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ABSTRACT / SUMMARY

We consider the effect of real spectral singularities on the long time behavior
of the solutions of the focusing Nonlinear Schrodinger equation. We find that for
each spectral singularity N € R, such effect is limited to the region of the (x,t)-
plane in which X" is close to the point of stationary phase Ao = ZF (the phase here
being defined in a standard way by, say, the evolution of the Jost functions). As we
approach that region, the solution performs decaying oscillations; the order of decay
is O((l"Tgt)l/ 2). Inside that region the solution is asymptotically identified as a self-
similar solution of NLS expressible in terms of a Painlevé 4 transcedent. We prove
our result by using the Riemann-Hilbert factorization formulation of the inverse
scattering problem. We recover our asymptotics by transforming our problem to
one which is equivalent for large time. Around the shock front the limiting ”model”
Riemann-Hilbert problem can be interpreted as the one corresponding to the genus
0 algebro-geometric solution of the equation. Inside the shock region, the Riemann-
Hilbert problem is related to the Painlevé 4 equaton.

Typeset by ApMS-TEX
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1.INTRODUCTION

We consider the nonlinear Schrédinger equation (focusing case)
(1.1) iqt + Qoo + 2qlg* =0
under initial data
(1.2) q(x,0) = go(),

belonging in the Schwartz class.

As is well known (see [NMPZ], [FT]), the problem (1.1)-(1.2) can be integrated
through the method of inverse scattering. We will here present some of the results
we will need without proof.

The associated linear system is

_ iAo ig(x)
where the bar denotes conjugation. Jost functions 1, 12, ¢1, ¢o are defined on the
real line as (column vector) solutions of (1.3) satisfying the asymptotic conditions

1 (T, A) ~ ( 1$z>, as T — +00,
e~

0
e—i/\z , As T — +OO,

ez)\:t

¢1(35,)\)~( 0 ),asx—>—oo,
Pa(x, A) ~ ( 6_(3)@), as r — —oo.

Furthermore, ¥ and ¢ can be meromorphically extended to the upper half-plane,
while ¥2 and ¢ can be meromorphically extended to the lower half-plane. Indeed,
one has

( Pr(x, Ve ™ gdo(x, e ) = I, as X — oo, ImA >0,

1. ) )
(15) ( p1(z,N)e™%  hy(x,\)e?*) = I, as A — oo, ImA < 0.

I is here the identity matrix.
We point out the symmetry

(1.6 den=( 5 ) e,

where ¥ = (11 12); the same symmetry is satisfied by ¢ = ( ¢1 ¢2).
On the real line, ¢ and 1 are solutions of system (1.3). Hence there exist ‘scat-
tering coefficients’ a(\), b(A) such that

Pa(; A) = a(A)iha(w, A) + 6N (x, )

(L.7) #1(z,A) = @A) (x, ) — b(A\)ha(z, \).
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Although @ and b are a priori independent of ¢ and b, one can see from the symme-
tries above that they are after all their complex conjugates. Furthermore one can
show

(1.8) la(N) 2 + [b(N)]? = 1.
The time evolution of the scattering coefficients is given by
a(\t) = a(X,0),

(19) b(A, ) = b(\, 0)ediN*t,

It turns out that a(\) can be analytically extended to the upper half-plane, while
a()) can be analytically extended to a function a*(A) = a()\) in the lower half-plane.
In general, this is not also true for b. Generically, a has only a finite number of
zeros in the upper half-plane and no zero at all on the real line (cf. [BC]). However,
there are cases where this is not true. One can have, for example, an infinity of
non-real zeros with a limit point on the real line (see [Z] for an example).

It is well-known that in the generic case, non-real zeros of a correspond to solitons
for long times (see [FT] for example). Our goal is to study the effect of real zeros
of a. We will only consider the case of finitely many zeros of a. For simplicity we
will state and prove our results in the case where no non-real zeros of a are present
and only one real simple zero exists. However, it should eventually become clear
that this is only a superficial constraint, and indeed we will indicate at the end of
this work what happens in the more general case (of finitely many zeros).

A simple example of initial data producing exactly one real spectral singularity
is the following ([CK]). Let X > 0 and

T
up(2r) = ==, 0 <z < X,
(1.10) o) = 3%

=0, otherwise.

Then a(\) has exactly one (simple) zero at A = 0 and a’(0) = % Even though
ug is discontinuous, the standard direct and inverse scattering theory is applicable.
We define the 2 x 2-matrix-valued function ¥ as follows. Let

) U = ( Pre~ire 4)2‘(2;311 ) , for ImA >0,

:( % wze“z), for Im\ < 0.

Letting ¥, and ¥_ denote the limits of ¥ on the real line from above and below
respectively, we have (after a few calculations)

1 T(A)62iA1+4iA2t

(1.12) Uy(z)=¥_(2) ( F(A)e 2N 10Nt L+ e > , ImA =0,

where r(\) = %. Note that the jump matrix has determinant 1.

Finally, one can prove that a(A) =1+ O(1/\) as A = oo, ImA > 0. Hence
(1.13) U(A=00) =1
We thus end up with a Riemann-Hilbert factorization problem: W is a matrix

function, analytic in the complement of the real line, satisfying the jump condition
(1.12) and the asymptotic condition (1.13).
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Note that in the generic case of finitely many zeros off the real line and no
real zero, ¥ is meromorphic and neither ¥ or ¥_ nor the jump matrix have any
singularities. In the case we are interested in, however, both W, and the jump
matrix have singularities exactly at the zeros of a(\).

Conversely, the solution of the Riemann-Hilbert problem enables us to recover
q(z,t). Indeed (see e.g [NMPZ])

(114) q(ac,t) = *QZim)\A,oo)\\Iflg.

Thus, the initial value problem (1.1)-(1.2) is reduced to the above Riemann-
Hilbert on which we focus from now on.

The interest of the problem treated in this paper is twofold. On the first hand,
as we will see later, the physical effect of the spectral singularity is a ‘collisionless
shock’ type phenomenon; we thus have an interesting connection with the theory of
‘dispersive shocks’ for nonlinear wave equations (cf.also [DVZ], [AS]). On the other
hand, ours is a first step towards the completion of the solution of the problem
of long-time asymptotics of integrable equations in the case of Schwartz data, in
the following sense: although the related direct and inverse scattering problems are
now completely solved (see [Z], [DZ2]) for the most general cases of Lax operators
and even in the non-generic exceptional cases of data for which there are either
infinitely many spectral singularities off the associated Riemann-Hilbert contour or
there are (possibly infinitely many) spectral singularities on the contour, the long-
time asymptotics problem is still far from having a complete solution, even in cases
as simple as the NLS equation. In fact, the present paper is the first of a series;
in a recent article (see [K|) we treat the infinite-soliton case, while a treatment
of the case of infinitely many real (i.e. on the Riemann-Hilbert contour) spectral
singularities for the NLS equation will appear soon.

We now state our main result, to be proved in section 3.

THEOREM 1.1. Let ¢ be the solution of (1.1) with initial data in the Schwartz
class, and such that a (simple) spectral singularity exists at A = 0 and nowhere
else. Let \g = 77, 7 = tA2 and M be a given positive constant. Then the leading
order asymptotics of ¢, as t — oo, is as follows.

In region I: z < 0, \g < —M, ¢ is given by formulae (2.5) and (2.6).
In region II: < 0, A\g — 0,7 — 00, ¢ is given by formula (3.18).
In region III: A\g — 0,7 < M, ¢ is given by (3.19).

In region IV: z > 0, A\ — 0,7 — 00, ¢ is given by (3.18).

In region V: z > 0, A\ > M, ¢ is given by (2.5)-(2.6).

The plan of the rest of the paper is as follows. In section 2, we solve the Riemann-
Hilbert factorization problem in the case where the zeroes of a, are away from the

stationary point Ao = 77 of the phase © = Az + 2X%t. Indeed, we show that no

spectral singularity has any effect at all in the long time behavior of ¢(z,t). In
section 3, we consider the more interesting case where A\g — X' — 0 with time, for
some real singularity A’. In section 4, we discuss a generalization of our results.

The problem of a real spectral singularity was first considered by Ablowitz and
Segur. In [AS] they study the collisionless shock phenomenon for the KdV equa-
tion with decaying initial data and they dedicate a small section to the focusing
nonlinear Schroedinger equation, where they address the problem of a real spectral
singularity by considering non-real ones, say kg, and taking the limit as Imkg — 0.
Their treatment is heuristic and non-rigorous. It is satisfactory however that their
estimate for the decay of the solution on the ‘shock’ front agrees with ours. For the
sake of the reader, we present the result of Ablowitz and Segur below.

RESULT of [AS]. In the shock front region (corresponding to our regions II and
IV), the solution of (1.1)-(1.2) has the following asymptotic expression

q(z,t) =t 2R (x/t, t)e"0 /00
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where
2
0~ 12 ) o),
R S5+ 45U + S ()™,
(1.15) 1
f2(—4k) ~ E(logt — loglogt — 2logm),

logt
where k= XN +m(—— og )2,

In particular (cf. (4.10) of[AS])

1 logt 4 2
l ~ 5o ()

Note that this formula agrees with our (3.18).

The method of this paper follows the spirit of the work of Deift and Zhou (see
[DZ], [DVZ]), who invented a new (and for the first time rigorous) method for
recovering long-time asymptotics of integrable ‘soliton’ equations, by using the fact
that the inverse scattering problem for such equations can be stated as a Riemann-
Hilbert factorization problem. We also make use of results of Deift, Its and Zhou for
the defocusing nonlinear Schroedinger equation ([DIZ]). We note that the present
work is the first in this spirit that deals with problems for which the jump matrix
blows up at a point.

ACKNOWLEDGEMENTS. We wish to thank Jean-Claude Guillot for pointing
our attention to this problem and for the reference [CK] as well as illuminating
discussions. We also thank Percy Deift for discussions concerning Riemann-Hilbert
problems on a Riemann surface, Daniel Battig for discussions concerning the pe-
riodic problem for the NLS system and Dan Dix for helpful discussions and for
pointing out reference [AS]. Finally we thank the referees for helpful comments
concerning our presentation.
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2. AWAY FROM A SINGULARITY

As mentioned in the introduction, Deift, Its and Zhou have analyzed the long
time behavior of the defocusing nonlinear Schroedinger equation. In that case, the
Riemann-Hilbert problem agrees (modulo a minus sign) with (1.12)-(1.13) except
that no spectral singularities exist at all (real or non-real). The question is how is
the analysis of the problem affected when ¥ and the jump matrix in (1.12) have a
singularity. In this section, we show that when for all singularities A, \g— A = O(1),
they have no effect at all. We will only restrict ourselves to the case A\g > N, since
obviously the case A\g < X is similar (and easier).

1. We begin by considering an auxiliary scalar factorization problem. Let d be
a function analytic in C\ (—oo, Ag] such that

di(N) =d_(N)(1 +|r(N)]?)  for —oo < X<\,
(2.1) di(N) =d_(\) for A> )Xo
d—1 as A — oo.

When there is no spectral singularity at 0, it can be easily checked that the solution
of the above scalar problem is given by

2o 1o r(s)|?
100 = eapi [ UL

oo s—A

PROPOSITION 2.1. Problem (2.1) has a unique solution which has no zeros and
its only singularities are at zeros of a. More precisely, near a zero of a dy(\)a(N),

d(N)a(N), da’(f\’;) and ad*((’\ )\)) are bounded above and below.

PROOF: First note that

11
e a(Na*(A)

L+ r(V))? = for A eR.

Also recall that a is analytic in the upper half-plane, a* is analytic in the lower
half-plane and a(A) =1+ O(%) as A — oo, Im A > 0.

Consider the contour depicted in figure 2.1 (the exact choice of lines I3 and I3
is irrelevant provided a,a* have no zeros in regions Az, Az or on lines l3,[3) and
define

0(A) =d(N), X € Ay,
d(A) =d(N)a(N), A€ A,
5N\ = d()\)(a*()\))_l, A€ As.

0 satisfies the following scalar problem: it is analytic in C\ (l2 Ul3) and,

04 =d_a, on ls,

6y =06_(a*)"L, on ls.

As a has neither zeros nor poles on [y U l3 we see that this scalar factorization
problem has a unique solution with neither zeros nor poles; even though a has a
discontinuity at Ao, d is bounded near )\ (see e.g. [G], p.448). The result follows.

Figure 2.1
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It can be easily seen now that near Ay the behavior of d is

Ao

A) ~ = o) eap(5 [ llog(s = ldiog(1 + r(\(s) )

where v = 5-log(1 + [r(Ao)[?) > 0.

2. We will next provide an appropriate contour deformation (following [DIZ])
which will be guided by an analysis of the signature of the phase © = Az + 2\t
appearing in the exponents of (1.12) (see figure 2.2).

A fundamental fact is that the jump matrix of (1.12) admits the following fac-
torizations (hence justifies our construction of d).

d 0 d=1 rd1e%®
( Fde=2i® d—l)( 0 d >f°”>A°

and

rd:162ie d_l 0
( d- —1+|1"1\2 ) ( Fd+j_m ) , for A < A
0 d_ fEETE d+

We deform our contour as in figure 2.3.

Guided by the above factorizations, we define

d 0
1 _
v —‘I’( Fde© g1

REMARK. For such a deformation we need to assume that b, b can be analytically
extended, at least in a small strip containing the real line (note that the actual choice
of the curves [; is not important as long as they are in the right quadrant). This
would be indeed true under more restrictive data. However, such an assumption
is not necessary. As shown in [DZ] (see also [DIZ]) b can be approximated by a
rational function whose poles do not affect the analysis.

, A€ Dg.

d —rd1e?®
\1,1:\1;( 0 g1 ),AeDl,
\111:\1/( g d91>,AeD2,
d 0
vl =v —rd_,—2i0 -1 |, A€ D3,
(2.2) e
. . d Tci—le2;(—)
U=y 0 :l—lj.l‘ , N E Dy,

Figures 2.2 and 2.3
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A straightforward calculation shows that there is no jump across the real line.

We have
(2.3) Ul(oo) =1.
The jump is
ql}r = \Iliuglc’t, where
1 1 —rd 220
Uy = 0 1 , only,
= _ d21—2i@ 0 on 12
(2.4) e g ) ont

_ 1 0 !
= Fd2e—21® 1] oMl

3. The important observation is that this is a Riemann-Hilbert factorization
problem without singularities at all. Indeed, the jump matrices have no poles as
a has no zeros on l; Uly Ulsz Uly. Also, U1 has no poles even at the points where
a(X) = 0. This follows easily from the scattering relations (1.7), the definition of ¥
(1.11), and proposition 2.1 which gives the behavior of di near the zeros of a.

In other words, we end up with exactly the same problem as the one correspond-
ing to initial data that produce no real spectral singularities at all. Hence, the
analysis of Deift, Its and Zhou goes through completely unaltered. Note also that
the solution of (1.1)-(1.2) is still recovered in the same way (see (1.14)) since the
modifications above have no effect on ¥ up to order %

We will not provide the analysis of Deift, Its and Zhou in detail. We refer the
reader to [DIZ] instead. We will only recall that as the jumps (2.4) are exponentially
small away from the stationary phase point )y the problem is reduced to one on a
small cross near Ag. The new problem can be solved explicitly (after some rescaling)
in terms of parabolic cylinder functions. For the reader’s convenience we provide
the leading order asymptotics for q.

THEOREM 2.1. Let M > 1, K > 0 be fixed and assume that for any real zero
of a, say N, we have A — X < K. We have

i|w|?

(2.5) q(z,t) = t 7 2a(Ng)e 1~ Q0)ed(8) o (g ),
where, as t — oo,
(2.6) E(z,t) = O(t tlogt), for |Xo| < M,

and for any j,
E(x,t) = O(|z| ™7 + ¢;(20)x " og|z|), for |Xo| > M1,
where
_ 1 2
v(\) = 27_‘_log(l + [r(N)]?) > 0,
v(Xo)
2 )
T 1 [
arga(Xg) = argl(iv(Xo)) — argr(Xg) + il - / log(Mo — N)d(log(1 + |r(\)|?).

—0o0

la(Xo)|* =
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3. NEAR A SINGULARITY

In this section we consider the effect of a real spectral singularity which is close
enough to the stationary phase point Ay . For simplicity, we will assume that there
are no non-real singularities and that there is only one real simple singularity, i.e.
a has a simple zero, say at zero (but see section 4 about these assumptions). We
write a(A\) = X a(\), with a(\) # 0.

In this case, the analysis of [DIZ] breaks down, so the method of section 2 is no
more useful. The behavior of d (the solution of problem (2.1)) is more complicated
near \g; it is no more bounded there, and the relevant resolvent operators are also
unbounded, so the standard method of [DIZ] cannot be applied directly. We will
instead study this case by deforming the original problem in a different way.

1. Let
2
3.1 =2 —w2
3.1) T e 0
We consider the region defined by
)\0 — 0,
(3.2) T — 00,
as t — oo.

Our first step will be to rescale appropriately so that the distance between the
spectral singularity and the stationary phase point is O(1). We next introduce a
contour deformation (different from section 2) which is still guided by the signature
of the phase ©. It now turns out that, in the region we are interested in, the
factorization problem takes a very special shape. After a final conjugation involving
an appropriate multi-valued function we end up with a problem on a vertical band,
that can be solved in terms of the genus-0 algebro-geometric solution of equation
(1.1).

REMARK. A comprehensive reference for scalar problems with singular jumps
(like (2.1)) is the book by Gakhov ([G]).

2. Let M ()\) = ¥(A\gA). Condition (1.13) becomes

(1) _ (1) it (222 —4N)os 1 r(XoA) —ir(2A2—4N)os
(33) W= ( FOod) 1+ IroNf? ) € |

The rescaled phase is
(3.4) O =7(\—2)\).

The singularity of the problem is now at A = 0 while the stationary phase point is
at A= 1.

3. Let d be the solution of the scalar problem (2.1). We introduce a new contour
> as shown in figure 3.1. We denote the vertical band joining points 1 + iA and
1—14iA by B. A is a real positive parameter to be specified later.

Figure 3.1
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Let
_pp-1,2i0
\11(2):\11(1)( 107 Rg_f ) A€ By,
g2 — g < g D0_1> .\ € Es,
D 0
@ =gl —RD _-2i® p-1 |, A€ Es,
(3.5) 1+[R[? D
. RD—1e2i®
v@ =g < 10) T ) , A € Eu,
g — g < l()) Do_l) , A€ Es,

D 0
2 = g < R o2 D‘1> .\ e E;g.

Here R(A) = r(AoA) and D(X) = d(Ao)).
A straightforward calculation shows that there is no jump across the real line.
We also have

(3.6) ¥ (c0) = 1.
The jump conditions for ¥ are

‘Il(f) = \Il(f)ugl, where

. —2_2id®
e (R

1 0

= —RD?e—2%1® , on ZIQ,
LR
1 RD—2e2i®

= < 0 1+‘1R|2 ) , On lg7

. 1 0 I
= RD2e-2i® 1 y OTL by,

1 7RD_2 2i®
= ( R?z‘e};lz;(b - ‘1R: ) , on the top half Of B,
¥ ¥
1 _RD-22i%
= < RE)J;‘REM) 1*‘1R‘2 ) , on the bottom half of B.
e

Once more this is a Riemann-Hilbert factorization problem without singularities
at all. The proof of this is the same as in section 2.

4. We observe that, as in section 2, because of the structure sign of ® the jumps
across ¥ \ B are exponentially close to I as 7 — +o00. We thus end up with a
Riemann-Hilbert factorization problem across B.

THEOREM 3.1. Let ¥®) be analytic in C\ B , such that

\I/f) = \Il(f’)uf’l on , where
*RD_ZEQ“I)

1
uf’l = ( RDZ2e~2i® 1 ) , on the top half of B,
(3.8) ’ 1+|R[? 1+ [R?

1 ; 71%3D*2e22i<I>
= < RESIGR"Q“D 1+‘1R‘ ) , on the bottom half of B.
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and
(3.9) T (00) = 1.

Then ¥ —¥®) = O(771), for any positive I, as T — oo, uniformly in x, in compact
subsets of the A—Riemann-sphere.

PROOF: The proof is omitted (see [DZ]). The important observation here is that
I:ED’Z and % are actually under control on the top half of B while % and
RD? are under control on the bottom half. For example (again see [G], p.448) D
behaves like )\0_1/2()\ —1)7%/2 and RD~? is bounded. Note here that it is crucial to

chose the segment B at right angles with the real line; the behavior of D depends
essentially on the direction in which we approach A = 1.

5. We introduce the multi-valued function

(3.10) Q=2A—1)(A—1)2+ A%1/2 _ 42 _2,

We consider this as a function on C, chosing the branch consistently with the
condition

3.11 2 !

(3.11) Q =2\ —4)\—|—O(ﬁ), as A — o0.

Naturally, 2 has a jump across B. Also,

O+ Q- =-2(4%+2),
(3.12) 1(Qy —Q_) <0, on the top half of B,
i(Qy —Q_) > 0, on the bottom half of B.
Defining
(313) \I’(4) _ \11(3)€i(2(1>_TQ)03,

with o3 = diag(1,—1) (a Pauli matrix), we end up with the following Riemann-
Hilbert problem.

(3.14)
\Ilsf) = \I/(_‘L)ugfl, where
iT(Q+7ﬂf) _RD*2 iT(Q++Qf)
u;‘ll = < pbgze—vif(mrmf) 1 _GiT(Q+_Q_) ) , on the top half of B,
' TR TH R C
GiT(2p—2) _RD~2eim(Q4+02)
= 1+[R]? 1+[R[?
= < RDze—i‘r(S‘erl_) e‘iT(ﬂlJfl_Q—) ) , on the bottom half of B,

W (o) =1

REMARK. The choice of € is inspired by the theory of algebro-geometric solu-
tions of the NLS equation (cf. [BBEIM]). We are seeking a generalized differential
7d2 on a Riemann surface, whose integral behaves like the phase 2® as A\ — oo. The
actual Riemann surface (of genus 0 in our case ) is dictated by the Riemann-Hilbert
contour B in (3.8).

REMARK. The top diagonal term in the first matrix of (3.14) is small. To
make the second diagonal term small we need to specify A. This will be done
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below. Similarly, the top diagonal term in the second matrix will be small when A
is appropriately specified.

6. As it stands, (3.14) does not look like an improvement over the original
Riemann-Hilbert problem. However, we shall now show that near the ‘shock’ region,
it can be much simplified. In this subsection, we consider the ‘shock front’, i.e. the
region II of theorem 1.1.

We choose A such that |Ao| = e~ 74, i.e.

(3.15) A= (M)l/z
T

A and 7 depend on z and ¢ and should be thought of as a ‘slow’ and a ‘fast’ varaible,
respectively.

Because of (3.15), the diagonal terms of u(f)f tend rapidly to 0, as 7 — 0o, A\g — 0.
As in subsection 4, we end up with

\Ilf) = \I/(_s)u(f)T, where

0 C(Ag)hpe (4% +)
(3.16) ug;:( 0 eatia (Ro)ho 0 > A € B,
Choho ©
T (00) =1,
where
(3.17)
C) ~ ———2O___ (e <i/0 log(—s)dlog([a(s)2) ), as do — 0
0 exp(iarg(a’(0))) ) CTP\omi oo ARG ) 4540 ’

Note that there is no discontinuity at A = 1. Here one uses the fact that when
a(A) =0,]b(A)| =1 (see (1.8)), hence b(0) = b(l_O)'

Problem (3.16) can be solved explicitly. It can be interpreted as a form of the
Riemann-Hilbert problem for the genus-0 algebro-geometric solution of (1.1) (see
e.g. [MA], [LM], [BBEIM] ch.4). We analyze and solve (3.16) in the appendix.

Keeping track of the different transformations of ¥ and recalling (1.14), we have:

THEOREM 3.2. The effect of a real spectral singularity at A’ is only felt in the
region X — Ao — 0. In the case, say, N = 0 we have, as \¢g — 0 and T — oo,

(<log(Ihol)/2

q(z,t) ~ 1/2
(3.18) ) S0 t
. ? ? ~
cxp(—dir — Ltog(|Aolog(la'(0)%el) — 5 [ tog(—s)aogla(s)P)
where \g = 77, a,b are the scattering coefficients defined in (1.7) and a(s) = @

In particular, in the region 32 ~ (*22)!1/2 the amplitude of the solution decays
like O((‘24-2)1/2).

7. The region 7 — 00, \¢g — 0 corresponds to the ‘front’ of the region in which
the effect of the real singularity is felt. We conclude this section by considering the
region where 7 is bounded.

In this region (especially as 7 — 0) no simple rescaling works with the same
geometry. One needs a new kind of Riemann-Hilbert deformation.
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We begin with the problem (3.7) which is still exactly equivalent to the original
Riemann-Hilbert problem (1.12). But we do not aim to ”erase” the half-lines I;
this time. Instead we see that the problem (3.7) is asymptotically equivalent to the
Riemann-Hilbert problem for the Painlevé 4 equation ([FMA]J,[FZ])

d?u 1 dugy 3 4 9 9
i %(%) +5u + dzu® + 227U — 2u,
by means of the rescaling A — A(4it)'/2, x — x(4it)~'/2.

Choosing A ~ 7 and rotating the Painlevé 4 problem appropriately, we see that
the two Riemann-Hilbert problems are identified outside the circle of radius A.
Inside the circle there is no identification, but we can show, using general symmetry
facts and a vanishing theorem of Zhou ([Z]), that there is a matching transformation
taking one Riemann-Hilbert problem to another. We thus have

THEOREM 3.3. When 7 < M, as t — oo, the asymptotics for the solution of
(1.1),(1.2) is

(3.19) o(z,1) ~ tiu(xt—l/z),

where u can be expressed in terms of a solution of Painlevé 4 such that tl%u(xtflm)
is actually a self-similar exact solution of (1.1) (see e.g. [BP], [C], [BCH]). The

actual solution is defined in terms of 4 constants ([FMA]) a,b,c,d which can be
explicitly expressed in terms of the scattering data. More precisely

0

_b(0) 1 P
o= ety [ toul=sdioga)P)).
and b= —a, c= _|a(3>|2’ d= —c¢.

MATCHING. It can be shown that the formulae of region I match the formulae
for region II by extending the [DIZ] analysis slightly into the region where 7 =
O(logt). Using known results on Painlevé 4 asymptotics by Kitaev [Ki], one can
also show that the formulae of region II match the formulae for region III. Similarly,
the formulae of region IV match the formulae for region II. and the the formulae
of region V match the formulae for region I'V.
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4. HIGHER ORDER ZEROS AND FINITELY MANY SINGULARITIES

It should be clear by the discussion of sections 2 and 3 that there is nothing
special about a singularity at zero. In the general case of finitely many singularities
the following is true: for each real singularity A;, there is a region where \; — Ag —
0, as t — oo, in which the solution decays with leading asymptotics similar to
(3.18) and (3.19). Non-real singularities correspond to solitons as usual (see e.g
[FT], [K] for the infinite case).

On the other hand, it is clear from section 3 that the order of the zero of a is not
important; the order of the solution remains the same but there is a minor change
in the phase. We leave the details to the reader.

As mentioned in section 1, a study of the interesting generalization of our result
in the case of infinitely many real singularities is under way (for examples of such
initial data see [Z]).

APPENDIX. THE RIEMANN-HILBERT PROBLEM FOR THE GENUS-0 SO-
LUTION

In this appendix we solve the Riemann-Hilbert problem (3.16). We do this by
diagonalizing the jump matrix and thus reducing the problem to a scalar one which
can then be solved explicitly.

Let G = Cexp(—iT(24% + 4)) and

(A1) 5:< e L).

The eigenvalues of S are ¢ and —i; we have

(A.2) ( j% g):5< : g)s*.

Define
A—1+4iA
A3 A= (—)V4,
(4.3) ()\ —-1- iA)
Then A solves the scalar problem
A4 AL =A_i, on B,
(A4) A(oo) = 1.
Let the matrix p be defined by
_ A O 1
(A.5) u—S( 0 A—l)S .
Then
0 G
=pu_ B
(A.6) e ( % 0)’0” ’
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Thus p is the solution of (3.16). Furthermore, near infinity,

0 — ey SA
(A7) u) =1+ ( ) T ).
T GAO—1-i4) 0
In particular limy_00(2Ap12) = —GA. The asymptotics of ¢ is now immediately

recovered through (1.14).

REMARK: One can interpret problem (3.16) as the Riemann-Hilbert problem
for the genus-0 solution of the NLS equation. Although the use of the term ‘algebro-
geometric solution’ may sound pretentious in the very simple special case of genus
0, it is worth pointing out the fact that what we encounter here is an instance
of a very general phenomenon, where the long-time behavior of the solution of a
soliton equation in a particular region is related to a different type of solution,
which is indeed connected with Riemann surfaces, and the associated theory of
theta functions connected with the Abel map. For a discussion of that theory in
the context of the nonlinear Schroedinger equation (focusing and defocusing) see
[MA], [LM] and [BBEIM] (chapter 4).
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