Outline

Magnetic domain walls
static walls propagating walls

Magnetic solitons on the plane
vortices
topological number
magnetic bubbles

Magnetic domain wall

Consider a bulk ferromagnet which is magnetized "up" ($\boldsymbol{M}=M_{s} \hat{\mathbf{z}}$) on one end, and "down" ($\boldsymbol{M}=-M_{s} \hat{\mathbf{z}}$) on its other end. A domain wall exists between the two domains.
[Landau and Lifshitz (1935)]:

$$
\begin{gathered}
m_{z}=\tanh (x \sqrt{Q}) \Longrightarrow M_{z}=M_{s} \tanh (x / \sqrt{K / A}), \\
m_{y}=1 / \cosh (x \sqrt{Q}) \Longrightarrow M_{y}=M_{s} / \cosh (x / \sqrt{K / A}) .
\end{gathered}
$$

(We assume only exchange and easy-axis anisotropy.)
This is a solution of the Landau-Lifshitz equation.
The domain wall width is $\delta=\sqrt{K / A}$.
This is called a Bloch wall.

Sketches for domain walls

Find the magnetostatic field of a Bloch wall:

$$
\begin{gathered}
\nabla \boldsymbol{h}=-\nabla \boldsymbol{m}, \quad \boldsymbol{\nabla} \times \boldsymbol{h}=0 \quad \Longrightarrow \quad \boldsymbol{h}=0 . \\
\nabla \boldsymbol{m}=\frac{\partial m_{x}}{\partial x}+\frac{\partial m_{y}}{\partial y}+\frac{\partial m_{z}}{\partial z}=0 .
\end{gathered}
$$

Dissipation of the magnetisation dynamics

We add a phenomenological dissipation term in the Landau-Lifshitz equation. This is refered to as Gilbert damping. Here is the Landau-Lifshitz-Gilbert equation:

$$
\frac{\partial \boldsymbol{m}}{\partial t}-\alpha\left(\boldsymbol{m} \times \frac{\partial \boldsymbol{m}}{\partial t}\right)=-\boldsymbol{m} \times \boldsymbol{f}
$$

α : a dimensionless damping constant (typically $\alpha \sim 0.02$).
Note that this equation conserves the length of \boldsymbol{m}. This is easier to see in its alternative form:

$$
\frac{\partial \boldsymbol{m}}{\partial t}=-\alpha_{1}(\boldsymbol{m} \times \boldsymbol{f})-\alpha_{2}[\boldsymbol{m} \times(\boldsymbol{m} \times \boldsymbol{f})], \quad \alpha_{1}=\frac{1}{1+\alpha^{2}}, \quad \alpha_{2}=\frac{\alpha}{1+\alpha^{2}}
$$

To be sure, the energy is continuously decreasing:

$$
\frac{d E}{d t}=\ldots=-\alpha_{2} \int\left(\frac{\partial \boldsymbol{m}}{\partial t}\right)^{2} d V<0
$$

Propagating wall

We suppose a uniform external magnetic field $\boldsymbol{h}_{\text {ext }}=\left(0,0, h_{\text {ext }}\right)$. We find a solution of the Landau-Lifshitz-Gilbert equation of the form $\boldsymbol{m}=\boldsymbol{m}(x-v t)$. The Bloch wall has to tilt by a constant angle Φ. We then find:

$$
\begin{gathered}
v=\frac{h_{\mathrm{ext}}}{\varepsilon \alpha} \quad \text { and } \quad v=-\frac{\sin (2 \Phi)}{2 \varepsilon}, \quad \varepsilon \equiv Q+\cos ^{2} \Phi \\
\Rightarrow h_{\mathrm{ext}}=-\frac{\alpha}{2} \sin (2 \Phi), \quad \text { which means that } \quad\left|h_{\mathrm{ext}}\right| \leq \frac{\alpha}{2} .
\end{gathered}
$$

The maximum field $h_{w} \equiv \alpha / 2$ is the "Walker field".

Correspondingly:

$$
v_{\text {max }}=\frac{1}{2 \sqrt{Q+1 / 2}}
$$

is the "Walker velocity".

Vortices

Consider a very thin disc element, and suppose that the magnetisation vector lies on the plane.
Also assume that it is tangential to the lateral particle surface. At the particle center, \boldsymbol{m} cannot be on the plane, it has to be "out-of-plane", i.e., $m_{z}= \pm 1$.

Note: it is not difficult to find the vortex profile by solving numerically the Landau-Lifshitz-Gilbert equation.

The general axially symmetric vortex on the plane

Parametrise the magnetisation vector by the angles Θ, Φ.

$$
\begin{aligned}
& \Theta=\theta(\rho), \quad \theta(\rho=0)=0, \pi \quad\left[\Rightarrow m_{z}(\rho=0)= \pm 1\right] \\
& \Phi=\kappa\left(\phi+\phi_{0}\right), \quad \kappa= \pm 1, \quad \phi_{0}: \text { const. }
\end{aligned}
$$

$m_{z}(\rho=0)$: polarity (or magnetisation).
ϕ_{0} : phase (or orientation).

κ : vortex number.

[Castano, Ross, et al, PRB 67, 184425 (2003).]

Vortex in a ring element

$$
\begin{aligned}
m_{1} & =\cos \left(\phi+\phi_{0}\right) \\
m_{2} & =\sin \left(\phi+\phi_{0}\right) \\
m_{3} & =0 . \quad \phi_{0}=\pi / 2
\end{aligned}
$$

Exchange field:

$$
\Delta \boldsymbol{m}=\frac{1}{\rho^{2}} \frac{\partial^{2} m_{1}}{\partial \phi^{2}} \hat{\boldsymbol{x}}+\frac{1}{\rho^{2}} \frac{\partial^{2} m_{2}}{\partial \phi^{2}} \hat{\boldsymbol{y}}=\ldots=-\frac{\boldsymbol{m}}{\rho^{2}} \Rightarrow \boldsymbol{m} \times \Delta \boldsymbol{m}=0
$$

Magnetostatic field:

$$
\nabla \cdot \boldsymbol{m}=\ldots=\frac{1}{\rho} \cos \phi_{0} .
$$

For $\phi_{0} / 2=0$ we have $\boldsymbol{\nabla} \cdot \boldsymbol{m}=0$ and, since we have no surface charges $\Longrightarrow \boldsymbol{h}=0$.

Energy

$$
\begin{aligned}
E & =E_{\mathrm{ex}}=\frac{1}{2} \int\left\{\left(\frac{\partial \boldsymbol{m}}{\partial \rho}\right)^{2}+\left(\frac{\partial \boldsymbol{m}}{\partial z}\right)^{2}+\frac{1}{\rho^{2}}\left(\frac{\partial \boldsymbol{m}}{\partial \phi}\right)^{2}\right\} d V \\
& =\ldots=\pi t \ln \left(\frac{R_{2}}{R_{1}}\right)
\end{aligned}
$$

Note: The vortex with $\kappa=-1$ has the same exchange energy, but it has a nonvanishing magnetostatic energy.

Topological numbers

On a circle

Suppose a thin film (two-dimensional material). Run around a circle at spatial infinity and follow the vector \boldsymbol{m} as it rotates.
E.g., a vortex has topological number equal to $\kappa=1$.

Also possible are $\kappa=0, \pm 1, \pm 2 \ldots$.

On a sphere

Suppose that as $\boldsymbol{r} \rightarrow \infty, \boldsymbol{m} \rightarrow$ constant vector (e.g., $\boldsymbol{m} \rightarrow \hat{\mathbf{z}}$). Run over the plane and follow \boldsymbol{m} as it runs on the sphere.
E.g., a vortex has topological number (winding number) equal to $\mathcal{N}=1 / 2$.
Also possible are $\mathcal{N}=0, \pm 1, \pm 2 \ldots$.
Now, how do we obtain $\mathcal{N}=1$?

Magnetic bubbles

Consider a continuous film with a strong perpendicular anisotropy, so that $\boldsymbol{m}=\hat{\boldsymbol{z}}$ at $\boldsymbol{r}=\infty$.

The winding number is given by

$$
\mathcal{N}=\frac{1}{4 \pi} \int n d^{2} x, \quad n=\frac{1}{2} \epsilon_{\mu \nu}\left(\partial_{\nu} \boldsymbol{m} \times \partial_{\mu} \boldsymbol{m}\right) \cdot \boldsymbol{m} .
$$

In the case of axial symmetry this is simplified to

$$
\mathcal{N}=\frac{1}{2}\left[m_{3}(\rho=\infty)-m_{3}(\rho=0)\right],
$$

which easily gives $\mathcal{N}=1$ for the fundamental bubble.

Magnetic bubbles

... but we could also imagine bubbles with different winding numbers:

