

Figure 2.15 Lagrange equilateral configuration for a three-body problem with $P_{1} P_{2}=P_{2} P_{3}=P_{3} P_{1}=a(t)$.

If $\left|\mathbf{r}_{i}\right|=r_{i}$, deduce the polar equations

$$
\ddot{r}_{i}-r_{i} \Omega^{2}=-\frac{\mu_{1}+\mu_{2}+\mu_{3}}{a^{3}} r_{i}, \quad r_{i}^{2} \Omega=\mathrm{constant} \quad(i=1,2,3)
$$

Explain why a satisfies

$$
\ddot{a}-a \Omega^{2}=-\frac{\mu_{1}+\mu_{2}+\mu_{3}}{a^{2}}, a^{2} \Omega=\mathrm{constant}=K,
$$

say, and that solutions of these equations completely determine the position vectors. Express the equation in non-dimensionless form by the substitutions $a=K^{2} /\left(\mu_{1}+\mu_{2}+\mu_{3}\right), t=K^{3} \tau /\left(\mu_{1}+\mu_{2}+\mu_{3}\right)^{2}$, sketch the phase diagram for the equation in μ obtained by eliminating Ω, and discuss possible motions of this Lagrange configuration.
2.22 A disc of radius a is freely pivoted at its centre A so that it can turn in a vertical plane. A spring, of natural length $2 a$ and stiffness λ connects a point B on the circumference of the disc to a fixed point O, distance $2 a$ above A. Show that θ satisfies

$$
I \ddot{\theta}=-T a \sin \phi, \quad T=\lambda a\left[(5-4 \cos \theta)^{1 / 2}-2\right],
$$

where T is the tension in the spring, I is the moment of inertia of the disc about $A, \widehat{O A B}=\theta$ and $\widehat{A B O}=\phi$. Find the equilibrium states of the disc and their stability.
2.23 A man rows a boat across a river of width a occupying the strip $0 \leq x \leq a$ in the x, y plane, always rowing towards a fixed point on one bank, say $(0,0)$. He rows at a constant speed u relative to the water, and the river flows at a constant speed v. Show that

$$
\dot{x}=-u x / \sqrt{ }\left(x^{2}+y^{2}\right), \quad \dot{y}=v-u y / \sqrt{ }\left(x^{2}+y^{2}\right)
$$

where (x, y) are the coordinates of the boat. Show that the phase paths are given by $y+\sqrt{ }\left(x^{2}+y^{2}\right)=$ $A x^{1-\alpha}$, where $\alpha=v / u$. Sketch the phase diagram for $\alpha<1$ and interpret it. What kind of point is the origin? What happens to the boat if $\alpha>1$?
2.24 In a simple model of a national economy, $\dot{I}=I-\alpha C, \dot{C}=\beta(I-C-G)$, where I is the national income, C is the rate of consumer spending, and G the rate of government expenditure; the constants α and β satisfy $1<\alpha<\infty, 1 \leq \beta<\infty$. Show that if the rate of government expenditure G is constant G_{0} there is an equilibrium state. Classify the equilibrium state and show that the economy oscillates when $\beta=1$.

Consider the situation when government expenditure is related to the national income by the rule $G=G_{0}+k I$, where $k>0$. Show that there is no equilibrium state if $k \geq(\alpha-1) / \alpha$. How does the economy then behave?

Discuss an economy in which $G=G_{0}+k I^{2}$, and show that there are two equilibrium states if $G_{0}<(\alpha-1)^{2} /\left(4 k \alpha^{2}\right)$.
2.25 Let $f(x)$ and $g(y)$ have local minima at $x=a$ and $y=b$ respectively. Show that $f(x)+g(y)$ has a minimum at (a, b). Deduce that there exists a neighbourhood of (a, b) in which all solutions of the family of equations

$$
f(x)+g(y)=\text { constant }
$$

represent closed curves surrounding (a, b).
Show that $(0,0)$ is a centre for the system $\dot{x}=y^{5}, \dot{y}=-x^{3}$, and that all paths are closed curves.
2.26 For the predator-prey problem in Section 2.2, show by using Problem 2.25 that all solutions in $y>0$, $x>0$ are periodic.
2.27 Show that the phase paths of the Hamiltonian system $\dot{x}=-\partial H / \partial y, \dot{y}=\partial H / \partial x$ are given by $H(x, y)=$ constant. Equilibrium points occur at the stationary points of $H(x, y)$. If $\left(x_{0}, y_{0}\right)$ is an equilibrium point, show that $\left(x_{0}, y_{0}\right)$ is stable according to the linear approximation if $H(x, y)$ has a maximum or a minimum at the point. (Assume that all the second derivatives of H are nonzero at x_{0}, y_{0}.)
2.28 The equilibrium points of the nonlinear parameter-dependent system $\dot{x}=y, \dot{y}=f(x, y, \lambda)$ lie on the curve $f(x, 0, \lambda)=0$ in the x, λ plane. Show that an equilibrium point $\left(x_{1}, \lambda_{1}\right)$ is stable and that all neighbouring solutions tend to this point (according to the linear approximation) if $f_{x}\left(x_{1}, 0, \lambda_{1}\right)<0$ and $f_{y}\left(x_{1}, 0, \lambda_{1}\right)<0$.

Investigate the stability of $\dot{x}=y, \dot{y}=-y+x^{2}-\lambda x$.
2.29 Find the equations for the phase paths for the general epidemic described (Section 2.2) by the system

$$
\dot{x}=-\beta x y, \quad \dot{y}=\beta x y-\gamma y, \quad \dot{z}=\gamma y .
$$

Sketch the phase diagram in the x, y plane. Confirm that the number of infectives reaches its maximum when $x=\gamma / \beta$.
2.30 Two species x and y are competing for a common food supply. Their growth equations are

$$
\dot{x}=x(1-x-y), \quad \dot{y}=y\left(3-x-\frac{3}{2} y\right), \quad(x, y>0) .
$$

Classify the equilibrium points using linear approximations. Draw a sketch indicating the slopes of the phase paths in $x \geq 0, y \geq 0$. If $x=x_{0}>0, y=y_{0}>0$ initially, what do you expect the long term outcome of the species to be? Confirm your conclusions numerically by computing phase paths.
2.31 Sketch the phase diagram for the competing species x and y for which

$$
\dot{x}=\left(1-x^{2}-y^{2}\right) x, \quad \dot{y}=\left(\frac{5}{4}-x-y\right) y .
$$

2.32 A space satellite is in free flight on the line joining, and between, a planet (mass m_{1}) and its moon (mass m_{2}), which are at a fixed distance a apart. Show that

$$
-\frac{\gamma m_{1}}{x^{2}}+\frac{\gamma m_{2}}{(a-x)^{2}}=\ddot{x}
$$

where x is the distance of the satellite from the planet and γ is the gravitational constant. Show that the equilibrium point is unstable according to the linear approximation.
2.33 The system

$$
\dot{V}_{1}=-\sigma V_{1}+f\left(E-V_{2}\right), \quad \dot{V}_{2}=-\sigma V_{2}+f\left(E-V_{1}\right), \quad \sigma>0, E>0
$$

