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We are studying the semiclassical limit of the 111 dimensional integrable nonlin-
ear Schro¨dinger equation with defocusing cubic nonlinearity on the half line. Our
analysis relies on the recent theory of Fokaset al., which reduces boundary value
problems for soliton equations to Riemann–Hilbert factorization problems. We
employ the method of nonlinear steepest descent to asymptotically deform the
given Riemann–Hilbert problem to an explicilty solvable one. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1624091#

I. AN INITIAL-BOUNDARY VALUE PROBLEM FOR THE NONLINEAR SCHRO¨ DINGER
EQUATION

In recent years there has been a series of results by Fokas and others onboundary value
problemsfor soliton equations~see Ref. 1 for a comprehensive review!. The Fokas method goe
beyond existence and uniqueness. In fact, it reduces such problems to Riemann–Hilbert
ization problems in the complex plane, thus generalizing the existing theory which reducesinitial
value problemsto Riemann–Hilbert problems via the method of inverse scattering. One o
main advantages of the Riemann-Hilbert formulation is that one can use recent powerful res
the asymptotic behavior of solutions to these problems~as some parameter goes to infinity! to
derive asymptotics for the solution of the associated soliton equation. Such methods we
neered by Its and made rigorous and systematic by Deift and Zhou; the Deift–Zhou met
known as ‘‘nolinear steepest descent’’ in analogy with the linear steepest descent method w
applicable to asymptotic problems for Fourier-type integrals~see, e.g., Ref. 2!. A generalization of
the steepest descent method developed in Ref. 3 is able to give rigorous results for the so
‘‘semiclassical’’ or ‘‘zero dispersion’’ limit of the solution of the Cauchy problem for 111 di-
mensional integrable evolution equations, in the case where the Lax operator is self-adjoin
method has been further extended in Ref. 4 for the ‘‘non-self-adjoint’’ case, where in f
‘‘steepest descent’’ contour is, for the first time, introduced and its characterization and com
tion made systematic.

In this paper we consider the most basic example, that is the defocusing nonlinear Schro¨dinger
~NLS! equation.~In a recent paper5 we dealt with the simple problem of so-called linearizab
data, for both the defocusing NLS and Korteweg–de Vries equations.! We make use of the recen
results of Ref. 6 in order to study the so-called ‘‘semiclassical’’ limit of a particular init
boundary value problem. More precisely we consider the 111 dimensional, integrable, defocus
ing, nonlinear Schro¨dinger equation on the half-line

ihut~x,t !1h2uxx~x,t !22uu~x,t !u2u~x,t !50,

u~x,0!50, u~0,t !5 f 0~ t !, ~1a!

x>0, t>0,

wheref 0 is assumed to be in the Schwartz space of the positive real line. We also assume

a!Electronic mail: spyros@mpim-bonn.mpg.de
58490022-2488/2003/44(12)/5849/20/$20.00 © 2003 American Institute of Physics
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derivatives off 0(t) vanish att50. The special restriction of zero initial data is not essential
makes the computations and proofs somewhat easier. It is known7 that the above problem is
well-posed.

Our analysis is based on the results of Ref. 6, which considers thea priori overdetermined
problem:

ihut~x,t !1h2uxx~x,t !22uu~x,t !u2u~x,t !50,

u~x,0!50, u~0,t !5 f 0~ t !, ux~0,t !5 f 1~ t !, ~1b!

x>0, t>0.

However, following Ref. 6, we will eventually impose a compatibility condition~the so-called
‘‘global relation’’! on the dataf 0 , f 1 which will ensure the existence~and uniqueness under suc
a condition! of a solution to~1b!. It is also worthwhile noting~see Ref. 6! that given datau(x,0)
and u(0,t) only, the global relation implicitly selects a functionf 1(t)5ux(0,t) which comple-
ments the dataf 0 and the initial data, and which will then ensure the existence of a solution t~1!
and the validity of the Riemann–Hilbert formulation~see Theorem 1 below!.

For the convenience of the reader we include an Appendix at the end of this paper cont
a statement of some of the main results of Ref. 6.

It is well known that the above-mentioned equation admits a ‘‘Lax-pair’’ formulation. It ar
as the compatibility condition for the equationsLm50 andBm50 where the operatorsL, B are
given by

L5S ]x2 ik iu

2 i ū ]x1 ik D ,

B5S ih] t14ik21 i uuu2 22ku2 iut

22kū1 i ū t ih] t2 i uuu2 D .

Here the bar denotes complex conjugation,k is the spectral variable, andu5u(x,t) is the solution
of ~1a!.

The traditional method of solving initial value problems for soliton equations that adm
similar Lax-pair formulation is to focus on theL operator and apply the theory of scattering a
inverse scattering to that very operator. On the other hand, one of the main ideas of the
method is that for initial-boundary value problems the two operatorsL and B should be on an
equal footing. The scattering transform should be applied to both operators simultaneously
a global relation has to be imposed on the data to ensure compatibility.

II. THE RIEMANN–HILBERT PROBLEM

As shown in Ref. 6, problem~1a! can be reduced to the following Riemann–Hilbert proble
under the special assumption that the so-called global relation holds~see relation~3.18! of Ref. 6;
see also relation~5! below!. One way to look at the global relation is as a way of selectin
solution of problem~1b!. In fact it is known ~see Ref. 7!, using methods unrelated to invers
scattering theory, that~1b! has a unique solution. On the other hand, it has been shown in R
that given dataf 0 in ~1b!, there exists a functionf 1(t) such that the problem~1a! admits a
solution, which furthermore can be explicitly characterized via inverse scattering and a par
Riemann–Hilbert factorization problem. Indeed, letS be the contourRø iR with the following
orientation:

~i! the real axis is oriented from left to right,
~ii ! the positive imaginary axis is oriented from infinity toward zero,
~iii ! the negative imaginary axis is oriented from infinity toward zero.
5 Nov 2006 to 147.52.67.230. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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We use the following convention: the12side of an oriented contour is always to its le
according to the given orientation.

Letting M 1 andM 2 denote the limits ofM on S from left and right, respectively, we defin
the Riemann–Hilbert factorization problem

M 1~x,t,k!5M 2~x,t,k!J~x,t,k!,

where

J~x,t,k!5J4
21 , kPR1,

J1
21 , kP iR1,

~2!
J3

21 , kP iR2,

J25J3J4
21J1 , kPR2,

with

J15S 1 0

G~k!e2iQ 1D ,

J45S 1 2g~k!e22iQ

ḡ~k!e2iQ 12ug~k!u2 D ,

J35S 1 2Ḡ~ k̄!e22iQ

0 1
D ,

Q~x,t,k!5
u

h
,

where

u5kx12k2t.

The functionsg,G are defined in terms of the spectral functions of the problem@see Appendix
A, or Ref. 6,~2.28!, ~2.25!#, with important analyticity properties@see Appendix A, or~2.21! and
~2.22! of Ref. 6#. In particular note that

G~k!5
1

a~k!S a~k!
Ā~ k̄!

B̄~ k̄!
2b~k!D , ~3!

wherea, b are the spectral functions for thex problem andA, B are the spectral functions for th
t problem. The functionsa, b are analytic and bounded in the upper half-plane, whileA, B are
analytic and bounded in the first and third quadrants of thek plane. For our special choice of zer
initial data,b50, a51. Henceg50 andG(k)5 B̄( k̄)/Ā( k̄). Note thata, b, A, B, G all depend
on h.

The solution of~1a! can be recovered from the solution of~2! as follows:

u~x,t !52i h limk→`~kM12~x,t,k!!, ~4!

where the index 12 here denotes the~12!-entry of a matrix.
5 Nov 2006 to 147.52.67.230. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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The following ‘‘global relation’’~see Appendix A for motivation and derivation! is imposed on
the scattering data:

a~k!B~k!2b~k!A~k!5e4ik2Tc~k!,

wherec(k) is analytic and bounded for Imk.0, andc(k)5O(1/k) ask→`. HereT is the time
up to which we solve the initial boundary value problem for NLS. In generalA, B are functions
of T.

If ux(0,t) is denoted byf 1(t) then there is a complicated relation between the dataf 0 and f 1 ;
the global relation is the expression of this in the spectral space.

In our particular case@problem~1a!# T5` and the global relation becomes

a~k!B~k!2b~k!A~k!50, ~5!

for arg(k)P@0,p/2#. For the special choice of zero initial data, sinceb50, a51, one hasB50 for
arg(k)P@0,p/2#. In particular,G(0)50.

The following is proved in Sec. V of Ref. 6.
Theorem 1: Given a Schwartz functionf 0 , there exists a uniquef 1 , also Schwartz, such tha

the above-given global relation is satisfied, and such that all derivatives off 0 , f 1 vanish at 0~so
that f 0 , f 1 are compatible with NLS atx50,t50).

Using the theory developed in Ref. 6, we will then consider the~seemingly! overdetermined
problem~1b! which in fact does have a unique solution, and which of course is the solutio
problem~1a!.

We note that in both the negative half-line and the positive half-line the jump matrix is o
same form. For positivek,

J5S 12ug~k!u2 g~k!e22iQ

2ḡ~k!e2iQ 1 D ,

while for negativek,

J5S 12ug~k!2Ḡu2 ~g~k!2Ḡ !e22iQ

2~ ḡ~k!2G!e2iQ 1
D .

In fact, let

r ~k!5g~k!2Ḡ~k!5
bA2aB

āA2b̄B
, k,0,

r ~k!5g5
b~k!

ā~k!
, k>0.

Then, for all nonzero realk,

J5S 12ur ~k!u2 r ~k!e22iQ

2 r̄ ~k!e2iQ 1 D .

In the special case of zero initial data, the jump reduces to the identity for positivek, while for
negativek, r 5 2B/A, so
5 Nov 2006 to 147.52.67.230. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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J5S 12UB
A
U2

2B

A
e22iQ

B̄

Ā
e2iQ 1

D . ~6!

III. DIRECT SCATTERING AS h\0

It is important to have some information about the ‘‘spectral’’ coefficentr 52B/A, for real
values ofk.

Theorem 2: For k,0, the spectral functionr (k,h) has the following asymptotic expressio
There exist functionsr̃ ,R0 of k alone, such that

r ~k,h!; r̃ ~k!expS 2iR0(k)

h D , ~7!

as h→0, where r̃ (k) is analytic and bounded ask→`, and R0(k) is analytic. Whenk
P iR1, Re(iR0)<0. Also u r̃ u<1.

Proof: The representation~7! follows from the standard Wentzel–Kramers–Brillouin~WKB!
theory. Indeed,A, B admit representations of the forms(k)exp(iR(k)/h). Formula~7! thus follows.
The analyticity of r̃ , R0 follows from the analyticity ofA, B. The fact thatuA(k)u22uB(k)u2

51 ~for real k) implies u r̃ u<1.
More detailed information aboutr can be recovered after a detailed analysis of the spe

problem for the second Lax operator. An easy calculation shows that the associated s
problem reduces to a WKB problem of the type

h2ytt5S~ t,k!y,

whereS(t,k) is real. The spectral coefficientsA, B can then be asymptotically estimated along t
lines of Ref. 8~Sec. 10.6!. Eventually one is able to show the following.

Theorem 3: Let

f 2~ t !5
5

8•21/3@Re~ i f̄ 1~ t ! f 0~ t !!#4/31u f 0~ t !u42u f 1~ t !u2.

Let 2 f 5min$f2(t)% over the interval@0,̀ #. Without loss of generality, we assume2 f ,0. @Oth-
erwise the analysis becomes trivial; the coefficentr (k,h) is everywhere small.# On the real line,
the following holds.

For 2 f ,k,0,

r ~k,h!;2 ie@2is(k)#/h,

wheres is smooth in (2 f ,0) and takes real values. Alsos can be extended analytically in a sma
neighborhood of the segment (2 f ,0).

For values ofk away from the interval (2 f ,0), r (k,h) is either zero or uniformly expo-
nentially small inh.

Furthermore one has an asymptotic formula for 12ur (k)u2, 2 f ,k,0. Indeed,

12ur ~k!u2;expS 22t~k!

h D ,

wheret(k) is positive and can be extended analytically in a small neighborhood of (2 f ,0).
5 Nov 2006 to 147.52.67.230. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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Remark:An explicit integral formula fors and t in terms of the data can only be foun
assumingux5 f 1 is known. In general, even though the existence off 1 is guaranteed~given f 0)
via the global relation,f 1 is not effectively computable.

However, in the special case of so-called ‘‘linearizable data,’’f 1 ands are indeed effectively
computable~see Ref. 5!.

Proof of Theorem 3:We simply note that the turning curve for the t-spectral problem is gi
by

S~ t,k!54k41k Re~ i f̄ 1~ t ! f 0~ t !!1u f 0~ t !u42u f 1~ t !u250.

Indeed consider the t-problem

By5S ih] t14ik21 i u f 0u2 22k f02 i f 1

22k f̄01 i f̄ 1 ih] t2 i u f 0u2 D y50.

Applying the operator

B05S ih] t2 i u f 0u2 2k f01 i f 1

22k f̄02 i f̄ 1 ih] t14ik21 i u f 0u2D
we end up, up to errors of orderO(h), with

h2ytt5S~ t,k!y, ~8!

with S(t,k) as above.
Note here that realk for which there existL2-solutionsy of By50, area priori excluded~see

Ref. 6, p.16!. So we do not need to concern ourselves with the possibility of realk for which the
solutions to~8! are inL2 . We can then follow the WKB analysis of the semiclassical Schro¨dinger
operator without essential changes~e.g., Ref. 8, Sec. 10.6!. We can thus show that at allk such that
S(t,k)5k for somet, the reflection and transmission coefficients are given by the formulas ab
while otherwiser (k,h) is exponentially small~or zero!. A short calculation shows thatS(t,k) as
a function ofk has only one local minimum, atf 2(t), as defined in the statement of Theorem
The result follows immediately.

IV. REDUCING TO A PROBLEM ON THE REAL LINE

We next consider two Riemann–Hilbert problems with sole jumps given by

J1
21 , kP iR1,

J3
21 , kP iR2,

respectively.
We wantU to be a function analytic in the complex plane except the upper imaginary

with normalization limk→`U(x,t,k)5I . The jump is prescribed by

U1~x,t,k!5U2~x,t,k!J1
21~x,t,k!, kP iR1,

with
5 Nov 2006 to 147.52.67.230. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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J15S 1 0

G~k!e2iQ 1D ,

~9!

Q~x,t,k!5
u

h
,

where

u5kx12k2t.

~The symbolU stands for ‘‘upper’’ since the jump is on the upper half-plane. We will immedia
see however thatU is a lower triangular matrix.!

Similarly, we wantL to be a function analytic in the complex plane except the lower ima
nary axis, with normalization limk→`L(x,t,k)5I . The jump is prescribed by

L1~x,t,k!5L2~x,t,k!J3
21~x,t,k!, kP iR2, ~10!

with

J35S 1 2Ḡ~ k̄!e22iQ

0 1
D .

~The symbolL stands for ‘‘lower’’ since the jump is on the upper half-plane. HoweverL is an
upper triangular matrix.!

The two Riemann–Hilbert problems above can be easily solved explicitly, since the jump
triangular matrices. Indeed, direct calculations show that

U~x,t,k!5S 1 0

u~x,t,k! 1D , ~11!

where

u~x,t,k!5
1

2p i EiR1

G~s!e2iQ(x,t,s)ds

s2k

satisifies~9!. Similarly,

L~x,t,k!5S 1 l ~x,t,k!

0 1 D , ~12!

where

l ~x,t,k!5
1

2p i EiR2

2Ḡ~ s̄!e22iQ(x,t,s)ds

s2k

satisfies~10!. The direction of the integral contours is as prescribed in Sec. II, i.e., from infinit
zero.

Note thatu(k)52 l̄ ( k̄). Note also that the integrals in~11! and ~12! are not singular atk
50, asG(0)50.

We next show that the Riemann–Hilbert problem~2! is equivalent to a problem on the re
line. Indeed, let
5 Nov 2006 to 147.52.67.230. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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N~x,t,k!5M ~x,t,k!U21~x,t,k!, Im k.0,
~13!

N~x,t,k!5M ~x,t,k!L21~x,t,k!, Im k,0.

ThenN(x,t,k) is analytic inC\R, with limk→`N(x,t,k)5I , and acrossR the jump is given by

N1~x,t,k!5N2~x,t,k!L~x,t,k!J~x,t,k!U21~x,t,k!. ~14!

In fact, the new jump is given by

LJU215S 12u l ~k!1r ~k!e22iQu2 l ~k!1r ~k!e22iQ

2 l̄ ~k!2 r̄ ~k!e2iQ 1 D . ~15!

Note here that whiler (k) depends only onk but not onx,t,l (k) depends onx,t,h via Q by
~12!.

We have thus reduced the Riemann–Hilbert problem~2! to the problem~15! with only jump
on the real line.

V. THE g-FUNCTION

We next show how the Riemann–Hilbert problem can be ‘‘deformed’’ to a problem th
explicitly solvable. We are essentially following the ideas of Ref. 3~see also Ref. 4!.

The first idea involves the so-called ‘‘g-function.’’ We introduce a scalar functiong(k) which
is to be analytic inC\R and decay likeO(1/k) at infinity. This function will be uniquely specified
eventually.

Let

O~k!5N~k!expS ig~k!s3

h D .

If N satisfiesN15N2J, k,0, with J given by~6!, thenO solves a Riemann–Hilbert problem
with jump matrixvO , say, that is

O1~x,t,k!5O2~x,t,k!vO~x,t,k!, ~16!

vO~k!5S e@ i (g12g2)#/hS 12U l 1 B

A
e22iQU2D S l 2

B

A
e22iQD e@2 i (g11g2)#/h

S 2 l̄ 2
B̄

Ā
e2iQD e@ i (g11g2)#/h e2( ig12 ig2)/h D , k,0,

vO~k!5S e@ i (g12g2)#/h~12u l u2! l ~k!e@2 i (g11g2)#/h

2 l̄ ~k!e@ i (g11g2)#/h e@2( ig12 ig2)#/h D , k.0,

limk→`O~k!5I .

Hereg1 ,g2 denote the limits ofg from above and below the negative real axis, respectively
Note that problem~16! is exactly ~not just asymptotically! equivalent to the original

Riemann–Hilbert problem~2!. Formula~4! has to be replaced by

u~x,t !52i h limk→`~kO12~x,t,k!!12]xg̃, ~17!

whereg̃ is the residue ofg at infinity.
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VI. REDUCTION TO A SOLVABLE RIEMANN–HILBERT PROBLEM

Our first approximation involves getting rid of the functionsl ,u appearing in the jumps. The
reason is simple. By formulas~11! and~12! u,l can be shown to be at worstO(h) by use of the
Laplace method for asymptotic evaluation of integrals, since the phaseiR0 of Theorem 2 has
negative or zero real part. This suggests thatl can be eventually erased from formula~16!. In fact,
we shall see right away thatl can be neglected, not only because it is small, but also becaus
the precise factorization that follows.

Indeed, an easy calculation shows that the jumpvO of ~16! can be written as

vO5S 1 le2ig1 /h

0 1
D •S e@ i (g12g2)#/h~12uB/Au2! 2

B

A
e22iQe@2 i (g11g2)#/h

2
B̄

Ā
e2iQe@ i (g11g2)#/h e@2( ig12 ig2)#/h D

•S 1 0

2 l̄ e22ig2 /h 1
D , k,0, ~18!

vO5S 1 le2ig1 /h

0 1 D •S 1 0

2 l̄ e22ig2 /h 1D , k.0.

Sinceg takes real values onR @this will be clear later, see formula~28!# and sincel 5O(h), it
follows that the triangular factors in~18! can be taken as the identity plus a resulting error of or
at worstO(h) in formula ~18!.

We have asymptotically reduced the Riemann–Hilbert problem~16! to a new Riemann–
Hilbert problem for a matrix functionQ(z), say.

If Q is defined by

Q1~x,t,k!5Q2~x,t,k!vQ~x,t,k!,

vQ~k!5S e@ i (g12g2)#/h~12uB/Au2! 2
B

A
e22iQe@2 i (g11g2)#/h

B̄

Ā
e2iQe@ i (g11g2)#/h e@2( ig12 ig2)#/h D , k,0, ~19!

limk→`Q~k!5I ,

thenQ is asymptotically equivalent toO in a neighborhood of̀ . In particular,

u~x,t !;2ih limk→`~kO12~x,t,k!!12]xg̃. ~20!

The matrixvQ can be written as
5 Nov 2006 to 147.52.67.230. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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vQ5S e@ i (g12g2)#/h~12ur u2! r ~k!e22iQe@2 i (g11g2)#/h

2 r̄ ~k!e2iQe@ i (g11g2)#/h e@2( ig12 ig2)#/h D
5S e@ i (g12g2)22t#/h 2 ie@22iu2 i (g11g2)22is#/h

2 ie@2iu1 i (g11g2)12is#/h e@2( ig12 ig2)#/h D ,

if 2 f ,k,0, ~21!

;S e@ i (g12g2)#/h 0

0 e@2( ig12 ig2)#/hD , otherwise.

We remind the reader that the functionss,t where introduced in the statement of Theorem 3.
At this point it becomes obvious that we should also impose

g12g250, k.0, or k,2 f .

So g is to be analytic inC\@2 f ,0#.
Let

H52g12g222u22s.

In the spirit of Ref. 3, we seek to reducevQ to a jump of one of the three following types:

S 0 2 ieiH /h

2 ie2 iH /h 1 D , S 0 2 ieiH /h

2 ie2 iH /h 0 D , S 1 2 ieiH /h

2 ie2 iH /h 0 D .

~22!

The motivation is the following. We expect that~22! will be deformable to a RH problem that ca
be explicitly solvable in terms of finite genus theta functions. Such a problem will have a ‘‘fi
gap’’ structure. This means that the real line will be divided into a finite number of subinterva
some of them the jump matrix has to look like

S 0 2 ieiH /h

2 ie2 iH /h 0 D
and in others it has to be the identity. We know however~through ‘‘lens’’-type arguments, se
Appendix B! that matrices of the first or third form in~22! can be reduced to the identity. Henc
the ansatz~22!.

To arrive from~21! to ~22! we impose some seemingly artificial conditions on the functio
g,H. For any givenx,t, we will consider finite sequences of real numbers21<k1,k2<k3

,k4< ¯<k2G11,k2G12<1. We call the G11 intervals I 15@k1 ,k2#, . . . ,I G11

5@k2G11 ,k2G12# the ‘‘bands.’’ Both the integerG and the real numberskj , j 51, . . . ,2G12 are
to be eventually determined for eachx,t.

We make the ansatz that for eachx,t the interval@2 f ,0# can be subdivided into intervals b
suchkj , such that on each of the arising intervals one of the three conditions holds:

22i t5g12g2 and H8,0,

or

22i t,g12g2,0, and H850, ~23!

or

g12g250, and H8.0.
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H8 denotes the derivative ofH with respect tok. In particular, the intervals whereH850 are
to be the bandsI j , while on the intervals of which@2 f ,0#\øI j consists, either the first or the thir
condition has to hold.

We will eventually see that conditions~23! amount to a scalar Riemann–Hilbert problem th
can be solved explicitly, plus a set of algebraic conditions on the end pointskj defining the gap
structure, plus a set of inequalities which essentially pick up the appropriate number ofkj ’s.

Now differentiating~with respect tok) the scalar Riemann–Hilbert problem given by t
equalities in~23! and solving forg8 leads to

g8~k!5~p~k!!1/2S E
øI j

2s8~m!22u8~m!

~p~m!!1
1/2~m2k!

dm

2p i
1E

(2 f ,0)\øI j

22i t8~m!

~p~m!!1
1/2~m2k!

dm

2p i D ,

where

p~k!5P j 51
G11~k2k2 j 21!~k2k2 j !. ~24!

We have imposed the conditiong(k)5O(k21), as k→`. Easy calculations then show thatg8
has to satisfy the moment conditions

E
øI j

s8~k!2u8~k!

~p~k!!1
1/2 kldk1E

(2 f ,0)\øI j

2 i t8~k!

~p~k!!1
1/2kldk50, ~25!

l 50,1,2,. . . ,G.

Also, integratingg8 aroundI j and requiringH8,0, we obtain

E
I j

~g18 2g28 !dl522i ~t~k2 j 21!2t~k2 j !!, j 51, . . . ,G11. ~26!

Conditions~25! and ~26! form a set of 2G12 equations for 2G12 unknowns. They enable
us to solve forkj .

At this point, we note thatH is smooth in@2 f ,0#. We also note that it admits analyti
continuations in~possibly small! lens-like domains of the complex plane, not including the poi
kj .

In fact, conditions~25! and ~26! together with the inequalities in~23! reduce to the Euler–
Lagrange conditions of a variational problem. This is virtually the same variational pro
introduced by Lax and Levermore and the existence and uniqueness of its solution is guar
by the theory of variational problems of logarithmic potentials~see Ref. 9 for a discussion!. Since
a complete written proof has not appeared anywhere so far, we will simply state a hypothe

Hypothesis:Assume that the dataf 0 are real analytic and rapidly decaying~say Schwartz!.
Then for eachx,t there is a finite non-negative integerG for which both equalities and inequalitie
in ~23! have a solution. In other words, the ‘‘finite genus ansatz’’ can be eventually justified

Once the existence of an appropriate ‘‘g-function’’ is guaranteed, it is straightforwar
reduce our Riemann–Hilbert problem to its final form.

At the end of this procedure, and because of conditions~23!, the jump contour consists of th
bandsI j , j 51,...,G11 and on each band, the jump matrix is given by

wj5S 0 2 ieiH /h

2 ie2 iH /h 0 D .

Furthermore,H is constant on each band. We actually have
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wj5S 0 2 ieiV j /h

2 ie2 iV j /h 0 D , ~27!

where theV j are real constants.
The V j can be computed explicitly. But first, let us note that the Riemann–Hilbert prob

with jumps along the intervalsI j given by~27! can be explicitly solved in terms of theta function
To appropriately define those functions we first need to introduce an underlying Riemann su
together with some associated holomorphic differentials.

Let X be the two-sheeted Riemann surface of genusG associated with (p(k))1/2, obtained by
adjoining two copies of the slit planeC\økI k . On the ‘‘top’’ sheet (p(k))1/2;kG11 and on the
‘‘bottom’’ sheet (p(k))1/2;2kG11. The branch points of the surface will be the end points of
‘‘bands,’’ that is,k1 , . . . ,k2G12 . The homology cycles are defined in a standard way as follo
The cyclesAk lie on the top sheet and encircle slitsI k . The cyclesBk pass from the top shee
through the slitI 1 to the bottom sheet and back again throughI k .

The basisv5(v1 , . . . ,vG) of holomorphic differentials onX is determined by the normal
ization

E
Ai

v j5d i j ,1< i , j <G.

The Riemann-matrix of periods is

t5~t i j !5S E
Bi

v j D
1< i , j <G

.

By the Riemann bilinear relations,t is symmetric andi t is negative definite. We can thu
define the associated theta function

uG~s!5SmPZG exp~2p i ~m,s!1p i ~m,tm!!, sPCG,

where~.,.! is the real scalar product. Note thatuN is an even function.
Now, solving the scalar Riemann–Hilbert forg ~not its derivative! we get

g~k!5~p~k!!1/2S E
øI j

2s~m!22u~m!2V j

~p~m!!1
1/2~m2k!

dm

2p i
1E

(2 f ,0)\øI j

22i t~m!

~p~m!!1
1/2~m2k!

dm

2p i D . ~28!

Applying the condition thatg(k)5O(k21), as k→` once more, we get the conditions

E
øI j

~2s~k!22u~k!2V j !v l1E
(2 f ,0)\øI j

~22i t~k!!v l50,

l 51,2,. . . ,G.

Recalling the definition of the normalized differentialsv l , we immediately get the following:

V l5E
øI j

~2s~k!22u~k!!v l1E
(2 f ,0)\øI j

~22i t~k!!v l ,

l 51,2,. . . ,G. ~29!

We also define the following function:
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z~k!5FP i 51
G11 k2k2i

k2k2i 21
G1/4

,

wherez is meant to be analytic off the union of the ‘‘gaps,’’ i.e., the intervals between the ba
and z(k);1, ask→`. The functionz has the important property thatz6z21 hasG11 roots
(z j

6) j 51
G11 , lying in the bandsI j , one root in each band. Note also thatz15 i z2 across the gaps

We next define the ‘‘Abel map’’ integral, fork on the top sheet of the Riemann surfaceX. Let

u~k!5E
0

k

v,

where the integral is taken along any path on the top sheet. Note that it is well-defined moduZG.
Also define the constant vector

d52K2(
j 51

G E
0

P2(z j )

v,

whereK is the vector of Riemann constants andP2(z) denotes the preimage of a pointzPX in the
‘‘bottom’’ sheet. We can now state the following theorem.

Theorem 4:The functionQ defined by problem~19! is asymptotically equivalent, ash→0, to

diagS uG~u~`!1d!

uGS u~`!1
QG

2ph
1dD ,

uG~2u~`!1d!

uGS 2u~`!1
QG

2ph
2dD D

•S z1z21

2

uGS u~k!1
QG

2ph
1dD

uG~u~k!1d!
e~2 iH G11!/h

z2z21

2i

uGS u~k!1
QG

2ph
2dD

uG~u~k!2d!

e~ iH G11!/h
z2z21

22i

uGS 2u~k!1
QG

2ph
1dD

uG~2u~k!1d!

z1z21

2

uGS 2u~k!1
QG

2ph
2dD

uG~2u~k!1d!

D ,

~30!

whereQG5(V1 , . . . ,VG)T, theV j being given by~29!. The asymptotics is uniform in compac
subsets of the Riemann sphere with the bandsI j deleted.

The proof consists of a straightforward check of the jump relations. The important fact is
~because of our choice ofd) the zeros ofz6z21 exactly cancel the poles of the theta functio
quotients.

The semiclassical asymptotics for the solution of~1a! follows from ~30! and ~4!.
Theorem 5: The asymptotics foru(x,t,h), the solution of~1a!, ash→0, is given by

u~x,t,h!;@S j 51
2G12kj #e

~2 iH G11!/h
•

uG~u~`!1d!uG~u~`!1QG /~2ph!2d!

uG~u~`!2d!uG~u~`!1QG /~2p\!1d!
. ~31!

Formula~31! expresses a slowly modulated wave.

VII. CONCLUSION

Since we have been able to reduce our Riemann–Hilbert problem to one that arises
full-line problem, the results of Refs. 10, 11, and 3 on the phenomenology of the solutionh
→0 apply.

Semiclassically, the half-planex,t>0 can be divided in two regions. In the first~‘‘smooth’’ !
region the strong semiclassical limit exists and satisfies the formallly limiting Euler system. I
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second~‘‘turbulent’’ ! region fast oscillations appear that can be described in terms of sl
modulating finite-gap solutions. Weak limits of an infinite number of densities includ
uuu2, ih(uūx2uxū) exist.

We also note that the Whitham equations theory is still relevant. The functionskj (x,t) are in
fact the Riemann invariants of the Whitham equations. The equations themselves can be
by differentiating~25! and ~26! ~see, e.g., Ref. 4!.

Let us also note that, even though the assumption that the initial data are equal to zero
the analysis somewhat easier, it is not essential. In particular the above qualitative discus
the semiclassical limit is still valid.

Finally, let us speculate on the long time asymptotics of the semiclassical limit.
There are two ways of computing the long time semiclassical limit of the defocusing NL

the full line ~see Ref. 12 or 13!. One is to use the existing theory for times of order 1~as in Ref.
11! and take the limitt→`.

Alternatively, one should in principle be able to look at the long time behavior of the prob
with fixed e and then takee→0. This is by no means obviousa priori, but it turns out that this
idea gives the right results. See, for example, Ref. 12, where the author has computed th
time semiclassical limit of the defocusing NLS on the full line.

On the half-line, it is already known what the long time of the problem with fixede is. As in
the full-line case, any initial data degenerate into a sequence of finitely many separated s
~see Refs. 14 and 6!.

It then should follow, in exact analogy with the full line case,12 that the long time asymptotic
of the semiclassical limit in the half line case can be described by a sequence of solitons~in the
turbulent region!. The number of solitons is finite but increasing likeO(1/e) ase→0. Their width
is O(e) and they are separated by a distance of orderO(et). In the smooth region, the solutio
simply dies out.

ACKNOWLEDGMENT

We thank Professor Fokas for showing us a preprint~Ref. 6! and for illuminating discussions
and suggestions.

APPENDIX A: THE SCATTERING DATA FOR THE PROBLEM ON THE HALF LINE

In this appendix we quote freely from the paper of Fokas, Its and Sung~Ref. 6!. We introduce
the quantitiesa,b,A,B referred to in Sec. II and we state the analytic properties of these quan

We consider the NLS equation

iut1uxx22uuu2u50. ~A1!

Here we have seth51. For general positiveh one can reduce Eq.~1a! to Eq. ~A1! through the
obvious rescalingx→x/h, t→t/h. Equation~A1! admits the Lax pair

mx1 ik@s3 ,m#5Q~x,t !m,

m t12ik2@s3 ,m#5Q̃~x,t,k!m,

wheres35diag(1,21), and

Q~x,t !5S 0 u~x,t !

ū~x,t ! 0 D , Q̃~x,t,k!52kQ2 iQxs32 iluuu2s3 .

Let ŝ3 denote the commutator with respect tos3 , then (expŝ3)A can be computed easily:

ŝ3A5@s3 ,A#, eŝ3A5es3Ae2s3,
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whereA is a 232 matrix.
The Lax pair can be rewritten as

d~ei (kx12k2t)ŝ3m~x,t,k!!5W~x,t,k!, ~A2!

where the exact one-formW is defined by

W5ei (kx12k2t)ŝ3~Qm dx1Q̃m dt !.

Let Eq. ~A1! be valid for

0,x,`, 0,t,T,

whereT<` is a given positive constant. Assume that there exists a functionu(x,t) with sufficient
smoothness and decay. A solution of Eq.~A2! is given by

m* ~x,t,k!5I 1E
(x

*
,t
*

)

(x,t)

e2 i (kx12k2t)ŝ3W~j,t,k!, ~A3!

whereI is the 232 identity matrix, (x* ,t* ) is an arbitrary point in the domain 0,j,`, 0,t
,T, and the integral is over a~piecewise! smooth curve from (x* ,t* ) to (x,t). Since the
one-formW is exact,m* is independent of the path of integration. The analyticity properties
m* with respect tok depend on the choice of (x* ,t* ). It was shown in Ref. 15 that for a
polygonal domain there exists a canonical way of choosing the points (x* ,t* ), namely, they are
the corners of the associated polygon. Thus we define three different solutionsm1 , m2 , m3 ,
corresponding to (0,T), ~0,0!, (`,t). Also we choose the particular contours as follows: The fi
contour consists of the oriented linear segments (0,T) to (0,t) and (0,t) to (x,t). The second
contour consists of the oriented linear segments from~0,0! to (0,t) and from (0,t) to (x,t). The
third contour is parallel to thex axis and is oriented from (0,1`) to (x,t).

This choice implies the following inequalities:

m1 : j2x<0, t2t>0,

m2 : j2x<0, t2t<0,

m3 : j2x>0.

The second column of the matrix equation~A3! involves exp@i(k(j2x)12k2(t2t))#. Using the
above-mentioned inequalities it follows that this exponential is bounded in the following reg
of the complexk plane:

m1 :$Ik<0ùIk2>0%,

m2 :$Ik<0ùIk2<0%,

m3 :$Ik>0%.

Thus the second column vectors ofm1 , m2 andm3 are bounded and analytic for argk in (p,3p/2),
(3p/2,2p) and (0,p), respectively. We will denote these vectors with superscripts~3!, ~4!, and
~12! to indicate that they are bounded and analytic in the third quadrant, fourth quadrant, a
upper half of the complexk plane, respectively. Similar conditions are valid for the first colu
vectors, thus

m1~x,t,k!5~m1
(2) ,m1

(3)!, m2~x,t,k!5~m2
(1) ,m2

(4)!, m3~x,t,k!5~m3
(34),m3

(12)!. ~A4!
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We note that the functionsm1 andm2 are entire functions ofk. Equation~A4! together with the
estimate

m j~x,t,k!5I 1OS 1

kD , k→`, j 51,2,3, ~A5!

imply that the functionsm j are the fundamental eigenfunctions needed for the formulation of a
problem in the complexk plane. The jump matrix of this RH problem is uniquely defined in ter
of the 232-matrix valued functions

s~k!5m3~0,0,k!, S~k!5@e2ik2Tŝ3m2~0,T,k!#21. ~A6!

This is a direct consequence of the fact that~in the domain wherem3 is defined! any two solutions
of ~A3! are simply related,

m3~x,t,k!5m2~x,t,k!e2 i (kx12k2t))ŝ3m3~0,0,k!,
~A7!

m1~x,t,k!5m2~x,t,k!e2 i (kx12k2t))ŝ3@e2ik2Tŝ3m2~0,T,k!#21.

The functionss(k) andS(k) follow from the evaluations atx50 andt5T, respectively, of the
function m3(x,0,k) and ofm2(0,t,k) which satisfy the following linear integral equations:

m3~x,0,k!5I 1 Èx

eik(j2x)ŝ3~Qm3!~j,0,k! dj,

~A8!

m2~0,t,k!5I 1E
0

t

e2ik2(t2t)ŝ3~Q̃m2!~0,t,k! dt.

The fact thatQ andQ̃ are traceless together with~A5! imply detmj(x,t,k)51 for j 51,2,3. Thus

dets~k!5detS~k!51.

From the symmetry properties ofQ andQ̃ it follows that

~m~x,t,k!!115~m~x,t,k̄!22, ~m~x,t,k!!215m~x,t,k̄!12,

and thus

s11~k!5s22~ k̄!, s21~k!5s12~ k̄!, S11~k!5S22~ k̄!, S21~k!5S12~ k̄!.

We will use the following notation fors andS:

s~k!5S a~ k̄! b~k!

b~ k̄! a~k!
D , S~k!5S A~ k̄! B~k!

B~ k̄! A~k!
D .

The definitions ofm j (0,t,k), j 51,2, and ofm2(x,0,k) imply that these functions have large
domains of boundedness,

m1~0,t,k!5~m1
(24)~0,t,k!,m1

(13)~0,t,k!!,

m2~0,t,k!5~m2
(13)~0,t,k!,m2

(24)~0,t,k!!,

m2~x,0,k!5~m2
(12)~x,0,k!,m2

(34)~x,0,k!!.
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The definitions ofs(k), S(k) imply

S b~k!

a~k! D5m3
(12)~0,0,k!, S 2e24ik2TB~k!

A~ k̄!
D 5m2

(24)~0,T,k!,

where the vectorsm3
(12)(x,0,k) andm2

(24)(0,t,k) satisfy the following ODEs:

]xm3
(12)~x,0,k!12ikS 1 0

0 0Dm3
(12)~x,0,k!5Q~x,0!m3

(12)~x,0,k!, 0<argk<p, 0,x,`,

lim
x→`

m3
(12)~x,0,k!5S 0

1D ,

and

] tm2
(24)~0,t,k!14ik2S 1 0

0 0Dm2
(24)~0,t,k!

5Q̃~0,t,k!m2
(24)~0,t,k!, argkP@p/2,p#ø@3p/2,2p#, 0,t,T,

m2
(24)~0,0,k!5S 0

1D .

The above definitions imply the following properties:

a~k!,b~k! are defined and analytic for argkP~0,p!.

ua~k!u22ub~k!u251, kPR.

a~k!511OS 1

kD , b~k!5OS 1

kD , k→`.

Also A(k),B(k) are entire functions bounded for argkP@0,p/2#ø@p, 3p/2#. If T5`, the func-
tions A(k) andB(k) are defined and analytic in the quadrants argkP(0,p/2)ø(p,3p/2).

A~k!A~ k̄!2B~k!B~ k̄!51, kPC ~kPRø iR, if T5`!,

A~k!511OS 1

kD1OS e4ik2T

k
D , B~k!5OS 1

kD1OS e4ik2T

k
D , k→`.

All of the above properties, except for the property thatB(k) is bounded for argk
P@0,p/2#ø@p,3p/2#, follow from the analyticity and boundedness ofm3(x,0,k), m2(0,t,k), from
the conditions of unit determinant, and from the largek asymptotics of these eigenfunction
RegardingB(k) we note thatB(k)5B(T,k), where B(t,k)52exp(4ik2t)(m2

(24)(0,t,k))1 . The
above ODEs imply a linear Volterra integral equation for the vector exp(4ik2t)m2

(24)(0,t,k), from
which it immediately follows thatB(t,k) is an entire function ofk bounded for argk
P@0,p/2#ø@p,3p/2#.

We are now ready to derive the so-called global relation. We present the discussion Se~2.4!
of Ref. 6. We in fact show that the spectral functions are not independent but satisfy an imp
relation. Indeed, the integral of the one-formW(x,t,k) around the boundary of the doma
$(j,t): 0,j,`, 0,t,t% vanishes. LetW be defined by~A2! with m5m3 . Then
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È0

eikjs3~Qm3!~j,0,k! dj1E
0

t

e2ik2tŝ3~Q̃m3!~0,t,k! dt1e2ik2tŝ3E
0

`

eikjŝ3~Qm3!~j,t,k! dj

5 lim
x→`

eikxŝ3E
0

t

e2ik2tŝ3~Q̃m3!~x,t,k! dt. ~A9!

Using the definition ofs(k) above and~A8! it follows that the first term of this equation equa
s(k)2I . Equation~A7! evaluated atx50 gives

m3~0,t,k!5m2~0,t,k!e22ik2tŝ3s~k!,

thus

e2ik2tŝ3~Q̃m3!~0,t,k!5@e2ik2tŝ3~Q̃m2!~0,t,k!#s~k!;

this equation together with~A8! imply that the second term of~A9! equals

@e2ik2tŝ3m2~0,t,k!2I #s~k!.

Hence assuming thatu has sufficient decay asx→` Eq. ~A9! becomes

2I 1S~ t,k!21s~k!1e2ik2tŝ3E
0

`

eikjŝ3~Qm3!~j,t,k! dj50, ~A10!

where the first and second columns of this equation are valid for argk in the lower and the uppe
half of the complexk-plane, respectively, andS(t,k) is defined by

S~ t,k!5@e2ik2tŝ3m2~0,t,k!#21.

Letting t5T and noting thatS(k)5S(T,k), Eq. ~A10! becomes

2I 1S~k!21s~k!1e2ik2Tŝ3E
0

`

eikjŝ3~Qm3!~j,T,k! dj50.

The ~12! component of this equation is

B~k!a~k!2A~k!b~k!5e4ik2Tc1~k!, argkP@0,p#,

c1~k!5E
0

`

eikj~Qm3!12~j,T,k! dk.

This is the global relation, for finiteT. For T5` and assuming thatf 0 is Schwartz,c1 has to
be set equal to zero.

APPENDIX B: THE ‘‘LENS’’ ARGUMENT

Suppose we have the following Riemann–Hilbert problem. We are seeking a matrixL, ana-
lytic in the complex plane except for a jump along the real interval@a,b#, oriented from left to
right. The normalization at infinity is to be limk→`L5I , and the jump across@a,b# is

L15L2S 0 2 ieiH /h

2 ie2 iH /h 1 D ,
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where dH/dk,0. We also assume thatH is real on@a,b# and admits an analytic continuation i
a small ‘‘lens’’-like domain bounded by two analytic arcsCu ,Cl joining the pointsa,b ~in that
direction! and lying entirely in the upper and lower half-planes, respectively. We note the fol
ing factorization of the jump matrix:

S 0 2 ieiH /h

2 ie2 iH /h 1 D 5S 1 2 ieiH /h

0 1 D •S 1 0

2 ie2 iH /h 1D .

This suggests the following definition. Let

L85L, outside the domain bounded byCuøCl ,

L85L•S 1 0

ie2 iH /h 1D , between@a,b# and Cu .

L85S 1 2 ieiH /h

0 1 D •L, between@a,b# and Cl .

The Riemann–Hilbert problem forL8 is as follows:

L18 5L28 •S 1 0

ie2 iH /h 1D , kP Cu ,

L18 5L28 •S 1 2 ieiH /h

0 1 D , kP Cl .

Now, since d ReH/dk,0 on the interval @a,b#, by the Cauchy–Riemann relation
dImH/dk,0 across the interval@a,b#, in the positive imaginary direction. This means th
Im H,0 on Cu if Cu is chosen to be close enough to@a,b#, except at the end pointsa,b.
Similarly ImH.0 on Cl if Cl is chosen to be close enough to@a,b#, except at the end point
a,b. Hence,

Re~2 iH !,0, kPCu ,

Re~2 iH !.0, kPCl ,

except at the end pointsa,b. In other words the jump matrix forL8 is the identity plus an
exponentially small quantity, at least away from the end pointsa,b. This implies that the contou
CuøCl can be erased, at least away from the the end pointsa,b.

Near the end points one can use a parametrix argument, which we omit~see, e.g., Ref. 4 for
details!.

1A. S. Fokas, J. Math. Phys.41, 4188~2000!.
2P. Deift, A. R. Its, and X. Zhou, inLong-time Asymptotics for Integrable Nonlinear Wave Equations; Important De
opments in Soliton Theory, 1980–1990, edited by A. Fokas and V. E. Zakharov~Springer, Berlin, 1993!.

3P. Deift, S. Venakides, and X. Zhou, IMRN1997, 285 ~1997!.
4S. Kamvissis, K. McLaughlin, and P. Miller, nlin.Sl/0012034, 2000;Annals of Mathematics Studies~Princeton University
Press, Princeton, NJ, 2003!, Vol. 154.

5A. S. Fokas and S. Kamvissis, Abstract and Applied Analysis, 2003.
6A. S. Fokas, A. R. Its, and L.-Y. Sung, preprint, 2001.
7R. Carroll and Q. Bu, Appl. Anal.41, 33 ~1991!.
8C. Bender and S. Orszag,Advanced Mathematical Methods for Scientists and Engineers~McGraw–Hill, New York,
1978!.

9P. Deift, T. Kriecherbauer, and K. T.-R. McLaughlin, J. Approx. Theory95, 388 ~1998!.
10P. D. Lax and C. D. Levermore, Commun. Pure Appl. Math.36, 253 ~1983!.
11S. Jin, C. D. Levermore, and D. W. McLaughlin, inSingular Limits of Dispersive Waves, edited by N. M. Ercolaniet al.,
5 Nov 2006 to 147.52.67.230. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



5868 J. Math. Phys., Vol. 44, No. 12, December 2003 Spyridon Kamvissis

Downloaded 1
NATO ASI Series, Vol. 320~Plenum, New York, 1994!; Commun. Pure Appl. Math.52, 613 ~1999!.
12S. Kamvissis, Appl. Math. Lett.12, 35 ~1999!.
13C. Bardos, J.-M. Ghidaglia, and S. Kamvissis, Am. Math. Soc. Transl.263, 1 ~2000!.
14A. S. Fokas and A. R. Its, SIAM J. Math. Anal.27, 738 ~1996!.
15A. S. Fokas, Proc. R. Soc. London, Ser. A457, 371 ~2001!.
5 Nov 2006 to 147.52.67.230. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp


