Single vortices and vortex pairs
 in Bose-Einstein condensates

Stavros Komineas
Max-Planck-Institut
für Physik Komplexer Systeme
Dresden
Collaboration:
Nigel Cooper (University of Cambridge)
Nikos Papanicolaou (University of Crete)
Phys. Rev. A 72, 053609 (2005)
Phys. Rev. A 72, 053624 (2005)

Observation of precessing vortices

[Anderson, Haljan, Weiman, Cornell, PRL, 2000]

Vortex lines

[Rosenbusch, Bretin, Dalibard, PRL, 2002] $\rightarrow \rightarrow$

Formulation

We suppose the condensate wave function $\Psi(\boldsymbol{r}, t)$ and its energy functional [E.P. Gross, 1961; L.P. Pitaevskii, 1961]:

$$
E=\frac{\hbar^{2}}{2 M} \int|\nabla \Psi|^{2} d^{3} x+\int V|\Psi|^{2} d^{3} x+2 \pi \frac{\hbar^{2} a_{s}}{M} \int|\Psi|^{4} d^{3} x
$$

Introduce the axisymmetric harmonic potential: $\quad V(\rho, z)=\frac{1}{2} M\left(\omega_{\perp}^{2} \rho^{2}+\omega_{\|}^{2} z^{2}\right)$, and appropriate units, to obtain the form:
$E=\frac{1}{2} \int|\nabla \Psi|^{2} d^{3} x+\int V|\Psi|^{2} d^{3} x+2 \pi \frac{N a_{s}}{a_{\|}} \int|\Psi|^{4} d^{3} x, \quad V(\rho, z)=\frac{1}{2}\left(\rho^{2}+\beta^{2} z^{2}\right)$.
$a_{\perp, \|} \equiv \sqrt{\hbar /\left(M \omega_{\perp, \|}\right)}$: units of length, $\quad \beta \equiv \omega_{\perp} / \omega_{\|}$,
N : the number of atoms, a_{s} : the scattering length.

Numerics for a vortex in a 3D trap

We introduce the chemical potential μ and substitute $\Psi(\boldsymbol{r}, t) \rightarrow \Psi(\boldsymbol{r}, t) e^{-i \mu t}$.
Thus: $\quad E \rightarrow E-\mu N$.
A vortex precessing with angular frequency ω is an extremum of

$$
\begin{gathered}
E_{\mathrm{rot}}=E-\mu N-\omega \ell \\
\ell=\frac{1}{i} \int \Psi^{*} \frac{\partial \Psi}{\partial \phi} d^{3} x \quad \text { :angular momentum. }
\end{gathered}
$$

But: we use a norm-preserving relaxation algorithm to find extrema of the extended energy functional:

$$
E_{\mathrm{rot}}=E-\mu N+\frac{a}{2}(\ell-b)^{2}, \quad a, b: \text { const. }
$$

The solutions are precessing at an angular frequency $\omega=-a(\ell-b)$.

A spherical trap

Experiment by [B.P. Anderson, et al, PRL 85, 2857 (2000)].

The particle density $|\Psi|^{2}$ for vortex solutions corresponding to experiment.
D.L. Feder et al, PRL 86, 564 (2001) would give $\omega(\ell \rightarrow 0)=2 \pi \times 1.58 \mathrm{~Hz}$.

Angular momentum per particle ℓ (in units of \hbar) versus precession frequency ω (in units of trap frequency).
We have $1.52 \mathrm{~Hz}<\omega /(2 \pi)<1.95 \mathrm{~Hz}$ (e.g., 1.72 Hz for $\ell=0.5$).

An elongated trap

U-vortex.

S-vortex.
J.J. Garcia-Ripoll and V.M. Perez-Garcia, PRA 6453611 (2001). M. Modugno, L. Pricoupenko, Y. Castin, EPJ D 22, 235 (2003). A. Aftalion and I. Danaila, PRA 6823603 (2003).

Smith, Heathcote, Krueger, Foot, PRL (2004)

Lowest Landau level

The single (off-center) U-vortex mode in the LLL derived by O.K. Vorov et al, Phys. Rev. Lett. (2005):

$$
\Psi=\frac{\ell^{\frac{1}{4}}}{\sqrt{\pi}}[(x-b)+i y] e^{-\frac{1}{2}\left[(x-a)^{2}-2 i a y+y^{2}\right]}
$$

$$
a=(\sqrt{\ell}-\ell)^{1 / 2}, \quad b=\frac{1-\ell}{a},
$$

$0 \leq \ell \leq 1, \quad$:angular momentum,
had been found numerically by [Butts and Rokshar, Nature (1998)].

The S-vortex

corresponds to the linear combination:

$$
\begin{gathered}
\Psi_{1} \sim z e^{-\left(\rho^{2}+\beta z^{2}\right) / 2} \\
\Psi_{2} \sim \rho e^{i \phi} e^{-\left(\rho^{2}+\beta z^{2}\right) / 2} \\
\Psi=c_{1} \Psi_{1}+c_{2} \Psi_{2}
\end{gathered}
$$

δ : interaction strength
$\beta=\omega_{\perp} / \omega_{\|}$: trap aspect ratio

Formulation II

We suppose the condensate wave function $\Psi(\boldsymbol{r}, t)$ and its equation of motion: [E.P. Gross, 1961; L.P. Pitaevskii, 1961]

$$
i \frac{\partial \Psi}{\partial t}=-\frac{1}{2} \Delta \Psi+V(\rho) \Psi+\frac{g}{2}\left(\Psi^{*} \Psi\right) \Psi-\mu \Psi .
$$

We have introduced the chemical potential μ and have substituted $\Psi(\boldsymbol{r}, t) \rightarrow \Psi(\boldsymbol{r}, t) e^{-i \mu t} . \mu$ should be chosen so that $\int\left(\Psi^{*} \Psi\right) d^{3} x=1$.
g : the interaction strength.
[$1 / \omega_{\perp}$: unit of time]

Steady state precession: Equations of motion

Suppose a vortex in an axisymmetric trap, as a steady state precessing with frequency ω. Its wavefunction is:

$$
\begin{aligned}
\bar{\Psi}(x, y, t) & =\Psi\left(x^{\prime}, y^{\prime} \mid \mu, \omega\right) e^{-i \mu t} \\
x^{\prime}=x \cos \omega t+y \sin \omega t, & y^{\prime}=-x \sin \omega t+y \cos \omega t
\end{aligned}
$$

This satisfies the Gross-Pitaevskii equation ($\varepsilon_{\alpha \beta}$: antisymmetric tensor):

$$
\begin{equation*}
\mu \Psi-i \omega \varepsilon_{\alpha \beta} x_{\alpha} \partial_{\beta} \Psi=-\frac{1}{2} \Delta \Psi+V(\rho) \Psi+g\left(\Psi^{*} \Psi\right) \Psi . \tag{1}
\end{equation*}
$$

where $V(\rho)=\frac{1}{2} \rho^{2}$ is the trapping potential, g the interaction strength.

Virial relations

Suppose a vortex located at $\boldsymbol{R}=(R, 0)$, with linear momentum $\boldsymbol{P}=(0, P)$.
Apply field-theoretical methods to the equations of motion to derive:

$$
\begin{gather*}
P-\omega R=0 \tag{I}\\
\omega P-\int \frac{x}{\rho} \frac{d V}{d \rho} n d x d y=0 \tag{II}
\end{gather*}
$$

where $(\alpha=1,2)$

$$
\begin{aligned}
& P_{\alpha} \equiv \int J_{\alpha} d x d y, \quad \text { the linear momentum, } \\
& R_{\alpha} \equiv \int x_{\alpha} n d x d y, \quad \text { the mean position of the configuration, } \\
& n=\Psi^{*} \Psi \text { (particle density) }, \quad J_{\alpha}=\frac{1}{2 i}\left(\Psi^{*} \partial_{\alpha} \Psi-\Psi \partial_{\alpha} \Psi^{*}\right) \text { (current). }
\end{aligned}
$$

Harmonic trap: $V=\frac{1}{2} \rho^{2}$

Virial relation I: $\quad P-\omega R=0$
Virial relation II: $\quad \omega P-R=0$

$$
\Rightarrow P=0=R \quad(\text { for } \omega \neq 1)
$$

The result is satisfied by: (i) the calculated U- and S-vortices, (ii) the LLL closed form solution (by Vorov et al).

$$
\text { Anharmonic trap: } V=\frac{1}{2} \rho^{2}\left(1+\lambda \rho^{2}\right)
$$

Virial relation I: $\quad P-\omega R=0$
Virial relation II: $\quad \omega P-R=2 \lambda Q, \quad Q \equiv \int x \rho^{2} n d x d y$.

$$
\Rightarrow P=-\frac{2 \lambda \omega}{1-\omega^{2}} Q, \quad R=-\frac{2 \lambda}{1-\omega^{2}} Q
$$

Vortices in the homogeneous Bose gas

The model is the nonlinear Schrödinger equation:

$$
i \frac{\partial \Psi}{\partial t}=-\frac{1}{2} \Delta \Psi+\left(\Psi^{*} \Psi-1\right) \Psi .
$$

The energy functional is:

$$
E=\frac{1}{2} \int\left[\left(\nabla \Psi^{*} \cdot \nabla \Psi\right)+\left(\Psi^{*} \Psi-1\right)^{2}\right] d^{3} x
$$

A vortex has the form: $\Psi=f(\rho) e^{ \pm i \phi}$, and the same energy for both signs. + for a "vortex",

- for a "antivortex".

Vortex-Antivortex pairs - Solitary wave Droplets

 [Jones and Roberts, J. Phys. A, 1982]particle density

wavefunction phase
$v=0.3$

Impulse:

$$
Q_{\mu}=\epsilon_{\mu \nu} \int x_{\nu} \gamma d^{2} x
$$

where $\gamma \equiv \frac{1}{i} \epsilon_{\mu \nu} \partial_{\mu} \Psi^{*} \partial_{\nu} \Psi$ can be called the local "vorticity", in correspondence to the hydrodynamic vorticity.

Vortex-Antivortex pair collisions

$$
v=0.2
$$

$$
v=0.6
$$

$\mathrm{v}=0.2$, time $=0,8,12,16,20,24,28,32,40$

Vortex-antivortex pair generation

Deplete the superfluid (as, e.g., in N. Ginsberg, J. Brand, L.V. Hau, PRL, 2005)

