Rotating vortex-antivortex dipoles

in ferromagnets

under spin-polarised current

Stavros Komineas

Department of Applied Mathematics
Archimedes Center for Modeling, Analysis \& Computation University of Crete, Greece

SIAM conference on
Mathematical Aspects of Materials Science
Philadelphia, 10 June 2013

Injection of spin-polarized current through an aperture

Fixed layer: in-plane magnetization.
Free layer: elliptic element $250 \mathrm{~nm} \times 150 \mathrm{~nm}$.
Aperture to free layer: diameter $\sim 40 \mathrm{~nm}$.

G. Finocchio et al, PRB 2008

Oscillations of the magnetization are measured ($\sim 1 \mathrm{GHz}$).
Simulations show: they are due to spontaneous generation of vortex-antivortex (VA) pair with opposite polarities, in rotation.

Spin-transfer nano-oscillators

- simple (quasi-linear) dependence with magnetic field
- not-simple behavior with current
- jumps: more than one oscillation modes

Review in: Russek et al, "Spin-Transfer Nano-Oscillators" in "Handbook of Nanophysics"

A magnetic vortex

Antivortex $(S=-1)$

Vortex features
$S= \pm 1$ the winding number (a topological invariant)
$\lambda= \pm 1$ the vortex polarity

The skyrmion number \mathcal{N}

is a further topological invariant and it counts the number of times that the magnetization m covers the sphere $m^{2}=1$. For vortices:

$$
\begin{aligned}
\mathcal{N} & =\frac{1}{4 \pi} \int n d^{2} x=-\frac{1}{2} S \lambda \\
n & =\frac{1}{2} \epsilon_{\mu \nu} m \cdot\left(\partial_{\nu} m \times \partial_{\mu} m\right) \quad \text { :topological density }
\end{aligned}
$$

Vortex $(S=1, \mathcal{N}= \pm 1 / 2)$

Antivortex $(S=-1, \mathcal{N}= \pm 1 / 2)$

Vortex-antivortex dipole

Vortex: $\quad S=1, \quad \lambda=-1 \Rightarrow \mathcal{N}=\frac{1}{2}$
Antivortex: $S=-1, \quad \lambda=1 \Rightarrow \mathcal{N}=\frac{1}{2}$
Vortex pair $\Rightarrow \mathcal{N}=1$.

Magnetization vector:

$$
m=\left(m_{1}, m_{2}, m_{3}\right)
$$

Vector plot: $\left(m_{1}, m_{2}\right)$
Contour plot: m_{3}
Blue: $m_{3}<0$
Red: $m_{3}>0$
[S. Komineas, PRL 2007]

The model: Spin-torque in the LL equation

The polarized current-electrons exert a torque, modeled by an additional (Slonczewski) term in the Landau-Lifshitz (LL) equation:

$$
\begin{aligned}
\dot{m} & =-m \times f+\alpha m \times \dot{m}-\beta m \times(m \times p) \\
f & :=\Delta m-m_{3} \hat{e}_{3}+h_{\mathrm{ext}}
\end{aligned}
$$

f : exchange + easy-plane anisotropy + external field
α : damping constant
Spin polarization

$$
\beta p=\beta(1,0,0), \quad \beta<0, \quad \text { proportional to current density. }
$$

External field

$$
h_{\mathrm{ext}}=\left(h_{\mathrm{ext}}, 0,0\right)
$$

Rotating vortex dipole under an aperture

Spin-polarized current through aperture of diameter $6 \ell_{\mathrm{ex}}$
(dashed line).

Blue: polarity down
Red: polarity up

Simulation gives: Steady-state rotation.
Note that ground state is: $m_{0}=(1,0,0)$.

Rotating vortex dipoles

$$
\alpha=0.02, \quad \beta=-0.1, \quad h_{\mathrm{ext}}=0.4
$$

Long VA pair

Short VA pair

Rotating vortex dipoles

$$
\alpha=0.02, \quad \beta=-0.2, \quad h_{\text {ext }}=0.6
$$

Wide VA pair

Phase diagram

stars: long VA pairs
circles: short VA pairs
crosses: wide VA pairs

- Small regions of overlap
- Long VA pairs for $h_{\text {ext }}=0$
- No steady-states for β too small
- Empty region: VA pairs plus satellite pairs rotating (similar to [Berkov, Gorn, PRB 2009])

The pure isotropic model

...that is, we assume exchange only (and external field):

$$
f=\Delta m+h_{\mathrm{ext}}, \quad h_{\mathrm{ext}}=\left(h_{\mathrm{ext}}, 0,0\right)
$$

Use the sterographic projection of m from the point $m=(1,0,0)$:

$$
X=\frac{m_{2}+i m_{3}}{1-m_{1}}
$$

Obtain equation of motion

$$
(i-\alpha) \dot{X}=-4 \partial_{z} \partial_{\bar{z}} X+\frac{8 \bar{X}}{1+X \bar{X}} \partial_{z} X \partial_{\bar{z}} X-\left(h_{\mathrm{ext}}-i \beta\right) X
$$

where $z=x+i y$ the position on the complex plane, so $X=X(z, \bar{z})$.

- Expect precession around m_{1} due to field $h_{\text {ext }}=\left(h_{\text {ext }}, 0,0\right)$.

Rotating solutions

The simple form

$$
X_{0}=i \frac{z}{a_{0}}, \quad a_{0}: \text { complex constant } \quad(\mathcal{N}=1)
$$

represents two merons: $m_{3}= \pm 1$ at $z= \pm a_{0}$ [Gross, 1978], or a VA dipole.
Solution of the eqn of motion for $X(t=0)=X_{0}(z)$:

$$
X(z, t)=i \frac{z}{a(t)}, \quad a(t)=a_{0} \exp \left(\frac{i \beta-h_{\mathrm{ext}}}{i-\alpha} t\right) .
$$

VA dipole in steady rotation for $\alpha h_{\text {ext }}+\beta=0$:

$$
X(z, t)=i \frac{z}{a_{0} e^{-i h_{e x t} t}}
$$

It represents rotation of the vortex positions $\pm a(t)= \pm a_{0} e^{-i h_{\text {ext }} t}$ in the complex plane.

Virial relation (1)

An exact virial relation (of Derrick type) can be derived, for steady-state rotation, involving the frequency (ω) of rotation.
$\omega\left(\ell+\frac{\alpha}{2} \int \epsilon_{\lambda \nu} x_{\lambda} x_{\mu} d_{\mu \nu} d^{2} x\right)=-\left(E_{\mathrm{a}}+h_{\mathrm{ext}} \mu_{1}+\frac{\beta}{2} \int x_{\mu} \tau_{\mu} d^{2} x\right)$,

- Frequency of rotation ω
- Angular momentum: $\ell=\frac{1}{2} \int \rho^{2} n d^{2} x \sim d_{\mathrm{VA}}^{2}$ (actually: $\ell \sim \mathcal{N} d_{\mathrm{VA}}^{2}$)
- Anisotropy energy E_{a} ($E_{\mathrm{a}} \approx \pi / 2$ for single vortex)
- Total in-plane magnetization: $\mu_{1}=\int\left(1-m_{1}\right) d^{2} x$

Virial relation (II)

An exact virial relation (of Derrick type) can be derived, for steady-state rotation, involving the frequency (ω) of rotation.
A simplified form of the Derrick relation is

$$
\omega \doteq-\left(\frac{E_{\mathrm{a}}}{\ell}+h_{\mathrm{ext}} \frac{\mu_{1}}{\ell}\right)
$$

- Frequency of rotation ω
- Angular momentum: $\ell=\frac{1}{2} \int \rho^{2} n d^{2} x \sim d_{\mathrm{VA}}^{2}$ (actually: $\ell \sim \mathcal{N} d_{\mathrm{VA}}^{2}$)
- Anisotropy energy E_{a} ($E_{\mathrm{a}}=\pi / 2$ for single vortex)
- Total in-plane magnetization: $\mu_{1}=\int\left(1-m_{1}\right) d^{2} x$

Virial relation (III)

An exact virial relation (of Derrick type) can be derived, for steady-state rotation, which involves the frequency (ω) of rotation. A simplified form of the Derrick relation is

$$
\omega \doteq-\left(\frac{E_{\mathrm{a}}}{\ell}+h_{\mathrm{ext}} \frac{\mu_{1}}{\ell}\right)
$$

- First term: rotation due to interaction between vortices
- Second term: rotation due to external field
- Both terms rely upon $\mathcal{N} \neq 0$ (i.e., $\ell \neq 0$).

Asymptotics at large distances

Away from the vortex pair, we have Bessel eqns, so:

$$
\frac{m_{2}+i m_{3}}{1+m_{1}} \sim \frac{1}{\sqrt{\rho}} e^{\left(i \lambda_{1}-\lambda_{2}\right) \rho}, \quad \rho \rightarrow \infty
$$

- $\lambda_{2} \ll 1$: for $h_{\text {ext }} \lesssim 0.01 \rightarrow$ VA pairs non-localized.
- $\lambda_{2} \ll 1$: for β too small \rightarrow VA pairs collapse at $\omega_{\max } \sim \sqrt{h_{\text {ext }}\left(1+h_{\text {ext }}\right)}, \quad h_{\text {ext }} \gtrsim 0.1$.
- $\lambda_{1} \neq 0$: spiralling waves emanating from rotating pair.

A full rotation

Conclusions

- Vortices and antivortices can be generated by spin-polarized current.
- A vortex-antivortex dipole (with $\mathcal{N}=1$) is rotating.
- Three (at least) vortex-antivortex modes: well-separated vortex-antivortex or two-merons.
- In-plane field $h_{\text {ext }}=\left(h_{\text {ext }}, 0,0\right)$, typically expected to induce magnetization precession (around x-axis), is actually giving rotation of a configuration with $\mathcal{N}=1$.
- Rotational motion is stabilized by the spin-polarized current.
- Rotation frequency can be tuned by current and external field.
- The magnetostatic field can be incorporated in the formalism (some simulations have been published).

