
Commun. Math. Phys. 153, 479�519 (1993) Commun ica t ions ��
Mathematical

Physics
© Springer�Verlag 1993

On the Long Time Behavior
of the Doubly Infinite Toda Lattice
under Initial Data Decaying at Infinity

Spyridon Kamvissis

Ecole Normale Superieure, Lyons, France

Received May 18, 1992; in revised form August 18, 1992

Abstract. We provide rigorous analysis of the long time behavior of the (doubly
infinite) Toda lattice under initial data that decay at infinity, in the absence of solitons.
We solve (approximately and for large times) the Riemann�Hilbert matrix factorization
problem equivalent to the related inverse scattering problem with the help of the
Beals�Coifman formula, by reducing it to a simpler one through a series of contour
deformations in the spirit of the Deift�Zhou method.

0. Introduction

0.1. Statement of the Problem and Results

In this paper we consider the doubly infinite Toda lattice under initial conditions
decaying at infinite. More precisely, we provide the full analysis of the long�time
behavior of the initial value problem:

< = 2(bi � bl��) > ^ ^ , � 1.
oo < n < oo (U.I)

bn = bn(an+\ ~ aJ i
with initial conditions:

� n (0 ) � a°n , bn(0) = b°n , (0.2)

such that oPn and 6^ — 1/2 decay faster that polynomially at oo and — oo.
We will assume here that there are no solitons. In other words the initial data are

such that the underlying linear discrete Lax operator has no eigenvalues. The solitons
will be added in a later study.

It turns out that for large times t one can distinguish three different regions.
1. In the region \n/t\ < 1 — C/t2~�, where C, � are any given positive constants,
the lattice performs decaying oscillations of order 0(l/£1//2). More precisely,
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where

sn= ( U Z° ) cos(2£(<90cos�0 � sin#0) � v(z0)logt � �) + o(t~ 1 / 2), (0.4)
\ 2E sin v0 J

uniformly. Here � Q is defined by

cos �o = n/t, (0.5)

while z0 = ei�Q and

� = 3�0) log(2 sin �0) + arg(r(z0)) + �(�zV))

, . 1 � \r(z(wW\ dw
log

� \r(zo)\
2

v(z) = (�l/2π)log(l � \r(ei�)\2),
i — w

r being the reflection coefficient for the scattering of the underlying discrete Lax
operator. (Note that r is defined on the unit circle.) A similar expression can be
written down for

n'
C

2. In the case |r(l) < 1, in the regions
t t2

by (0.3) with:

�r the solution can be expressed

u(2nt~� � 2 t 2 / 3 ) + 0 ( t ~ 2 / 3 ) ' ( 0 6 )

where w is a particular solution of the Painleve P�  equation depending on the
parameter r(l).

3. In the region > 1, both an and fen — 1 are 0(£ �) for any positive Z; the effect
t

of the local disturbance is not yet felt.

Remarks. 1. The case |r( l) | = 1 requires more work, and will be considered in a
later paper.
2. The parametrisation of the 2�dimensional manifold of the solutions of P�  can
be defined either in terms of their long�time asymptotics or through the Riemann�
Hilbert problems appearing in the related inverse monodromy problem; see Chap. 6
or [I�N]. The function u appearing in (0.6) is in fact one in the 1�parameter family
of non�singular solutions of P� .
3. A conclusion of the above results is that the speed of propagation of signals is finite,
to leading order. As will be evident from the proof, this is due to the compactness
of the spectrum of the underlying Lax operator. On the contrary, propagation is not
finite in equations like KdV for example, where the underlying spectrum extends to
infinity.
4. In our analysis we consider only positive n; the case where n < 0 is similar.
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0.2. Solution and Background of the Problem

There are three constituents to the proof of the above result: the restatement of
the inverse scattering problem as a Riemann�Hilbert matrix factorization problem,
the reduction of the Riemann�Hilbert problem to the solution of a singular integral
equation according to the method of Beals and Coif man [B�C], and the use of their
formulas to transform the initial factorization problem to one with a constant jump
matrix, which can then be solved explicitly. The model of this procedure is the
analogous treatment of the mKdV equation by Deift and Zhou [D�Z].
(i) The inverse scattering problem for the discrete Lax operator can be restated
as a "Riemann�Hilbert matrix factorization problem" on the Riemann sphere, with
discontinuity along the unit circle C (for a proof of this fact, as well as a rudimentary
discussion of the relevant inverse scattering theory the reader is referred to the
appendix). The statement of this problem is as follows: to find the analytic matrix�
valued function on C — C, which satisfies a certain jump condition on C, and whose
value at infinity is the unit matrix I:

Q(z) —•  / , as z —> oo ,

where

j
(here, Q+ and Q_ are the normal limits on the circle C from inside and outside
respectively.)

Remarks. 1. In the main body of this paper, as opposed to the appendix, r(z) (or
r(�)) denotes the reflection coefficient at time zero.
2. From now on, unless explicitly states otherwise, given a 2 x 2 matrix A we denote

Ant = B~lAB1 (0.9)

where
/ y—"> p�>

B= '

If in particular we have:

� \r(z)\2 �f(z)
r(z) 1

then unt is given by (0.8).
Indeed, one can express bn(t) in terms of Q(0). In fact, if, say

�n t(z�z �)/2

we can obtain

" 2bkf = {\+�n)/an.
k=—�o

Hence we can recover bn by dividing.
(ii) A crucial observation is that un t admits an upper�lower factorization
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where

( \

�n t{z�z��)/2 _ f ( � n �t(z�z~l)/2

and
t(z�z~�)/2 0 \

, t(z z��)/2 n t(z z�h/2 ' (° 1 3 )
e1 l\Z— Z ) ∆ ~�l £, — l\Z — Z ) ∆ I

Define the "Cauchy" operators Co, C+ and C_ as follows:

for z �C, let (CQf)(z) = (2πi)~� / and

C r f( )d ( � i 4 )

for zeC, let (C±/)U) = (2πi)~1 / / W ^
J w � z±

c
(dz signifying as the limit of the integral from inside (or outside) the circle C). Also,
let the operator CWn t be defined by

for a 2 x 2 matrix valued /, where

w+ = b+�I and w_=I�b_. (0.16)

Let µ solve the singular integral equation

Then, it follows easily that Q defined by the integral formulae

£ ��X%££). Q=I+c«(µw�) mC~c <018)

where w = w+ +w_ and thus wn t = (w+)n t + (w_)n t, provides the unique solution
of (0.7). In particular, we compute Q(0) hence we can compute bn(t). Thus, we obtain
the solution of the Toda lattice in terms of the operator (/ — CWn �)~

1» provided of
course that / — CWn t is invertible. Invertibility is proved in Chap. 3.

We note that this procedure can be carried out for any reasonable contour � in
the place of C. For each � (with appropriate specification of its +side and —side)
there are corresponding operators CWnt, C+, C_, and each problem of type (0.7)
corresponds to a formula of type (0.18).
(iii) We "deform" the factorization problem (0.7) into one that can be solved
explicitly, in a series of steps each of which involves either an extension or a deletion
of a part of the factorization contour, or a substitution of w± by approximate (for large
times) matrices, or an appropriate conjugation. The choice of the contour extensions
or deletions depends on the phase of the exponentials appearing in b±. For each step,
the final factorization problem is an approximation to the initial one in the sense that
the solution as given by the corresponding integral formula (0.18) is close to the exact
solution of (0.7).

Eventually, after repeated applications of this procedure we end up with an
Riemann�Hilbert problem on the circle, with a constant jump matrix unt (independent
of z), which can be solved explicitly in terms of parabolic cyclinder functions. Thus
we also have an estimate for (J(0), hence b (t).
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More specifically, our procedure consists of eight steps:
(a) We observe that formula (0.18) involves the phase �  — t(z — z~�)/2 � nlogz
appearing in the off�diagonal terms of unt(z). It thus suggests that we consider the
regions for which �  has real part decaying as t —> oo. We then have to identify the
contours on which Re �  is 0, negative, or positive. We distinguish between the case
n/t < 1, the case where 1 — n/t is small and the case n/t > 1 (corresponding to the
three regions defined in Sect. 0.1). The following two figures provide the analysis of
the sign of Re �  in the cases n/t < 1 and n/t > 1. Here z0 = e��°.

N.B. From now on, up to and including Chap. 5, we restrict our analysis to the region
n/t < 1. The other regions are considered in Chap. 6.

Re�<0

C: |z|=1

C C
Re�>0 Re�>0

C:

Re�<0

Re�>0

Fig.  0.1 I  Fig.  0.2
Fig. 0.1. Analysis of the sign of Re � . Case I: n/t < 1. The locus of Re �  = 0 consists of C and
C. Note: In this picture n > 0; if n < 0, the curve C is on the left half�plane
Fig. 0.2. Analysis of the sign of Re � . Case II: n/t > 1. Again the real part of the phase �  is zero
on the union of C and C. When n < 0, C lies in the left half�plane

(b) Depending on the sign of Re �  we want an upper�lower or a lower�upper
factorization for unt. For \�\ > �0 [here z = e�� and �0 is defined by (0.5)] our upper�
lower factorization is sufficient. For \�\ < �0 we need a lower�upper factorization.
For this, we solve the scalar Riemann�Hilbert problem:

d+{z) = d_(z)(l � \r(z)\2) for z = ei� e C, \�\ < �0 ,

d+(z) = d_(z) for | 0 | > 0 O ,

d —> / as z —> oo .

(0.19)
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which can be solved explicitly. Then, letting

(d(z) � 1 >

problem (0.7) is transformed into

as z —> oo ,

(0 .20)

(0.21)

where Q(1) = QD~\ and �£]t = DuntD~�.
Now u^t admits a lower�upper factorization for

0
1 0

� £ 0

1 �

0 1

as shown:

0
(0 .22)

where g = � f(^) when |0 | > �0 and � = � r(z)/(l � |r(z)) |2) when |(9| < �0.
(c) Using Fourier transforms we are able to split £ into two parts, � = h� + h2, s.t. hx

decays as t —> oo and ft2
 n a s a n analytic continuation in the interior of the circle C.

Similarly we have — � — h[ + hf

2, where h[ decays as t —•  oo and h!2 has an analytic
continuation in the exterior of C.

By conjugating, we transform (0.21) into a problem of the form (0.7) on the
extended contour shown below (the choice of the contour is dictated by the situation
in Figs. 0.1 and 0.2).

Fig. 0.3

(d) On the circle C the jump matrix depends on hx and is approximately / for large
times. This enables us to delete part (the circle C) of our contour. We now have a
Riemann�Hilbert problem of type (0.7) on the following contour:
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Fig. 0.4

(e) Furthermore, if \z � e��°\ is not small, the jump matrix unt has decaying off�
diagonal entries. We are thus able to transform our factorization problem into one of
type (0.7) on the contour consisting of two small crosses:

Fig. 0.5

zπ���

zn�i�

(f) We "decouple" the contribution of the two crosses. That is, we show that our
answer for Q can be obtained by solving each problem for each cross separately and
adding each contribution.
(g) Through the scaling � —> �(2tsin�o)~

1/2 ± �0 each of the two problems is
transformed to a problem on a small cross centered at z = 1, of the type (0.7),
but specific nontrivial asymptotics as z —> oo.
(h) Finally, we transform the problem above to one on C with constant jump matrix
un t(e

��°). This final factorization problem can now be solved explicitly in terms of
parabolic cylinder functions.

Steps (a) to (g) enable us to compute Q(0) asymptotically for large times. Hence
bn(t) is obtained. Similarly, one can obtain the asymptotics for an(t).

0.3. Background of the Problem

The history of the treatment of long�time asymptotics for nonlinear integrable wave
equations begins in the early 70's with the work of Zakharov and his collaborators.



486 S. Kamvissis

The first to include Riemann�Hilbert problems in his study of such asymptotics was
A.R. Its (non�linear Schroedinger in [I], mKdV in [I�N]), making use of the theory
of isomonodromic deformations developed by the Japanese school (Miwa, Jimbo,
Ueno etc.). The first fully rigorous treatment of such asymptotic problems involves
Riemann�Hilbert factorization and was done recently by Deift and Zhou in [D�Z], in
the context of the mKdV equation.

The corresponding asymptotic problem for a discrete integrable lattice was first
treated by Novokshenov and Habibullin in 1981 (see [N�H]); explicit expressions
were written down. Indeed, their recipe yields formulae answering our own problem.
These formulae agree with ours except at a minor point: their formula for the last term
in the phase, �, is slightly different from ours. A more serious discrepancy is that they
don't distinguish between the cases \r(z = 1)| = 1 and \r(z = 1)| < 1. However, the
treatment (and indeed the behavior) of the problem is different in each case. Finally,
it has to be said that the method of [N�H] relies on the choice of the appropriate
ansatz for the asymptotics. Our own method, on the contrary, is "algorithmic": no
ansatz for the form of the asymptotic expressions is assumed.

1. The Beals�Coifman Method

We begin by restating the main result of the appendix.

Theorem 1.1 If(an,bn) solves the initial value problem (0.1)�(0.2), then bn is given
by

where

Q(z = 0)=(a" �

\�u �

Here Q is the solution of the Riemann�Hilbert factorization problem

Q+ = Q�un�t(z),
Q+ —» /, as z —> oo,

where un t(z) is given by formula (0.8).
The solution of (1.1) can be reduced to the solution of a singular integral equation

as follows (see [B�C]). Consider an oriented contour � on the complex plane, such
that the number of its self�intersection points is finite. Define the matrix Cauchy
operators as follows:

C± : (L2(�))2x2 �> (L2(�))2x2,

2ir� J ��z±'

where z e � and the signs " + " and " � " connote normal limits as z —•  �, from the
right and the left of � respectively (with respect to its orientation).

It is easy to see that C+ and C_ are bounded. It also follows easily from Cauchy's
theorem that
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N e x t w e de f ine th e m a t r i x o p e r a to r Cw a s fo l low s : g i v e n an y 2 x 2 m a t r i c e s , say ,
w+ a n d w_ we de f ine

Cwf = C4fw_) + C_(fw+).
Recall that

where (b_)n t and (b+)n t are given by formulae (0.11) and (0.12).
Let

w+ = b+ — I, w_ = I — b_ ,

and define (w+)n t and (w_)nt according to (0.9). Also define

thus determining the corresponding operator cw accordingly. Suppose that µ(w\ n, t)
solves the singular integral equation

and define

2m J ��z
� (1.4)

)

In particular,
1 f µ(�;n,t)wn J�)

Q(0) = I+ — / ' W'*^V� (1.5)

Theorem 1.2. �), Q+, Q_,as defined by (1.4) w/�/z � 1 = C,provide the unique solution
of the Riemann�Hilbert problem (1.1).

Proof. Existence follows by a simple straightforward calculation. For uniqueness
suppose Y� and Y2 are solutions of (1.1). Then X = Y�(X2)~

� has no jump across
� hence it is entire and bounded, and thus constant by Liouville's theorem. By the
condition at oo, Z = 1.

Remarks. 1. The procedure described above solves (1.1) provided / — Cw in invert�
ible. Existence of (/ — Cw)~

� will be proved in Chaps. 2�5.
2. Allowing solitons, i.e. allowing eigenvalues for L, is equivalent to allowing Y to
have poles. In that case existence of solutions to (1.1) is not always guaranteed and
uniqueness holds only up to a choice of the residues at the poles. This case will be
dealt with in a future paper.

Our problem is to be solved as follows. We begin with a problem of type (1.1) on
the circle (that is � = C). Making use of estimates for ||/—C^H we transform formula
(1.4) to a similar one but on a different contour, up to a small error. (The Beals�
Coifman method applies unaltered to any reasonable contour on the Riemann Sphere.)
Thus we reduce our Riemann�Hilbert problem above to one on a different contour.
Repeating this procedure several times we eventually end up with a factorization
problem on � = C with a constant jump matrix, which can then be solved explicitly.
Finally bn is recovered using Theorem 1.1.
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2. Contour Deformation

/. We will first need to solve an auxiliary scalar factorization problem.
Let the "phase" �  be defined by

�= �t(z� z~�)�nlogz. (2.1)

The matrix u t can now be written as

= �l�\r(z)\2 �f(z)e~2i�

where

Here, we have used the standard notation

as well as the notation introduced by formulae (0.9)�(0.10).
In the following Chaps. (2�5) we consider the region 0 < n/t < l—Ct~2+�, where

C is any positive constants (the other regions will be dealt with in Chap. 6). Thus the
contour Re �  = 0 is as shown in Fig. 0.1. Let z0 and z0 be the points of intersection
of the unit circle C and the curve C. We have z0 = e��° and z0 = e~��°, where
cos �0 = n/t. We also write z = e�� and from now on we are going to use variables
z and � interchangeably; for example we may write r(�) instead of r(z) — r(z(�)).
When z e C, � is real; when \z\ < 1, Im0 > 0 and when \z\ > 1, Im� < 0.

As long as |0| > �0, we need an upper�lower factorization for u, in order to make
good use of the results of Chap. 1. On the contrary, a lower�upper factorization will
be necessary if \�\ < �0.

The lower�upper factorization is obvious:

(\ � f (^ )^
u=[o i j

and thus

(2.5)

On the other hand, to produce an upper�lower factorization, we first need to
consider the following scalar factorization problem on C.

d+(z) = d_(z)d � \r(z)\2), when \�\<�0,
2), when \�\<�0, a s

d ^ a s

d+(z) = d_(z), when \�\ >�0,

Such a problem can be solved explicitly. Indeed, consider the transformation

w(z) = i 1 ^ , (2.7)

and let

w0 = w(z0) = i i�f�^ . (2.8)
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One finds

489

l(z) = exp I ivlog w — m
w

WQ

Wo)

exp
�\r(z(�))2\\ d�

��w
WQ

Here

and

= � — log(l � \r{z)\2)
2π

v = v(z0).

(2.9)

(2.10)

(2.11)

We note that in the region 0 < n/t < l—Ct 2+�, sup \r(z)\ < oo; so v is well�defined
zee

and positive, and
sup \d(z)\ < oc,
zee

sup \(d{z)) �\ < oc.
zee

Let D be the diagonal matrix given by

D ^ = f o , ^ ^ � i

and define

We then have the factorization problem on C,

,(1), for z e C,

I, as 2: —> oo ,

(2.12)

(2.13)

(2.14)

(2.15)

where

�(Z)\l�\r(z)\i�(Z) V VO 1
when |0 | < �0 ,

m _p�iad � *J\ �r(z)d\z)\ ( I 0
U ^ � e \0 1 J

when \�\ > �0 .

For uniformity of notation we change the orientation of C as follows.

(2.16)
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Fig. 2.1 Fig. 2.2

Remark. Giving an orientation to a contour is a handy way of distinguishing between
its —side and its �f side: the —side is to the "left" and the +side is to the "right". Thus,
if the orientation of the unit circle is clockwise, the +side is to its interior while the
—side is to its exterior, in agreement with the convention of Chap. 0. The labeling
of — and + sides is necessary for the application of the Beals�Coifman method, as
described in Chap. 1. In fact, the discussion of Chap. 1 goes through unaltered for
any reasonable oriented contour (certainly for any of the contours introduced in this
paper).

Thus our factorization problem is (2.15) with jump matrix given by (2.16), when
|0| < 6>0, and by

�rd ~2

1 fd2

0 1
when |0 | > �{o (2.160

//. As the reflection coefficient is not necessarily analytic in general, it will be
convenient to split it as a sum of an analytic term and a term which is "small".

Consider the contour A defined as follows (see Fig. 2.2).

A = A}\JAOUA*UAA (2.17)

where

�x = (z : z = z0 + s, s G < �), �4 is the conjugate of Ax,

while �2 and �3 are the circular arcs shown in Fig. 2.1 (the actual radii are immaterial
as long as the geometry is as shown).

Furthermore, define
�£ = �2UA3. (2.18)

Following [D�Z], we have

Theorem 2.1. Let � be defined on the unit circle C as follows:

(2.19)

if\�\>�0.

Then, we can decompose

�(z) = hj(z) R(z), (2 .2 0)
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where h1 is small in the sense that

e�2��{z)hj(z)\ < d�\ for all positive I, z eC , (2.21a)

while hjjiz) can be continued analytically to the exterior of C, and

\e�2�� {z)hπ(z)\ < c�\ for all positive Z, ze�, (2.21b)

and R(z) is a rational function of cos �, smooth to any given order at the stationary
phase points � Q, —�0, and satisfying

\e�2i�{z)R(z)\ < ce�
K�2t�n�o, z G ��\ (2.21c)

here c, K are positive constants and � is an arbitrarily small positive number.

Proof. We consider two distinct cases separately.
(i) Case \�\ < �0. Recall that as we restrict ourselves to positive n, we have
0 < #o < �r/2. Expanding �(cos6>) using Taylor's theorem, we write:

= µ0 + µj(cos � � cos�0) + ... µfc(cos � � cos �o)
k

( 7 ) ( c o s � � � ) k d � •  ( 2 2 2 )

Let R be the polynomial part of the right�hand side of (2.22), considered as a function
of 0. Then,

� = h + R, (2.23)

where

— = 0 , for 0 < j < K. (2.24)
d�^ ±� Q

Next, we split
h = hj + hjj (2.25)

with the required properties. Let
— 1

� = Z—^L log z , (2.26)

so that �  = t�, and

� = i(sin � � � cos <90) for z = ei� G C. (2.27)

Let
a(�) = (cos (9 � cos �o)

q , (2.28)

and define

ha(�) = 0,\�\>�0,

where �0 = �(�0). (Note that �(�) is invertible for \�\ < �0.) We define the Fourier
transform
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and by the Fourier inversion theorem,

ha(�) = ?{�), for | � | < �0

From the behavior of ha near �0 and — �0 we can deduce that

ha(�) = 0(�2 � �

As
1d�

d� cos � — cos �n '

(2.31)

(2 .32)

(2 .33)

we have

cos� — cos#0 | \d�\

Thus

< const. < oo, for 0 < j <

ha e Hj(�oo < � < oo), for 0 < j <

(2 .34)

(2 .35)

We now define h� and hπ as follows:

oo

hji�) = ^�JJ a(�) � e%s�{�) �?(s)ds,

(2.36)

hu{�) =

Note that (2.25) is satisfied. Also,

a(�)

1 / 7
<\a(�)\—— (1 + s2

(2π)�/z \ J

1/2 , oo

�pds
1/2

< c^� 1/ 2 , for p < ^ � ^ . (2.37)

Clearly hπ can be continued analytically to the interior of C, and a similar argument
to the above shows that indeed (2.21b) holds with / = q/2; here, the crucial fact is
that Re(i#) > 0 inside C. Finally, it is easy to see that (2.21c) holds on A2.
(ii) Case |# | > �0. The proof is similar. Now �� is positive in the exterior of C, so
hπ can be extended analytically there (and is also small in the appropriate sense).
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Fig. 2.2'

//'. Next, consider the contour �' as shown in Fig. 2.2'.

We have

where

A1 = �[ U A'2 ,

�[ = (z : z = Re z0 + is, s e R, |s | < Im z0 + �)

(2.170

and A!2 is'the circular arc shown (again the actual radius is immaterial.
Here,

�'� = �'3u�3, where �3 = (z : z = Rtz0 + is, s e M, |s | < �). (2.180

Again we have a theorem analogous to Theorem 2.1, which enables us to split

�� = h'j + h!'n + R' (2.20)

(� being defined by (2.19)): estimates (2.21a), (2.21b), and (2.21c) hold with h
replaced by h! and A replaced by A!.

III. We now augment our contour as indicated in Fig. 0.3. Let

� ( 3 ) �  C  U A U A! . (2.38)

We rewrite the jump matrix (2.16)�(2.16) of the factorization problem (2.15) as
follows:

u^] = (b_)~\(b,)n t (2.39)

with
d~� 0

0 d

and similarly (in the notation introduced after (2.3) and using (2.13))

(b_)nt = D~� e�iad��H_D,

(2 .4 0)

(2 .41)
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Fig. 2.3

while (recall once more the notation of (0.9)�(0.10))

, b_ =
1 0

Q 0

We split b+ and 6_ according to the decomposition of � in (2.20); we define

1 hj
0 1 0

(2 .42)

(2 .4 3)

(2.14)

and similarly for b°_, b°i in terms of h'j, h!u, R''.
We also write

b+ = I + w+, b_=I�w_,

and similarly we introduce w^, w°_, w+, W°L.
Defining Q ( 3 ) on C � � i3) (see Fig. 2.3) by

Q(3)(z) � Q(z)(D(z)�\ z e Ωf> U Ωf ,

Q°\z) = Q(z){D{z)T\ba_)�]v z G Ωf} U �?f ,

Q(3)(*) = Q W � ^ ) ) � 1 ^ ) ; ; , z e � f U � f ,

we end up (after straightforward calculations) with a Riemann�Hilbert problem on
27(3) as follows:

(2 .4 5)

= Q(l\z)u%�?(2) = Q(l\z)u%{z), for z e �(3), Q(3)(«>) = J,

where

and

(2.46)

(2.41)

(2.48)

= bl, z € �
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3. Reduction to a Problem on Two Crosses

/. The main conclusion of the discussion in Chap. 2 is the following theorem.

Theorem 3.1. Let � = C U A U A! be the contour shown in Fig. 03, and �' =
� — (C U �� U A'�) be the union of the two crosses shown in Fig. 3.1.

z o + i� z o + i�

Fig. 3.1

Recall that
Chap. 2) and define

Then, we can write

where

� z o + � Zn � � • Zo *

zo��� � A zo�i� � B

= b+ — / and W°L — I — ba_ (see discussion after in (2.44) in

(3) /  (3) \  I /  (3) \  /  o i \
77.,t \*�*^�\� J��^t ' \ — '71,� * ^ * '

w®\ = w' + we, (3.2)

�y; = 0, on � 1 � �',

and t�;e can be written as the sum

(3 . 3)

where

wa is supported on C and is a sum of terms of types h� and h\ ,

wb is supported on A U /i7 and is a sum of terms of types hπ and /ij7 , (3.4)

wc is supported on �� U yl̂  and is a sum of terms of types R and .R

Furthermore,

^ " ' * (3 � 5)
ri —Ke �sin^n

for all positive constants c, C, K, � being an arbitrarily small positive constant, and

�  K ' c . (3.6)
Proof. Follows immediately from the discussion at the end of Chap. 2 and the
estimates (2.21) of Sect. 2.II together with the analogous estimates of Sect. 2.II;.

//. Next, we reduce our problem to the solution of a factorization problem on �\
We do this by transforming formula (1.4) to one of the same type, but on a different
contour.
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The following identity is easy to check.

�

r(i�cw,r\cw,i)w

2πi�

d�
' ' n>t27riC

�

j {
�

"'�^W��

(I � Cw,y'Cwe{I � C> )�'(C> I)w% �^� . (3.6)
n,t n,t Z7�ZC,

The right�hand side is of order t~�. In fact,

Lemma 3.2. Let A{, A2, A3, A4 be the integrals appearing in the right�hand side of
(3.1). Then

\Ai\ <(t�n�Q�
�, (3.7)

for all I and all i.

Proof. Follows from the estimates in Theorem (3.1), together with the bounds

\\\i~^w'> H L 2 ( £ ) ^ ° > \\\L ~ °,,/3)) WL2(�) ^ ° v̂  o;

For example

<^ ^IU/iel l U n ^ II ~ <^ n�*/ \+~^ C\ Q�
— c\\w I L2(�) \\Wn,tIIL2(�) — °yz�)� ? W ̂ /

by the estimates (3.5) and (3.6).
A straightforward conclusion of the above and formula (1.5) is the following

proposition.

Proposition 3.3. IfQ is the solution of the initial factorization problem (1.1), then

Q\0) = Q(0)D(0�2 = J((I � Cw,�
�)(�)w'(Q ^ � + c(zo)(t �n�oy

�, (3.10)
�

for any I.

We state the following result of [D�Z] without proof; it enables us to delete pieces
of a contour on which the jump matrix is the identity.

Fact 3.4. Suppose we have two Riemann�Hilbert factorization problems P and Pf,
on contours � and �' respectively, such that � f is a subset of � and the jump matrix
for P on � — �' is the identity. Then P and P' are equivalent; their solutions (as
expressed by the Beals�Coifman formulae, for example) are equal.

The main result of this chapter now follows directly.

Theorem 3.5. If �' is as defined in Theorem 3.1,

Q(0)D(0�2 = J((I � Cw,r
�I)(�W(Q ~ + c(zo)(tsin�o�

�, (3.11)
�'

for any I.
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In other words (cf. Chap. 1), it suffices to solve the following Riemann�Hilbert
problem on �' (up to an error 0(t~1)).

Qf(z) = Q«\z)�%t(z), ze�', Q ( 4 ) (oo) = I, (3.12)

where
uZ(z) = ( � i�))n,t�

l � (t\t (3.13)
and

f = I on �e, b^I on 4 , (3.14)

4. Rescaling and Decoupling

/. In this section, we decouple the contributions of the two crosses of Fig. 3.1, which
constitute the contour � "(4) = �A U �B as shown. Our procedure follows closely that
of [D�Z] (Sect. 3).

Let u>(4) = w� �h wB, where

wA = 0, for z e �B ,

w# = 0, for z e �A ,

Define A = C^A and B = C^ � on L�(�{4)) so that C^ } � A + B.

Lemma 4.1. We have

and

The proof is straightforward.

Lemma 4.2. (I — A)~� and (I — B~ � exist and are uniformly bounded.

Proof. Postponed until the end of Chap. 4 (Theorem 4.7).

Lemma 4.3. (/ � C ^ � i exists and \\{I � Cw^))"
�\\L2{�{A)) < C.

Proof Follows from Lemmas 4.1 and 4.2 (cf. [D�Z] Lemma 3.15) and the following
identities:

(I�A� B)(I + A(I � Ay1 + B{I � B)~�)

= (I� BA(I � A)~� � AB(I ~ B��),

/ + A(I � A)'1 + B(I � By�)(I �A�B)

= ( / � ( / � A)~�AB � (I � By�BA).

Lemma 4.4 \\I � Cw{4)\yJ�) < C.

The proof is a consequence of Fact 3.4 (see [D�Z, Sect. 2]).
//. Next, we introduce a rescaling transformation for each cross.

First, we extend the contours �A and �B to the oriented contours �A and �B as
shown.
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Fig. 4.1. Cross �A

Fig. 4.2. Cross �B

Let
wA = wA, z € �A, wA = 0, z e �A � �A

and

S. Kamvissis

wB=wB, z G �B, wB=0, z G �B� �A.

We introduce the scaling operators

NA : L\�A) �* L\�A), NB : L 2 (£ � ) �> L2(�B)

(4.1)

(4.2)
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by

(4.3)

and we write
(NB(de�it�))(z(�)) = d°Bd

�

B , (4.4)

where

0 ei� (4.5)

v, x being defined by

HO = ^ log(l � |r(C) |2), v = v{z0),

rfc (4 6 )

2π J O g { l �

Note that as long as n/t > 0, |r(Q | 7̂  1, so KO > °
We have chosen factorisation (4.4) so that (PB is independent of z (or #). Note that

all the factors in (4.5) are unitary except the last one. Thus

\d%\ = l. (4.7)

Let

and DB denote right multiplication by DB. We see that

where
B : L\�B) �> L\�B)

is given by
B = C{DB)~HNBWB)DB

On the part A'B = �B �  A! of �\ we have

/ 0 0^

� J °
Otherwise

On the part �B = �B �  A of �,

/
0

\0 0
and 0 otherwise.

By Lemmas (3.1)—(3.2), we have, after some calculations.
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Lemma 4.5. For z(�) € AB,

R{

for any small enough 7, where

5i�� |�sin<90)
�1/2

R(�o+) = lim R{�) = r(�Q).

Similarly, for z(�) e � f
B,

�

III. We can now use the above estimates to decouple the contributions due to the two
crosses.

Theorem 4.6. IfQ is the solution o/(3.12)�(3.14) (cf. Theorem 3.5), then

Q(0)D(0�2= �iI�CWAr
�I(�)wA(O^��� f(I�Cw)��I(�)wB(O^:

c(z0)
�A

�f 0

Proof. Follows from the estimates above and the existence and boundedness of
(/ � A)~� and (/ � B)~� (see Lemma 4.2 (cf. Proposition (3.66) of [D�Z]).

IV. We finally prove Lemma 4.2. Its proof is the result of the next step in our series
of deformations.

Set
w = (D°�1(Nw)D°

so that B = CW�. On the cross �

= (D°B�
1(NBw)D°B,

B

Fig. 4.3. Cross �B
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let

501

where

and

0

,0 0

wB°=wB\z)= [ f(�0) ^ � 2 w , c g 0 1 , ^ € 27|,

tc? =

3° �°

, 0 0

0

• i i / e 2 0

Let B° = C B0. It is easy to prove the estimates

\\WB ~ w ^ c(zo)(tsin�o)
 1 / 2 ,

\\B~B0\\L2(�A)<c(z0)(tsm�0)~^
2.

It is now convenient to reorient �B as follows:

Fig. 4.4. �B (reoriented)

(4.9)

The resulting changes in the jump matrix are a change of sign for wB on �\ and
�\. Next, we extend �B to �B U C = �B with orientation as shown
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Fig. 4.5. �B

Ω,

Ω,

Ω4

and with

w = w, z G �B , �� = 0, z € C .

On �B we define a piecewise analytic function 0 as follows:

�(z) = {��)iv�\ z 6 Ω2l) Ω5 ,

�(z) = (��)iv�KbSz)T\ 2€� iU� 3 )

^ ) = {��f�Kb+{z)�\ zeΩ4UΩ6,

Note that b_ and 6+ can be continued analytically in U{UU3 and Ω4UΩ6 respectively.
Next set

v�(z) = ��z)v(z){�+�\z), ze��C,

One checks that

So

where

6_ =

: e 4 �(�zo)e
 4 , z G C.

�� = $_)�%,

1 e*Hz�\zeC,

Finally, define

6. = / , ^ G �  �  C.

HB° = QB°(z)(�(z)�\zeC��, (4.10)
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where QB solves the Riemann�Hilbert problem corresponding to v�, as defined
above. One sees that there are no jumps across � — C. Thus H(z) is analytic on
C � C and

� 4 / �

H + ( z ) = H _ ( z ) e 4 5 � { z � ) , zeC. (4.11)

Also, as z —> oo, we have

H{z) = �«"» (I�^� +°{ji)) ( 4 1 2>

and as z —> 0,
ff(z) � �1^,

thus �� has essential singularities at 0 and oo. Relations (4.11) and (4.12) constitute
a singular Riemann�Hilbert problem on the circle which in fact can (and will, in
Chap. 5) be solved explicitly.

Theorem 4.7. The operators (I � A)~\ (I � B)~\ (I � Cw,)~\ (I � C^Al)~
� and

(I — CBr,,)~� all exist and are bounded.

The proof is a direct consequence of the constructions above and depends on a
series of subtle computations which enable one to factorise the operator I — C^ as
a product of two invertible operators. (W� is defined in terms of the factors of �� in
analogy with wn t as defined in Chap. 1.) For details see Proposition 3.109 of [D�Z].

5. A Second Order ODE and Parabolic Cylinder Functions

/. In this chapter, we solve the factorization problem (4.11)�(4.12) explicitly. Recov�

ering HB°(z), we also obtain QB°(z) = HB°(z)�B°(z). Recalling that

� f �  = Q^\z)uB\z\ ze�B,

QB\oo) = I,

we have, by the Beals�Coifman formula,

(5.2)

�B

A simple calculation [using the rescaling definitions (4.3) and (4.8)] shows that

7
2πi�

(I�B��I(�)wB(�)d�\(DB�
l. (5.3)
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Also, by (4.9) we have

J(I�B��I(QwB(�)d�

= �(I � B°��(�)wB°(�)d� + c(zo)(t�n�Qr
l/2 (5.4)

�B

Combining (5.1), (5.2), (5.3), (5.4) and using the analogous formulae for QA , we
recover Q(0) from Theorem (4.6) and hence bn(t) (see Chap. 1).

//. Define

�  = HB\~i�^�\ (5.5)

Then

� +(z) = �_(z)u(z0) on C, (5.6)

with

�  ~ �iv�^ e % 4 �\ as z(�) �> oo . (5.7)

Differentiating,

S r^ ) + (5 ^ )̂_^o) (5�8)
Thus, the function

2^�~1 (5 9)

has no jump across C, and noting that

� = ��i^e � * � \ (5.10)

where
�  = J + 0(l/z), near^ = oc, (5.11)

we can see that T is entire and bounded. It follows from Liouville's theorem that T
is constant. In fact, the value of the constant is extracted from the expansion of HB

at infinity. Indeed,

°
where

�ij=i(Hf)ij (5.13)

with H f ° defined by

n e a r

which defines HB once we keep in mind that QB , as defined in the beginning of
this chapter, is analytic at oo.
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We thus have
d �  1
— + �i��3 �  = T � . (5.15)
au I

Consider first the region \z\ > 1, i.e. Im# < 0. Letting �  — O ^ ), we obtain from
(5.15),

Letting C = eUv>A�, a = i�12�2l and � n(�) = g(Q, we get

�

This is the well�known parabolic cylinder equation, a set of linearly independent
solutions for which is provided by Da(�) and Da(—�), Da being the standard parabolic
cylinder function.

Hence

and thus

*u (0) = c�Da(e~^ 0) + c ^ � e ^ �) , (5.18)

for suitable constants q , c2. Now, we know that, as Im � —> —CXD, with Re 0 G [—π, π ] ,
we have

Da(�) = �ae *
— 3i��a —i�2

3z�r 3i��a i�

Da (e~^~ (9) = e~^~ (9� e"^~ (1 + 0(�~2)).

Also note that HB (�) � ��v�\ thus l^n � �w e 4 . Hence, c2 = 0, a = iv,

Cj = e 4 , and

^11(6>) = e ~ ^ J D . ^ ( e ^ l 9 ) , for Im6><0. (5.20)

In particular /312/?2i
 = V5 > 0. Similarity,

I j _ ( �— �),

^ 2 2 ( < 9 ) � e ^ ^ �/(e~^<9) for Im<9<0.

When 1̂1 < 1, i.e. Im# > 0, we of course do not know the behavior of HB as
oo a priori; it will be found by using the jump relation (5.6). We obtain

(}*) (e^�), (5.22)
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and hence

� 2�=WnT
�dx

Substituting in (5.6), we find

(5.23)

— �7 � — 7

We thus recover ^(z = 0) and by (5.5) HB°, hence Q � ° . Indeed,

24 }

(5.25)

Finally, using (5.2), (5.3), (5.4) and recalling formula (4.5) for djf, we recover
the contribution of the cross �B. Analogous calculations show that is conjugate
exactly equals the contribution from the cross ��. We finally obtain (the asymptotic
expression for) Q(0),

Q(0) =

where

_

cos(2t(�0 cos �0 � sin �0) � v log t � �),.

(5.26)

(5.27)

where � is defined after formula (0.5). The final result is now immediate, once we
recall formula (A. 15) of the appendix, giving bn(t) in terms of Q(t).

Remark. Da(�) and Da(— ) are always independent since �n and �lx are clearly
non�zero. Hence, the step leading to formula (5.18) is legitimate.

nn6. The regions —
v

n
1 and — > 1

V

C
I. We now consider the physically interesting region �j . We distinguish

77 77
between two cases — < 1 and — > 1, since the geometry of the contour Re �  — 0 is

t t n
different in each case. We begin with the case where — < 1.

77

In this case, the points z0 and zQ9 defined by z0 = et�°, cos#0 = � (see Fig. 2.1),
are close to z = 1.

Thus, we do not need a lower�upper factorization in the region \�\ < �0. In fact,
we have (as before),

°�)ntt) °+)n,t 1 /
1 O

r(z) 1
it�(z)
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and we decompose
r(z) = hj(z) + hjj(z) + Biz),

�f(z) = tij{z) + tiπ{z) + � '(z),

507

(6.2)

as in Chap. 2. This time, however, we only extend our factorization problem to the
contour shown in Fig. 6.1.

Fig. 6.1

We now have (through a procedure analogous to that of Chap. 2)

_ �it�(z)ad�3

_ e�it�(�)� rf�3

0 1
(6.3)

_ _�l t�(z)�d � 3

o l
1 0

i + fi'(z) 1

Again, contributions from hj, h'l9 hn and h'jj on � 1^ and �^ are of order t 2 .
Thus we can delete pieces of JC(1), ending up with a factorization problem on the unit
circle I7(2) as shown.
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Fig. 6.2. Contour .

Here

where

and

/(2) //i,(2K �
n,� — U � � )n,t)

*± W =

(6.4)

V
(6.5)

(2)

with R smooth to any desired order at z0 and z0, and R(e±z�°) = r(e±��°).
At this point it will be convenient to restate our factorization problem in the ��

plane, where z = e��. The inverse image of the unit circle is the real line and functions
r, (9, b±, unt etc. will be considered as (periodic) functions of � (with period 2��).

� �The inverse images �� of �� and �� of �� are infinite unions of intervals.�
� � n � 2 n � � n 2π

r(3) � (3) y(3)
�\

(3) � < 3 >
� (3)

Fig. 6.3. Contour I7(3> in the <9�plane

We then have a factorization problem with jump matrix

Un,t = vv^� )n,�^+ 'n,t '

with

Rescaling

we obtain a new Riemann�Hilbert problem on the line (see Fig. 6.4).

(6.6)

(6.1)

(6.8)
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� � 4 ) �

�4πt1/3

n�4πt1/3

4πt
b

1/3 � o+4πt
H !•

1/3

�� o+4πt1;

509

Fig. 6.4. Contour

The set of stationary point is now the infinite discrete set (±�Q + 4kπt1/3, k G Z);
the points ±�0 lie in a fixed bounded segment. Our jump matrix is u^t(�) = u^t(�)
and the condition Q(oc) = 1 becomes

Km Q(�) = 1.
lm�—+ — oo

We will next show that one can ignore the contributions of all stationary points but
, and —(,
Let

� ( � ) = 1 (��3

and note that for large times

t�(�)
�t�3

with uniform error 0(t 2 / 3 ) . Also note that

�+\t( � ) = e~i�ad�^(�  = 0) + 0(t�2/V�), �  e �f,

(6.10)

(6.11)

(6.12)

and similarly for b_)n t. In fact for such �  the error is readily seen to be 0(£ 2 / 3 ) .
Thus, the points of intersection of the curve Re �  = 0 and the unit circle are just

�0 and — �0. Our solution can now be found in terms of the Riemann�Hilbert problem
with

—% a �^>i�(^� = 0 ) , �  G �\ . (6.13),.(4)

Now, I7(4) being independent of t, we can delete a piece and augment as follows.
Let i7(5) be as shown in Fig. 6.5.

�<5)

• (5)

Fig. 6.5. Contour
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We have a factorization on � 1^ with

and

where

and

U

(6.14)

(6.15)

(6.16)

(6.17)

The next step to augment the contour of Fig. 6.5 as shown in Fig. 6.6 and consider
the following problem:

Fig. 6.6. Contour � ' ( 6 )

Set

), � U Ωf U Ωf U

QiS)( � )( � ?)n,t�\ �  e Ωf u Ωf,

*)"1, � u

(6.18)

It now follows immediately, since the jump across parts of � ' (6 ) is I, that the problem
reduces to one on a simpler contour. In fact, we end up with a Riemann�Hilbert
problem on �a) (see Fig. 6.7).

Finally, through reorientation and extension (see Fig. 6.8), and with Q ( 8 ) defined
as follows,

Q»\�) = Q«\�), �  e Ωf U Ωf

Q^\�) = QV\�)u(l]t( � ), �  e Ωf,

Q(%\ � ) = Qa)(�)(u%(�)��, �  e

U Ωf U Ω™ U
(6.19)
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Fig. 6.7 Fig. 6.8

we have the corresponding problem on contour �®\ with jump matrix

(6.20)

(8) (�\ T � r� v(8) i i r (8)un t(�) = i , 0 G ̂ 9 ^ ^5

The crucial fact (which has motivated the above series of deformations) is that
Eqs. (6.19)�(6.20) give the connection with the Painleve II equation.

Theorem 6.1 (see e.g. [I�N] or [F�N]). Let u(s) solve the Painleve II equation

uss �su�2u3 =0.

Consider the associated linear equation

d � ( —4i�2 — is — 2iu2 4iu�  � 2us \
~ �Aiu�  � 2us 4i�2 �f is + 2m2 ) '

(6.21)

(6.22)

and let � �, � 2, % � A, � 5, � 6 solve (6.22) in the sectors Ω?\ Ωf\ Ω$\ Ωf\ Ωf\
of Fig. 6.8 with asymptotics given by

�
� �

as •  e x ) . (6.23)

Across each ray �\ , one has the following relations (defining the so�called Stokes
matrices)

,r* \r. a ~ ~ (6�24)
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where

« � C � ) * � ( � O * � C ? ) (625)

p, q, r being complex numbers, independent of �  and s, and satisfying

r =p + q + pqr. (6.26)

(In fact, p, q, r provide a parametrisation of the 2�dimensional manifold of the
solutions of Eq. (6.21).)

Conversely, if relation (6.26) holds, the (unique) solution of (6.23)�(6.25) enables
us to recover u(s) as follows:

u = � lim (0[o"3,^])2i > (6.27)

where

# i ~ J + % + ^ � + . . . (6.28)

Lemma 6.2. If �  is the solution of (6.23)�(6.25) above and

then

hm Q ( 8 ) = �) 2 � �

Im �—KX) \ K2\i ~�~ S2) K�2S�

kx and k2 being some constants.

Proof Analogous to the proof of the lemmas in the Appendix, making use of the a
priori necessary symmetry of the factorization problem on �®\

Applying Theorem 6.1 with

r � 0 s��2(t2/3 �nt~�/3)

and the above lemma, we recover lim Q®\�) and thus Q(z = 0). Keeping in

mind formula (A. 15) giving bn in terms of Q(z = 0) (independently of k� and k2),
we finally obtain formulae (0.3), (0.5).

Remark. The boundedness of the different operators of the form (/ — C^ ) " 1 follows
in the same way as for the case n/t < 1 — Ct~2+�. However, one recalls that it
depends on the fact that sup |r(z) | < 1 (which holds automatically in that region).
Near n/t = 1 this is not necessarily true; in fact r( l) = — 1 generically. The study of
this case requires more work and will be considered in a future paper.

//. We continue with the case n/t > 1 (near n/t = 1). In this case, the stationary
phase points are imaginary (see Fig. 0.2). Our analysis is analogous to that of Sect. I.
First, we split r as in (6.2), again through the use of Fourier transforms, where this
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time the Fourier variable is � = sin �. We eventually and up with a Riemann�Hilbert
problem on the contour shown.

Fig. 6.9

Through an approximation similar to (6.13) we end up once more with problem
(6.23)�(6.25). The result follows as in Sect. I.

///. A similar argument shows that in the region \n/t\ > 1, we have bn — 1 = 0(t~�)
for any positive I. Indeed, since s —> oo as t —> oo (s defined by (6.29)), we see that
our final factorization problem on �^ has a jump matrix equal to /. everywhere. Its
solution is thus trivial and the result follows easily.

Appendix. Scattering, Inverse Scattering and a Riemann�Hilbert Matrix
Factorization Problem

As is well known, the Toda lattice is a (formally) completely integrable Hamiltonian
system which can be solved by the use of the inverse scattering transform (see [G, O].)
In this appendix, we present some of the facts about this method of solution that are
needed in the main part of this paper.

We begin with the analysis of the scattering and inverse scattering for the discrete
Lax operator L (the analogue of the Schroedinger operator in the KdV case). It is
defined on the Hubert space I2 as follows:

(Lu)n = bn_�un_� + anun + bnun+�, (A.I)

where an and bn — 1/2 are decaying faster than any polynomial as n —�> oo.
It is easy to see that the continuous spectrum of L consists of the band [—1,1]

with multiplicity 2. In this paper, we will assume that the discrete spectrum is empty.
(This means that no solitons are allowed; they will be added in a later study.)

Define the Jost functions as follows (see [F]): let �(n, z) and �{n, z) be such that

L�(n, z) = \�(n, z)\ �(n, z) ~ zn as n —> oo ,

L�(n, z) = ��(n, z); �in, z) ~ z~n as n —> —oo .

Here the spectral variable z is defined by
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The band [—1,1] in the ��plane with multiplicity 2 is thus mapped to the unit circle
in the z�plane with multiplicity 1.

oo n— 1

Next, let B+ = �  &bk)�\ B~ = �  (2bk)~l a n d B = BnB�< T h e following
k=n k=—oo

facts are proved in [O].
We can write

<Kn, z) = B+znvn(z), �(n, z) = B£*� n tx n (z), (A.3)

oo oo

where vn(z) — 1 + ]� �n kz
k and un(z) = 1 + �  ^ n fc^^, both series converging

71=1 ' 71=1

uniformly in \z\ < 1.
From (A.2) we can derive the following recursive relation:

1 Z

2/ \

1

As n �* — oo, we get

(4b2
n � l)z2vj+1(z)). (A.4)

j=�oo
oo

1 Z
j=�oo

On the other hand, when z �  ±1 , �(n,z), �(n,z) and 0(n, 2;""1), �(n,z~�) are
two sets of independent solutions of the second order difference equation Lx = \�.
Hence there exist A(z), B(z), a(z), �(z) such that

,z) = �(z)�(n,z) � � ^ � ^ ^ — � Z �\� i �' y � )

Making use of (A.3) and (A.5) we get

As n �> �00, � � �> 1, B+ �> B, un(z) �f 1, t i j * � 1 ) ^ 1. Hence

B�n(z)~B(z)z�2n+A{z).

Using the above recursion relation (A.4) for vn(z) we get

= ~ �  7 3 ^ (2^ .(20 + (462

n � I)z2^

A / \ °° 1

^ = � T �J�(2�(
�
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Define T(z) = � � � and R(z) = — . Then
A(z) a(z)

for IzI < 1. Thus, T(z) is defined not only on \z\ = 1, but is also extended
meromorphically to |z | < 1, and in fact T(0) = l/B. Our assumption that no bound
states exist is in fact equivalent to the fact that T(z) in indeed holomo�hic in \z\ < 1.

We note here that in general, the reflection coefficient R(z) cannot be extended
meromo�hically unless the decay of an and bn � 1/2 is exponential.

Next define

U{(n, z) = �(n, z), U2(n, z) = ^ ^ � = T(z)�(n, z). (A.6)

Since �(n, z) ~ B+zn and �(n, z) ~ B~z~~n near z = 0, we have

U�(n,z)~B~z�n,
\ n e a r ^ = 0. (A.7)

The following relations are easy to prove:

= S(z), A(z��) = A{z), \R{z)\2 + \T(z)\2 = 1.

H e n c e « ) * ) | ( ) P
We can now rewrite (A.5) as

U2(n, z) =

By their definitions, and by the properties of the functions �  and � (see discussion
after A.3) we can extend Ux and U2 inside, but also outside the unit circle (extending
[^(n, z~�) and U2(n, z~

1)). On the unit circle we denote the inner normal limit of Ux

by � ^ and the normal limit from outside by C7~ (and similarly with U2). Defining
B{z)

r(z) — ——, we finally get
A(z)

with asymptotics

at z — 0 and

at z = oo.
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Defining

yx(n, z) = 2 U^Z when \z\ < 1,

, z) = 1

 n

? when \z\ > 1,

2/2(n, 2?) =

n

2 ^ when \z\ < 1,

2/2(n, z) =
 2 _^ when \z\ > 1,

and letting Y = (�/1, y2), we end up with the Riemann�Hilbert matrix factorization
problem:

with asymptotics at oo:

Furthermore,

(A.9)

Note that the solution of (A.8)�(A.9) is unique as follows easily by Liouville's theorem
(see Theorem 1.2).

As is easy to see (see [O]), during the Toda flow the evolution of the reflection
coefficient with time is given by

r(z) = r(z, t) = r(z, 0) exp(t(z � z~1)).

So, at time t, relation (A.8) becomes

We next proceed to the inverse scattering problem: given the solution of
(A.8)�(A.9), what is the solution of the Cauchy problem (0.1)�(0.2)?

As the Riemann�Hilbert problem for Y has an inconvenient condition at infinity,
we will reduce it to the one as follows: let Q(z) be analytic in C — C, with normal
limits Q+ and Q_ on C, satisfying

J , (A. 11)

where u t is the 2 x 2 matrix appearing in (A.8) [recall Definition (0.8)].

Theorem. Let

say, and

Then Y solves (A.8)�(A.9), up to a constant scalar multiple.
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Proof. Clearly (A.8) holds. On the other hand we have the following lemmas.

Lemma 1. Q(z) = f ° M (Q(O)�1 Q(z~�) �®

Proof. We observe that

Thus,
1

or

i ) ( ? ;)««(? �
hence

Vi o)Q+{z){\ o / Vi o7"*� v~ 'Vi o

Applying this to z~�,

<* � »� » �

?>•<��•>(? ;)«•>�(!>�<��•>(?;
Defining

we have

and thus (by Liouville's theorem)

1

for some constant invertible matrix A. Thus,

Letting z —»•  oo, we get

X or
which gives A. The lemma now follows from (A. 13).

It follows from Lemma 1 that for Y defined by (A. 12) we have

\ (A. 14)

Lemma 2.IfY satisfies (A.8) and (A. 14) then Y also satisfies (A.9), up to a scalar
multiple.
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Proof. We show that there is only one solution of (A.8) satisfying the symmetry
condition (A. 14). In fact, suppose there is a second one, say X. Consider the matrix

Then, Z+ = Z_vy hence det Z+ = det Z_ det� = det Z_, and by Liouville's theorem,
det Z is constant, say c. On the other hand, by assumption,

and, taking determinants,

hence c = 0, thus X and Y are dependent. This proves Lemma 2, and the theorem
also follows.

Lemma 3. If
�

0(0) =

then � = — 7, and a� — �� = 1.

f. By a Liouville's�theorem�argument as in Lemma 2, it follows that detQ is
constant, and in fact 1, from which the second assertion of Lemma 3 follows. The
first assertion follows immediately, by setting z = 0 in Lemma 1.

A direct consequence of the theorem above together with Lemma 3 is that the
solution of (A.8)�(A.9) satisfies

1/2

for some constant k. Comparing with (A.9) we get k = 1, and

from which bn can be recovered by dividing.
Thus we have reduced our Cauchy problem (0.1)�(0.2) to the Riemann�Hilbert

problem (A. 11) and in particular to finding the first row of (5(0).

Acknowledgements. I wish to thank Percy Deift for suggesting the problem, for helpful discussions
and suggestions, and more specifically for the proofs of the lemmas of the appendix.

This research was supported by a Scholarship from the Onassis Foundation of Athens, Greece,
a Postdoctoral Fellowship of the French Government and a Department of Energy grant, no.
DE�FG02�88ER25053.



Long Time Behavior of Doubly Infinite Toda Lattice 519

References

[B�C] Beals, R., Coifman, R.: Scattering and inverse scattering for first order systems. Commun.
Pure App. Math. 37, 39�90 (1984)

[D�Z] Deift, P.A., Zhou, A.: A Steepest descent method for oscillatory Riemann�Hilbert problems.
To appear

[F] Flaschka, H.: On the Toda lattice. II. Progr. Theor. Phys. 51/3, 703�716 (1974)
[F�N] Flaschka, H., Newell, A.C.: Monodromy� and spectrum�preserving transformations. I. Com�

mun. Math. Phys. 76, 67�116 (1980)
[G] Guseinov, G.S.: The inverse problem of scattering theory for a second�order difference

equation on the whole axis. Sov. Math. Doklady 17/4, 1684�1688 (1976)
[I] Its, A.R.: Asymptotics of solutions of the nonlinear Schr�'dinger equation and isomonodromic

deformations of systems of linear differential equations. Sov. Math. Doklady 24/3, 452�456
(1982)

[I�N] Its, A.R., Novokshenov, V.Yu.: The isomonodromic deformation method in the theory of
Painleve equations. Lect. Notes in Math. 1191. Berlin, Heidelberg, New York: Springer 1986

[N�H] Novokshenov, V.Yu., Habibullin, I.T.: Nonlinear differential�difference schemes integrable
by the method of the inverse scattering problem. Asymptotics of the solution for t —•  oo.
Sov. Math. Doklady 23/2, 304�307 (1981)

[O] Oba, R.: Dissertation, Courant Institute, 1988

Communicated by A. Jaffe


