Theoretical Micromagnetics Lecture Series

Stavros Komineas

University of Crete, Greece

6 Μαΐου 2020

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 - のへで

Lecture 1a. Magnetic moment of atoms

Let an electric current I flow in a closed loop C

It gives rise to a magnetic moment (a vector)

$$oldsymbol{\mu} = rac{l}{2} \oint_{\mathcal{C}} oldsymbol{r} imes doldsymbol{s}$$

If we assume one electron (charge e, mass m_e) orbiting around the loop

$$\boldsymbol{\mu} = \gamma \boldsymbol{L},$$

where

• $\gamma = g_e |e|/2m_e$ is the gyromagnetic ratio.

• L is the angular momentum of the electron.

Fixed length vector

An electron is orbiting around the atom in a fixed orbit (due to quantization) and μ is a vector of fixed length.

S. Komineas Micromagnetics, 2020

A magnetic moment in an external field

Energy of μ in an external magnetic field ${\it B}$

$$E = -\boldsymbol{\mu} \cdot \boldsymbol{B}.$$

Since $|\boldsymbol{\mu}| = \mu$ is fixed, the only parameter is the angle ψ between $\boldsymbol{\mu}$ and \boldsymbol{B} ,

$$E = -\mu B \cos \psi.$$

Torque

Changes of the energy due to the angle ψ generate a torque

$$\tau = -\frac{\partial E}{\partial \psi} = -\mu B \, \sin \psi,$$

in vector form,

$$oldsymbol{ au}=oldsymbol{\mu} imesoldsymbol{B}.$$

・ロト ・回 ト ・ヨト ・ヨー うらつ

Equation of motion

For the angular momentum we have
$$d{m L}/dt={m au}$$

The equation of motion for the magnetic moment is

$$\begin{aligned} \frac{d\boldsymbol{\mu}}{dt} &= \gamma \, \boldsymbol{\mu} \times \boldsymbol{B} \\ &= \gamma_0 \boldsymbol{\mu} \times \boldsymbol{H}, \qquad \boldsymbol{B} = \mu_0 \boldsymbol{H}, \quad \gamma_0 = \gamma \mu_0. \end{aligned}$$

Let the magnetic field $\boldsymbol{H} = H\hat{\boldsymbol{e}}_z = (0, 0, H)$

The equations for the components $oldsymbol{\mu}=(\mu_{x},\mu_{y},\mu_{z})$ are

$$\begin{cases} \dot{\mu}_x = \gamma_0 H \, \mu_y \\ \dot{\mu}_y = -\gamma_0 H \, \mu_x \Rightarrow \begin{cases} \dot{\mu}_x = \omega_L \, \mu_y \\ \dot{\mu}_y = -\omega_L \, \mu_x \\ \dot{\mu}_z = 0 \end{cases}$$

where $\omega_L = \gamma_0 H$.

Precession

Solution of the equations of motion

$$\mu_{x} = \mu \sin \theta \, \cos(\omega_{L}t)$$
$$\mu_{y} = -\mu \sin \theta \, \sin(\omega_{L}t)$$
$$\mu_{z} = \mu \cos \theta \, (=\text{const.})$$

where $\mu = |\boldsymbol{\mu}|$ is constant and θ is the constant angle between $\boldsymbol{\mu}$, \mathbf{H} , and ω_L is called the Larmor frequency.

- The component of μ parallel to H remains constant.
- The projection of μ on the plane perpendicular to **H** is (μ_x, μ_y) and it rotates.
- The moment μ performs precession around H.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Example (A complex variable)

Recast the equation for a magnetic moment μ in an external field ${
m H}$ using a complex variable,

$$\mu_{\perp} = \mu_x + i\mu_y.$$

The equations of motion for μ_x, μ_y are combined in the form

 $\dot{\mu}_{\perp} = -i\,\omega_L\,\mu_{\perp}$

with solution

$$\mu_{\perp} = \mu \sin \theta \, e^{-i\omega_L t}.$$

[Exercise. Try to carry out the above calculation.]

Exercise (Precession of a magnetic moment in an external field)

Solve numerically the equation of motion for a magnetic moment in an external field. Check whether you obtain the above analytical solution.

・ロト ・回 ト ・ヨ ト ・ヨ ト ・ りゃぐ

A field with values on the sphere, $u(s) \in \mathbb{S}^2$

Assume a field u = u(s) defined in the real space, $s \in \mathbb{R}$, and taking values on the unit sphere, $u \in \mathbb{S}^2$. Such a field is realised by a vector $u \in \mathbb{R}^3$ with unit length $u^2 = 1$. For any parameter

s of the problem we have

$$\mathbf{u}^2 = 1 \Rightarrow \frac{d}{ds}(\mathbf{u} \cdot \mathbf{u}) = 0 \Rightarrow \mathbf{u} \cdot \frac{d\mathbf{u}}{ds} = 0.$$

・ロト ・回ト ・ヨト ・ヨト … ヨ

Any derivative of u is perpendicular to u (it belongs to the tangent plane of the sphere at u).

$$\frac{d\boldsymbol{u}}{ds} = \boldsymbol{u} \times \boldsymbol{f}, \quad ext{for some} \, \boldsymbol{f}.$$

Lecture 1b. Spins - exchange interaction

Ferromagnets

are materials that present non-zero net magnetization (at zero field). This is due to neighbouring moments that interact and tend to be aligned. The magnetic moments are primarily due to the **spin of electrons.**

Neighbouring spins are aligned due to exchange interaction.

At the level of two individual spins $\mathbf{S}_1, \mathbf{S}_2$, the energy due to exchange interaction is modelled as

 $-J \mathbf{S}_1 \cdot \mathbf{S}_2, \qquad J:$ exchange constant.

For J > 0 and *perfectly aligned spins* the exchange energy has a minimum.

• The exchange interaction induces magnetic order.

Antiferromagnets, Weak Ferromagnets, etc

are materials that present magnetic order (at zero field).

Two spins

In the energy $E = -J\mathbf{S}_1 \cdot \mathbf{S}_2$, each spin plays the role of an external field for the other one. Therefore, the equations of motion are

$$\dot{\mathbf{S}}_1 = J \, \mathbf{S}_1 imes \mathbf{S}_2, \quad \dot{\mathbf{S}}_2 = J \, \mathbf{S}_2 imes \mathbf{S}_1.$$

Note that, the change of the one spin affects the dynamics of the other one. That means that we have a system of coupled equations.

We could loosely imagine that S_1 is precessing around S_2 , while S_2 is precessing around S_1 .

$$\mathbf{S}_1 \int \mathbf{S}_2$$

Exercise (Dynamics of two spins) Study the dynamics of two exchange-coupled spins S_1, S_2 .

A spin chain

Consider a chain of N spins \mathbf{S}_i , $i = 1, 2, \cdots, N$.

The energy of the system is

$$E = -J \sum_{i=1}^{N-1} \mathbf{S}_i \cdot \mathbf{S}_{i+1}.$$

Each spin S_k interacts with two neighbours at k + 1, k - 1.

Chain of aligned spins.

$$\mathbf{S}_{1} \stackrel{\frown}{\uparrow} \quad \mathbf{S}_{2} \stackrel{\frown}{\uparrow} \quad \mathbf{S}_{3} \stackrel{\frown}{\uparrow} \quad \mathbf{S}_{4} \stackrel{\frown}{\uparrow} \quad \mathbf{S}_{5} \stackrel{\frown}{\uparrow} \quad \mathbf{S}_{6} \stackrel{\frown}{\uparrow} \quad \mathbf{S}_{7} \stackrel{\frown}{\uparrow} \quad \mathbf{S}_{8} \stackrel{\frown}{\uparrow} \quad \mathbf{S}_{9} \stackrel{\frown}{\uparrow} \quad \mathbf{S}_{10} \stackrel{\frown}{\uparrow}$$

Chain of spins (not fully aligned).

・ロト ・回 ト ・ヨト ・ヨー うらつ

Dynamics of a spin chain

The equation of motion for every $\mathbf{S}_k(t)$ is

$$\hat{\mathbf{S}}_{k} = J \, \mathbf{S}_{k} \times (\mathbf{S}_{k+1} + \mathbf{S}_{k-1}), \qquad k = 2, 3, \cdots, N-1.$$

or

$$\dot{\mathbf{S}}_k = \mathbf{S}_k imes oldsymbol{f}_k, \qquad oldsymbol{f}_k = -rac{\partial E}{\partial \mathbf{S}_k}.$$

Exercise (Exchange-coupled spins)

Consider a spin chain and the corresponding system of equations. (a) Specify possible initial conditions and (b) solve the initial value problem numerically.

Consider the following.

- All spins \mathbf{S}_i should have the same fixed length $|\mathbf{S}_i| = s$.
- Try the uniform configuration $S_i = s$ for all *i*, where *s* is a constant vector (for example $s = s\hat{e}_3$).
- Try perturbations of the above uniform configuration.

Conservation of energy. Single spin.

The energy of a spin in a magnetic field is

$$E = -g_e \mu_B \mathbf{S} \cdot \mathbf{H} \sim -\mathbf{S} \cdot \mathbf{H}.$$

The energy is conserved under $\dot{\mathbf{S}} = \mathbf{S} \times \mathbf{H}$.

We have that $\mathbf{S} = \mathbf{S}(t)$, therefore

$$\frac{dE}{dt} = \frac{dE}{d\mathbf{S}} \cdot \frac{d\mathbf{S}}{dt} \sim -\mathbf{H} \cdot (\mathbf{S} \times \mathbf{H}) = 0.$$

That means, that during spin precession, the energy is conserved.

・ロト ・回 ト ・ヨト ・ヨト … ヨ

Damping effect. Single spin.

Try a friction force

$$\frac{d\mathbf{S}}{dt} = \text{friction.}$$

The term $\mathbf{S} imes (\mathbf{S} imes \mathbf{H})$ is

- Perpendicular to ${f S}$ (i.e., keeps ${f S}$ on the sphere ${f S}^2=1$).
- \bullet Perpendicular to $S \times H$ (i.e., drags S to H).

Write the equation for a spin S under damping

$$\frac{d\mathbf{S}}{dt} = -\mathbf{S} \times (\mathbf{S} \times \mathbf{H}).$$

Note the vector identity

$$\mathbf{S} \times (\mathbf{S} \times \mathbf{H}) = (\mathbf{S} \cdot \mathbf{H})\mathbf{S} - (\mathbf{S} \cdot \mathbf{S})\mathbf{H} = (\mathbf{S} \cdot \mathbf{H})\mathbf{S} - s^{2}\mathbf{H}.$$

Energy loss due to damping

Spin dynamics with damping

Under both conservative and damping terms we have the equation

$$\frac{d\mathbf{S}}{dt} = \mathbf{S} \times \mathbf{H} - \alpha \mathbf{S} \times (\mathbf{S} \times \mathbf{H}).$$

where α is a damping constant.

The energy decreases under damping

$$\frac{dE}{dt} = \frac{dE}{d\mathbf{S}} \cdot \frac{d\mathbf{S}}{dt} \sim -\mathbf{H} \cdot [(\mathbf{S} \times \mathbf{H}) - \alpha \mathbf{S} \times (\mathbf{S} \times \mathbf{H})]$$
$$= \alpha \mathbf{H} \cdot [(\mathbf{S} \cdot \mathbf{H})\mathbf{S} - \mathbf{S}^{2}\mathbf{H}] = (\mathbf{S} \cdot \mathbf{H})^{2} - \mathbf{S}^{2}\mathbf{H}^{2} \le 0$$

Question

What will happen if a spin is placed under H with damping when $t \to \infty$? What will the energy then be?

Dynamics of a spin chain under damping

Spin dynamics with damping

Under both conservative and damping terms we have the equation

$$\frac{d\mathbf{S}_k}{dt} = \mathbf{S}_k \times \mathbf{f}_k - \alpha \mathbf{S}_k \times (\mathbf{S}_k \times \mathbf{f}_k).$$

where α is a damping constant.

Exercise

How does the energy of a chain of spins behave under damping?

Question

What do we expect to happen with the spin configuration when $t \to \infty$?

・ロト ・回 ト ・ヨト ・ヨー うらつ