
Dynamics in

Magnetic Materials

Stavros Komineas
Max-Planck Institute for the

Physics of Complex Systems

Dresden

-6 0 6
-6

0

6

-6 0 6
-6

0

6

-6 0 6
-6

0

6



Outline

Micromagnetics

◦ The magnetization vector
◦ The Landau-Lifshitz equation

Exchange energy
Anisotropy energy
Magnetostatic energy (Maxwell’s Eqns)
External fields

Exchange length
Quality factor

◦Micromagnetic simulations

Magnetostatic field

◦ Domain walls; field-driven domain
walls

Vortices and magnetic solitons

◦ Vortices: circulation, polarity,
orientation

◦ Winding number
Ring particles

◦Magnetic bubbles

Particles with perpendicular anisotropy

Magnetization dynamics

◦ Dynamics of magnetic solitons

Spontaneously pinned
Skew deflection of bubbles
Vortex-antivortex pairs

◦Magnetic soliton dynamics in particles

Current experiments

Additionals: Antiferromagnets, Helimagnets

◦ The Heisenberg model
◦ Propagating domain walls in AFMs
◦ Spiral phase in helimagnets



Atomic magnetic moments

Atoms carry a magnetic moment µ. This is due to the motion of electrons in
closed loops and it is thus associated with an atomic angular momentum L:

µ = γ L,

where γ is a constant called the gyromagnetic ratio.

The energy of a moment µ in an external magnetic field B is:

E = −µ ·B = −µB cos φ,

where φ is the angle between µ and B.

This energy implies a torque −∂E/∂φ = µ×B. The equation of motio is:

dµ

dt
= γ µ×B.

Example: Consider B = (0, 0, B). Find the solution for µ precessing around B.



Magnetization

We define the magnetization M as the magnetic dipole moment per unit volume:

M =
1
V

∑
µi ≈ 1

V

∫

V

µ dV.

By analogy to the atomic dipole moment µ, we suppose that M is a vector of
constant length:

|M | = Ms, Ms : saturation magnetization.

The vector M = (Mx,My,Mz) may vary in space and time: M = M(x, y, z, t).
It can also be expressed in terms of two angles 0 ≤ Θ ≤ π, 0 ≤ Φ < 2π:

Mx = Ms cosΦ sinΘ,

My = Ms sinΦ sinΘ,

Mz = Ms cosΘ,

The magnetic energy is E = − ∫
M ·B dV .



Energy in a Ferromagnet

Exchange energy

Eex ∼ −Mα ·Mβ −→ −M i · (M i+1 + M i−1) −→ M
d2M

dx2
.

In the three-dimensional space we write

Eex = − A

M2
s

∫
M ·∇2M dV =

A

M2
s

∫
∂iM · ∂iM dV = (i = 1, 2, 3)

=
∫

(∂xM · ∂xM + ∂yM · ∂yM + ∂zM · ∂zM) dV.

A is called the exchange constant (typically A ∼ 10−11J/m).

The exchange energy is minimum as long as the spins are aligned (uniform
magnetization: M(x, y, z) = constant vector).



Anisotropy energy

Gives rise to a prefered direction for the magnetization. Generally the anisotropy
term has the same symmetry as the crystal structure of the material and we call
it a magnetocrystalline anisotropy.
The simplest case is a uniaxial anisotropy (K: anisotropy constant):

Ea = − K

M2
s

∫
(Mz)2 dV → K

M2
s

∫
(M2

x + M2
y ) dV.

This is an on-site term which favours: M = ±Msẑ (”plus” and ”minus” are
equally favoured) −→ The z is called the easy axis.

E.g., hexagonal cobalt exhibits uniaxial anisotropy: K = 4.5× 105J/m3.

We can also have easy-plane anisotropy:

Ea =
K

M2
s

∫
(Mz)2 dV.

We also, have the case of cubic anisotropy for cubic crystals such as iron and
nickel.



The magnetostatic field and energy

Magnetic moments give rise to a magnetic field and they thus interact with
neighbouring magnetic moments (dipole-dipole interactions).

The magnetic field H of a magnet satisfies Maxwell’s equations in matter (assume
the fields are time-independent):

∇×H = 0, ∇ ·B = 0, (B ≡ H + 4πM).

H: the magnetostatic field.

The magnetostatic energy is

Em = −1
2

∫
M ·H dV.



Total energy
Finally, the total energy can be written in the form:

E = Eex + Ea + Em = −1
2

∫
M ·

[
2A

M2
s

∇2M +
2K

M2
s

Mz ẑ + H

]
dV.

This indicates that the magnetization feels an effective field (add a possible
external field Hext):

F eff ≡ 2A

M2
s

∇2M +
2K

M2
s

Mz ẑ + H + Hext.

The Landau-Lifshitz equation

The dynamics of the magnetization is described by the Landau-Lifshitz equation:

∂M

∂t
= −M ×

[
2A

M2
s

∆M +
2K

M2
s

Mz ẑ + H + Hext

]
.



The Landau-Lifshitz equation in simpler form

Introduce new units:

Unit of length: `ex ≡
√

A/(2πM2
s ) (exchange length).

Unit of time: τ ≡ 1/
√

(4πM2
s γ).

Normalize the fields (so that m2 = 1): m ≡ M

Ms
, h ≡ H

4πMs
, hext ≡ Hext

4πMs
.

With these substitutions the Landau-Lifshitz equation becomes:

∂m

∂t
= −m× f , f = ∆m + Qm3 ẑ + h + hext.

We have defined the important quantity: Q ≡ K

2πM2
s

(quality factor).

The energy is now:

E =
1
2

∫
∂im · ∂im dV +

Q

2

∫
(m3)2 dV − 1

2

∫
h ·m dV −

∫
hext ·m dV



Magnetic domain walls

Consider a bulk ferromagnet which is magnetized “up” (M = Msẑ) on one end,
and “down” (M = −Msẑ) on its other end. A domain wall exists between the
two domains.

Landau and Lifshitz (1935) have given the form of this wall:

mz = tanh(x
√

Q) =⇒ Mz = Ms tanh(x/
√

K/A),

my = 1/ cosh(x
√

Q) =⇒ My = Ms/ cosh(x/
√

K/A).

This solution satisfies the Landau-Lifshitz equation.

The domain wall width is δ =
√

K/A.

It is called a Bloch wall (find the magnetostatic field of a Bloch wall!).


