Theoretical Micromagnetics

Lecture Series

Stavros Komineas

University of Crete, Greece

20 Μαΐου 2020

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lecture 2a. The magnetization vector

Consider a ferromagnet with aligned magnetic moments

The magnetization is the density of magnetic moments μ in a volume

$$\mathbf{M} = rac{\Delta oldsymbol{\mu}}{\Delta V}, \qquad \Delta V$$
 is a small volume.

By applying a strong magnetic field we may align all magnetic moments ("saturate" the magnetization) along the field direction and measure the saturation magnetization M_s .

The Bloch sphere

The magnetization vector takes values on the Bloch sphere, ${
m M}^2={
m \it M}_s^2$,

A ferromagnet is described by the magnetization vector $\mathbf{M} = \mathbf{M}(x,t)$ with (see, Landau, Lifshitz, Pitaevskii, "Statistical Physics II")

$$|\mathbf{M}| = M_{s}$$
 (=const.).

Bloch sphere

Magnetization configuration

A continuous spin variable

Let us assume a chain of spins which may not be perfectly aligned. The exchange energy depends on the neighbours of each spin S_{α} ,

$$E_{\text{ex}} = -J \sum \mathbf{S}_{\alpha} \cdot \mathbf{S}_{\alpha+1} = -\frac{J}{2} \sum \mathbf{S}_{\alpha} \cdot (\mathbf{S}_{\alpha+1} + \mathbf{S}_{\alpha-1}).$$

A continuum approximation

Consider a small parameter ϵ and define (ϵ can be defined in different ways)

- A space variable $x = \epsilon \alpha$ where α is an integer index (ϵ may be the spacing between atoms).
- A continuous field $\mathbf{S}(x)$ such that $\mathbf{S}_{\alpha} = \mathbf{S}(x)$ at the position of each spin α .

The continuous field S(x) is connecting the discrete spins (atoms) of the material.

イロト イヨト イヨト イヨト 二日

Taylor expansion

The advantage of the continuous field is that we can make a

Taylor approximation

When the distance ϵ between spins is small, we have (Taylor expansion) $\mathbf{S}_{\alpha\pm1} \approx \mathbf{S} \pm \epsilon \partial_x \mathbf{S} + \frac{\epsilon^2}{2} \partial_x^2 \mathbf{S}, \qquad \mathbf{S}_{\alpha} \to \mathbf{S}.$

This assumes that

- There is a continuous field S(x).
- Neighbouring spins differ only a little.

Example (Use the Taylor approximation in the expression for the exchange energy)

$$E_{\mathrm{ex}} = -\frac{J}{2} \sum \mathbf{S}_{\alpha} \cdot (\mathbf{S}_{\alpha+1} + \mathbf{S}_{\alpha-1}) \approx \cdots$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Exchange energy (continuum)

Exchange energy

Use the Taylor expansion in the exchange energy

$$E_{\rm ex} = -J \sum \left(|\mathbf{S}|^2 + \frac{\epsilon^2}{2} \mathbf{S} \cdot \partial_x^2 \mathbf{S} \right) \rightarrow -\frac{J}{2} \epsilon \int \mathbf{S} \cdot \partial_x^2 \mathbf{S} \, dx$$

Since
$$\mathbf{M} \sim \mathbf{S}$$
 we have $E_{\mathrm{ex}} \sim -\int \mathbf{M} \cdot \partial_x^2 \mathbf{M} \, dx$

and this gives, by a partial integration

$$E_{\rm ex} = \frac{A}{M_{\rm s}^2} \int \partial_x \mathbf{M} \cdot \partial_x \mathbf{M} \, dx.$$

- A is the exchange constant (parameter).
- $E_{\rm ex}$ is non-negative.
- Its minimum (perfect alignment, $\partial_x \mathbf{M} = 0$) lies at zero.
- ullet All directions in space, for \mathbf{M} , are equivalent.

イロト イヨト イヨト イヨト

A system with the energy $E_{ m ex}$ and ${ m M}^2={ m const.}$ is called the nonlinear σ -model.

Exercise (O(3) invariance of E_{ex})

(a) Write E_{ex} using the components $\mathbf{M} = (M_1, M_2, M_3)$. (b) Consider a uniform rotation for \mathbf{M} and show that E_{ex} remains invariant.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Magnetocrystalline anisotropy

Materials are anisotropic in a natural way, e.g., due to the crystal structure. Anisotropic contributions come from relativistic effects. Some types of anisotropy are simply modelled.

Easy-plane anisotropy

The energy term (K > 0 the anisotropy parameter)

$$E_{\rm a} = \frac{K}{M_{\rm s}^2} \int (M_3)^2 \, dx$$

favours the states where ${f M}$ lies on the plane (12), i.e., $M_3=0.$

Easy-axis anisotropy

$$E_{\rm a}=\frac{K}{M_{\rm s}^2}\int (M_{\rm s}^2-M_3^2)\,dx$$

favours the states where ${\bf M}$ is fully aligned along the third axis, i.e., ${\it M}_3=\pm {\it M}_{\rm s}$ or ${\bf M}=(0,0,\pm {\it M}_{\rm s}).$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Example (easy-plane anisotropy)

- (a) For the easy-plane anisotropy, give all minimum energy solutions.
- (b) Show that the energy is invariant with respect to rotations of the vector ${\bf M}$ in the (12) plane.

Example (easy-axis anisotropy)

- (a) Write the easy-axis anisotropy formula in a manifestly non-negative form to show that $E_a \ge 0$.
- (b) Give all minimum energy solutions (based on that formula).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シのへで

Energy and length scales

In three-dimensions (3D), we have the exchange energy

$$E_{\rm ex} = \frac{A}{M_s^2} \int \partial_\mu \mathbf{M} \cdot \partial_\mu \mathbf{M} \, d^3 x, \quad \mu = 1, 2, 3.$$

Question (Write explicitly the exchange energy density)

Note that summation is implied for the repeated index μ .

Total energy

In a simple model we assume a ferromagnet with exchange and anisotropy energy. For a 3D magnet,

$$E = E_{\mathrm{ex}} + E_{\mathrm{a}} = \frac{A}{M_{\mathrm{s}}^2} \int \partial_{\mu} \mathbf{M} \cdot \partial_{\mu} \mathbf{M} \, d^3 x + \frac{K}{M_{\mathrm{s}}^2} \int (M_{\mathrm{s}}^2 - M_3^2) \, d^3 x.$$

Units for the physical constants $A: J/m, K: J/m^3$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Dimensional analysis

The length scale of this model

The two energy terms indicate a natural length scale

$$\ell_{\rm DW} = \sqrt{\frac{A}{K}}.$$

Example (For $A = 10^{-11} \text{ J/m}, M_s = 10^6 \text{ A/m}, K = 4 \times 10^5 \text{ J/m}^3$)

We calculate $\ell_{\rm DW} = 5 \times 10^{-9} \, {\rm m} = 5 \, {\rm nm}.$

We define the dimensionless magnetization according to

$$\mathbf{m} = \frac{\mathbf{M}}{M_s}, \qquad \mathbf{m}^2 = 1$$

and we have the energy

$$E = A \int \frac{\partial \mathbf{m}}{\partial x_{\mu}} \cdot \frac{\partial \mathbf{m}}{\partial x_{\mu}} d^{3}x + K \int (1 - m_{3}^{2}) d^{3}x$$
$$= K \left[\ell_{\rm DW}^{2} \int \frac{\partial \mathbf{m}}{\partial x_{\mu}} \cdot \frac{\partial \mathbf{m}}{\partial x_{\mu}} d^{3}x + \int (1 - m_{3}^{2}) d^{3}x \right]$$

Dimensionless form of energy

We define dimensionless space variables (i.e., scale space by $\ell_{\rm DW}$)

$$x_{\mu} = \xi_{\mu} \, \ell_{\rm DW}$$

and have the energy

$$\boldsymbol{E} = (\boldsymbol{K}\ell_{\mathrm{DW}}^3) \left[\int \partial_{\mu} \mathbf{m} \cdot \partial_{\mu} \mathbf{m} \, d^3 \boldsymbol{\xi} + \int (1 - m_3^2) \, d^3 \boldsymbol{\xi} \right].$$

We write $K\ell_{\rm DW}^3 = A\ell_{\rm DW}$, and re-instate the usual variable $\xi \to x$ to get

$$E = (2A\ell_{\rm DW}) \left[\frac{1}{2} \int \partial_{\mu} \mathbf{m} \cdot \partial_{\mu} \mathbf{m} \, d^3 x + \frac{1}{2} \int (1 - m_3^2) \, d^3 x \right].$$

The natural energy scale is $(2A\ell_{\rm DW})$

Remark

This scaled energy form has no free parameter.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Lecture 2b. Derivation of the time-independent equation

Static configurations of the magnetization

The magnetization $\mathbf{m}(\mathbf{x})$ of the material reduces to a configuration that minimizes the magnetic energy $E(\mathbf{m})$.

The equation for $\mathbf{m}(\mathbf{x})$ is obtained as the Euler-Lagrange equation for the minimization of the energy, with the constraint

$$\mathbf{m}^2(\mathbf{x}) = 1.$$

The constraint is imposed via a Lagrange multiplier $\lambda(\mathbf{x})$. [Raj, Sec. 3.3][FG, Sec. 12.2]

For a demonstration, we consider the exchange interaction and we have to extremize the functional

$$L[\mathbf{m}] = \int d^3x \underbrace{\left[\frac{1}{2}\partial_{\mu}\mathbf{m} \cdot \partial_{\mu}\mathbf{m} + \frac{\lambda(\mathbf{x})}{2}(1-\mathbf{m}^2)\right]}_{\mathcal{L}}.$$

S. Komineas

イロト イヨト イヨト イヨト 三日

The functional L is minimized for $\mathbf{m}(\mathbf{x})$ that satisfies the Euler-Lagrange equation

$$-\frac{\delta L}{\delta \mathbf{m}} = 0 \Rightarrow \frac{d}{dx_{\mu}} \left(\frac{\partial \mathcal{L}}{\partial_{\mu}\mathbf{m}}\right) - \frac{\partial \mathcal{L}}{\partial \mathbf{m}} = 0.$$

We calculate

$$-\frac{\delta L}{\delta \mathbf{m}} = \frac{d}{dx_{\mu}} \left(\partial_{\mu} \mathbf{m} \right) + \lambda \mathbf{m} = \partial_{\mu} \partial_{\mu} \mathbf{m} + \lambda \mathbf{m} = 0$$

or

$$\Delta \mathbf{m} + \lambda \mathbf{m} = 0.$$

イロト イロト イヨト イヨト 一日

We multiply the above by \mathbf{m} in order to obtain the Lagrange multiplier,

$$\mathbf{m} \cdot \Delta \mathbf{m} + \lambda \mathbf{m} \cdot \mathbf{m} = 0 \Rightarrow \lambda = -\mathbf{m} \cdot \Delta \mathbf{m}$$

and we use this to eliminate λ in the field equation

$$\Delta \mathbf{m} - (\mathbf{m} \cdot \Delta \mathbf{m}) \mathbf{m} = 0 \Rightarrow \mathbf{m} \times (\mathbf{m} \times \Delta \mathbf{m}) = 0.$$

The latter is equivalent to

$$\mathbf{m} \times \Delta \mathbf{m} = 0.$$

Quiz

Equation for the minimization of the exchange energy. Give an example of solution for the 1D equation

$$\mathbf{m} \times \partial_x^2 \mathbf{m} = 0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Form of the Landau-Lifshitz equation

Let us assume an energy functional $E(\mathbf{m})$. We find

$$\mathbf{m} \times \mathbf{f} = 0, \qquad \mathbf{f} = -\frac{\partial E}{\partial \mathbf{m}}.$$

• For f = h we recover the standard equation of magnetism for a magnetic moment **m** in an external magnetic field *bh*.

• For
$$E = E_{\text{ex}} = \frac{1}{2} \int \partial_x \mathbf{m} \cdot \partial_x \mathbf{m} \, dx$$
 we have $\mathbf{f} = -\frac{\delta E}{\delta \mathbf{m}} = \partial_x^2 \mathbf{m}$

• Solutions are \mathbf{m} such that $\mathbf{m} \parallel f$.

Exercise (Static Landau-Lifshitz equation)

Assume an energy functional E and derive the static Landau-Lifshitz equation under the constraint $\mathbf{m}^2 = 1$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

The LL equation - exchange and uniaxial anisotropy

Energy (exchange and easy-axis anisotropy)

$$E = \int \epsilon \, dx = \frac{1}{2} \int \partial_x \mathbf{m} \cdot \partial_x \mathbf{m} \, dx + \frac{1}{2} \int (1 - m_3^2) dx.$$

The variational derivative

$$\boldsymbol{f} = -\frac{\delta \boldsymbol{E}}{\delta \boldsymbol{\mathbf{m}}} = \frac{d}{dx} \left(\frac{\partial \epsilon}{\partial (\partial_x \boldsymbol{\mathbf{m}})} \right) - \frac{\partial \epsilon}{\partial \boldsymbol{\mathbf{m}}} = \partial_x^2 \boldsymbol{\mathbf{m}} + m_3 \hat{\boldsymbol{e}}_3.$$

Landau-Lifshitz equation for exchange and easy-axis anisotropy

$$\mathbf{m} \times \underbrace{(\Delta \mathbf{m} + m_3 \hat{\boldsymbol{e}}_3)}_{f} = 0.$$

Quiz

on the model with exchange and anisotropy.

(日)

Question (Find the uniform solutions)

• Uniform solutions are those for space-independent m.

In this case, $f = m_3 \hat{e}_3$. In order to have a solution, we need $\mathbf{m} \parallel f$, that is,

 $\mathbf{m}\parallel\hat{\mathbf{e}}_3\Rightarrow\mathbf{m}=\pm\hat{\mathbf{e}}_3$ (pointing in the north or south pole).

• The uniform solution is called the *ferromagnetic state*.

Question (easy-plane anisotropy)

What is the static Landau-Lifshitz equation for easy-plane anisotropy?

イロト イポト イモト イモト 三日

Lecture 2c. The magnetic domain wall (DW)

Domain pattern

Sketch of domain wall

イロト イヨト イヨト イヨト

훈

A transition layer

- Magnetic domains are regions where the magnetization is almost uniform.
- A domain wall is the magnetization configuration between two uniform states with different magnetization.

The spherical angles Θ, Φ

We can explicitly resolve the constraint $\mathbf{m}^2 = 1$,

 $m_1 = \sin \Theta \cos \Phi$, $m_2 = \sin \Theta \sin \Phi$, $m_3 = \cos \Theta$.

In a model with easy-axis anisotropy, we have two ground states, $\mathbf{m}=(0,0,\pm1)$, or $\Theta=0,\pi$ (north and south pole of the sphere).

We look for a topological soliton connecting the north and the south pole

We confine ourselves to the one-dimensional case $\mathbf{m} = \mathbf{m}(x)$. We try the simplest possibility of a meridian on the Bloch sphere

$$\Theta = \Theta(x), \quad \Phi = \phi_0 : \text{const.}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

A magnetic domain wall on the Bloch sphere

Example (Bloch wall)

For
$$\phi_0=\pi/2$$
 we have $m_1=0, \quad m_2(x)=\sin\Theta(x), \quad m_3(x)=\cos\Theta(x).$

• Draw a DW on the Bloch sphere.

• Consider the variation of the vector **m** in the space variable *x*.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

A magnetic domain wall (DW)

The Landau-Lifshitz equation for $\mathbf{m}(x)$ (for exchange and easy-axis anisotropy with anisotropy parameter k^2)

$$\mathbf{m} \times \left(\mathbf{m}'' + k^2 m_3 \hat{\mathbf{e}}_3\right) = 0 \Rightarrow \begin{cases} m_2 m_3'' - m_3 m_2'' + k^2 m_2 m_3 = 0\\ m_3 m_1'' - m_1 m_3'' - k^2 m_1 m_3 = 0\\ m_1 m_2'' - m_2 m_1'' = 0 \end{cases}$$

Choose the case

$$m_1 = 0, \quad m_2 = \sin \Theta, \quad m_3 = \cos \Theta.$$

thus

$$m_2'' = -\sin\Theta\Theta'^2 + \cos\Theta\Theta'', \quad m_3'' = -\cos\Theta\Theta'^2 - \sin\Theta\Theta''.$$

The first equation gives (the other two are trivially satisfied)

$$\Theta'' - k^2 \sin \Theta \cos \Theta = 0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Multiply by $2\Theta'$

$$\left[(\Theta')^2 - k^2 \sin^2 \Theta \right]' = 0 \Rightarrow (\Theta')^2 - k^2 \sin^2 \Theta = C.$$

There are many solutions for the one-dimensional equation

We are only interested in *localized solutions*. We consider uniform domains for |x| > 0, therefore, we require $\Theta = 0, \pi$ and $\Theta' = 0$ at $x = \pm \infty$.

From the condition at $x \to \pm \infty$ we get C = 0 and we have

$$\Theta' = \pm k \sin \Theta.$$

The solution of the latter is

$$e^{\pm kx} = \pm \tan\left(\frac{\Theta}{2}\right).$$

Check that (for the plus signs)

- For $x \to -\infty$ we have $\Theta = 0$ (north pole).
- For $x \to \infty$ we have $\Theta = \pi$ (south pole).

イロト イポト イモト イモト 三日

Domain wall details

Static domain wall (DW)

Use trigonometric identities (for the half angle)

$$m_1 = rac{1}{\cosh(kx)} \cos \phi_0, \quad m_2 = rac{1}{\cosh(kx)} \sin \phi_0, \quad m_3 = \tanh(kx).$$

That is valid for boundary conditions $\mathbf{m}(x = \pm \infty) = (0, 0, \pm 1)$.

The figure shows $m_3(x)$ for a domain wall with $\phi_0 = \pm \pi/2$. The width of the domain wall can be considered to be 1/k, i.e.,

$$\ell_{\rm DW} = \sqrt{A/K}.$$

イロト イポト イモト イモト 三日

There are many domain wall solutions

We get a different domain wall solution for every $0 \le \phi_0 < 2\pi$. Within this model, the energy is the same for all walls.

Bloch wall, choose $\phi_0 = \pm \pi/2$

$$m_1 = 0, \quad m_2 = \pm \frac{1}{\cosh(kx)}, \quad m_3 = \tanh(kx).$$

Néel wall, choose $\phi_0=0,\pi$

$$m_1 = \pm \frac{1}{\cosh(kx)}, \quad m_2 = 0, \quad m_3 = \tanh(kx).$$

イロト イロト イヨト イヨト 一日

Maxwell's equations

A ferromagnet produces a magnetic field \mathbf{H}_m . For static configurations \mathbf{M} , this is given by Maxwell's equations omitting time derivatives

$$\boldsymbol{\nabla} \cdot \mathbf{B} = 0, \qquad \boldsymbol{\nabla} \times \mathbf{H}_m = 0, \qquad \mathbf{B} = \mu_0 (\mathbf{H}_m + \mathbf{M})$$

Apply the normalization

$$\mathbf{h}_m = \frac{\mathbf{H}_m}{M_s}$$

and write

$$\boldsymbol{\nabla}\cdot(\mathbf{h}_m+\mathbf{m})=0,\qquad \boldsymbol{\nabla}\times\mathbf{h}_m=0.$$

This is called the magnetostatic field \mathbf{h}_m , because time derivatives have been neglected in Maxwell's equations.

・ロト ・四ト ・ヨト ・ヨト

훈

Source of a magnetostatic field

Magnetic field due to ${f m}$

Write Maxwell's equations as

$$\boldsymbol{\nabla}\cdot\boldsymbol{\mathbf{h}}_m=-\boldsymbol{\nabla}\cdot\boldsymbol{\mathbf{m}},\qquad \boldsymbol{\nabla}\times\boldsymbol{\mathbf{h}}_m=0.$$

Thus, the magnetic field source is $-\nabla \cdot \mathbf{m}$.

Note the similarity between the equations for the magnetostatic field

with those for the field \pmb{E} of a charge density ρ in electrostatics. They are identical under the correspondence

•
$$\rho \rightarrow -\nabla \cdot \mathbf{m}$$
.

•
$$\boldsymbol{E}
ightarrow \mathbf{h}_m$$

イロト イヨト イヨト イヨト 一日

Quiz. Examples in simple geometries.

Example (Magnetic field of an infinite cylinder)

Consider an infinite cylinder that is uniformly magnetized along its axis $(\mathbf{m} = \hat{\mathbf{e}}_3)$. What is the magnetic field produced?

Example (Magnetic field in a thin film)

Consider a thin film uniformly magnetized perpendicular to the film plane $(\mathbf{m} = \hat{\mathbf{e}}_3)$. What is the magnetic field produced?

イロト イヨト イヨト イヨト

훈

Example (Infinitely elongated cylinder uniformly magnetized along its axis)

The magnetostatic field is (note that $\nabla \cdot \mathbf{m} = 0$)

$$\mathbf{h}_m = 0.$$

Example (Thin film uniformly magnetized)

Consider an infinite thin film in the *xy* plane uniformly magnetized perpendicular to the plane, $\mathbf{m} = \hat{\mathbf{e}}_z$. The magnetostatic field is

$$\mathbf{h}_m = -\mathbf{m} = -\hat{\mathbf{e}}_z.$$

Solutions of the latter type appear in examples in textbooks, e.g., in the case of the field in an ideal capacitor.

イロト イポト イヨト イヨト ヨー わくで

Quiz. Magnetostatic field of a wall.

Bloch wall, choose $\phi_0 = \pm \pi/2$

$$m_1 = 0, \quad m_2 = \pm \frac{1}{\cosh(kx)}, \quad m_3 = \pm \tanh(kx).$$

This gives $\nabla \cdot \mathbf{m} = 0$ and thus produces no magnetic field. It minimizes the magnetostatic energy (not included in our model so far).

Néel wall, choose $\phi_0=0,\pi$

$$m_1 = \pm \frac{1}{\cosh(kx)}, \quad m_2 = 0, \quad m_3 = \pm \tanh(kx).$$

This gives $\nabla \cdot \mathbf{m} = m'_1 \neq 0$ and thus magnetic field *is* produced. This is added to the domain wall energy.

イロト イロト イヨト イヨト ヨー わへで

Example

In the case of $\mathbf{m} = \mathbf{m}(x)$, depending only on one space variable, we have the solution

$$\mathbf{h}_m(x) = -m_x(x)\hat{\boldsymbol{e}}_x$$

This is because

- The equation $\nabla \cdot \mathbf{h}_m = -\nabla \cdot \mathbf{m}$ reduces to the ID form $\partial_x h_x = -\partial_x m_x$ and it is satisfied.
- We assume $m_x(x) = 0$ at $x \to \pm \infty$, thus \mathbf{h}_m satisfies the boundary condition $\mathbf{h}_m(\pm \infty) = 0$.
- At $y, z \to \pm \infty$ we do not impose a particular boundary condition (we only assume that \mathbf{h}_m does not depend on y, z).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The magnetostatic energy

$$\mathcal{E}_{\mathrm{m}} = \frac{1}{2}\mu_0 \int \mathbf{M} \cdot \mathbf{H}_m \, d^3 x.$$

A typical energy density is $\frac{1}{2}\mu_0 \textit{M}_{s}^2$ (in J/m^3).

Comparison of exchange and magnetostatic energy gives rise to the definition of the exchange length

$$\ell_{\rm ex} = \sqrt{\frac{2\mathsf{A}}{\mu_0 \mathsf{M}_{\mathsf{s}}^2}}.$$

Example (Exchange length for Permalloy)

For Permalloy, A = $1.3\times10^{-11}\,J/m,$ M_s = $0.69\times10^6\,A/m.$ We find $\ell_{ex}=6.59\,nm.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Rationalise using the exchange length

We may define dimensionless variables according to

$$\mathbf{x} \to \mathbf{x} \,\ell_{\mathrm{ex}}, \qquad \mathbf{h}_m = \frac{\mathbf{H}_m}{M_{\mathrm{s}}}$$

We get the energy, in units of $2A\ell_{ex}$,

$$E = \frac{1}{2} \int \partial_{\mu} \mathbf{m} \cdot \partial_{\mu} \mathbf{m} \, d^3 x + \frac{k^2}{2} \int (1 - m_3^2) \, d^3 x + \frac{1}{2} \int \mathbf{m} \cdot \mathbf{h}_m \, d^3 x$$

where we defined (the "quality factor")

$$k^2 = \frac{2K}{\mu_0 M_s^2}$$

Remark

This form of the energy has only one parameter k^2 , the scaled (dimensionless) anisotropy.

(日)