Gröbli solution for three magnetic vortices

Stavros Komineas

Department of Applied Mathematics University of Crete

S. Komineas and N. Papanicolaou, J. Math. Phys.

NLQUGAS10, Ourense, 13 April 2010

Fluid vortices

Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. (Von Herrn H. Helmholtz.)

J. Reine Angew. Math. 55, 22 (1858)

N ist in diesem Falle die Potentialfunction unendlich langer Linien; diese selbst ist unendlich großs, aber ihre Differentialquotienten sind endlich. Sind *a* und *b* die Coordinaten eines Wirbelfadens, dessen Querschnitt *da db* ist, so ist

$$-v = \frac{dN}{dx} = \frac{\zeta da db}{\pi} \cdot \frac{x-a}{r^1}, \quad u = \frac{dN}{dy} = \frac{\zeta da db}{\pi} \cdot \frac{y-b}{r^1}.$$

Derivation of the equations of fluid motion in the presence of straight vortex lines (point vortices).

Kirchhoff's lectures

"Vorlesungen über mathematische Physik. Mechanik" (Teubner, Leipzig, 1876)

Equations for N point vortices at positions $\mathbf{r}_{\alpha} = (x_{\alpha}, y_{\alpha})$ in Hamiltonian form:

$$\Gamma_{\alpha}\dot{x}_{\alpha} = \frac{\partial H}{\partial y_{\alpha}}, \qquad \Gamma_{\alpha}\dot{y}_{\alpha} = -\frac{\partial H}{\partial x_{\alpha}}, \qquad \alpha = 1, \dots, N$$

where Γ_{α} is the vortex circulation, and H is the Hamiltonian

$$H = -rac{1}{4\pi}\sum_{lpha,eta}' \ \mbox{\Gamma}_{lpha} \ \mbox{In} \ |{f r}_{lpha} - {f r}_{eta}|.$$

Specielle Probleme über die Bewegung geradliniger paralleler Wirbelfäden. Von Dr. W. Gröbli.

Gröbli (1877) (Zürcher and Furrer, Zurich): Explicit reduction to quadratures of the three-vortex problem for arbitrary vortex circulations.

Poincaré (1893): Noted existence of three integrals in involution. Thus the three-vortex problem is completely integrable for arbitrary vortex circulations.

Synge (1949) (Can. J. Math. Phys.): Geometrical interpretation of Gröbli's solutions, through use of trilinear coordinates.

Aref (1979) (Phys. Fluids): Rederivation of Gröbli's solution, and use of trilinear coordinates to interpret the results.

Ferromagnets

Consider a 2D ferromagnetic material (e.g., a ferromagnetic film). Magnetization properties are described by the local magnetization vector $\mathbf{m} = \mathbf{m}(\mathbf{r}, t)$ with $\mathbf{m}^2 = 1$.

A magnetic vortex

a magnetization $\mathbf{m} = (m_1, m_2, m_3)$ configuration satisfying:

$$m_1 + i m_2 = e^{i\kappa(\phi - \phi_0)}, \quad m_3 = 0, \quad \text{as } |\mathbf{r}| \to \infty$$

 $m_3(\mathbf{r} = 0) = \lambda.$

 $\kappa = \pm 1, \ldots$ is the winding number (a topological invariant) $\lambda = \pm 1$ is the vortex polarity ϕ_0 : the vortex phase (constant)

The skyrmion number s

is a further topological invariant and it counts the number of times \mathbf{m} covers the sphere $\mathbf{m}^2 = 1$ (the degree of the mapping from the plane to the sphere). We have

$$s = -\frac{1}{2}\kappa\lambda$$
, for simplicity : $s = \kappa\lambda$.

Vortex ($\kappa = 1, s = \pm 1$)

 (m_1, m_2)

Antivortex ($\kappa = -1, s = \pm 1$) *********** (m_1, m_2)

▲口 > ▲母 > ▲田 > ▲田 > ▲田 > ▲日 > ④ < @

Point magnetic vortices

In a collective-coordinate approximation the energy of N vortices is

$$H = -\sum_{\alpha < \beta} \kappa_{\alpha} \kappa_{\beta} \ln |\mathbf{r}_{\alpha} - \mathbf{r}_{\beta}|$$

 ${f r}_lpha=({\it x}_lpha,{\it y}_lpha)$ are the vortex positions.

The equations of motion can be written in Hamiltonian form:

$$s_{\alpha} \frac{dx_{\alpha}}{dt} = \frac{\partial H}{\partial y_{\alpha}}, \qquad s_{\alpha} \frac{dy_{\alpha}}{dt} = -\frac{\partial H}{\partial x_{\alpha}}; \quad \alpha = 1, 2, \dots N$$
$$\Rightarrow \lambda_{\alpha} \frac{dx_{\alpha}}{dt} = -\sum_{\beta \neq \alpha} \kappa_{\beta} \frac{y_{\alpha} - y_{\beta}}{|\mathbf{r}_{\alpha} - \mathbf{r}_{\beta}|^{2}}, \qquad \lambda_{\alpha} \frac{dy_{\alpha}}{dt} = \sum_{\beta \neq \alpha} \kappa_{\beta} \frac{x_{\alpha} - x_{\beta}}{|\mathbf{r}_{\alpha} - \mathbf{r}_{\beta}|^{2}}$$

Compare to Helmholtz-Kirchhoff equations:

- presence of skyrmion numbers $s_{lpha}=\pm 1$
- κ_{α} take only integer values ($\kappa_{\alpha} = \pm 1$)

Conservation laws

Energy

$$H = -\sum_{\alpha < \beta} \kappa_{\alpha} \kappa_{\beta} \, \ln |\mathbf{r}_{\alpha} - \mathbf{r}_{\beta}|$$

Linear momentum

$$P_x = -\sum_{\alpha} s_{\alpha} y_{\alpha}, \qquad P_y = \sum_{\alpha} s_{\alpha} x_{\alpha},$$

Angular momentum

$$L = \frac{1}{2} \sum_{\alpha} s_{\alpha} \left(x_{\alpha}^2 + y_{\alpha}^2 \right)$$

From the above we can construct three integrals in involution. Therefore, the N-vortex problem for $N \leq 3$ is completely integrable.

Three magnetic vortices

Six equations of motion for (x_1, y_1) , (x_2, y_2) , (x_3, y_3) .

Relative distances $[\mathbf{r}_{\alpha} = (x_{\alpha}, y_{\alpha})]$:

$$C_1 = |\mathbf{r}_2 - \mathbf{r}_3|, \quad C_2 = |\mathbf{r}_3 - \mathbf{r}_1|, \quad C_3 = |\mathbf{r}_1 - \mathbf{r}_2|$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The equations for the C_{α} 's form the *closed system*

$$\begin{aligned} \frac{d}{dt}(C_1^2) &= 4\kappa_1 A\left(\frac{1}{\lambda_3 C_2^2} - \frac{1}{\lambda_2 C_3^2}\right) \\ \frac{d}{dt}(C_2^2) &= 4\kappa_2 A\left(\frac{1}{\lambda_1 C_3^2} - \frac{1}{\lambda_3 C_1^2}\right) \\ \frac{d}{dt}(C_3^2) &= 4\kappa_3 A\left(\frac{1}{\lambda_2 C_1^2} - \frac{1}{\lambda_1 C_2^2}\right) \end{aligned}$$

where A is the signed area of the vortex triangle.

A special three-vortex system

We focus on the specific case

$$(\kappa_1, \lambda_1) = (1, 1), \quad (\kappa_2, \lambda_2) = (-1, 1), \quad (\kappa_3, \lambda_3) = (1, -1)$$

[scattering of a vortex-antivortex pair against a target vortex]

- ▶ *b*: is the vortex-antivortex (12) separation
- h: is the distance of the VA pair from the target vortex (3)
- a: is the impact parameter
- Origin has been placed so that linear momentum vanishes

Symmetrically placed vortex-antivortex pair

Choose impact parameter a = -b/2

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへで

Head-on collision

Choose b = 1 and impact parameter a = 0 (which gives angular momentum L = 0).

Solution

$$rac{C_1}{B} - \arctan\left(rac{C_1}{B}
ight) = rac{t_0 - t}{B^2}, \qquad B = rac{b}{h}\sqrt{h^2 + b^2}$$

where t_0 (depends on initial condition) is the instance at which C_1, C_2, C_3 vanish simultaneously, or, the vortex triangle collapses to a point.

the scattering angle before collision is calculated as

$$\arctan\left(rac{h}{b}
ight)
ightarrow rac{\pi}{2}, \quad {
m for} \ \ h
ightarrow \infty.$$

That is, the total scattering angle is $2(\pi/2) = \pi$, and agrees with the picture of bouncing back for a particle after a head-on collsion.

Scattering angle as a function of impact parameter

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Panel for three-vortex scattering

◆ロ ▶ ◆昼 ▶ ◆臣 ▶ ◆臣 ▶ ◆ ● ◆ ○ ◆ ○ ◆ ○ ◆ ○ ◆

Experiment: Switching of vortex polarity

- An ac current generates an alternating magnetic field (250 MHz, 0.1 mT).
- Add a "burst" of 1.5 mT, for one period.
- Check that you obtained switching of vortex polarity!

