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Projective Geometry

The tnvention of projective geometry led

to great improvements in railway safety

Biff

Geometries are defined by their objects of study. Euclidean geometry is natu-

rally preoccupied with distance and angle. Otherwise how could we distinguish

between an acute and an obtuse triangle? In the discipline of topology a straight

line is as good as a curved one. Projective geometry falls between these two

extremes. We have already met projections; projective geometry studies prop-
erties unchanged by these.

Under a projection from one plane to another, a straight line will stay a
straight line. However the distance between two points or the angle between
two lines can vary. Even more disconcertingly, parallel lines may project to
lines which meet. To view this, look along a straight railway track or road. The
sides will appear to converge at the horizon even though we know they cannot
meet. Alternatively look at the sky on a day with broken cloud. Rays of light
from the sun are essentially parallel but the clouds, if in the right place, will
break the sun’s rays into a A shape.

In this chapter we consider only the linear properties of the projective plane,
that is points, lines and their properties. Conics and higher order curves in the
projective plane would take us beyond the scope of this book.
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6.1 The Projective Plane

In order to translate the above considerations into a mathematical theory we
will describe a model of the real projective plane, written as RP?2.

The projective plane RP? is the set of lines in space R? which pass through
the origin.

Since a line in R® which passes through the origin is determined by any of
its points other than O we see that an element of RP? can be considered as
the set of points {rA} in R* where A is a point other than the origin and r
varies over all non-zero real numbers. So any non-zero point A = (z,y,z) in &®
determines a point in the projective plane. We can specify this point by three
homogeneous coordinates or ratios, written [z,y, z] where [z’,3, 2] represents
the same point provided there is a non-zero coefficient r such that

' =rz, y =ry, 2 =rz.
For example the following,
[3,-5,2], [-9,15,-6], [27,—45,18], [-3/5,1,—2/5]

all represent the same point in RP2.

The projective plane is the set of pairs of antipodal points on the two dimensional
sphere. This is because a line in R® through the origin meets the two dimensional
sphere, §?, in an antipodal pair A, — A where |4| = 1. We can discard the southern
point of all antipodal pairs and we can think of the projective plane as the points in
the northern hemisphere in S? together with pairs of antipodal points on the equator.
We may now flatten the northern hemisphere by an orthogonal projection. This means
that the projective plane is also the set of points in a plane disc provided pairs of
antipodal points on the boundary circle are identified.

The use of homogeneous coordinates also suggests the definition RP? for the R
projective plane with points specified by three ratios [z,y, z], where z,y,z lie in a
division ring R. However some care must be taken if R is non-commutative. In this
case the ratios must all be taken on one side.

Exercise 6.1

How many points are represented by [+1, +1, +1)?

We shall use the general notation A = [a1,a3,a3] = [A] for the point in RP?
represented by the point A = (a;,a3,a3) in R®. The points
X=11,0,0], Y =1(0,1,0], Z=[0,0,1]

are called the vertices of the triangle of reference. The point U = [1,1,1] is
called the unit point.
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There is no need to restrict attention to three homogeneous coordinates. Define
the projective space of dimension n to be the set of points [ai,...,an+1] where as
before [a1,...,@n41] = [ra1,...,7an41]. The coefficients a; may be real numbers or
complex numbers or members of other algebraic systems such as the quaternions.

6.2 Lines in the Projective Plane

What! Will the line stretch
out to the crack of doom?
Macbeth

A line in the projective plane is the set of points [z, y, 2] satisfying a homo-
geneous linear equation

az +by+cz=0 (a,b,¢) # (0,0,0).

Notice that this equation is well defined in the projective plane because non-
zero multiples of coordinates can be cancelled in the above equation.

In space, R3, the above equation represents a plane, @ say, through the
origin in space. Any point in the projective plane on the line, ax + by + cz = 0,
will correspond to a line in space which passes through the origin and lies in
the plane .

We can identify the projective plane as an extension of the euclidean plane
as follows. Let E be the set of points in RP? with last coordinate non-zero.
Dividing the coefficients by this last element means that any point in E can be
written uniquely as [z,y, 1] and hence can be identified with the point (z,y) in
the euclidean plane.

The remaining points in RP? have last coordinate zero and so lie on the
line z = 0. This line is called the line at infinity with respect to E. A point on
the line at infinity is called a vanishing point.

To get a feel for this extension of the euclidean plane, imagine yourself as an
observer in a boat on a calm sea far from the sight of land. Think of your eye
as the origin O, the sea as the plane z = —1 and the sky as the euclidean plane
2z = 1. The sea also corresponds to the euclidean plane because the points
[z,y,1] and [~z, —y, ~1] are one and the same. A point in the sky and the
corresponding point in the sea lie on a line through your eye.

The horizon corresponds twice over to the line at infinity z = 0. Antipodal
points on the horizon are identified. In particular north and south are identified
and east and west are identified. The line at infinity is a circle on which the
horizon circle is wrapped round twice.
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Analytically points on the line at infinity may be written
[z,9,0] = [r cos@,7sin8,0).

Since r # 0 this point corresponds to the point on the unit circle (cos8,sin )
and since [cos@,sin#,0] = [— cosf, —sinf, 0] the angle @ is an absolute angle
modulo 7.

Any line may be taken as the line at infinity by a suitable rotation of space.
For example the model for the euclidean plane could be 2z — 7y + 345z = 1. In
that case the line at infinity would be 2z — 7y + 345z = 0.

6.3 Incidence and Duality

Two points determine a unique line containing them. For example the points
[1,2, 3] and [3,2, 1] lie on the line z—2y+2z = 0. Interpreting this in space R3, the
lines through (1,2, 3) and (3,2, 1) and the origin lie in the plane z — 2y + 2z = 0.

In addition two lines meet in a unique point. For example the lines z + 2y +
3z =0 and 3z + 2y + z = 0 meet in the point [1,-2,1].

The above examples illustrate the notion of duality. Thelinez —2y+2 =0
can be represented by the homogeneous coordinates {1, —2, 1] which represents
a point of the projective line called the dual point. Conversely the dual line of
the point [1, 2, 3] is the line z + 2y + 3z = 0. The dual of the line containing two
points is the point where the dual lines meet. More generally any statement of
incidence of points and lines is converted to a statement of incidence of lines
and points.

If A= (a,bc)and X = (z,y,z) then the line az + by + cz = 0 can be
written as A - X = 0 and the dual point is [A]. This is represented in space as
the line through the origin at right angles to the plane ax + by + cz = 0.

To simplify calculations let us introduce the notation

ay az ag

b, b; bs = [az2bz — agbz,agb; — a1bz,a1bz — a2b4].

Then the dual coordinates of the line through [a;,a2,as] and [b,, bs, bs] are
ay as ag
by b2 b3
lines a1z + asy + azz = 0 and by + by + b3z = 0.

Using the notation of the previous chapter the line through the points [A]
and [B] has dual coordinates [A x B]. Dually the lines A-X =0and B-X =0
meet at [A x B.

which are also the coordinates of the intersection point of the
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Example 6.1

To find the dual coordinates of the line through [1,1, -1} and [2,0, 1} con-

sider
1 1 -1

2 0 1
The equation of the lineis z — 3y — 22 = 0.

=[1-0,-2-1,0-2]=[1,-3,-2].

Exercise 6.2

Show that the line through the vertices X and Y of the triangle of refer-
ence has equation z = 0.

Exercise 6.3

Find the equation of the line through the points [0,1,1], [2,-1,0] and
find the line’s dual coordinates.

Exercise 6.4

Find the line coordinates of the line through [1,6,6?] and [1, ¢, $?], (8 #
¢). What happens when ¢ tends to 6?

If the point [A] lies on the line determined by the points [B] and [C] then
A - (B x C) = 0. This can be reinterpreted as

@ The points A, B and C in RP? are collinear if and only if

aj az asg
bl bz b3
€1 ¢C2 Cg

= 0. a

Exercise 6.5
What is the dual of the above result?

Exercise 6.6

Interpret the above result in terms of volume.

Exercise 6.7

Let P be a variable point on the line z = 0 and let A, B be fixed points
on the line y = 0. Let L, M be the intersections of the lines PA, PB with
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the line z = 0 respectively and let P' be the intersection of the lines AM
and BL. Show that P’ lies on a fixed line through Y= [0,1,0].

6.4 Desargues’ Theorem

We now come to the first major theorem of projective geometry. The famous
theorem of Girard Desargues {1591-1661) was published in a book by Abraham
Bosse (1648). The importance of the theorem was not noted until the 19th
century.

g Desargues’ Theorem If two triangles are in perspective then the points of
intersection of corresponding sides are collinear.

Proof Being in perspective means that the lines defined by corresponding
vertices are concurrent. The reader should consult Fig. 6.1 where the triangles
are A, B, C and A’, B’, C' and the perspective point is P. The points of inter-
section of the corresponding sides are L, M, N and it will be our task to prove
that they are collinear using the techniques described above.

P
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Since [A],[A'],|P] are collinear there are real numbers a,a’ (not equal to 0)
such that
P=aA+dA.

By choosing the representatives of A, A’ as ¢ A, a’' A’ we can rewrite this equation
as

P=A+A4A.
Similarly

P=B+ B

P=C+C'.

So A— B = B'— A'. It follows that [A — B] is the intersection of the line [A]{B]
with the line [A'][B’], that is L. Similarly M= [B — C] and N= [C — A]. Since
(A—B)+ (B —-C)+ (C — A) =0 it follows that L, M, N are collinear. O

The purely algebraic methods of the proof show that Desargues’ theorem holds
whenever the coefficients lie in a division ring. Plane geometries where Desargues’
theorem does not hold are called non-desarguian planes.

By ‘lifting’ Desargues’ theorem into three-dimensional space a much easier
proof can be given. Consider Fig. 6.2.
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The triangles which are in perspective from P are now assumed to lie in
planes w and @’ respectively. Let the planes be distinct and meet in the line £.
The planes PAB and PA’B’ coincide by hypothesis. This common plane meets
w in the line AB and meets @’ in the line A’B’. So these lines, which meet at
L must also meet at a point on £. Similarly, so do the points M and N.

If @ = @' then the above argument fails completely since the line £ common
to the two planes is not defined. In order to prove the theorem in this case take
a line £ through P, the point of perspective, suppose that £ is not in @ and let
P,, P, be points on £ other than P.

Then the lines P; A and P, A’ lie in the plane containing the lines, P, PP
and PA'A and so meet in a point A” say. Similarly let P, B and P, B’ meet at
B" and let P,C and P,C' meet at C". Then A”B"(C" is a triangle which is in
perspective with ABC from P; and which is in perspective with A’B'C’ from
P;.

Let @’ be the plane of A”B"(C". Then w # w’ and we can apply Desargues’
theorem in this case. But the line of perspective of the sides is then the line
common to w and w’ which contains L, M and N. (]

The three-dimensional nature of this proof means that non-desarguian planes
cannot be embedded in a three-dimensional geometry.

6.5 Cross Ratios Again

It is clear that angles and distance, the familiar invariants of the euclidean
plane, are not projective invariants. Projective transformations stretch and
change them both. In fact there are precious few numerical projective invari-
ants. However one such is the cross ratio. We will define this initially in terms of
the projective plane and then relate this definition to that given in Chapter 4.

Let [A], [B],[C], [D] be four points, no three of which are equal, lying on a
projective line. This means that the four points A, B, C, D of R® lie in a plane
through the origin. If [A] # [B] the vectors C, D can be written uniquely as
linear combinations of A and B. Suppose

C=pA+qB, D=rA+sB.
Then their cross ratio is defined to be
(AB,CD) = gr/ps.

Before we can be sure that this makes sense we should see if it is unchanged for
different representatives of the same points. This is not difficult. If aA, bB, cC
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and dD are different representatives of A, B, C, D then
¢C = (cp/a)(aA) + (ca/b)(bB), dD = (dr/a)(aA) + (ds/b)(bB)

and the new multiples cancel out in the quotient.

Example 6.2

Let [1,2,3], [1,1,2], [3,5,8], 1, —1, 0] be four points in the projective plane.
It happens that they all lie on a projective line. Let us find their cross ratio.
The equations

(3,5,8) =p(1,2,3) +¢(1,1,2), (1,-1,0) =7(1,2,3) + s(1,1,2)

have the unique solution p =2, ¢ = 1r = —2, s = 3 so the cross ratio is
I1x(=2) 1
2x3 3

Exercise 6.8
Find the cross ratio of the points {2,1,3], (1,2, 3],([8,1,9] and [4, -1, 3].

Exercise 6.9

Show that

(AB,CC) = 1, (AB,AD) =0, (AB,BD) = oo.

The cross ratio is like a coordinate determining the fourth member from a
triple. It is clear that any real number can and oo occur. Moreover the answer
is unique in the following sense.

g (Unique fourth point theorem) Let A, B, C, X, Y be collinear points such that
(AB,CX) = (AB,CY).

Then X=Y.

Proof Suppose that C = sA+tB, X =aA+ 3B and Y =4 + éB. Then
the left-hand cross ratio is ta/s8 and the right-hand cross ratio is ty/sé. So
a/B = /6. 1t follows that Y = (y/a)(ad + SB) = (y/a)X and this represents
the same point in the projective plane as X. |
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In Chapter 4 the cross ratio was defined in terms of complex numbers.
Recall that the cross ratio was real if the points all belonged to a (euclidean)
line or circle.

Our next task is to show that the two definitions of cross ratio coincide in
any mutually meaningful situation. Take two points A and B in some euclidean
space. Then for all real numbers ¢, the point C = tA + (1 — ¢) B lies on the line
through A and B, and has the property that the ratio of distances AC/CB is
the fraction (1 —¢)/t. It follows that if D = sA+ (1 — s) B is another such point
then the cross ratio, defined in terms of distances, is

_AC.BD _ (1-1#)s

(AB,CD) = AD.BC ~ t(1-s)’

Suppose now that the points A, B,C,D are in R®. Then the corresponding
points A, B, C, D in the projective plane are collinear and have the same cross
ratio (1 — ¢)s/t(1 — s) according to this chapter’s definition.

Exercise 6.10

* Let [4],[B],[C], [D] be four distinct points lying on a projective line.
Show that their cross ratio is given by the formula

4, [(A-AC-C)-(A-C) (B-B)D-D)-(B D)
(B-B)(C-C)—(B-C): (A-A)(D-D)-(A-D)?

As in the complex number definition the cross ratio satisfies a number of iden-
tities as the points are permuted. These can be summarised as follows.

1 The cross ratio satisfies,

(AB,CD) = (BA,DC) = (CD,AB) = (DC,BA)

and (ABCD) = ¢  (ABDC) = 1/c
(ACBD) = 1-c (ACDB) = 1/(1-c).
(ADBC) = 1—-1/ec (ADCB) = ¢/(c—1)

Proof For example, to see that (AB,CD)= 1-(AC,BD) we must interchange
the role of B and C. Let C = pA +¢B, D =rA+ sB. Then B = (-p/q)A +
(1/q)C and D =rA + s((-p/q9)A+ (1/9)C) = (r — sp/q) A + (s/q)C and so

_ Yo —sp/e)
(ACBD) = sy = L~ ar/ps =1 - (AB.CD).

The other identities can be safely left as an exercise. a
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6.6 Cross Ratios and Duality

A collection of points on a line is called a range and the line is called the azis
of the range. The dual of a range is called a pencil of lines. If the range has
axis £ then the lines of the dual pencil pass through the point dual to the line
£. This common point of the lines of the pencil is called the apez of the pencil.

Since the dual coordinates of four lines of a pencil are dependent, a cross
ratio can be defined for a pencil of four lines in exactly the same way as one
was defined for four collinear points.

Exercise 6.11

Show that the four lines
z+y+22=0,3z—-y+42=0,5z2+y+82=0,2x+32=0
are concurrent and find their cross ratio.
Any line not through the apex of a pencil of four points (called a transversal)

will meet the pencil in four collinear points (Fig. 6.3). It turns out that their
cross ratio is the same as that of the pencil.

/

Fig. 6.3 Four collinear points determined by a transversal to a pencil

g The four collinear points determined by a transversal to a pencil have the
same cross ratio as the pencil itself.

Proof Suppose that the lines of the pencil have dual coordinates

[4],[B}],[C),[D] where C = pA +¢B, D =rA + sB.
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Let the transversal have dual coordinates [L]. Then the points of intersection of
the transversal with the pencil have coordinates [Lx 4], [Lx B), [LxC], [LxD].
Since LxC =pLxA+qLxBand LxD =rL x A+ sL x B we see that the
cross ratio is the same. 0O

Since the calculation of the cross ratio only depends on the pencil we see
that any another transversal will meet the pencil in four points with the same
cross ratio. This may be summed up by the following result.

m Let a transversal meet a pencil in four points A, B, C, D and let another
transversal meet the pencil in four points A’, B', C', D’ (Fig. 6.4).

P

Fig. 6.4
Then (AB,CD)= (A’'B',C'D’). ]

Here is a partial converse to the above result.

g Let £ and £ be two lines meeting at a point P. Let A, B, C be three points on
£ and let A’, B’, C’ be three points on £' such that (PA,BC)=(PA’,B'C’). Then
the lines AA’, BB’ and CC’ are concurrent.

Proof Let the lines AA’, BB’ meet at Q and let QC meet ¢ at C” (see
Fig. 6.5). Our aim will be to show that C"=C'. As P, A, B, C and P, A’,
B/, C" are in perspective from Q it follows that the cross ratios are equal. So
(PA,BC)=(PA’,B'C"). But (PA,BC)=(PA’,B'C’) and so (PA’,B'C"")=(PA’,B'C’).
By the unique fourth point theorem C"=C'. O

Exercise 6.12

Let A, B, C, X be points on a line £ and let A’, B’, C’, X’ be points on a
line ¢’ such that the points of intersection of the lines {AB’, BA'}, {AC/,
CA’} and {AX’', XA’} are collinear. Show that (AB,CX)=(A'B',C’'X’).
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Fig. 6.5

6.7 Projectivities and Perspectivities

Let A;, Az, Az, A be four points on a line a and let B;, By, B3, B be four
points on a line b such that (A;Az, AzA)=(B;B2, B3B). Then A is uniquely
determined by B and conversely. The relation between A and B is called a
projectivity between the points of a and the points of b.

If (A) is a range of points with axis a projectively related to a range of
points (B) with axis b then we write

(A)A(B).

The relation
(Al, As, As, A4) A (Bl, B,, Bs, B4)

is equivalent to the equality

(A1A2, AsA4) = (B1B3, B3By).

A special example of a projectivity is a perspectivity from a point P, since
perspective points have the same cross ratio. In that case we write

(A) A (B).

We will now give a geometric construction for any projectivity. Let (A;, Ag,
A3) be three distinct points on a line a and let (B;, By, B3) be three distinct
points on another line b. Suppose under a projectivity between a and b that

(Ali A2| A3s A) A (Bli B2v 83! B)'
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We will assume that A is given and then construct the corresponding point B
geometrically.

Let A;B; meet A;B, in the point O and A3Bj3 in the point O'. There are
two cases to consider.

(i) If O and O’ coincide let B be the point where the line OA meets b.

0=0'
A
A 3
A 2
A,
B,/ B, Bg\ B
Fig. 6.6

Then o
(A1, Az, A3, A) A (By, B, B3, B).

That is, the projectivity is a perspectivity from O.
(ii) If O and Q' are distinct let OO’ meet A3B; in X, let OA meet A3B; in
Y and let O'Y meet b in B (see Fig. 6.7).

OI

Fig. 6.7
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Then o
o’
(Al, Ag, Aj, A) A (X. By, As, Y) A (81, B,, Bs, B)

This writes the projectivity as the composition of the perspectivities from O
and O’. So we have proved the following.

g Any projectivity between two lines is either a perspectivity or the composition
of two perspectivities. 0O

We can give a simple rule for when a projectivity is a perspectivity as
follows.

g Let a, b be two lines meeting at the point P. Then a projectivity between the
points of a and b is a perspectivity if and only if P corresponds to itself under
the projectivity.

Proof Clearly under a perspectivity P is self-corresponding. For the converse
use the notation of the construction of the two perspectivities given above. Let
OP meet B2Aj3 in the point Z. Since P is self-corresponding O’ must lie in the
line OZ. But O, O’ also lie on the distinct line A;B;. So O, O’ coincide and the
projectivity is a perspectivity from O. O

It is useful at this stage to pause and consider the dual of the above results.
The dual of a range of points on a line is a pencil of lines through a point. A
projectivity between two pencils is a correspondence which preserves the cross
ratio. Two pencils, (a) and (b) are in perspective from a line c if any line a from
the first pencil meets the corresponding line b from the second pencil on the line
c. Any projectivity between two pencils is either a perspectivity or the product
of two perspectivities. A projectivity is a perspectivity if and only if the line
joining the apexes (common points) of the two pencils is self-corresponding.

The Pappus Line

Let the range of points (A;) be projectively related to the range of points
(B;) under the correspondence A; <B;. Fix i: then the pencil of lines through
A; is projectively related to the pencil of lines through B; by the sequence

A; i
(A,'Bj) A Bj A Aj 5\ (BiAj).

The line A;B; is self-corresponding and so this projectivity is a perspectivity
from a line ;. If we interchange the role of ¢ and j we see that c; is independent
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of ¢. This line is called the Pappus line of the projectivity. It has the following
property: the intersection of A;B; with A;B; lies on the Pappus line. In fact
once the Pappus line is known then it can be used as an alternative geometric
construction of the point B corresponding to A.

Exercise 6.13

If the range of points (A;) on the line a is projectively related to the
range of points (B;) on the line b under a perspectivity, show that the
Pappus line passes through the point common to a and b. What happens
otherwise?

g Pappus’ theorem Let A;, A, A3 and By, B;, B3 be two sets of collinear
points (lying on distinct lines). Let A;B3, A3B; meet in C;, let A3B;, A;B;
meet in C, and let A;B,, A;B; meet in C3. Then C;, C;, C3 are collinear.

Proof
A2
Ay '

.

B 1 B 2 B 3
Fig. 6.8

A projectivity is uniquely determined by three pairs of corresponding points.
So A; —B;, 1 = 1,2,3 determines a unique projectivity. The points C;, Co, C3
all lie on the Pappus line of this projectivity (Fig. 6.8). (]

Exercise 6.14

State the dual of Pappus’ theorem.
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6.8 Quadrilaterals

A quadrilateral is defined by four general points A, B, C, D in the projective
plane. The four points determine six lines which fall into three pairs of opposite
sides {AC, BD}, {AD, BC} and {AB, CD} which meet in three diagonal points
X, Y, Z (see Fig. 6.9).

Exercise 6.15

If the coordinates of A, B, C, D are [Ap,v], (A p,—v], [-Ap vl
[A, =, V], show that the three diagonal points are the vertices of the
triangle of reference.

There is no particular order to the points of a quadrilateral in the projective plane.

Four collinear points A, B, A’, B’ are said to be harmonic if (AB,A'B’)= —1.

Exercise 6.16

Show that distinct points A, B, A’, B’ are harmonic if and only if
(AB,A'B')=(BA,A'B’.)

g In Fig. 6.9 let AB meet XY in N. Then A, B, N, Z are harmonic.

Proof Let DC meet XY in T. Then (AB,NZ)=(DC,TZ) by perspectivity from
Y. But (DC,TZ)=(BA,NZ) by perspectivity from X. By the results of Exer-
cise 6.16 A, B, N, Z are harmonic. 0
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Exercise 6.17

If the coordinates of A, B, C, D are [\ u,v], [A\u,—v], [-Ap ],
[A, —p, V), find the coordinates of N and show that A, B, N, Z are har-
monic by direct calculation.

6.9 Projective Transformations

We have already met projectivities, that is maps from a line to a line which
preserve the only one-dimensional projective feature, the cross ratio. Let us now
consider transformations of the projective plane which preserve the essential
two-dimensional features. Let T:R® — R3 be an invertible linear transforma-
tion. Then T defines a transformation, denoted by [T, of the projective plane,
RP?, by the rule

[TY(X]) = [T(X)].

Such a transformation is called a projective transformation.

If T is defined by a matrix M then [T'] is defined by any non-zero multiple
of M. Because the linear transformation is invertible the determinant of M will
be non-zero.

An invertible linear transformation of R3 takes planes through the origin
(subspaces of dimension 2) to planes through the origin. It follows that the
corresponding projective transformation will take a line in the projective space
to another line. A projective transformation will also preserve incidence. That
is, it takes points on a line through two points into points on the line through
the corresponding points. As a consequence we say that properties of incidence
are projective invariants.

Exercise 6.18

Show that the line 2z+y—3z = 0is transformed into the line 5z —-5y+2 =
0 under the projective transformation with matrix

1 01
M=|1 13
-2 01

Exercise 6.19

Show that the projective transformation with matrix M takes the line
with dual coordinates A4 into the line with dual coordinates A(MT)~!.
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We now show that the cross ratio is an invariant of projective transformations.

g The cross ratio of four collinear points is unchanged by a projective transfor-
mation.

Proof Suppose that the four points are [A],[B],[C],[D] where C = pA +
gB, D =rA + sB. Let [P] - [PM] be a projective transformation. Then the
four collinear points are transformed to

[AM], [BM], [CM], [DM].

Since CM = pAM + ¢BM and DM = rAM + sBM the cross ratio is un-
changed. m}

Exercise 6.20

* Show that any continuous transformation of RP? which takes lines into
lines and preserves incidence is determined by a linear transformation of
R3 as above.

In fact the projective transformation is determined by what happens to four
general points, that is four points no three of which are collinear.

g There is a unique projective transformation taking four general points to
four other general points.

Proof Since a projective transformation is invertible these points might as
well be the vertices of the triangle of reference, X = [1,0,0}, Y =[0,1,0], Z =
[0,0,1] and the unit point U = [1,1,1]. Let the other four points be A= [A],
B= [B], C= [C], D= [D].

For arbitrary non-zero real numbers A, u, v, the matrix

AA
M= | uB
vC
defines a projective transformation [T'] taking X to A, Y to B, Z to C and U to

[A + uB + vC]. Since A, B, C form a basis of R® we can find unique A, p, v so
that D = AA + uB + vC and then [T] takes U to D. o

Exercise 6.21

Find the matrix (up to a non-zero multiple) of the projective transforma-
tion which takes [1,0,0] to [0,0,1], [0,1,0] to [0,1,1], [0,0,1] to [1,1,1]
and [1,1,1] to [3,2,4].
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6.10 Fixed Points and Eigenvectors

If A is a (real) eigenvector of the matrix M corresponding to an eigenvalue
A then AM = AA and so [4] is a fixed point of the corresponding projective
transformation and conversely. Since a 3 x 3 real matrix always has at least one
real eigenvalue every projective transformation has at least one fixed point.

Example 6.3

Let us find the fixed points of the projective transformation corresponding

to the matrix 0

21
01 -1
0 2 4

The eigenvalues are given by the equation

A-2 -1 0
0 -1 1 |=0-2%01-3)=0.
0 -2 -4

So there are two eigenvalues 2 (twice) and 3. The corresponding eigenvectors
are (up to a non-zero multiple) (0,2, 1) and (0,1, 1). Hence the fixed points of
the projective transformation are [0, 2,1] and [0, 1, 1]. Notice that the linez =0
is invariant in the sense that any point with z-coordinate zero is transformed
into another point with z-coordinate zero.

Exercise 6.22

Find the fixed points of the projective transformation corresponding to

the matrix
2 0 0
1 1 2
0 -1 4

6.11 Pappus’ Theorem

We will now use the above result to prove the famous theorem of Pappus using
homogeneous coordinates. Earlier, the proof used the properties of projectiv-
ities. Because this proof uses coordinates the dependence of the proof on the
commutativity of the real numbers will be made clear.
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g Let Ay, Az, A; and B,, B3, B3 be two sets of collinear points (lying on distinct
lines). Let A;B3, A3B2 meet in C;; let AzB;, A;B3z meet in Cy; and let A;B;,
A>B; meet in C3. Then C;, Cz, C3 are collinear.

Proof By the above discussion we can apply a projective transformation to
simplify the algebra. This will not effect the essential features of the situation.
In essence we are choosing the triangle of reference and we take A;AzA3 as the
line y = 0 and B; B3B3 as the line z = 0. Let

Al = [pioi 1]: A2 = [Qa()’ 1]7 A3 = [T, 07 1]1
B, = [l, 1,0], Bg = [m,l,O], B3 = [n, 1,0].

Then the line A;B3 has dual coordinates

qg 0 1y
n 1 0 - [ 1’n7 q]
and the line A3B2 has dual coordinates
r 0 1
m 1 0l= [-1,m,r].

These lines meet at C; which therefore has coordinates

-1 n ¢
'~1 m = [nr — gm,r — q,n — m).
Similarly
C2 = [lp—rn,p— T,l —n]) C3 = [mq_'pl7q_p7m - l]
Since
nr—qm r—¢q n-—m
Ip—-m p—r l-ni=0
mg—pl g—p m-—I
(the rows sum to zero), it follows that C;, C;, C3 are collinear. 0

The alert reader will have noted that the vanishing of the determinant which
proves the collinearity of C;, C2, C3 depends on the fact that nr = rn etc. With more
general non-commuting algebraic systems such as the quaternions, Pappus’ theorem
may fail to hold.
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6.12 Perspective Drawing: Tricks of the Trade

Before the Renaissance, most paintings were for the use of the church and
reflected its priorities. So a saint would be depicted larger than a mere mor-
tal irrespective of their actual positions in space. With the rise of rich and
powerful patrons whose interests were more secular a greater realistic represen-
tation was necessary. Many artists and mathematicians such as Albrecht Diirer
(1471-1528) in Germany and Leonardo da Vinci (1452-1519) in Italy applied
themselves to the problem of greater spatial reality in a painting or drawing.
The interest that these inquiries generated, fed back to mathematics and to
geometry in particular.

The task was to represent three-dimensional space onto a two dimensional
space by stereographic projection with the eye as projection point. Diirer had
a glass screen with a grid etched on it. The screen was placed between himself
and the subject matter so that its appearance on the grid could be transfered
to a similar grid on his work surface.

Of course in such a projection parallel lines may appear to meet at a van-
ishing point. The standard example is railway lines which we know are always a
constant distance apart. Nevertheless they appear to meet at a vanishing point
on the horizon.

The perspective view of a box shown in Fig. 6.10 is a typical example. The
horizontal parallel lines meet at two vanishing points on the horizon.

Vi V2
a »
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NN -~ /
< 77
N ~ -
N ~ s (44
A ~ I, 77
. ~ - 77
Ay A - 7
AN ~ ,’ s 7
N ~o - Vs
- /
NN ~ P ’
NN S Pid /
NN ~o - Pid I’
\\ \\ .~ - 25,
NN 7 7
AN} ‘7
N [
\ 7 y
N\
N ’
N /
N /

Fig. 6.10 A box in perspective

It must not be thought that paintings with “correct” perspective are necessar-
ily superior to the older type. Perspective was just another technique for the
painter to use. With the appearance of photography it was realised that the
exact representation of the physical world was not necessary for great art and
our views are now in some respects more in tune with medieval ideas.
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A Brick in the Wall:

Very often a regular repeating pattern needs to be represented. Obvious ex-
amples are telegraph poles, railway sleepers and bricks in a wall. In Figs. 6.11

By B

1 B> B;
VWiV v
[/} yf
[/} A,
0 Ay
Ao

Fig. 6.11 Bricklaying by the constant angle method

/

Fig. 6.12 The completed course

Fig. 6.13 Putting the diagonals in perspective
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and 6.12 all the diagonals of the bricks are represented as parallel. This means
that they make a constant angle § with the base line. This means that once the
first brick is drawn the positions of the next bricks are determined. Another
idea is to make the diagonals meet at a vanishing point V; (Fig. 6.13). Now
two bricks must be drawn to determine V5. The rest are determined.

Leon Battista Alberti (1404-1472) described a method for representing a
set of squares in a horizontal ground plane, for example a chess board or tiled
floor, in the vertical plane of a painting. The initial line AB is divided into
equal parts (Fig. 6.14). The sides of the squares are either horizontal or meet
at a vanishing point V2 on the horizon. The diagonals meet at another vanishing
point V; on the horizon. The method of determining the position of the squares
is clear from Fig. 6.14. To find the position of points in general we can use the

|4 horizon Va

setting out the tiles B the completed terrazzo

Fig. 6.14

fact that the cross ratio is invariant under a perspectivity. Here is a typical
application.

Example 6.4

On a straight road approaching traffic lights there are “slow down” signs, 400 m
and 200m from the traffic lights, and a warning sign 100m from the traffic
lights. A town planner makes a perspective drawing in which the “slow down”
signs are 3cm and 1cm from the traffic lights. Where should the warning sign
be placed on the drawing? Let the slow down signs be S and S’ and the warning
sign be at W. If T is the traffic lights then the cross ratio is

(S-W)S'-T) 300x200 3

(S-T)(S'~-W) 400x100 2
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If in the drawing the warning sign is placed = cm from traffic lights then this

is equal to
@ -=)(1)
31~1zx)
So 9(1 — =) = 2(3 ~ z) which when solved gives z = 3/7 cm.

Exercise 6.23

The Doge’s palace in Venice has two pillars and a statue in a line. They
are 4m, 3m, and 1metre respectively, from a wall. Leonardo has been
asked to make a perspective drawing. He places the pillars 3cm and 1cm
from the wall in the drawing. Where should the statue be placed in the
drawing?

6.13 The Fano Plane

We have previously discussed the possibility of using different algebraic objects
for coordinates. Here we illustrate using the integers modulo 2, Z, = {0,1}.
We can think of 0 as the collection of all even integers and 1 as the collection of
all odd integers and add and multiply accordingly. For example an even integer
plus an odd integer is odd so 0+ 1 = 1 but an even integer times an odd integer
isevenso 0 x 1 =0.

The Fano plane, Z,P?, is the projective plane defined by 3 homogeneous
Z, coordinates. So an element of the Fano plane is specified by a triple (z, y, 2)
where z,y, z are 0 or 1. Since (0,0, 0) is excluded Z,P? has seven points. By
duality there are seven lines and these are illustrated in Fig. 6.15.

The only possible conceptual difficulty might be the line z + y +2 = 0
passing through the points (0,1,1),(1,0,1),(1,1,0) and represented by a circle
in Fig. 6.15.

Exercise 6.24

What is the maximum number of points in Z;P?, no three being
collinear? How many (non-degenerate) triangles are there in the Fano
plane? How many (non-degenerate) quadrilaterals?
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(0,1,0)

A

(0,0,1) (1,0,1) (1,0,0)
Fig. 6.15 The Fano plane

Answers to Selected Questions in Chapter 6

6.1 4.

6.3

0 1 1
2 -1 0
So the equation of the line is z + 2y — 2z = 0 and the dual coordinates of
the line are [1,2, —2].

6.4

’ =[1,2,-2].

1 0 02 2 2 2 2
z[0¢ _0¢a0 —¢ a¢’_0]=[0¢)_0—¢71]’ 0#¢

1 ¢ ¢
If ¢ = 6 then the line has coordinates [#?,—26,1]. (This is the tangent
line of a parabola.)

6.7 Let P= [a,),0], A= [a1,0, az], B= [b1,0, b2], then the line through PA has
equation

T Yy =z
a; 0 ap|= —zab+yaza+ za;1b=0.
a b 0
It meets the line z = 0 at the point L= [0, a;1b, —a2a]. Similarly M is the
point given by M= [0, b;b, —b2a]. So the line AM has equation
x oy z
ai, O az | = —zazbyb+ yaib:a + za;b1b = 0.
0 blb —bga



6. Projective Geometry 209

Similarly the line BL has equation
—za1bob + yazbia + za1byb = 0.
They meet at the point

—a2b1b a1b2a alblb

—ajbsb azbja aybyb = [a1b1a, —a1b1b,a(a1bs + azb;)]

which lies on the line
alblz = (alb2 + azbl)z.

This line clearly passes through [0, 1,0].

6.8 (8,1,9) = 5(2,1,3) — 2(1,2,3) and (4,-1,3) = 3(2,1,3) — 2(1,2,3). So
the cross ratio is 3/5.

6.10 Use the angle formula given in Chapter 4 and the fact that, for example,
B - C = |B||C| cos ¢ where ¢ is the angle ZBOC.

6.11 The dual coordinates are
[1,1,2], [3,-1,4], [5,1,8], [2,0,3].

Since (5,1,8) = 2(1,1,2) +(3,—1,4) and (2,0,3) = 3(1,1,2) + 5(3,~1,4)
the lines are concurrent with cross ratio ;—ﬁ% =1/2.

6.12 Let the points of intersection of the lines {AB’, BA'}, {AC’, CA’} and
{AX’, XA’} be L, M, N and let A” be the point of intersection of the
line containing L, M, N with the line AA’. Perspective from A’ gives
(AB,CX)=(A"L,MN) and perspective from A gives (A"L,MN)=(A'B'C’'X’).

6.13 Let the point common to a and b be P. Then by construction the Pappus
line passes through P since it is self-corresponding. Otherwise suppose as
a point of a the point P corresponds to L and as a point of b it corresponds
to M. Then the Pappus line is LM.

6.14 Let a,, a3, az and by, bz, bz be two sets of concurrent lines. Let the points
of intersection asbg, agbs define the line c;. Define c; and c3 similarly.
Then c;, ¢z, ¢3 all pass through a common point.

6.15 The dual coordinates of the line AC are [0, —v, ] and the dual coordinates
of the line BD are [0, v, u]. These lines meet in the point X = [1,0,0]. A
similar calculation proves that for the other diagonal points Y = [0, 1, 0]
and Z =[0,0,1].

6.16 If (AB,A'B’)= c then (BA,A'B’)= 1/c. So ¢ = 1. Since c # 1 if the points
are distinct we must have (AB,A'B’)= —1.
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6.17 The point N is where the line z = 0 meets the line AB which has dual
coordinates [—pu,A,0]. It follows that N= [A, 4,0]. So N= [A + B] and
Z=[A — B]. Harmony is now clear.

6.18 The point with coordinates [z, y, 2] is transformed into [a,b,c] = [z + y —
2z,y, + 3y + z] by the matrix. If we write [z,y, 2] in terms of [a,b, c] we
get [z,y,2] = [a — Tb+ 2¢,3b,c — a — 2b]/3 = [a — Tb + 2¢,3b,c — a — 2b).
So 2z + y — 3z = 0 becomes 5a — 5b + ¢ = 0 after simplification.

6.19 Suppose Y = XM. Then X = YM™L. The line AXT = 0 with dual
coordinates A becomes A(MT)~1Y = 0 with dual coordinates A(M7)~1.
To see how this compares with the previous question note that

1 0 -1
M1'=|-7 3 -2]/3.
2 0 1

So (2,1,-3) = (2,1,-3)(MT)~! = (5,-5,1)/3.

6.21 Since
(31 274) = 2(0a 07 1) - (0? 1) 1) + 3(17 11 1)

0 0 2
0 -1 -1
3 3 3

defines the transformation which does the job.

the matrix

6.22 Note that the matrix is the transpose of the previous matrix and so has
the same eigenvalues 2 and 3. The corresponding eigenvectors are (up to
a non-zero muitiple) (1,0,0) and (1,1, -2).

6.23 Suppose in the drawing he places the statue z cm from the wall. The
important thing to remember is that the cross ratio is preserved so

4-1 3 33 9 3-z 1

giving = = 3/19.
6.24 Four.

6.25 The number of triangles is (g) = 35. Of these, 7 lie in a line. So the number
of non-degenerate triangles is 28. The are (}) = 35 quadrilaterals. The
degenerate ones consist of three points in a line and another point. There
are 7 x (7—3) = 28 of these. So there are 7 non-degenerate quadrilaterals.
Alternatively: a non-degenerate quadrilateral is the complement of a line

and there are seven of these.



