈ I,

is a smooth surface curve (that is γ̃(s) = (u(s), v(s)) is a smooth curve in U ). Then
away from the characteristic locus γ(s) is horizontal if and only if

˙̃γ ∈ ker ωS ,

or in other words,

(tu + 2xyu − 2yxu)u̇+ (tv + 2xyv − 2yxv)v̇ = 0,

where the dot denotes d/ds. In this case,

γ̇ = (xuu̇+ xv v̇)X + (yuu̇+ yv v̇)Y.

Proof : We only prove the first statement; the other two are derived immediately.
We have

γ horizontal ⇐⇒ ω(γ̇h) = 0

⇐⇒ ω(σ∗ ˙̃γ) = 0

⇐⇒ (σ∗ω)( ˙̃γ) = 0

⇐⇒ ˙̃γ ∈ ker ωS .

This completes the proof.

The following Proposition indicates the importance of the unit horizontal normal
vector field JνS .

Proposition 5.14 The 1-form ωS defines an integrable foliation of S (with singular-
ities at characteristic points) by horizontal surface curves. These curves are tangent
to JνhS .

Proof : Integrability is obvious: ωS is a 1-form defined in a two-dimensional mani-
fold. For the second statement we set

α =
1

‖Nh‖
(tu − 2yxu + 2xyu), β =

1

‖Nh‖
(tv − 2yxv + 2xyv), (5.2.2)

where ‖Nh‖ = ‖(σu ∧H σv)h‖, and consider

JV = β
∂

∂u
− α ∂

∂v
∈ kerωS . (5.2.3)

By observing that

βyu − αyv =
∂(y, t) + 2y∂(x, y)

‖Nh‖
= ν1,

βxu − αxv = −∂(t, x)− 2x∂(x, y)

‖Nh‖
= −ν2,



HORIZONTAL MEAN CURVATURE 65

we obtain

σ∗(JV) = βσu − ασv
= β(xuX + yuY + ‖Nh‖αT )− α(xvX + yvY + ‖Nh‖βT )

= (βxu − αxv)X + (βyu − αyv)Y
= −ν2X + ν1Y = JνS .

Note finally that by (5.2.3) the integral curves of JνS are the solutions of the system
of differential equations u̇ = β and v̇ = −α.

We remark for later use that when D = ∂(x, y) 6= 0 we also have the following
expressions for α and β:

α = −ν1xu + ν2yu
D

, β = −ν1xv + ν2yv
D

. (5.2.4)

Definition 5.15 The foliation of S by the integrable curves of JνS is called the hor-
izontal flow of S.

5.3 Horizontal Mean Curvature

Horizontal mean curvature is defined as follows:

Definition 5.16 Let S be a non characteristic point of a regular surface S and let
also νhp = ν1X + ν2Y be the unit horizontal normal of S at p. The horizontal mean
curvature Hh(p) of S at p is given by

Hh(p) = Xpν1 + Ypν2.

A more geometric but equivalent definition follows from the next proposition ac-
cording to which the horizontal mean curvature at non characteristic points of a reg-
ular surface may be defined as the signed curvature of the projection to C of the leaf
of the horizontal flow passing from p (see also Proposition 4.24 of [7]).

Proposition 5.17 Let S be a regular surface and p ∈ S a non characteristic point.
Let νhS = ν1X+ν2Y be the unit horizontal normal vector field of S, and γ the unique
unit speed surface curve passing from p, which is tangent to Jνhp at p. If π = prCγ
is the projection of γ on C, p′ is the projection of p and κs is the signed curvature of
π, then

κs(p
′) = Xpν1 + Ypν2.

Proof : Let p ∈ S and let γ(s) be the unit speed horizontal surface curve passing
from p. Let π(s) be the projection of γ(s) in C = R2; then its tangent is

π̇(s) = (−ν2(s), ν1(s))
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and is of unit speed. We have by applying the chain rule that

ν̇1 = (ν1)xẋ+ (ν1)y ẏ + (ν1)tṫ

= (Xν1 − 2yTν1)(xuu̇+ xv v̇) + (Y ν1 + 2xTν1)(yuu̇+ yv v̇) + Tν1(tuu̇+ tv v̇)

= −(Xν1 − 2yTν1)ν2 + (Y ν1 + 2xTν1)ν1 + Tν1(−2yν2 − 2xν1)

= −ν2(Xν1 + Y ν2),

where we have used

γ̇(s) = (xuu̇+ xv v̇)X + (yuu̇+ yv v̇)Y = −ν2X + ν1Y,

and the relation ν1Y ν1 = −ν2Y ν2 which follows from ν2
1 + ν2

2 = 1. Working
analogously for ν̇2 (using ν1Xν1 = −ν1Xν2 this time), we have ν̇2 = ν1(Xν1 +
Y ν2), hence

π̈ = (−ν̇2, ν̇1) = (−ν1(Xν1 + Y ν2),−ν2(Xν1 + Y ν2))

= κs(−ν1,−ν2),

where κs is the signed curvature of the curve π. This yields κs = Xν1 + Y ν2.

A local expression for Hh is in order:

Proposition 5.18 Let S be a regular surface in H. In every surface patch σ =
(x, y, t) with ∂(x, y) 6= 0 and sufficiently away from the characteristic locus, the
horizontal mean curvature is given by

Hh(σ) =
∂(ν1, y) + ∂(x, ν2)

∂(x, y)
,

where νi, i = 1, 2, are the components of the unit horizontal normal vector ν of S.

Proof : Suppose first that ∂(x, y) 6= 0. Using the chain rule we write

(ν1)u = (ν1)xxu + (ν1)yyu + (ν1)ttu = (Xν1)xu + (Y ν1)yu + (tu − 2yxu + 2xyu)Tν1,

(ν2)u = (ν2)xxu + (ν2)yyu + (ν2)ttu = (Xν2)xu + (Y ν2)yu + (tu − 2yxu + 2xyu)Tν2,

(ν1)v = (ν1)xxv + (ν1)yyv + (ν1)ttv = (Xν1)xv + (Y ν1)yv + (tv − 2yxv + 2xyv)Tν1,

(ν2)v = (ν2)xxv + (ν2)yyv + (ν2)ttv = (Xν2)xv + (Y ν2)yv + (tv − 2yxv + 2xyv)Tν2.

The first and the third equations are written as

(Xν1)xu + (Y ν1)yu = (ν1)u − α‖Nh‖Tν1,

(Xν1)xv + (Y ν1)yv = (ν1)v − β‖Nh‖Tν1,

where we have used Equations (5.2.2). Solving the system we obtain

Xν1 =
∂(ν1, y) + ‖Nh‖ν1Tν1

∂(x, y)
, Y ν1 =

∂(x, ν1) + ‖Nh‖ν2Tν1

∂(x, y)
,
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where we have used Equations 5.2.4. In an analogous manner, we obtain the follow-
ing from the second and the fourth equations:

Xν2 =
∂(ν2, y) + ‖Nh‖ν1Tν2

∂(x, y)
, Y ν2 =

∂(x, ν2) + ‖Nh‖ν2Tν2

∂(x, y)
.

Therefore

Xν1 + Y ν2 =
∂(ν1, y) + ∂(x, ν2) + ‖Nh‖(ν1Tν1 + ν2Tν2)

∂(x, y)

=
∂(ν1, y) + ∂(x, ν2)

∂(x, y)
,

since ν2
1 + ν2

2 = 1 and hence ν1Tν1 + ν2Tν2 = 0.

Remark 5.19 In case ∂(x, y) = 0 it is deduced from Proposition 5.8, that the hori-
zontal normal vector field νhσ is orthogonal to a plane vertical to the complex plane.
Then we may assume that σ is of the form

σ(u, v) = (x(v), y(v), u),

i.e., a generalised cylinder with profile curve (x(v), y(v), 0). Therefore the hori-
zontal mean curvature Hh(p) at a point p equals to κs(p′), where κs is the signed
curvature of the profile curve of the cylinder and p′ is the projection of p on the
profile curve .

Proposition 5.20 If a regular surface S in H is locally contactomorphic to the com-
plex plane, then it is H-minimal.

Proof : First we prove the statement for graphs Gf of smooth functions t = f(x, y)
over C. Here (x, y) lies in an open subset of the plane. Let

σ(x, y) = (x, y, f(x, y)), (x, y) ∈ U.

The induced 1-form is ωGf
= (fx − 2y)dx+ (fy + 2x)dy. From the contactomor-

phism condition we also have

fx − 2y = −2λy and fy + 2x = 2λx

for some non zero function λ. Moreover,

Nh = (−fx + 2y)X + (−fy − 2x)Y = 2λ(yX − xY ),

and therefore
νGf

= ν1X + ν2Y = ± yX − xY
(x2 + y2)1/2

.
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Using Proposition 5.18 we have for the positive sign case (the other case is treated
analogously):

Hh = ∂(ν1, y) + ∂(x, ν2) (∂(x, y) = 1),

= ∂

(
y

(x2 + y2)1/2
, y

)
+ ∂

(
x

(x2 + y2)1/2
, x

)
= y∂

(
1

(x2 + y2)1/2
, y

)
+ x∂

(
1

(x2 + y2)1/2
, x

)
= y∂x

(
1

(x2 + y2)1/2

)
− x∂y

(
1

(x2 + y2)1/2

)
= y · −x

(x2 + y2)3/2
− x · −y

(x2 + y2)3/2

= 0.

Next we show that all coordinate planes are locally contactomorphic; we will treat
the case of the planes x = 0 and t = 0 and leave the other cases to the reader. We
parametrise the plane x = 0 by σ(u, v) = (0, u, v) and consider the map f : {x =
0} → {t = 0} given by

(0, u, v) 7→ (uv, v, 0).

Denote by σ̃ the surface patch f ◦ σ. Then

ωσ = dv and ωσ̃ = −2u2dv,

which, by the contact condition (5.2.1) proves our assertion.
If now σ(u, v) = (x(u, v), y(u, v), t(u, v)) is an arbitrary surface patch for S,

from regularity we have that at least one among ∂(x, y), ∂(y, t) and ∂(t, x) is differ-
ent from zero. We may now assume that ∂(x, y) 6= 0 and reparametrise if necessary
by

ũ = x(u, v), ṽ = y(u, v)

to obtain the regular surface patch σ(ũ, ṽ, t(ũ, ṽ)), which is a local graph of a func-
tion over the complex plane.

5.4 Horizontal Area and Horizontal Area Integral

In an arbitrary regular surface S, the notion of the area A is given by integrating at
each coordinate neighborhood (U, σ) the length of the normal vector Nσ = σu×σv .
Accordingly, we define the horizontal area (elsewhere called the perimeter) of S.

Definition 5.21 Let S be a regular surface in H and suppose that σ : U → H is any
surface patch. Let Nh

σ = (σu ∧H σv)h. If R is a domain in U then, its horizontal
area is given by

Ahσ(R) =

∫∫
R

‖Nh
σ (u, v)‖dudv. (5.4.1)
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The above integral may of course be infinite; however, assuming that R is contained
in a rectangle whose closure lies inside U , then the integral is finite. Furthermore,
a reparametrisation does not change the value of the integral. Finally, in the case
where S is compact, the horizontal area of S is well defined and will be denoted by

Ah(S) =

∫∫
S
dSh.

Here dSh is the horizontal area element of S; at each surface patch (U, σ),

dSh = ‖Nh
σ (u, v)‖dudv.

With the assumptions of Definition 5.21 suppose also that ρ : S → R is a function.
The horizontal area integral of ρ in R is defined by∫∫

σ(R)

ρdSh =

∫∫
U

ρ(σ(u, v))‖Nh
σ (u, v)‖dudv, (5.4.2)

if ρ(σ(u, v)‖Nh
σ (u, v)‖ ∈ L1(R). Again, a reparametrisation does not change the

integral and in the case where S is compact the horizontal area integral of ρ is defined
globally as follows. Suppose that σi : Ui → S, i ∈ I is a finite covering of S by
surface patches and ρσi‖Nh

σi
‖ ∈ L1(Ui) for each i ∈ I . Then∫∫

S
ρdSh =

∑
i∈I

∫∫
Ui

ρ(σi(ui, vi))‖Nh
σi

(ui, vi)duidvi. (5.4.3)

5.5 Regular Surfaces and Contact–Quasiconformal Transformations

Let S and S̃ be two regular oriented surfaces in H. We shall consider mappings
S → S̃ that are induced by C2 orientation preserving contact transformations f =

(f1, f2, f3) of H: f∗ω = λω where λ = J
1/2
f > 0. Let f be such a transformation

with the property f(S) = S̃. Since f is a C2 diffeomorphism and both S and S̃
are C2 embedded submanifolds of H, it follows that the restriction fS : S → S̃ of
f to S is also a C2 diffeomorphism between S and S̃. In particular, for every local
charts (U, σ) and (Ũ , σ̃) of S and S̃ respectively, the mapping σ̃−1 ◦ f ◦ σ is a C2

diffeomorphism in its domain of definition. Being also contact, the transformation f
adds something more to this, i.e. the surfaces S and S̃ are locally contactomorphic.

Proposition 5.22 Let S, S̃ be two regular oriented surfaces in H and f = (f1, f2, f3)

be a C2 orientation preserving contact transformation of H such f(S) = S̃. Then S
and S̃ are locally contactomorphic.

Proof : If ιS and ιS̃ are the inclusions of S and S̃ respectively in H then f ◦ ιS =
ιS̃ ◦ f. The result follows.
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The next lemma is useful for our subsequent discussion.

Lemma 5.23 Let S be a regular oriented surface in H and f = (f1, f2, f3) be a
C2 orientation preserving contact transformation of H such that f∗ω = λω where
λ = J

1/2
f and Jf is the Jacobian determinant of f . Then the following hold.

1. If (U, σ) is a surface patch of S , then (U, f ◦σ) is a surface patch for S̃ = f(S).

2. If Nh
σ = n1X + n2Y is the horizontal normal vector of σ, then,

Nh
f◦σ = λ ((n1Y f2 − n2Xf2)X + (n2Xf1 − n1Y f1)Y ) . (5.5.1)

Proof : The proof of (1) is immediate since the restriction of f in S is a C2 diffeo-
morphism. To prove (2) we first write the matrices of f∗ and σ∗ with respect to the
basis {X,Y, T}. Those areXf1 Y f1 Tf1

Xf2 Y f2 Tf2

0 0 λ

 and

 xu xv

yu yv

α‖Nh
σ ‖ β‖Nh

σ ‖

 ,

respectively, where α and β are as in 5.2.2. Therefore, from chain rule we have

f∗σu =
(
xuXf1 + yuY f1 + α‖Nh

σ ‖Tf1

)
X

+
(
xuXf2 + yuY f2 + α‖Nh

σ ‖Tf2

)
Y

+λα‖Nh
σ ‖T,

and

f∗σv =
(
xvXf1 + yvY f1 + β‖Nh

σ ‖Tf1

)
X

+
(
xvXf2 + yvY f2 + β‖Nh

σ ‖Tf2

)
Y

+λβ‖Nh
σ ‖T.

The desired Equation 5.5.1 now follows from formula 5.1.1.

Proposition 5.24 With the hypotheses of Lemma 5.23, in surface patches (U, σ) and
(U, f ◦ σ) of S and f(S) respectively and at non characteristic points, the following
inequality holds.

λ(|ZfI | − |ZfI |)‖Nh
σ ‖ ≤ ‖Nh

f◦σ‖ ≤ λ(|ZfI |+ |ZfI |)‖Nh
σ ‖, (5.5.2)

where λ = |ZfI |2 − |ZfI |2 = J
1/2
f and Jf is Jacobian determinant of f .

Proof : We engage complex terminology and we write m = n1 + in2. In this
manner,

n1Y f2 − n2Xf2 = <
(
m(ZfI − Zf I)

)
,

n2Xf1 − n1Y f1 = =
(
m(ZfI + Zf I)

)
,
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and therefore, Equation 5.5.1 may be written equivalently as

Nh
f◦σ = 2λ<

(
(mZfI −mZfI) · Z

)
and subsequently,

‖Nh
f◦σ‖ = λ|ZfI − e−2i arg(m)ZfI |‖Nh

σ ‖.

Inequality 5.5.2 follows by applying the triangle inequality.

Corollary 5.25 With the hypotheses of Proposition 5.24, suppose also that f is qua-
siconformal with Beltrami coefficient µ. Then:

1. The right inequality in 5.5.2 is attained as an equality if and only if

µe−2i arg(m) < 0, equivalently argµ = π + 2 argm. (5.5.3)

2. The left inequality in 5.5.2 is attained as an equality if and only if

µe−2i arg(m) > 0, equivalently argµ = 2 argm. (5.5.4)

Proof : If f is quasiconformal with Beltrami coefficient µ, then ZfI/ZfI = µ,
with µ essentially bounded by a constant less than 1. Therefore,

‖Nh
f◦σ‖ = λ|ZfI ||1− µe−2i arg(m)| · ‖Nh

σ ‖

and inequality 5.5.2 may be written as

|1− |µ|| ≤
∣∣∣1− µe−2i arg(m)

∣∣∣ ≤ |1 + |µ|| .

The proof follows.2

5.6 Modulus of Surface Families

By Σ we shall denote a family of regular surfaces in H. The set Adm(Σ) comprises
of non negative Borel functions ρ in H such that for every S ∈ Σ we have∫∫

S
ρdSh ≥ 1.

2In case 5.5.3 we say that f has the maximal stretching property (MSP) for S and in case 5.5.4 we say that
f has the minimal stretching property (mSP) for S. The latter is very useful when we apply the Modulus
Method to solve extremal problems.
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Definition 5.26 The modulus of a family Σ of regular surfaces in H is defined by

Mod(Σ) = inf
ρ∈Adm(Σ)

∫∫∫
H

ρ4/3dL3,

where by L3 we denote the Lebesgue measure in R3.

If the infimum is attained by a function ρ0 ∈ Adm(Σ), that is

Mod(Σ) =

∫∫∫
H

ρ
4/3
0 dL3,

then we call ρ0 an extremal density for Σ.

5.7 The Modulus Inequality

Theorem 5.27 Let Ω and Ω′ be domains in H and f : Ω → Ω′ be a C2 orienta-
tion preserving contact quasiconformal transformation. For any family of oriented
regular surfaces inside Ω we have

Mod(f(Σ)) ≤
∫∫∫

Ω

K
2/3
f (p)ρ4/3(p)dL3(p) for each ρ ∈ Adm(Σ). (5.7.1)

If moreover Kf is the maximal distortion of f (Kf (p) ≤ Kf for all p), then

1

K
2/3
f

Mod(Σ) ≤ Mod(f(Σ)) ≤ K2/3
f Mod(Σ). (5.7.2)

Proof : For every ρ ∈ Adm(Σ) we define a non negative Borel function in Ω′ by
the relation

ρ′ =


ρ

λ(|ZfI |−|ZfI |)
◦ f−1 in Ω,

0 elsewhere,

where λ = |ZfI |2 − |ZfI |2 = J
1/2
f . Then for each S ∈ Σ with f(S) = S ′ we have

by the left hand side of inequality 5.5.2 that∫∫
S′
ρ′dS ′h ≥

∫∫
S
ρdSh.

Therefore by changing the variables q = f(p) we obtain∫∫∫
Ω′

(ρ′)4/3(q)dL3(q) =

∫∫∫
Ω

(ρ′(f(p))4/3Jf (p)dL3(p)

=

∫∫∫
Ω

ρ4/3(p)

(
|ZfI(p)|+ |ZfI(p)|
|ZfI(p)| − |ZfI(p)|

)2/3

dL3(p)

=

∫∫∫
Ω

K
2/3
f (p)ρ4/3(p)dL3(p).
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By taking the infimum over all functions in Adm(f(Σ)) we obtain 5.7.1. Also the
right hand side of 5.7.2 is obtained by 5.7.1 and the relation

Kf (p) ≤ Kf for all p ∈ Ω.

To obtain the left hand side of 5.7.2 we consider the inverse transformation f−1 :
Ω′ → Ω which is also quasiconformal with maximal distortion Kf . Thus, by apply-
ing 5.7.1 we have

Mod(Σ) = Mod(f−1(Σ′)) ≤
∫∫∫

Ω′
K

2/3
f (q)ρ4/3(q)dL3(q)

≤ K
2/3
f

∫∫∫
Ω′
ρ4/3(q)dL3(q) for all ρ ∈ Adm(Σ′)

and the inequality follows after taking the infimum over all ρ ∈ Adm(Σ′).

Corollary 5.28 The modulus of surface families is a conformal invariant.





CHAPTER 6

FURTHER DEVELOPMENTS AND
SOME OPEN PROBLEMS

The study of quasiconformal mappings in the Heisenberg group H motivated the
study of quasiconformal mappings to larger and more abstract spaces; some of which
are CR manifolds, metric spaces with controlled geometry and Carnot groups. It also
gave rise to questions concerning the comparison between the classical Ahlfors-Bers
and the Korányi–Reimann theory. It is equally fascinating to detect the points where
similarities do exist, but also the points where they break down. All these are shortly
addressed below.

6.1 Gromov hyperbolic spaces

As we have emphasized already, quasiconformal maps on Heisenberg groups and
two-step nilpotent Lie groups are important for the Mostow strong rigidity. It is
perhaps helpful to point out that quasiconformal maps on more general spaces such
as the boundary of the Gromov hyperbolic spaces are important for other rigidity
properties in geometric group theory.

Quasiconformal mappings in the Heisenberg group,
Changsha, PRC, 2018.
By Ioannis D. Platis Copyright c© 2018 John Wiley & Sons, Inc.

75

jplatis
void space



76 FURTHER DEVELOPMENTS AND SOME OPEN PROBLEMS

Definition 6.1 Let (X, d) be a metric space. The Gromov product of two points
y, z ∈ X with respect to a third one x ∈ X is defined by the formula:

(y, z)x =
1

2
(d(x, y) + d(x, z)− d(y, z)) .

Gromov’s definition of a hyperbolic metric space is then as follows:

Definition 6.2 X is δ-hyperbolic if and only if all x, y, z, w ∈ X satisfy the four-
point condition

(x, z)w ≥ min ((x, y)w, (y, z)w)− δ.

This condition is called the hyperbolicity condition. Note that if this condition is
satisfied for all x, y, z ∈ X and one fixed base point w0, then it is satisfied for all
with a constant 2δ. Thus the hyperbolicity condition only needs to be verified for
one fixed base point; for this reason, the subscript for the base point is often dropped
from the Gromov product.

Suppose that X,X ′ are two Gromov δ-hyperbolic spaces. The following is rea-
sonable and was proved by Gromov:

Theorem 6.3 If X,X ′ are two quasi-isometric Gromov hyperbolic paces, then ∂X
and ∂X ′ can be identified canonically and the quasi-isometric structures on the
boundaries ∂X and ∂X ′ are isomorphic.

A slightly stronger condition than quasi-conformal maps is that of quasi-symmetric
homeomorphisms betweenX andX ′ whose boundaries ∂X and ∂X ′ are also quasi-
symmetric.

One interesting result of Tukia proves the converse direction in a special case:

Theorem 6.4 If Γ is a word hyperbolic group, and its boundary is quasi-symmetric
to the standard sphere Sn−1, n ≥ 3, then Γ is virtually a cocompact lattice acting
on Hn

R.

One conjecture of Cannon asserts: For a word hyperbolic group Γ, if its boundary
∂Γ is homeomorphic to S2, then ∂Γ is quasi-symmetric to S2. Combined with the
result of Tukia above, it implies that Γ is a cocompact lattice acting on H3

R. There
are other rigidity results in geometric group theory proved using quasi-conformal
and quasi-symmetric maps on metric spaces. See [6] for references of the results
discussed here and other results.

6.2 Spaces with controlled geometry

We refer the reader to the pioneering work of Heinonen and Koskela [19] and [20],
as well as to the notes of Reimann [35]. In general, metric spaces with controlled
geometry are the metric spaces which display some kind of regularity with respect
to comparison of distance and volume; the latter is the essence of quasiconformal
mappings.
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Definition 6.5 A metric space (X, d) of dimension Q > 1 is an Ahlfors-David regu-
lar metric space if it is endowed with a Borel measure µ compatible with the metric
d in the following way: there exists a constant C ≥ 1 such that for all metric balls
BR of radius R < diam(X) the following inequality holds:

1

C
RQ ≤ µ(BR) ≤ CRQ.

Quasiconformal mappings are defined in such spaces via the metric definition, and
the same holds for notions like the modulus of curve families and quasisymmetric
mappings. There are well defined notions of Q−modulus ModQ(Γ) of a family of
curves Γ and of quasisymmetry, entirely analogous to the definitions we have given
in the cases of C and H.

Definition 6.6 A metric space (X, d) is called a Q-Loewner space, if there is a
strictly increasing self-mapping η of (0,∞) such that ModQ(Γ) ≥ η(k), where
Γ is the family of curves connecting two continua C0 and C1 with

min{diam(C0),diam(C1)} ≥ kdist(C0, C1).

The Heisenberg group H endowed with the CC-metric dCC is a 3-regular Loewner
space, and a bigger class of Loewner spaces are the Carnot groups. Recall that a
Carnot group is a simply connected nilpotent Lie group G with a derivation α on
its Lie algebra g such that ker(α) generates g. Via the exponential map, N and
subsequently g are identified to Rm for some m ∈ N and the group action is given
by the Campbell-Hausdorff formula, The Haar measure of G is just the Lebesgue
measure of Rm and a CC-distance is well defined. See Pansu’s thesis [31] and see
also [30].

The primary problem than one is facing in the case of the above spaces is to give
proper analytic and geometric definitions of quasiconformality which are equivalent
to the general (and applying in all cases) metric definition. In this direction, see the
works of Williams [43], Tyson [40] and [41], and Heinonen et al. [21]. On the other
hand, the conditions of the metric definition itself can be substantially relaxed and
this gives rise to quite striking results, see [4] and the bibliography given there.

6.3 Extremal problems

We next examine extremal problems. In the classical theory, extremal quasiconfor-
mal mappings are the ones minimising the maximal distortion (constant of quasi-
conformality) within a certain class of mappings in the complex plane or between
Riemann surfaces. Since the times of Grötzsch and Teichmüller, a method based on
the modulus of curve families has been applied to detect such mappings; it turned
out that the very same method applies for the mappings which minimise the mean
distortion functional

M(f, ρ) =

∫∫
Ω
K(f, p)ρ0(p)2dµL∫∫

Ω
ρ0(p)2dµL
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in the class of mappings between annuli in the complex plane, [2]. Here ρ0 is a
certain density corresponding to the geometry of Ω. Recently in [3], a variation of
the modulus method has been developed in the Heisenberg group setting to prove
that there exists a minimiser of the mean distortion functional

M(f, ρ) =

∫∫∫
Ω
K(f, p)2ρ0(p)4dµL∫∫∫

Ω
ρ0(p)4dµL

among quasiconformal mappings of Heisenberg spherical rings and this minimiser
is an extension of the usual stretch map of the plane. However, it does not minimise
the maximal distortion and this is in contrast to the classical situation. The problem
of finding such a minimiser is open. We note here that the modulus method is up
to now the unique tool for the detection of extremal mappings; in the Heisenberg
setting results similar to Teichmüller’s Existence and Uniqueness theorems are not
available.

6.4 CR manifolds

Extremal problems also arise naturally in the theory of quasiconformal mappings
of compact psudoconvex CR−manifolds. Such mappings have been defined by
Korányi and Reimann in[26] and the extremality problem can be stated as follows.
Given two CR−structures on a 3-dimensional contact manifold, determine the qua-
siconformal homeomorphisms that have the least maximal distortion with respect to
the two CR structures. Problems of this type have been studied by various authors,
see for instance the works of Miner [28], and Tang [38].

6.5 Complex hyperbolic quasi-Fuchsaian space and the holy grail

In contrast to the Teichmüller space case where extremal quasiconformal mappings
are used to describe the whole space, it seems that a lot of effort has to be made to
obtain (or not!) an analogous result for spaces like the complex hyperbolic quasi-
Fuchsian space which is defined now.

Complex hyperbolic quasi-Fuchsian space QC(Σ) of a closed surface Σ of genus
g > 1 is perhaps the most natural extension of the Teichmüller space of Σ: it consists
of representations of the fundamental group π1(Σ) into the isometry group SU(2, 1)
of complex hyperbolic plane which are discrete, faithful, totally loxodromic and ge-
ometrically finite. We underline here that those conditions prevent that space (as well
as the real quasi-Fuchsian space, a double copy of Teichmüller space) to fall in the
Mostow rigidity setting; the representations are convex cocompact and not cocom-
pact as in the assumptions of Mostow’ s rigidity theorem. In a convex cocompact
representation the quotient of the convex hull of the limit set has finite volume (so it
may have infinite funel ends but no cusps). Thus the limit set can never be the entire
boundary; there is always a region of discontinuity. In particular, for quasi-Fuchsian
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or complex hyperbolic quasi-Fuchsian groups the limit set is a topological circle and
there is a domain of disconinuity in the boundary.

There is a quite large bibliography on the subject. For a summary of results con-
cerning QC(Σ) we refer the reader to [34]. Perhaps the most prominent problem
in the subject is to examine the analytical structure of QC(Σ). In the case of Te-
ichmüller space this is carried out via the Ahlfors–Bers theory and the challenge here
is to use the Korányi-Reimann theory of quasiconformal mappings in the Heisenberg
group to obtain similar results. In this direction, and regardeless the lack of an exis-
tence theorem for the solution of the Beltrami equation, one is invited to start from an
irreducible representation ρ ∈ QC(Σ) and to construct quasiconformal deformations
of the Heisenberg group with starting point ρ, to determine exactly the tangent space
at ρ from the vector fields generating these deformations. The problem is still open
(it has been named the holy grail by the researchers of the area).
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