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Magnetic domain wall

Consider a bulk ferromagnet which is magnetized “up”

(M = Msẑ) on one end, and “down” (M = −Msẑ) on its other

end. A domain wall exists between the two domains.

[Landau and Lifshitz (1935)]:

mz = tanh(x
√

Q) =⇒ Mz = Ms tanh(x/
√

K/A),

my = 1/ cosh(x
√

Q) =⇒ My = Ms/ cosh(x/
√

K/A).

(We assume only exchange and easy-axis anisotropy.)

This is a solution of the Landau-Lifshitz equation.

The domain wall width is δ =
√

K/A.

This is called a Bloch wall.



Sketches for domain walls

Find the magnetostatic field of a Bloch wall:

∇h = −∇m, ∇ × h = 0 =⇒ h = 0.

∇m =
∂mx

∂x
+

∂my

∂y
+

∂mz

∂z
= 0.



Dissipation of the magnetisation dynamics

We add a phenomenological dissipation term in the

Landau-Lifshitz equation. This is refered to as Gilbert damping.

Here is the Landau-Lifshitz-Gilbert equation:

∂m
∂t

− α

(

m × ∂m
∂t

)

= −m × f .

α: a dimensionless damping constant (typically α ∼ 0.02).

Note that this equation conserves the length of m. This is

easier to see in its alternative form:

∂m
∂t

= −α1 (m × f )−α2 [m × (m × f )] , α1 =
1

1 + α2 , α2 =
α

1 + α2 .

To be sure, the energy is continuously decreasing:

dE
dt

= ... = −α2

∫
(

∂m
∂t

)2

dV < 0.



Propagating wall

We suppose a uniform external magnetic field hext = (0, 0, hext).

We find a solution of the Landau-Lifshitz-Gilbert equation of the

form m = m(x − vt). The Bloch wall has to tilt by a constant

angle Φ. We then find:

v =
hext

εα
and v = −sin(2Φ)

2ε
, ε ≡ Q + cos2 Φ

⇒ hext = −α

2
sin(2Φ), which means that |hext| ≤

α

2
.
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Q = 0.1 The maximum field hw ≡ α/2

is the “Walker field”.

Correspondingly:

vmax = 1
2
√

Q+1/2

is the “Walker velocity”.



Vortices
Consider a very thin disc element, and suppose that the

magnetisation vector lies on the plane.

Also assume that it is tangential to the lateral particle surface.

At the particle center, m cannot be on the plane, it has to be

“out-of-plane”, i.e., mz = ±1.

Note: it is not difficult to find the vortex profile by solving

numerically the Landau-Lifshitz-Gilbert equation.



The general axially symmetric vortex on the plane

Parametrise the magnetisation vector by the angles Θ,Φ.

Θ = θ(ρ), θ(ρ = 0) = 0, π [⇒ mz(ρ = 0) = ±1],

Φ = κ(φ + φ0), κ = ±1, φ0 : const.

mz(ρ = 0): polarity (or magnetisation).

φ0: phase (or orientation).
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κ: vortex number.
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[Castano, Ross, et al, PRB 67, 184425 (2003).]



Vortex in a ring element

m1 = cos(φ + φ0),

m2 = sin(φ + φ0),

m3 = 0. φ0 = π/2.

R

R2

1

Exchange field:

∆m =
1
ρ2

∂2m1

∂φ2 x̂ +
1
ρ2

∂2m2

∂φ2 ŷ = . . . = −m
ρ2 ⇒ m × ∆m = 0.

Magnetostatic field:

∇ · m = ... =
1
ρ

cos φ0.

For φ0/2 = 0 we have ∇ · m = 0 and, since we have no surface

charges =⇒ h = 0.



Energy

E = Eex =
1
2

∫

{

(

∂m
∂ρ

)2

+

(

∂m
∂z

)2

+
1
ρ2

(

∂m
∂φ

)2
}

dV

= . . . = π t ln
(

R2

R1

)

.

Note: The vortex with κ = −1 has the same exchange energy,

but it has a nonvanishing magnetostatic energy.



Topological numbers

On a circle

Suppose a thin film (two-dimensional material). Run around a

circle at spatial infinity and follow the vector m as it rotates.

E.g., a vortex has topological number equal to κ = 1.

Also possible are κ = 0,±1,±2 . . ..

On a sphere

Suppose that as r → ∞, m → constant vector (e.g., m → ẑ).

Run over the plane and follow m as it runs on the sphere.

E.g., a vortex has topological number (winding number) equal

to N = 1/2.

Also possible are N = 0,±1,±2 . . ..

Now, how do we obtain N = 1 ?



Magnetic bubbles

Consider a continuous film

with a strong perpendicular

anisotropy, so that m = ẑ at

r = ∞.

The winding number is given by

N =
1

4π

∫

n d2x , n =
1
2

ǫµν (∂νm × ∂µm) · m.

In the case of axial symmetry this is simplified to

N =
1
2

[ m3(ρ = ∞) − m3(ρ = 0) ],

which easily gives N = 1 for the fundamental bubble.



Magnetic bubbles

... but we could also imagine bubbles with different winding

numbers:
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