DYNAMICS IN

MAGNETIC MATERIALS

Stavros Komineas

Max-Planck Institute for the
Physics of Complex Systems
Dresden

L -

/////




Outline

Micromagnetics

o The magnetization vector
o The Landau-Lifshitz equation

Exchange energy

Anisotropy energy

Magnetostatic energy (Maxwell's Eqns)
External fields

Exchange length
Quality factor

o Micromagnetic simulations
Magnetostatic field

o Domain walls; field-driven domain
walls

Vortices and magnetic solitons

o Vortices: circulation, polarity,
orientation

o Winding number
Ring particles

o Magnetic bubbles
Particles with perpendicular anisotropy

Magnetization dynamics
o Dynamics of magnetic solitons

Spontaneously pinned
Skew deflection of bubbles
Vortex-antivortex pairs

o Magnetic soliton dynamics in particles

Current experiments

Additionals: Antiferromagnets, Helimagnets

o The Heisenberg model
o Propagating domain walls in AFMs
o Spiral phase in helimagnets



Atomic magnetic moments

Atoms carry a magnetic moment . This is due to the motion of electrons in
closed loops and it is thus associated with an atomic angular momentum L:

p =L,

where 7 is a constant called the gyromagnetic ratio.

The energy of a moment & in an external magnetic field B is:
F=—p-B=—uB coso,

where ¢ is the angle between pu and B.
This energy implies a torque —0F /J¢ = u x B. The equation of motio is:

dp
— = B.

Example: Consider B = (0,0, B). Find the solution for p precessing around B.



Magnetization

We define the magnetization M as the magnetic dipole moment per unit volume:

1 1
v 2k v/v“

By analogy to the atomic dipole moment g, we suppose that M is a vector of
constant length:

(M| = M, M : saturation magnetization.

The vector M = (M, M,, M,) may vary in space and time: M = M (z,y, z,t).
It can also be expressed in terms of two angles 0 < © <7, 0 < ® < 27

M, = M,cos® sin®,
M, = M;sin® sin0,
M, = M, cosO,

The magnetic energy is E = — [ M - BdV.



Energy in a Ferromagnet

Exchange energy
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In the three-dimensional space we write
A 5 A .
E. = _Ms,2 M-VMdV:]wS2 O;M - O;M dV = (1=1,2,3)

_ / (0,M - 8,M + 8,M - 8,M + 0. M - 9. M) dV.

Ais called the exchange constant (typically A ~ 10~J/m).

The exchange energy is minimum as long as the spins are aligned (uniform
magnetization: M (x,y, z) = constant vector).



Anisotropy energy

Gives rise to a prefered direction for the magnetization. Generally the anisotropy
term has the same symmetry as the crystal structure of the material and we call
it a magnetocrystalline anisotropy.

The simplest case is a uniaxial anisotropy (K: anisotropy constant):

K
Ea:—ﬁg (M,)? dV—>—/M2+M2)dV

This is an on-site term which favours: M = +M 2 ("plus’ and "minus” are
equally favoured) — The z is called the easy axis.

E.g., hexagonal cobalt exhibits uniaxial anisotropy: K = 4.5 X 1O5J/m3.

We can also have easy-plane anisotropy:

K

Ea:ﬁg

(M.)?dV.

We also, have the case of cubic anisotropy for cubic crystals such as iron and
nickel.



The magnetostatic field and energy

Magnetic moments give rise to a magnetic field and they thus interact with
neighbouring magnetic moments (dipole-dipole interactions).

The magnetic field H of a magnet satisfies Maxwell’s equations in matter (assume
the fields are time-independent):

VxH=0, V-B=0, (B=H +4rM).

H: the magnetostatic field.
The magnetostatic energy is

Em:—%/M-HdV.



Total energy
Finally, the total energy can be written in the form:
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E:EeX+Ea+Em:—§/M-[ M,z+ H)| dV.

This indicates that the magnetization feels an effective field (add a possible
external field H oy¢):
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The Landau-Lifshitz equation

The dynamics of the magnetization is described by the Landau-Lifshitz equation:
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The Landau-Lifshitz equation in simpler form

Introduce new units:
Unit of length: fex = \/A/(2mM?2) (exchange length).
Unit of time: 7= 1/+/(4wM2 7).

M H H

N lize the fiel h 2 =1): = h hext = :
ormalize the fields (so that m ) m A VA ey

With these substitutions the Landau-Lifshitz equation becomes:

0
8—Tz—m><f, Ff=Am—+Qms2+h+hey.
We have defined the i tant tit Q K (quality factor)
. = r).
e have define e Important quantity LIVE quality

The energy is now:
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Magnetic domain walls

Consider a bulk ferromagnet which is magnetized “up” (M = MZ) on one end,
and “down” (M = —M,Z) on its other end. A domain wall exists between the

two domains.
Landau and Lifshitz (1935) have given the form of this wall:

m, = tanh(z+/Q) = M. = M, tanh(z/v/K/A),
m, = 1/ cosh(z1/Q) => M, = M,/ cosh(z/\/K/A).

This solution satisfies the Landau-Lifshitz equation.

The domain wall width is § = /K /A.
It is called a Bloch wall (find the magnetostatic field of a Bloch wall!).



