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We are studying the semiclassical limit of the-1 dimensional integrable nonlin-

ear Schrdinger equation with defocusing cubic nonlinearity on the half line. Our
analysis relies on the recent theory of Folasl., which reduces boundary value
problems for soliton equations to Riemann—Hilbert factorization problems. We
employ the method of nonlinear steepest descent to asymptotically deform the
given Riemann—Hilbert problem to an explicilty solvable one.2@03 American
Institute of Physics.[DOI: 10.1063/1.1624091

. AN INITIAL-BOUNDARY VALUE PROBLEM FOR THE NONLINEAR SCHRO DINGER
EQUATION

In recent years there has been a series of results by Fokas and othieosiratary value
problemsfor soliton equationgsee Ref. 1 for a comprehensive revjehe Fokas method goes
beyond existence and uniqueness. In fact, it reduces such problems to Riemann—Hilbert factor-
ization problems in the complex plane, thus generalizing the existing theory which reditieés
value problemgo Riemann—Hilbert problems via the method of inverse scattering. One of the
main advantages of the Riemann-Hilbert formulation is that one can use recent powerful results on
the asymptotic behavior of solutions to these probldass some parameter goes to infinitg
derive asymptotics for the solution of the associated soliton equation. Such methods were pio-
neered by Its and made rigorous and systematic by Deift and Zhou; the Deift—Zhou method is
known as “nolinear steepest descent” in analogy with the linear steepest descent method which is
applicable to asymptotic problems for Fourier-type integtsé®, e.g., Ref.)2A generalization of
the steepest descent method developed in Ref. 3 is able to give rigorous results for the so-called
“semiclassical” or “zero dispersion” limit of the solution of the Cauchy problem fot 1 di-
mensional integrable evolution equations, in the case where the Lax operator is self-adjoint. The
method has been further extended in Ref. 4 for the “non-self-adjoint” case, where in fact a
“steepest descent” contour is, for the first time, introduced and its characterization and computa-
tion made systematic.

In this paper we consider the most basic example, that is the defocusing nonlineatiSmpiro
(NLS) equation.(In a recent papérwe dealt with the simple problem of so-called linearizable
data, for both the defocusing NLS and Korteweg—de Vries equatidvesmake use of the recent
results of Ref. 6 in order to study the so-called “semiclassical” limit of a particular initial-
boundary value problem. More precisely we consider thelldimensional, integrable, defocus-
ing, nonlinear Schidinger equation on the half-line

ihu(X,t) + h2uy,(x,t) — 2|u(x,t)|2u(x,t) =0,

u(x,0)=0, u(0t)="fq(t), (1a)

wheref, is assumed to be in the Schwartz space of the positive real line. We also assume that all
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derivatives off4(t) vanish att=0. The special restriction of zero initial data is not essential but
makes the computations and proofs somewhat easier. It is Knthan the above problem is
well-posed.

Our analysis is based on the results of Ref. 6, which considera fhréori overdetermined
problem:

ihu(X,t) + h2uy,(x,t) — 2|u(x,t)|2u(x,t) =0,
u(x,0)=0, u(ot)="fy(t), U, (0)="F4(1), (1b)
x=0, t=0.

However, following Ref. 6, we will eventually impose a compatibility conditidhe so-called
“global relation”) on the daté&fy,f; which will ensure the existend@nd uniqueness under such
a condition) of a solution to(1b). It is also worthwhile notingdsee Ref. Bthat given datai(x,0)
and u(0;t) only, the global relation implicitly selects a functidn(t) =u,(0}t) which comple-
ments the daté, and the initial data, and which will then ensure the existence of a soluti) to
and the validity of the Riemann—Hilbert formulatidgeee Theorem 1 below

For the convenience of the reader we include an Appendix at the end of this paper containing
a statement of some of the main results of Ref. 6.

It is well known that the above-mentioned equation admits a “Lax-pair” formulation. It arises
as the compatibility condition for the equatiobg =0 andBu =0 where the operatois, B are
given by

dx—ik iu
_( —iu g, t+ik)’

ihg,+ 4ik?+i|ul? —2ku—iut)
| —2ku+in ihg,—i|u|?/’

Here the bar denotes complex conjugatiois the spectral variable, and=u(x,t) is the solution
of (1a).

The traditional method of solving initial value problems for soliton equations that admit a
similar Lax-pair formulation is to focus on tHe operator and apply the theory of scattering and
inverse scattering to that very operator. On the other hand, one of the main ideas of the Fokas
method is that for initial-boundary value problems the two operdtoend B should be on an
equal footing. The scattering transform should be applied to both operators simultaneously, while
a global relation has to be imposed on the data to ensure compatibility.

II. THE RIEMANN-HILBERT PROBLEM

As shown in Ref. 6, probler(lla) can be reduced to the following Riemann—Hilbert problem,
under the special assumption that the so-called global relation feddselatior(3.18 of Ref. 6;
see also relatiori5) below). One way to look at the global relation is as a way of selecting a
solution of problem(1b). In fact it is known (see Ref. ¥, using methods unrelated to inverse
scattering theory, thdtlb) has a unique solution. On the other hand, it has been shown in Ref. 6
that given dataf, in (1b), there exists a functiorfi,(t) such that the problenila) admits a
solution, which furthermore can be explicitly characterized via inverse scattering and a particular
Riemann—Hilbert factorization problem. Indeed, Yetbe the contouRUi R with the following
orientation:

(i) the real axis is oriented from left to right,
(i)  the positive imaginary axis is oriented from infinity toward zero,
(i) the negative imaginary axis is oriented from infinity toward zero.
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We use the following convention: th¢ —side of an oriented contour is always to its left,
according to the given orientation.

Letting M, andM _ denote the limits oM on X from left and right, respectively, we define
the Riemann—Hilbert factorization problem

M+(X!t1k): M_(X,t,k)J(X,t,k),
where
Jx,t,k)=J3;1,  keR™,
it keiR™,
1 . 2
J3 7, keiR™,
J,=333,1,,  keR,

with

_( 1 0)
‘Jl_ F(k)eZi@) 1/’

_( 1 _,y(k)e—2i®>
lFwere 1y )

_(1 _F(Be—2i®>
3 0 1 )

0
®(X!t1k): HI

where
0=kx+ 2Kk2t.

The functionsy,I" are defined in terms of the spectral functions of the proljle®e Appendix
A, or Ref. 6,(2.28, (2.25], with important analyticity propertigsee Appendix A, 0(2.21) and
(2.22 of Ref. 6]. In particular note that

1

— , 3
A(K)

a(k)( a(k):—b(k))
B(K)

(k)=

wherea, b are the spectral functions for tlxeproblem andA, B are the spectral functions for the
t problem. The functions, b are analytic and bounded in the upper half-plane, whileB are
analytic and bounded in the first and third quagra_nts_ol(tp(ane. For our special choice of zero
initial data,b=0, a=1. Hencey=0 andI'(k) = B(k)/A(k). Note thata, b, A, B, T" all depend
onh.

The solution of(1a) can be recovered from the solution @) as follows:

u(x,t)=2i hlim,_..(kM?(x,t,k)), (4

where the index 12 here denotes the)-entry of a matrix.
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The following “global relation”(see Appendix A for motivation and derivatiois imposed on
the scattering data:

a(k)B(k) —b(K)A(k) =e**Te(k),

wherec(k) is analytic and bounded for Ik>0, andc(k) =0O(1/k) ask—o. HereT is the time
up to which we solve the initial boundary value problem for NLS. In genaraB are functions
of T.

If u,(0;t) is denoted byf,(t) then there is a complicated relation between the fatndf;
the global relation is the expression of this in the spectral space.

In our particular casgproblem(la)] T=<« and the global relation becomes

a(k)B(k) —b(k)A(k)=0, ©)

for argk) €[0,7/2]. For the special choice of zero initial data, sitce0, a=1, one ha88=0 for
argk) [0,7/2]. In particular,I'(0)=0.

The following is proved in Sec. V of Ref. 6.

Theorem 1: Given a Schwartz functiofyy, there exists a uniquiy, also Schwartz, such that
the above-given global relation is satisfied, and such that all derivativég, bf vanish at 0(so
thatf,,f, are compatible with NLS at=0,t=0).

Using the theory developed in Ref. 6, we will then consider(8e=mingly overdetermined
problem(1b) which in fact does have a unique solution, and which of course is the solution of
problem(1a).

We note that in both the negative half-line and the positive half-line the jump matrix is of the
same form. For positivé,

(1—|3/(|<)|2 7(k)62i®)
_V(k)eZi(-) 1 !

while for negativek,

(Hy(k)—ﬂz (y(k)—ﬂe”@)
— (7(k)—T)e?® 1 '

In fact, let

— bA—aB
r(k)=yk)—T'(k)= —, k<0,
aA—bB

L)
r(k)—y—%, k=0.

Then, for all nonzero re&,

- 1-r(k)|?> r(ke 2®
| =Tlke?® 1

In the special case of zero initial data, the jump reduces to the identity for pokjtwile for
negativek, r= —B/A, so
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2
1— B __Be72i®
A A
= _ . (6)
EeZi(ﬂ 1
A

[ll. DIRECT SCATTERING AS h—0

It is important to have some information about the “spectral” coeffiaeat— B/A, for real
values ofk.

Theorem 2: For k<0, the spectral function(k,h) has the following asymptotic expression.
There exist functions,R, of k alone, such that

2iR0(k)) -

r(k,h)~T(k)exp( h

as h—0, whereT(k) is analytic and bounded ak—o°, and Ry(k) is analytic. Whenk
eiR", RefRy)=0. Also [T|<1.
Proof: The representatio¥) follows from the standard Wentzel-Kramers—BrilloWiWKB)
theory. IndeedA, B admit representations of the forstk) exp(R(k)/h). Formula(7) thus follows.
The analyticity ofF, R, follows from the analyticity ofA, B. The fact that| A(k)|?>—|B(k)|?
=1 (for realk) implies [F|<1.
More detailed information about can be recovered after a detailed analysis of the spectral
problem for the second Lax operator. An easy calculation shows that the associated spectral
problem reduces to a WKB problem of the type

h2yn=S(t,k)y,

whereS(t,k) is real. The spectral coefficiends B can then be asymptotically estimated along the
lines of Ref. 8(Sec. 10.6. Eventually one is able to show the following.
Theorem 3: Let

5 —
fa(t) = gl Reif () fo(t) ]+ [fo(D)]*~ [f2(D2.

Let —f=min{f,(t)} over the interva[0,]. Without loss of generality, we assumef<0. [Oth-
erwise the analysis becomes trivial; the coefficgit,h) is everywhere small.On the real line,
the following holds.

For — f<k<0,

r(k,h)~ _ ie[ZiU(k)]/h,

whereo is smooth in (- f,0) and takes real values. Algocan be extended analytically in a small
neighborhood of the segment-,0).

For values ofk away from the interval { f,0), r(k,h) is either zero or uniformly expo-
nentially small inh.

Furthermore one has an asymptotic formula fer|i(k)|?, — f<k<O0. Indeed,

1—|r(k)|2~ex;{ —2;(k)>1

where 7(k) is positive and can be extended analytically in a small neighborhood- 6fQ).
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Remark:An explicit integral formula foro and 7 in terms of the data can only be found
assumingu,= f, is known. In general, even though the existencé 0fs guaranteedgiven f;)
via the global relationf, is not effectively computable.

However, in the special case of so-called “linearizable data,and o are indeed effectively
computablesee Ref. &

Proof of Theorem 3We simply note that the turning curve for the t-spectral problem is given

by
S(t,k)=4k*+k Re(if 1(1)fo(t)) + | Fo(1)]*— | f1(1)|?=0.

Indeed consider the t-problem

ihg,+4ik?+i|fo|? —2kfo—ify
By= - . . =0.
y —2kfo+if, iha,—i|fo|? Y
Applying the operator
ihg—i|fo|? 2kfo+ify

| —2kfo—if, iha+4ik3+ilfgl?

we end up, up to errors of ord€¥(h), with
hzyn:S(t,k)y, (8)

with S(t,k) as above.

Note here that redt for which there exist ,-solutionsy of By=0, area priori excluded(see
Ref. 6, p.16. So we do not need to concern ourselves with the possibility ofkréat which the
solutions to(8) are inL,. We can then follow the WKB analysis of the semiclassical Sdimger
operator without essential chandgesy., Ref. 8, Sec. 10.6We can thus show that at &lsuch that
S(t,k) =k for somet, the reflection and transmission coefficients are given by the formulas above,
while otherwiser (k,h) is exponentially smal{or zerg. A short calculation shows th&(t,k) as
a function ofk has only one local minimum, dt(t), as defined in the statement of Theorem 3.
The result follows immediately.

IV. REDUCING TO A PROBLEM ON THE REAL LINE

We next consider two Riemann—Hilbert problems with sole jumps given by
;Y keiR™,
3t keiRT,

respectively.
We wantU to be a function analytic in the complex plane except the upper imaginary axis,
with normalization lim_, ., U(x,t,k)=1. The jump is prescribed by

U, (k) =U_(x,t,kJI; 1(x,t,k), keiR™,

with
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_( 1 0)
I riere 1)
©)
0
@(X,t,k)zﬁ,

where
0=kx+ 2k?t.

(The symbolU stands for “upper” since the jump is on the upper half-plane. We will immediately
see however thdtl is a lower triangular matrix.

Similarly, we wantL to be a function analytic in the complex plane except the lower imagi-
nary axis, with normalization lign,.L(x,t,K)=1. The jump is prescribed by

Lotk =L_(x,t,k)Iz3*(x,t,k), keiR™, (10)
with
B 1 _F(?)e—zm)
*lo 1 '
(The symbolL stands for “lower” since the jump is on the upper half-plane. Howevds an
upper triangular matrix.

The two Riemann—Hilbert problems above can be easily solved explicitly, since the jumps are
triangular matrices. Indeed, direct calculations show that

1 0
U(x,t,k)= uxtk) 1) 11
where
1 I‘(S)eZi@)(X,t,S)dS
R T S
satisifies(9). Similarly,
. 1 1(xtk) )
L = 1
x.tk)=| 1) (12)
where
1 —T(s)e 20kxts)gg
l(x,t,k)==— ®
2i iR~ s—k

satisfieq10). The direction of the integral contours is as prescribed in Sec. Il, i.e., from infinity to
zero.

Note thatu(k)=—I (k). Note also that the integrals if11) and (12) are not singular ak
=0, asI'(0)=0.

We next show that the Riemann—Hilbert problé€®) is equivalent to a problem on the real
line. Indeed, let
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N(x,t,k)=M(x,t,k) U 1(x,t,k), Imk>0,

(13
N(x,t,k)=M(x,t,k)L " 1(x,t,k),  Imk<O.

ThenN(x,t,k) is analytic inC\R, with lim,_,..N(x,t,k)=1, and acros® the jump is given by
N, (X, t,K)=N_(x,t,K)L(x,t,k)I(x,t,k)U " L(x,t,k). (14
In fact, the new jump is given by

1 1-|I(k)+r(k)e 2®? I(k)+r(k)e 2©
YT —1(k)—T(k)e?® 1 : (19

Note here that while (k) depends only ok but not onx,t,l (k) depends orx,t,h via © by
(12).

We have thus reduced the Riemann—Hilbert prob{gjrto the problem(15) with only jump
on the real line.

V. THE g-FUNCTION

We next show how the Riemann—Hilbert problem can be “deformed” to a problem that is
explicitly solvable. We are essentially following the ideas of Refs@ also Ref. 4

The first idea involves the so-called “g-function.” We introduce a scalar funaige which
is to be analytic inC\R and decay likeO(1/k) at infinity. This function will be uniquely specified
eventually.

Let

O(k):N(k)exr{lg(E)%).

If N satisfiesN,=N_J, k<0, with J given by(6), thenO solves a Riemann—Hilbert problem
with jump matrixvg, say, that is

0. (x,,k)=0_(x,t,k)vo(x,t,k), (16)
B ? B
elia 90| 1 _ || 4 220 |__e—2i(~))e[—i(g++9)]/h
A A
Uo(k): — y k<0,
(_T_ B g0 | giita, +oym (g —ig )/
A
e[i(g+—gf)]/h(1_|||2) [(k)el~i(g++g-)Ih
vol(k)= “Tikyelitesra)yh  gl=(ig.~ig )V ) k>0,
limy_..O(K)=1.

Hereg, ,g_ denote the limits ofjy from above and below the negative real axis, respectively.
Note that problem(16) is exactly (not just asymptotically equivalent to the original
Riemann—Hilbert problent2). Formula(4) has to be replaced by

u(x,t)=2i hlim,_..(kO¥(x,t,k))+ 24,3, (17

whereg is the residue ofj at infinity.
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VI. REDUCTION TO A SOLVABLE RIEMANN-HILBERT PROBLEM

Our first approximation involves getting rid of the functidna appearing in the jumps. The
reason is simple. By formuladl) and(12) u,l can be shown to be at wor€i(h) by use of the
Laplace method for asymptotic evaluation of integrals, since the piias®f Theorem 2 has
negative or zero real part. This suggests thzdn be eventually erased from formyl®b). In fact,
we shall see right away thatcan be neglected, not only because it is small, but also because of
the precise factorization that follows.

Indeed, an easy calculation shows that the jurgpof (16) can be written as

eli(@-~9)Vh 1 |B/A|2) _Ee—2i®e[—i(g++g>]/h

(1 |82ig+/h)
Vo= _
0 1 _ieﬂ@e[i(gﬁrgf)]/h el—(igy—ig_)Jh
A
1 0
N , k<0, (18
_|e72|g,/h 1
1 |eZig+/h 1 0
UO:(O 1 ) _I_e*Zig,/h 1] k>0.

Sinceg takes real values oR [this will be clear later, see formul@8)] and sincd =0O(h), it
follows that the triangular factors if18) can be taken as the identity plus a resulting error of order
at worstO(h) in formula (18).

We have asymptotically reduced the Riemann—Hilbert prob{&éf to a new Riemann—
Hilbert problem for a matrix functio®(z), say.

If Q is defined by

Q. (x1,k)=Q_(x,t,k)va(x,t,k),

eli@—90Vh(1—|B/AJ2) — ;ezi®e[i<g++g>]/h

vo(k=| — , k<0, (19
B e2i0gli. +an el (g4 ~ig_))/h
A

lim . Q(k) =1,
thenQ is asymptotically equivalent t® in a neighborhood ofe. In particular,
u(x,t)~2ih lim,_ .(kO¥(x,t,k)) +24,3. (20

The matrixvq can be written as
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(e[i(g+g_)]/h(1_|r|2) r(k)eziee[i(g++g_)]lh)
UQ:

_ﬁk)eZi@)e[i(gﬁgf)]/h el—(ig4—ig_)l/h
gli(g+—9g-)—271/h —jel—2i6-i(g4+g-)—-2iclh
:( —jel2io+i(gy +g-)+2ial/h el (g —ig_)/h )
if —f<k<O, (21
gli(gr—g-)]h 0

0 el ~(ig. ~ig )l

) , otherwise.

We remind the reader that the functiomg where introduced in the statement of Theorem 3.
At this point it becomes obvious that we should also impose

g,—g_-=0, k>0, or k<—f.

Sog is to be analytic inC\[ — f,0].
Let

H=-g,—9_-—260—20.

In the spirit of Ref. 3, we seek to reduog to a jump of one of the three following types:

0 —jelH/n 0 —jelH/h 1 —jgit/n
—je-iH/M 1 ’ —je-iH/M 0 ’ —je-iH/h 0 :
(22)

The motivation is the following. We expect th@?2) will be deformable to a RH problem that can

be explicitly solvable in terms of finite genus theta functions. Such a problem will have a “finite
gap” structure. This means that the real line will be divided into a finite number of subintervals. In
some of them the jump matrix has to look like

0 _ieiH/h
_ iefiH/h 0 )

and in others it has to be the identity. We know howefterough “lens”-type arguments, see
Appendix B that matrices of the first or third form i{22) can be reduced to the identity. Hence
the ansatZ22).

To arrive from(21) to (22) we impose some seemingly artificial conditions on the functions
g,H. For any givenx,t, we will consider finite sequences of real numberd<k;<k,<k;
<ks=<-=<Kyg;1<Kogio<1. We call the G+1 intervals I;=[ky,k>],... lgs1
=[kog+1:Koc+2] the “bands.” Both the integeG and the real numbeis ,j=1,...,25+2 are
to be eventually determined for eaglt.

We make the ansatz that for each the interval[ — f,0] can be subdivided into intervals by
suchk;, such that on each of the arising intervals one of the three conditions holds:

—2it=0g,—Q_ and H'<O0,
or
—-2i7<g,—9g_<0, and H'=0, (23
or

g,—g_ =0, and H’'>0.
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H'’ denotes the derivative &f with respect tk. In particular, the intervals whetd’ =0 are
to be the bands;, while on the intervals of which—f,0[\U; consists, either the first or the third
condition has to hold.

We will eventually see that conditior{23) amount to a scalar Riemann—Hlilbert problem that
can be solved explicitly, plus a set of algebraic conditions on the end gqimtsfining the gap
structure, plus a set of inequalities which essentially pick up the appropriate numkes. of

Now differentiating (with respect tok) the scalar Riemann—Hilbert problem given by the
equalities in(23) and solving forg’ leads to

20" (n)—26"(p) du —2i7'(pn) dup
’ — 1/2 —
g'(k)=(p(k)) (Ju.jm(m)i@w—k) 2wi+f<—f,o>\un<pw>>i (u=k) 2|

where
p(k)=1II GH(k Koj—1)(K—Ky;j). (24

We have imposed the conditiar(k)=0O(k '), as k—o. Easy calculations then show thgit
has to satisfy the moment conditions

f —;Q—H(k)kko —E_'T(k)k'dk=o (25)
o (p(k))Y (~t.onut; (P( k)Y '

[=0,1,2...,G.

Also, integratingg” aroundl; and requiringH’ <0, we obtain

fl (9, — 0 )dN=—2i(7(ky_ 1) —7(Ky)), j=1,...G+1. (26)
i

Conditions(25) and(26) form a set of Z3+2 equations for &+ 2 unknowns. They enable
us to solve fork; .

At this point, we note thaH is smooth in[ —f,0]. We also note that it admits analytic
continuations inpossibly small lens-like domains of the complex plane, not including the points
K.

J In fact, conditions(25) and (26) together with the inequalities i(23) reduce to the Euler—
Lagrange conditions of a variational problem. This is virtually the same variational problem
introduced by Lax and Levermore and the existence and uniqueness of its solution is guaranteed
by the theory of variational problems of logarithmic potentigse Ref. 9 for a discussiprSince
a complete written proof has not appeared anywhere so far, we will simply state a hypothesis.

Hypothesis:Assume that the dath, are real analytic and rapidly decayitgay Schwartz
Then for eaclx,t there is a finite non-negative integ@rfor which both equalities and inequalities
in (23) have a solution. In other words, the “finite genus ansatz” can be eventually justified.

Once the existence of an appropriate “g-function” is guaranteed, it is straightforward to
reduce our Riemann—Hilbert problem to its final form.

At the end of this procedure, and because of conditi@8s the jump contour consists of the
bandsl;,j=1,....G+1 and on each band, the jump matrix is given by

0 _ieiH/h
W.: . o
] —ie iH/h 0

FurthermoreH is constant on each band. We actually have
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0 —jeity/n

Wi=| _e-iggm 0 , (27)

where the(); are real constants.

The ; can be computed explicitly. But first, let us note that the Riemann—Hilbert problem
with jumps along the intervallg given by(27) can be explicitly solved in terms of theta functions.
To appropriately define those functions we first need to introduce an underlying Riemann surface,
together with some associated holomorphic differentials.

Let X be the two-sheeted Riemann surface of geBusssociated withg(k))*2, obtained by
adjoining two copies of the slit plan@U,l,. On the “top” sheet p(k))**~k®"* and on the
“pbottom” sheet (p(k))*?>~ —k®* 1. The branch points of the surface will be the end points of the
“bands,” that is,kq, . .. K,g:2. The homology cycles are defined in a standard way as follows.
The cyclesAy lie on the top sheet and encircle sllis. The cyclesB, pass from the top sheet
through the sliti; to the bottom sheet and back again throuigh

The basisw= (w4, ...,0g) of holomorphic differentials o is determined by the normal-
ization

f wj=5ij ,lgi, J$G
Aj
The Riemann-matrix of periods is
T:(Tij):(j (U]>
Bi 1<i,j<G

By the Riemann bilinear relations, is symmetric and 7 is negative definite. We can thus
define the associated theta function

05(S) =3 mezcexp2mi(m,s)+mi(m,7m)),  seCC,

where(.,.) is the real scalar product. Note th& is an even function.
Now, solving the scalar Riemann—Hilbert fgr(not its derivative we get

g<k>=<p(k>>l’2(f

20(#)—20(M)—de_ﬂf —2i7(n)  du
o (P PAr—k) 27 o,

P P k) 2t ) 28

Applying the condition thag(k)=0(k ), as k— once more, we get the conditions

fu|j(20(k)_20(k)_ﬂj)w'+j

(—f,00U

(—2i7(k))w,=0,
!

=1,2,...,G.

Recalling the definition of the normalized differentiadg, we immediately get the following:

Q,=JUIJ(20(k)—20(k))w,+J o

(=2i7(k)w,
ul;

1=1,2,...,G. (29

We also define the following function:
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HG+1 k_kZi 1/4

J(k) =T K—Ky 1

where is meant to be analytic off the union of the “gaps,” i.e., the intervals between the bands,
and (k)~1, ask—o. The function{ has the important property thgt- ! hasG+1 roots
(gf)f‘jll, lying in the bandd;, one root in each band. Note also tifat=i{_ across the gaps.

We next define the “Abel map” integral, fdt on the top sheet of the Riemann surfacel et

where the integral is taken along any path on the top sheet. Note that it is well-defined #®dulo
Also define the constant vector

whereK is the vector of Riemann constants &gz) denotes the preimage of a poir# X in the
“bottom” sheet. We can now state the following theorem.
Theorem 4: The functionQ defined by problen(19) is asymptotically equivalent, d&s— 0, to

. Oc(u(e)+d) O(—u(e>)+d)
diag Oa , 00
ﬁg(u(w)+m+d HG(—u(oc)vLm—d)
o0+ =
grgr el M T g e R S i N T M
2 fa(u(k)+d) € 2i fa(u(k)—d)
w0+ 2 |
T g_{,l Oc _U(k)+ m‘Fd §+§,1 Oc _U(k)+ m_d
€ —2i fa(—u(k)+d) 2 fa(—u(k)+d)

(30

where@g=(Q4,...,Qc)", the (; being given by(29). The asymptotics is uniform in compact
subsets of the Riemann sphere with the bandieleted.

The proof consists of a straightforward check of the jump relations. The important fact is that
(because of our choice af) the zeros off =/~ exactly cancel the poles of the theta function
quotients.

The semiclassical asymptotics for the solutiontd) follows from (30) and (4).

Theorem 5: The asymptotics fou(x,t,h), the solution of(1a), ash—0, is given by

O(u() +d)Og(u(=»)+0Og/(2mh)—d)
Oc(u(0) —d)Og(u(*) +Og/(27h)+d)

u(x,t,h)~[ 32 %k Je( "o+ /M. (3D)

Formula(31) expresses a slowly modulated wave.

VII. CONCLUSION

Since we have been able to reduce our Riemann—Hilbert problem to one that arises in the
full-line problem, the results of Refs. 10, 11, and 3 on the phenomenology of the solutton as
—0 apply.

Semiclassically, the half-plangt=0 can be divided in two regions. In the fitssmooth”)
region the strong semiclassical limit exists and satisfies the formallly limiting Euler system. In the
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second(“turbulent”) region fast oscillations appear that can be described in terms of slowly
modulating finite-gap solutions. Weak limits of an infinite number of densities including
lul?, ih(uuy—uyu) exist.

We also note that the Whitham equations theory is still relevant. The fundtjérg) are in
fact the Riemann invariants of the Whitham equations. The equations themselves can be derived
by differentiating(25) and (26) (see, e.g., Ref.)4

Let us also note that, even though the assumption that the initial data are equal to zero makes
the analysis somewhat easier, it is not essential. In particular the above qualitative discussion of
the semiclassical limit is still valid.

Finally, let us speculate on the long time asymptotics of the semiclassical limit.

There are two ways of computing the long time semiclassical limit of the defocusing NLS on
the full line (see Ref. 12 or 13 One is to use the existing theory for times of ordgas in Ref.
11) and take the limit—co.

Alternatively, one should in principle be able to look at the long time behavior of the problem
with fixed e andthentake e—0. This is by no means obviouwspriori, but it turns out that this
idea gives the right results. See, for example, Ref. 12, where the author has computed the long
time semiclassical limit of the defocusing NLS on the full line.

On the half-line, it is already known what the long time of the problem with fixéxl As in
the full-line case, any initial data degenerate into a sequence of finitely many separated solitons
(see Refs. 14 and)6

It then should follow, in exact analogy with the full line ca€ehat the long time asymptotics
of the semiclassical limit in the half line case can be described by a sequence of s@tittres
turbulent regioh The number of solitons is finite but increasing liRé1/e) ase— 0. Their width
is O(€) and they are separated by a distance of ofdgst). In the smooth region, the solution
simply dies out.
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APPENDIX A: THE SCATTERING DATA FOR THE PROBLEM ON THE HALF LINE

In this appendix we quote freely from the paper of Fokas, Its and 8Refy 6. We introduce
the quantitie®,b,A,B referred to in Sec. Il and we state the analytic properties of these quantities.
We consider the NLS equation

iug+ Uy, — 2|ul?u=0. (A1)

Here we have sdi=1. For general positivl one can reduce Edla to Eq. (Al) through the
obvious rescalingg—x/h, t—t/h. Equation(Al) admits the Lax pair

pxtiklog, u]=Q(X,t) u,
Iu’t+ 2ik2[03,,u]=é(x,t,k),u,,
whereo;=diag(1-1), and

0 u(x,t)

U(X,t) 0 )1 6(X't’k)ZZI(Q_iQx(7-3_i)\||.,||2(T3_

Q(x,t):(

Let o3 denote the commutator with respectdgq, then (expr;)A can be computed easily:

GaA=[03,A], €73A=e"3Ae 73,
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whereA is a 2X2 matrix.
The Lax pair can be rewritten as

d(e! (o 2053, (x 1 k) =W(x,t,K), (A2)
where the exact one-forW is defined by
W= gi(kx+ 2k2t)&3(QM dx+ QM dt).
Let Eq. (A1) be valid for
0<x<ow, 0<t<T,

whereT=< is a given positive constant. Assume that there exists a funatiost) with sufficient
smoothness and decay. A solution of E42) is given by

(x,t) . .
e (X LK) =1+ f e 1t 203w £, 7 k), (A3)

(% oty)

wherel is the 2x2 identity matrix, &, ,t,) is an arbitrary point in the domain<0¢<w, 0<r~
<T, and the integral is over &iecewis¢ smooth curve from X, ,t,) to (x,t). Since the
one-formW is exact,u, is independent of the path of integration. The analyticity properties of
M, With respect tok depend on the choice ofx( ,t,). It was shown in Ref. 15 that for a
polygonal domain there exists a canonical way of choosing the poiptg (), namely, they are
the corners of the associated polygon. Thus we define three different solutiong,, ws,
corresponding to (@), (0,0), (e°,t). Also we choose the particular contours as follows: The first
contour consists of the oriented linear segment3 )@ (0t) and (0t) to (x,t). The second
contour consists of the oriented linear segments f(0r@) to (0t) and from (0t) to (x,t). The
third contour is parallel to th& axis and is oriented from (&,) to (x,t).

This choice implies the following inequalities:

Mo E—x=<0, 7—t=0,
Mot E—X=0, T—1=<0,
m3: E—x=0.
The second column of the matrix equatioh3) involves expi(k(é—x)+2k*(r—t))]. Using the
above-mentioned inequalities it follows that this exponential is bounded in the following regions
of the complexk plane:
w1:{Ik=0NJIk?*=0},
o {Ik=0NTk?<0},
w3{Ik=0}.

Thus the second column vectorsof, u, andug are bounded and analytic for den (,37/2),
(37/2,27) and (047), respectively. We will denote these vectors with supersckipts(4), and

(12) to indicate that they are bounded and analytic in the third quadrant, fourth quadrant, and the
upper half of the complek plane, respectively. Similar conditions are valid for the first column
vectors, thus

pa(x, K= (P u),  waxtk)= (8 w8, st k) = (w8, uf?).  (Ad)
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We note that the functiong,; and u, are entire functions ok. Equation(A4) together with the
estimate

1

/.L](X,t,k)zl +0 K

1 k—)OO, j:1,2,3, (AS)

imply that the functiongs; are the fundamental eigenfunctions needed for the formulation of a RH
problem in the complek plane. The jump matrix of this RH problem is uniquely defined in terms
of the 2x2-matrix valued functions

s(k)=u3(0,0K),  S(k)=[€?¥*T73,,(0,T,k)] L. (AB)

This is a direct consequence of the fact tliatthe domain wherg.5 is defined any two solutions
of (A3) are simply related,

IU/S(X!t!k):/’LZ(Xlt!k)e_i(kx+2k2t))l}3lu'3(ovosk)1
. o (A7)
,LLl(X,t,k):,LLZ(X,t,k)e_I(kX+2k t))a'3[e2|k TU3,LL2(0,T,|()]_1.

The functionss(k) and S(k) follow from the evaluations at=0 andt=T, respectively, of the
function u5(x,0k) and of u,(0t,k) which satisfy the following linear integral equations:
X ~
0K =1+ [ K60 Quz)(2.0K)
(A8)
t . ~ ~
p2(0,K) =1+ f ek 073Qu,)(0,7,k) dr.
0

The fact thatQ andQ are traceless together witiA5) imply detu;(x,tk)=1 for j=1,2,3. Thus
dets(k) =detS(k)=1.

From the symmetry properties 6f andQ it follows that

(LK) 1= (w6 K) 22 (10X, 1,K)) 1= (X, 1,K) 12,

and thus

(K =850(K), 1K) =51K),  S11(K)=S(K),  Sp1(K)=Sy(K).
We will use the following notation fos and S:

(k) (ﬁ b(k)) S(k)
S frd - , frd
b(k) a(k)

Al

B(k)

—

B(k) A(k)

The definitions ofu;(0t,k), j=1,2, and ofu,(x,0k) imply that these functions have larger
domains of boundedness,

w1(04,K) = (1$220t,k), u{¥(0,k)),
pa(0,K) = (1520, k), u9(0t,k)),

12(%,0K) = (u§2(x,0K), uEY(x,0K)).
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The definitions ofs(k), S(k) imply

_e4ik2TB(k)>_ o0
A(_) _IU’Z (O,T,k),

b(k)
a(k)

= u§9(0,06),

where the vectorg:$)(x,0k) and x$29(0t,k) satisfy the following ODEs:

1

0
A uS2(x,0k) + 2ik o o w§82(x,0) =Q(x,0) u§?(x,0k), O=<argk=, 0<x<oe,

0
lim u$2(x,0k) = ( 1),

X— 0

and

1 0
atu(224>(o,t,k>+4ik2(0 O)M(224)(0I,k)

=Q(0t,k) 2P0t k), argke[w/2,7]U[37/2,27w], O<t<T,

M(224)(0,0k)=(2>-
The above definitions imply the following properties:
a(k),b(k) are defined and analytic for akg: (0,7).
la(k)|>—|b(k)|?=1, keR.

1

1
a(k)=1+0 E)’ b(k)ZO(k), K— o0,

Also A(k),B(k) are entire functions bounded for &g[0,7/2]U[ 7, 37/2]. If T=0c0, the func-
tions A(k) andB(k) are defined and analytic in the quadrantslkat@0,7/2)U (7r,37/2).

AAK) —B(K)B(K)=1, keC (ke RUIR, if T=0),
e4ik2T

k

2
e4|k T

/.

k+O

+0

1
), B(k)=0|

AK)=1+0

All of the above properties, except for the property thfk) is bounded for arg§
e[0,m/2]U[ 7,37/2], follow from the analyticity and boundednessof(x,0k), x,(0t,k), from
the conditions of unit determinant, and from the lalg@asymptotics of these eigenfunctions.
RegardingB(k) we note thatB(k)=B(T,k), where B(t,k)=—exp(4k2t)(ﬂ(224)(0,t,k))l. The
above ODEs imply a linear \Volterra integral equation for the vector ékflm(zz"')(o,t,k), from
which it immediately follows thatB(t,k) is an entire function ofk bounded for ary
el0,m/2]U[ 7,37/2].

We are now ready to derive the so-called global relation. We present the discussidd.&ec.
of Ref. 6. We in fact show that the spectral functions are not independent but satisfy an important
relation. Indeed, the integral of the one-fovki(x,t,k) around the boundary of the domain
{(&,7): 0<é<wo, 0<7<t} vanishes. LeWV be defined by(A2) with w=pu3. Then
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[ e erQuaeon de+ | e Qua) 0k dr ki | ekt Qug 0.k de
o 0 0

. ~ t . ~ ~
= lim kx3 f e2K*103(Q ug) (X, 7,K) d. (A9)
0

X— 00

Using the definition ofs(k) above andA8) it follows that the first term of this equation equals
s(k) —I. Equation(A7) evaluated ak=0 gives

13(0,7,K) = (0,7, k)€~ 7735 (k)
thus
o203 Quug) (0,7,k) = [2K 3 Qt,) (0,7,K) Is(K);
this equation together wittA8) imply that the second term ¢A9) equals
[62°t7s1,(0.,K) — 11s(K).

Hence assuming that has sufficient decay as—« Eq. (A9) becomes
~1 SR s(K)+ 70 [ "M Qug) (£, K) dz=0, (A10
0

where the first and second columns of this equation are valid fdt iarthe lower and the upper
half of the complexk-plane, respectively, ang(t,k) is defined by

S(t,k) =[e2K173,(0t,k)] 2.

Letting t=T and noting thaS(k)=S(T,k), Eq. (A10) becomes
1 +S(k)-1s(k)+e2ik2“”faf e*€73(Qu3) (£,T,k) d€=0.
0

The (12) component of this equation is

B(k)a(k)—A(k)b(k)=e**Tc*(k), argke[0,r],

et (k)= foweikg(Qﬂs)lz(g,Tak) dk

This is the global relation, for finit&. For T=c and assuming thdt, is Schwartzc* has to
be set equal to zero.

APPENDIX B: THE “LENS” ARGUMENT

Suppose we have the following Riemann—Hilbert problem. We are seeking a inatsixa-
lytic in the complex plane except for a jump along the real intefwg|3], oriented from left to
right. The normalization at infinity is to be lim...L=1, and the jump acrods, B3] is

0 _jgiHih
Le=lo| _ig-ibm 1]
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where dH/dk<<0. We also assume thét is real on[ @, 8] and admits an analytic continuation in

a small “lens”-like domain bounded by two analytic ar€s,,C, joining the pointsa,B (in that
direction and lying entirely in the upper and lower half-planes, respectively. We note the follow-
ing factorization of the jump matrix:

0 _ieiH/h 1 _ieiH/h 1 0
—ie®n 1 JTlo 1 [T —jemm g

This suggests the following definition. Let

L'=L, outside the domain bounded byC,UC,,

1 0
L’=L-(ie_iH,h 1), between[«,] and C,,.
1 —jeiHh
L’z(o 1 )-L, between[a,8] and C,.

The Riemann—Hilbert problem fdr’ is as follows:

, , 1 0
Li=L"- ie—iHm 1] ke Cu,
1 —jef/h

Now, since dRél/dk<0 on the interval [a,B], by the Cauchy—Riemann relations
dimH/dk<0 across the intervall «, 8], in the positive imaginary direction. This means that
ImMH<0 on C, if C, is chosen to be close enough fax,B], except at the end points,g.
Similarly ImH>0 on G if C, is chosen to be close enough fa, 3], except at the end points
a,3. Hence,

Re—iH)<0, keC,,
Re—iH)>0, keC,

except at the end points,3. In other words the jump matrix fotL’ is the identity plus an
exponentially small quantity, at least away from the end paiyg This implies that the contour
C,UC, can be erased, at least away from the the end peijis

Near the end points one can use a parametrix argument, which wessajte.g., Ref. 4 for
details.
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