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Injection of spin-polarized current
through an aperture

Fixed layer: in-plane magnetization.

Free layer: elliptic element 250 nm× 150 nm.

Aperture to free layer: diameter ∼ 40nm.

G. Finocchio et al, PRB 2008

Oscillations of the magnetization are measured (∼ 1GHz).

Simulations show: they are due to spontaneous generation of

vortex-antivortex (VA) pair with opposite polarities, in rotation.



Spin-transfer nano-oscillators

• simple (quasi-linear) dependence with magnetic field

• not-simple behavior with current

• jumps: more than one oscillation modes

Review in: Russek et al, “Spin-Transfer Nano-Oscillators” in “Handbook

of Nanophysics”



A magnetic vortex

Vortex (S = 1)
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Antivortex (S = −1)
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Vortex features

S = ±1 the winding number (a topological invariant)

λ = ±1 the vortex polarity



The skyrmion number N
is a further topological invariant and it counts the number of times

that the magnetization m covers the sphere m2 = 1. For vortices:

N =
1

4π

∫
n d2x = −1

2
Sλ

n =
1

2
εµνm · (∂νm × ∂µm) :topological density

Vortex (S = 1, N = ±1/2)
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Vortex-antivortex dipole
Vortex: S = 1, λ = −1⇒ N = 1

2

Antivortex: S = −1, λ = 1⇒ N = 1
2

Vortex pair ⇒ N = 1.
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6 Magnetization vector:

m = (m1,m2,m3)

Vector plot: (m1,m2)

Contour plot: m3

Blue: m3 < 0

Red: m3 > 0

[S. Komineas, PRL 2007]



The model: Spin-torque in the LL equation
The polarized current-electrons exert a torque, modeled by an

additional (Slonczewski) term in the Landau-Lifshitz (LL) equation:

ṁ = −m × f + αm × ṁ − βm × (m × p)

f := ∆m −m3 ê3 + hext

f : exchange + easy-plane anisotropy + external field

α: damping constant

Spin polarization

βp = β(1, 0, 0), β < 0, proportional to current density.

External field

hext = (hext, 0, 0).



Rotating vortex dipole under an aperture
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6 Spin-polarized current through

aperture of diameter 6`ex

(dashed line).

Blue: polarity down

Red: polarity up

Simulation gives: Steady-state rotation.

Note that ground state is: m0 = (1, 0, 0).



Rotating vortex dipoles

α = 0.02, β = −0.1, hext = 0.4

Long VA pair Short VA pair
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ω = 0.255, ω = 0.539



Rotating vortex dipoles

α = 0.02, β = −0.2, hext = 0.6

Wide VA pair
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Phase diagram
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stars: long VA pairs

circles: short VA pairs

crosses: wide VA pairs

• Small regions of overlap

• Long VA pairs for hext = 0

• No steady-states for β too small

• Empty region: VA pairs plus satellite pairs rotating (similar to

[Berkov, Gorn, PRB 2009])



The pure isotropic model
...that is, we assume exchange only (and external field):

f = ∆m + hext, hext = (hext, 0, 0).

Use the sterographic projection of m from the point m = (1, 0, 0):

X =
m2 + im3

1−m1
.

Obtain equation of motion

(i − α) Ẋ = −4 ∂z∂z̄X +
8X

1 + XX
∂zX ∂z̄X − (hext − iβ)X

where z = x + iy the position on the complex plane, so X=X (z , z̄).

• Expect precession around m1 due to field hext = (hext, 0, 0).



Rotating solutions

The simple form

X0 = i
z

a0
, a0 : complex constant (N = 1)

represents two merons: m3 = ±1 at z = ±a0 [Gross, 1978], or a VA

dipole.

Solution of the eqn of motion for X (t = 0) = X0(z):

X (z , t) = i
z

a(t)
, a(t) = a0 exp

(
iβ − hext
i − α

t

)
.

VA dipole in steady rotation for αhext + β = 0:

X (z , t) = i
z

a0e−ihextt

It represents rotation of the vortex positions ±a(t) = ±a0e
−ihextt

in the complex plane.



Virial relation (I)

An exact virial relation (of Derrick type) can be derived, for

steady-state rotation, involving the frequency (ω) of rotation.

ω

(
`+

α

2

∫
ελν xλxµdµν d

2x

)
= −

(
Ea + hext µ1 +

β

2

∫
xµτµ d

2x

)
,

• Frequency of rotation ω

• Angular momentum: ` = 1
2

∫
ρ2n d2x ∼ d2

VA

(actually: ` ∼ N d2
VA)

• Anisotropy energy Ea (Ea ≈ π/2 for single vortex)

• Total in-plane magnetization: µ1 =
∫

(1−m1) d2x



Virial relation (II)

An exact virial relation (of Derrick type) can be derived, for

steady-state rotation, involving the frequency (ω) of rotation.

A simplified form of the Derrick relation is

ω
.

= −
(
Ea

`
+ hext

µ1

`

)
• Frequency of rotation ω

• Angular momentum: ` = 1
2

∫
ρ2n d2x ∼ d2

VA

(actually: ` ∼ N d2
VA)

• Anisotropy energy Ea (Ea = π/2 for single vortex)

• Total in-plane magnetization: µ1 =
∫

(1−m1) d2x



Virial relation (III)

An exact virial relation (of Derrick type) can be derived, for

steady-state rotation, which involves the frequency (ω) of rotation.

A simplified form of the Derrick relation is

ω
.

= −
(
Ea

`
+ hext

µ1

`

)

• First term: rotation due to interaction between vortices

• Second term: rotation due to external field

• Both terms rely upon N 6= 0 (i.e., ` 6= 0).



Asymptotics at large distances

Away from the vortex pair, we have Bessel eqns, so:

m2 + im3

1 + m1
∼ 1
√
ρ
e(iλ1−λ2)ρ, ρ→∞.

• λ2 � 1: for hext . 0.01 → VA pairs non-localized.

• λ2 � 1: for β too small → VA pairs collapse at

ωmax ∼
√

hext(1 + hext), hext & 0.1.

• λ1 6= 0: spiralling waves emanating from rotating pair.



A full rotation

t=0 t=3
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Conclusions

• Vortices and antivortices can be generated by spin-polarized

current.

• A vortex-antivortex dipole (with N = 1) is rotating.

• Three (at least) vortex-antivortex modes: well-separated

vortex-antivortex or two-merons.

• In-plane field hext = (hext, 0, 0), typically expected to induce

magnetization precession (around x-axis), is actually giving

rotation of a configuration with N = 1.

• Rotational motion is stabilized by the spin-polarized current.

• Rotation frequency can be tuned by current and external field.

• The magnetostatic field can be incorporated in the formalism

(some simulations have been published).


