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Abstract. Completely integrable finite dimensional Hamiltonian systems are well understood
thanks to the work of Liouville and Arnold. On the other hand, the Lax Pair formulation of
the KdV equation marks the beginning of the extension of the completely integrable theory to in-
finite dimensional Hamiltonian systems. Solutions of initial value problems for systems that admit
a Lax Pair formulation normally have a tame qualitative behavior if Lax Pairs give rise to an infi-
nite complete set of conserved laws. The situation is different for initial-boundary value problems,
even in one space dimension. There are problems where integrability persists and others where
even chaos can appear. In this short article we review an instance of each case. A more complete
understanding of when exactly integrability perists is still missing.

To the memory of Peter Lax, teacher and mentor

1. Introduction

The Lax Pair formulation of the KdV equation [19] marks the beginning of the extension of the
theory of completely integrable systems to Hamiltonian systems of infinite dimension. Initial value
problems for systems admitting a Lax Pair formulation are well understood if the initial data satisfy
some decay or covergence conditions at infinity or are periodic, enabling the possibility of solution
via inverse methods (inverse scattering or inverse spectral). A crucial fact is that Lax Pairs give
rise to an infinity of conservation laws. Ensuring appropriate initial data so that the conserved
quantites are finite and reducing the system appropriately so that a complete set of (infinitely
many) action and angle variables exists, the system is completely integrable in the sense that the
solution is reducible to the solution of a (local) Riemann-Hilbert factorization problem (in the case
of one space dimension) or a nonlocal Riemann-Hilbert factorization problem or a ∂̄-problem (in
higher space dimensions). Such problems are amenable to asymptotic analysis. For local problems
one has the so-called nonlinear stationary phase and steepest descent methods; there is already
a huge literature, see e.g. [7], [18]. For ∂̄-problems there are fewer results (e.g.Perry [21]); for
nonlocal Riemann-Hilbert factorization problems see Donmazov, Liu and Perry [9].

Things are different for initial-boundary value problems, even in one space dimension. There is
an extension fo the inverse method (a ”unified transform method”, developped by Fokas and his
collaborators) [10], [11], [12], [13]. But a crucial feature of this method is that it requires the values
of more boundary data than given for a well-posed problem. This has two important consequences.
First, it somehow lowers the degree of effectiveness of the asymptotic formulae since they involve
knowledge of scattering data associated to both Dirichlet and Neumann data; the Neumann data
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are only very implicitly given. Most crucially however, given some Dirichlet data in an appropriate
class (for the unified transform theory to apply) it is not at all clear that the Neumann data also
lie in a class that one can work with.

More specifically, in the case of cubic NLS knowledge of the Dirichet data suffices to make
the problem well-posed but the unified transform method also requires knowledge of the values
of Neumann data. The study of the Dirichlet to Neumann map is thus necessary before the
application of the unified transform. In the papers [2], [3], we presented a rigorous study of this
map for a large class of decaying Dirichlet data. We showed that the Neumann data are also
sufficiently decaying and hence that the unified transform method can be applied. These results
are presented in the next section.

In a later section we present some beautiful numerical experiments by Arthur, Dorey and Parini,
which clearly show the existence of chaos in the behavior of the Sine-Gordon initial-boundary value
problem with initial data and a Robin boundary condition. Furthermore the Dirichlet boundary
data u(x, 0) are unbounded. This is a clear instance of a problem which admits a Lax pair formu-
lation but that is far from integrable: adding a boundary and boundary conditions, even ensuring
a uniquely solvable problem may or may not preserve integrability! 1

In the last section we compare the initial-boundary problems to initial value problems with a
small perturbation and compare existing results.

2. NLS

Consider the NLS equation with cubic non-linearity, posed on the real positive semi-axis R+

(2.1) iqt + qxx − 2λ|q|2q = 0, x > 0, 0 < t < +∞,

and initial-boundary data

q(x, 0) = q0(x), 0 ≤ x < +∞

q(0, t) = Q(t), 0 ≤ t < +∞,
(2.2)

where q0, Q are classical functions satisfying the compatibility condition q0(0) = Q(0).
The case λ = 1 is the defocusing case, while λ = −1 is the focusing case.
Back in 1991, Carrol and Bu in [5] established the existence of a unique global classical solution

q ∈ C1(L2)∩C0(H2) of the problem (2.1)-(2.2), with q0 ∈ H2, Q ∈ C2 and q0(0) = Q(0), by using
PDE theory. Later papers like [15] by Holmer etc. have also provided results in Sobolev cases. For
our purposes the classical result in [5] suffices.

On the other hand, it is well-known [22] that the non-linear Schrödinger equation (NLS) with
cubic non-linearity can be written as a Lax pair and that, at least the Cauchy problem is ‘completely
integrable’; this means that there is an infinity of conservation laws which are in Poisson ivolution,
and furthermore that the problem can be linearized via the scattering transform. This does not
mean that there is a bona fide explicit solution. At best the inverse scattering problem, rewritten
as a Riemann-Hilbert factorization problem can be effectively treated asymptotically. Effective
long time, long range and semiclassical asymtotical formulas can be provided: they depend on the
initial data either very explicitly or at worst via the solution of simple linear ODEs.

In [13] the authors use the unified transform method to solve the problem on the real positive
semi-axis, given values for the initial data and Dirichlet data (which make the problem well-posed)

1This phenomenon should not be confused with the so-called deterministic turbulence [20], [4] appearing in initial
value problems that can be studied via the inverse scatering transform and Riemann-Hilbert problems[18]. Deter-
ministic turbulence is an integrable phenomenon.
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and also the Neumann data P (t) := qx(0, t). What is required for that theory to work is that the
Neumann data (as well as the Dirichlet data) live in some class with nice decaying properties such
that the unified scattering transform can be properly defined. This is exactly the content of our
theorems below: we provide several reasonably inclusive large classes of Dirichlet data, such that
both Dirichlet and Neumann data decay as t → ∞ fast enough for the scattering method to work.
Hence [13] applies, a Riemann-Hilbert factorization problem is possible, and explicit asymptotics
(long time [13], long space, or even semiclassical [16] [14]) are available. Still, these formulae are
not as effective as the formulae for the Cauchy problem. The reason is that in general the Dirichlet
to Neumann map is very implicit. So some functions appearing in the asymptotic formulae involve
scattering data related to the Neumann boundary data; these cannot be effectively computed. 2

Our main result concerning the defocusing case is the following, see [3].

Theorem 2.1. Let q be the unique global classical solution q ∈ C1(L2)∩C0(H2) of the initial-value

problem for defocusing NLS, with Dirichlet data Q ∈ C2 and Q(0) = q0(0).
Assume that q0 ∈ H1(0,∞) ∩ L4(0,∞) and xq0 ∈ L2(0,∞).
If q(0, t), qt(0, t) have a sufficiently fast decay as t → ∞, that is O(t−α) and O(t−β), for α > 3/2

and β > 5/2 respectively, then ∫
∞

0
|qx(0, t)|dt < ∞.

Furthermore, if the Dirichlet data belong in the Schwartz class, then the Neumann data also

belong in the Schwartz class.

As stressed above, this implies that a Riemann-Hilbert factorization problem is possible, and
explicit asymptotics (long time [13], long space, or even semiclassical [16]) are available. 3 In the
next section we present the main long time asymptotics formula for the defocusing case.

We also have a result for the focusing case. Here, we have to assume that some data are small.
Let q be the unique global classical solution q ∈ C1(L2) ∩ C0(H2) of the initial-value problem

for focusing NLS, with Dirichlet data Q ∈ C2 and Q(0) = 0. Assume for simplicity that the initial
data is zero.

Also, let ∫
∞

0
|Q(t)|2dt,

be sufficiently small. If as t → ∞

Q(t) = O(t−5/2−ε), Qt(t) = O(t−5/2−ε), Qtt(t) = O(t−1/2−ε),

for some small ε > 0, then there exists c > 0 independent of t such that for t large

(2.3)

∫
∞

0
|qx(0, t)|dt < ∞.

Furthermore, if the Dirichlet data belong in the Schwartz class, then the Neumann data also belong
in the Schwartz class.

2In more complicated problems the dependence can be very unstable ([17] for periodic Dirichlet data) or even
chaotic (see the section on Sine-Gordon below).

3This is actually what we prefer to call ”integrability”. This presupposes the existence of Lax pairs AND a valid
inverse theory!
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3. Long time asymptotics

From the Riemann-Hilbert formulation one can derive precise long time asymptotics. For defo-
cusing NLS this was first done in [6]. Their calculation was for the initial value problem. However,
since the Riemann-Hilbert problem for the initial-boundary value problem is actually very similar,
the same computation gives rise to the following long time asymptotics, as cited in [13].

(3.1) q(x, t) =
a(−x

4t )

t1/2
eix

2/4t+2i(a(−x

4t
))2logt+iφ(−x

4t
)(1 +O(t−1/2)),

where the functions a, φ are given by simple explicit formulae depending on the scattering data
corresponding to the Dirichlet and Neumann data. Only the Dirichlet data are given (for a well-
posed problem) and the Neumann data are only implicitly determined from the initial and Dirichlet
data.

These asymptotics are uniformly valid in any closed linear sector (with half-lines as boundaries)
that lies entirely in the open first quadrant x, t > 0. The same expression gives the long range
asymptotics as x → ∞4.

A very similar formula also holds in the focusing case if no solitons are present (which is true for
zero initial data and small Dirichlet data).

Near the boundary x = 0 the analysis is more delicate and depends on the details of the behavior
of the Dirichlet data as t → ∞. A careful demonstration has been presented by Lenells for the
derivative NLS equation. If the Dirichlet data are unbounded the existing uniform method is not
applicable.

4. Sine-Gordon with Robin condition

Following [1] we consider the equation

(4.1) utt − uxx + sinu = 0

in the half plane x < 0 with a homogeneous Robin condition

(4.2) ux + 2ku = 0

at x = 0. Here k is a given real constant. Note that at k = 0 we recover the Neumann condition
and at infinity we recover the Dirichlet condition at x = 0.

Consider initial data of one-antikink form

(4.3) u(x, 0) = 4arctan(e−γ(v0)(x−x0)), ut(x, 0) =
−4v0γ(v0)

1 + exp(−2γ(v0)(x− x0))
exp(−γ(v0)(x− x0)),

where γ(v0) = (1− v20)
−1/2, v0 > 0 being the intial velocity and x0 < 0 the initial antikink center. 5

Careful numerical experiments in [1] (Figures 8 and 14 in particular) consider the boundary-initial
value problem and focus on the recovery of the ”Dirichlet data” boundary value u(0, t). There are
very careful plots u(0, t) in terms of v0 and k with the choice x0 = −30 (that is away enough from
the boundary). The Dirichlet data are necessary for the application of the unified transform even
though they are not part of the conditions defining the well-posed problem; they are only implicitly

4with small error as x → ∞

5This is expected (but never actually rigorously proven as far as we know) to be a uniquely solvable initial-boundary
value problem. Of course the numerics of [1] support this fact.
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defined by the solution itself. So the understanding of their behavior is crucial for the applicability
of the unified transform.

The result of the ”reflection” at the boundary x = 0 has to consist of breathers, kinks and
antikinks (and some decaying ”background” term). The intuitive non-rigorous reason for this is
that away from the boundary one expects the effect of the initial data to be dominant, because
of the expected finite propagation speed (up to smaller error terms). 6 But it is known that any
initial data will give rise to a set of kinks, antikinks and breathers7.

The most striking behavior of u(0, t) is observed for values of the real constant k between 0.05
and 0.07 and v0 between 0.875 and 0.9 and for large times tf = x0/v0 +1000. The authors observe
the existence of breathers and possibly an antikink. Clearly chaotic phenomena occur: very slight
changes in the parameters can affect (in a chaotic way) the production (or not) of a reflected
antikink!

Furthermore, the function u(0, t) is unbounded for large time.
This means that the map that takes the initial data u(x, 0), ut(x, 0) to the ”Dirichlet data” u(0, t)

depends in a chaotic way on k and v0. This fact is very interesting (see [17] for a similar result for
the periodic NLS problem) but on its own does not exclude the possibility of applying the unified
transform method. What does render the method inapplicable is the unboundedness of u(0, t). So
we have two observations here: chaoticity and inapplicability of the unified method. The problem
is non-integrable for two reasons!

5. Comparison with the perturbed NLS on the real line

In [8] the authors consider the initial value problem for the defocusing NLS with an extra
perturbation term ǫ|u|lu, l > 2, ǫ > 0 and initial data decaying at infinity. What they discover
is that for small ǫ the problem is still integrable! In particular they derive long term asymptotics
similar to the unperturbed case.

Now, in a sense the initial-boundary value problem is a forced perturbation of the initial value
problem. So it makes sense to compare the results of [8] with our results in [2] and [3]. But it is
also interesting that our ”forcing” term is not small in the defocusing case; it has to be small only
in the focusing case.

Also, no chaotic phenomena are known in the fully non-integrable case of the perturbed NLS on
the real line with large positive ǫ. So it seems that the initial-boundary value problem describes a
richer set of phenomena!

6. Conclusion. What next?

Initial-boundary value problems for equations that admit a Lax Pair formulation and for which
purely initial value problems give rise to completely integrable systems can still be completely
integrable and tractable via techniques like Inverse Scattering and Riemann-Hilbert deformation.
But there are also initial-boundary value problems for even some of the simplest Lax Pair equations
where reasonable seeming data can give rise to chaotic behavior.

Can one understand better when and why this happens? Can one give comprehensive sets of
boundary conditions that lead to integrability and chaos respectively?

6Of course the finiteness of the propagation speed can only be proved for intial value problems, using the Riemann-
Hilbert formulation. It may only be proved for initial-boundary value problems if one knows already that the unified
transform is applicable.

7this is the ”soliton resolution” for Sine-Gordon
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Figure 8: A snapshot of the field values at x = 0, t = |x0|/v0 + 1000 for the scattering

of an initial antikink with velocity v0, position x0 and boundary parameter k. Fig. 14

below shows a zoomed-in view of the complicated structure near to k = 0.06, v0 = 0.89.
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Figure 14: A zoomed-in plot of the shaded area in Fig. 9a, showing the value of the field

at x = 0, t = tf = |x0| /v0+1000 for an initial antikink with velocity v0, position x0, and

boundary parameter k. The dark blue bands, where u(0, tf ) is near zero, correspond

to an antikink being emitted, while in the light green areas, where u(0, tf ) is near 2π,

only breathers are emitted. In between these areas are indeterminate regions where a

very slight change in the initial parameters can cause an antikink to be produced or

not. The oscillations in the boundary value of the field on the left of the plot are due

to a breather becoming trapped at the boundary, only decaying very slowly there, in

contrast to behaviour on the bottom right where this breather is able to escape and the

field relaxes to zero much more quickly. The line separating these two regions, running

from approximately k = 0.0565, v0 = 0.875 to k = 0.0574, v0 = 0.8776, is the top portion

of the boundary between regions Va and IV in Fig. 9a.
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Figure 14 from ref.1
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