Theoretical Micromagnetics
 Lecture Series

Stavros Komineas
University of Crete, Greece

6 Maïou 2020

Lecture 1a. Magnetic moment of atoms

Let an electric current / flow in a closed loop C

It gives rise to a magnetic moment (a vector)

$$
\boldsymbol{\mu}=\frac{l}{2} \oint_{C} r \times d \boldsymbol{s}
$$

If we assume one electron (charge e, mass m_{e}) orbiting around the loop

$$
\boldsymbol{\mu}=\gamma \boldsymbol{L}
$$

where

- $\gamma=g_{e}|e| / 2 m_{e}$ is the gyromagnetic ratio.
- L is the angular momentum of the electron.

Fixed length vector

An electron is orbiting around the atom in a fixed orbit (due to quantization) and $\boldsymbol{\mu}$ is a vector of fixed length.

A magnetic moment in an external field

Energy of $\boldsymbol{\mu}$ in an external magnetic field \boldsymbol{B}

$$
E=-\boldsymbol{\mu} \cdot \boldsymbol{B}
$$

Since $|\boldsymbol{\mu}|=\mu$ is fixed, the only parameter is the angle ψ between $\boldsymbol{\mu}$ and B,

$$
E=-\mu B \cos \psi .
$$

Torque

Changes of the energy due to the angle ψ generate a torque

$$
\tau=-\frac{\partial E}{\partial \psi}=-\mu B \sin \psi
$$

in vector form,

$$
\boldsymbol{\tau}=\boldsymbol{\mu} \times \boldsymbol{B} .
$$

Equation of motion

For the angular momentum we have $d L / d t=\tau$

The equation of motion for the magnetic moment is

$$
\begin{aligned}
\frac{d \boldsymbol{\mu}}{d t} & =\gamma \boldsymbol{\mu} \times \boldsymbol{B} \\
& =\gamma_{0} \boldsymbol{\mu} \times \boldsymbol{H}, \quad \boldsymbol{B}=\mu_{0} \boldsymbol{H}, \quad \gamma_{0}=\gamma \mu_{0}
\end{aligned}
$$

Let the magnetic field $\boldsymbol{H}=\boldsymbol{H} \hat{\boldsymbol{e}}_{z}=(0,0, H)$
The equations for the components $\boldsymbol{\mu}=\left(\mu_{x}, \mu_{y}, \mu_{z}\right)$ are

$$
\left\{\begin{array} { l }
{ \dot { \mu } _ { x } = \gamma _ { 0 } H \mu _ { y } } \\
{ \dot { \mu } _ { y } = - \gamma _ { 0 } H \mu _ { x } } \\
{ \dot { \mu } _ { z } = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\dot{\mu}_{x}=\omega_{L} \mu_{y} \\
\dot{\mu}_{y}=-\omega_{L} \mu_{x} \\
\dot{\mu}_{z}=0
\end{array}\right.\right.
$$

where $\omega_{L}=\gamma_{0} H$.

Precession

Solution of the equations of motion

$$
\begin{aligned}
& \mu_{x}=\mu \sin \theta \cos \left(\omega_{L} t\right) \\
& \mu_{y}=-\mu \sin \theta \sin \left(\omega_{L} t\right) \\
& \mu_{z}=\mu \cos \theta(=\text { const. })
\end{aligned}
$$

where $\mu=|\boldsymbol{\mu}|$ is constant and θ is the constant angle between $\boldsymbol{\mu}, \mathbf{H}$, and ω_{L} is called the Larmor frequency.

- The component of $\boldsymbol{\mu}$ parallel to \mathbf{H} remains constant.
- The projection of $\boldsymbol{\mu}$ on the plane perpendicular to \mathbf{H} is $\left(\mu_{x}, \mu_{y}\right)$ and it rotates.
- The moment $\boldsymbol{\mu}$ performs precession around \mathbf{H}.

Example (A complex variable)

Recast the equation for a magnetic moment $\boldsymbol{\mu}$ in an external field \mathbf{H} using a complex variable,

$$
\mu_{\perp}=\mu_{x}+i \mu_{y}
$$

The equations of motion for μ_{x}, μ_{y} are combined in the form

$$
\dot{\mu}_{\perp}=-i \omega_{\llcorner } \mu_{\perp}
$$

with solution

$$
\mu_{\perp}=\mu \sin \theta e^{-i \omega_{L} t}
$$

[Exercise. Try to carry out the above calculation.]

Exercise (Precession of a magnetic moment in an external field)

Solve numerically the equation of motion for a magnetic moment in an external field. Check whether you obtain the above analytical solution.

A field with values on the sphere, $u(s) \in \mathbb{S}^{2}$

Assume a field $u=u(s)$ defined in the real space, $s \in \mathbb{R}$, and taking values on the unit sphere, $u \in \mathbb{S}^{2}$.
Such a field is realised by a vector $\boldsymbol{u} \in \mathbb{R}^{3}$ with unit length $\boldsymbol{u}^{2}=1$. For any parameter s of the problem we have

$$
u^{2}=1 \Rightarrow \frac{d}{d s}(\boldsymbol{u} \cdot \boldsymbol{u})=0 \Rightarrow \boldsymbol{u} \cdot \frac{d \boldsymbol{u}}{d s}=0 .
$$

Any derivative of u is perpendicular to u (it belongs to the tangent plane of the sphere at u).

$$
\frac{d u}{d s}=u \times f, \quad \text { for some } f .
$$

Lecture lb. Spins - exchange interaction

Ferromagnets

are materials that present non-zero net magnetization (at zero field). This is due to neighbouring moments that interact and tend to be aligned.
The magnetic moments are primarily due to the spin of electrons.
Neighbouring spins are aligned due to exchange interaction.
At the level of two individual spins $\mathbf{S}_{1}, \mathbf{S}_{2}$, the energy due to exchange interaction is modelled as

$$
-J \mathbf{S}_{1} \cdot \mathbf{S}_{2}, \quad J: \text { exchange constant. }
$$

For $J>0$ and perfectly aligned spins the exchange energy has a minimum.

- The exchange interaction induces magnetic order.

Antiferromagnets, Weak Ferromagnets, etc

are materials that present magnetic order (at zero field).

Two spins

In the energy $E=-J \mathbf{S}_{1} \cdot \mathbf{S}_{2}$, each spin plays the role of an external field for the other one. Therefore, the equations of motion are

$$
\dot{\mathbf{S}}_{1}=J \mathbf{S}_{1} \times \mathbf{S}_{2}, \quad \dot{\mathbf{S}}_{2}=J \mathbf{S}_{2} \times \mathbf{S}_{1} .
$$

Note that, the change of the one spin affects the dynamics of the other one. That means that we have a system of coupled equations.

We could loosely imagine that \boldsymbol{S}_{1} is precessing around \boldsymbol{S}_{2}, while \boldsymbol{S}_{2} is precessing around \boldsymbol{S}_{1}.

$$
\mathbf{s}_{1} \uparrow \quad \uparrow \mathrm{~s}_{2}
$$

Exercise (Dynamics of two spins)

Study the dynamics of two exchange-coupled spins $\mathbf{S}_{1}, \mathbf{S}_{2}$.

A spin chain
Consider a chain of N spins $\mathbf{S}_{i}, i=1,2, \cdots, N$.

The energy of the system is

$$
E=-J \sum_{i=1}^{N-1} \mathbf{S}_{i} \cdot \mathbf{S}_{i+1} .
$$

Each spin \mathbf{S}_{k} interacts with two neighbours at $k+1, k-1$.
Chain of aligned spins.

$$
\mathbf{S}_{1} \uparrow \mathbf{S}_{2} \uparrow \mathbf{S}_{3} \uparrow \mathbf{S}_{4} \uparrow \mathbf{S}_{5} \uparrow \mathbf{S}_{6} \uparrow \mathbf{S}_{7} \uparrow \mathbf{S}_{8} \uparrow \mathbf{S}_{9} \uparrow \mathbf{S}_{10} \uparrow
$$

Chain of spins (not fully aligned).

Dynamics of a spin chain

The equation of motion for every $\mathrm{S}_{k}(t)$ is

$$
\dot{\mathbf{S}}_{k}=J \mathbf{S}_{k} \times\left(\mathbf{S}_{k+1}+\mathbf{S}_{k-1}\right), \quad k=2,3, \cdots, N-1
$$

or

$$
\dot{\mathbf{S}}_{k}=\mathbf{S}_{k} \times f_{k}, \quad f_{k}=-\frac{\partial E}{\partial \mathbf{S}_{k}} .
$$

Exercise (Exchange-coupled spins)

Consider α spin chain and the corresponding system of equations. (α) Specify possible initial conditions and (b) solve the initial value problem numerically.
Consider the following.

- All spins \mathbf{S}_{i} should have the same fixed length $\left|\mathbf{S}_{i}\right|=s$.
- Try the uniform configuration $\mathbf{S}_{i}=\mathbf{s}$ for all i, where \mathbf{s} is α constant vector (for example $\mathbf{s}=$ sê3 ${ }_{3}$).
- Try perturbations of the above uniform configuration.

Conservation of energy. Single spin.

The energy of a spin in a magnetic field is

$$
E=-g_{e} \mu_{B} \mathbf{S} \cdot \mathbf{H} \sim-\mathbf{S} \cdot \mathbf{H} .
$$

The energy is conserved under $\dot{\mathbf{S}}=\mathbf{S} \times \mathbf{H}$.
We have that $\mathbf{S}=\mathbf{S}(t)$, therefore

$$
\frac{d E}{d t}=\frac{d E}{d \mathbf{S}} \cdot \frac{d \mathbf{S}}{d t} \sim-\mathbf{H} \cdot(\mathbf{S} \times \mathbf{H})=0 .
$$

That means, that during spin precession, the energy is conserved.

Damping effect. Single spin.

Try a friction force

$$
\frac{d \mathbf{S}}{d t}=\text { friction }
$$

The term $\mathbf{S} \times(\mathbf{S} \times \mathbf{H})$ is

- Perpendicular to \mathbf{S} (i.e., keeps \mathbf{S} on the sphere $\mathbf{S}^{2}=1$).
- Perpendicular to $\mathbf{S} \times \mathbf{H}$ (i.e., drags \mathbf{S} to \mathbf{H}).

Write the equation for a spin \mathbf{S} under damping

$$
\frac{d \mathbf{S}}{d t}=-\mathbf{S} \times(\mathbf{S} \times \mathbf{H})
$$

Note the vector identity

$$
\mathbf{S} \times(\mathbf{S} \times \mathbf{H})=(\mathbf{S} \cdot \mathbf{H}) \mathbf{S}-(\mathbf{S} \cdot \mathbf{S}) \mathbf{H}=(\mathbf{S} \cdot \mathbf{H}) \mathbf{S}-\mathrm{s}^{2} \mathbf{H}
$$

Energy loss due to damping

Spin dynamics with damping

Under both conservative and damping terms we have the equation

$$
\frac{d \mathbf{S}}{d t}=\mathbf{S} \times \mathbf{H}-\alpha \mathbf{S} \times(\mathbf{S} \times \mathbf{H})
$$

where α is a damping constant.
The energy decreases under damping

$$
\begin{aligned}
\frac{d E}{d t} & =\frac{d E}{d \mathbf{S}} \cdot \frac{d \mathbf{S}}{d t} \sim-\mathbf{H} \cdot[(\mathbf{S} \times \mathbf{H})-\alpha \mathbf{S} \times(\mathbf{S} \times \mathbf{H})] \\
& =\alpha \mathbf{H} \cdot\left[(\mathbf{S} \cdot \mathbf{H}) \mathbf{S}-\mathbf{S}^{2} \mathbf{H}\right]=(\mathbf{S} \cdot \mathbf{H})^{2}-\mathbf{S}^{2} \mathbf{H}^{2} \leq 0
\end{aligned}
$$

Question

What will happen if a spin is placed under \mathbf{H} with damping when $t \rightarrow \infty$? What will the energy then be?

Dynamics of a spin chain under damping

Spin dynamics with damping

Under both conservative and damping terms we have the equation

$$
\frac{d \mathbf{S}_{k}}{d t}=\mathbf{S}_{k} \times f_{k}-\alpha \mathbf{S}_{k} \times\left(\mathbf{S}_{k} \times f_{k}\right)
$$

where α is a damping constant.

Exercise

How does the energy of a chain of spins behave under damping?

Question

What do we expect to happen with the spin configuration when $t \rightarrow \infty$?

