Rotating vortex-antivortex dipoles
in ferromagnets
under spin-polarised current

Stavros Komineas

Department of Applied Mathematics
Archimedes Center for Modeling, Analysis & Computation
University of Crete, Greece

SIAM conference on
Mathematical Aspects of Materials Science
Philadelphia, 10 June 2013



Injection of spin-polarized current
through an aperture
Fixed layer: in-plane magnetization.
Free layer: elliptic element 250 nm x 150 nm.
Aperture to free layer: diameter ~ 40nm.

G. Finocchio et al, PRB 2008

Oscillations of the magnetization are measured (~ 1 GHz).
Simulations show: they are due to spontaneous generation of

vortex-antivortex (VA) pair with opposite polarities, in rotation.



Spin-transfer nano-oscillators
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e simple (quasi-linear) dependence with magnetic field
e not-simple behavior with current

e jumps: more than one oscillation modes

Review in: Russek et al, “Spin-Transfer Nano-Oscillators” in “Handbook

of Nanophysics”



A magnetic vortex
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The skyrmion number N/
is a further topological invariant and it counts the number of times

1. For vortices:

that the magnetization m covers the sphere m?
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Vortex-antivortex dipole

Vortex: S=1, A=-1=N=1
Antivortex: S=—-1, A=1=N =3
Vortex pair = N = 1.

=l

Magnetization vector:

m = (my, m, m3)
Vector plot: (mq, my)

Contour plot: m3
Blue: m3 <0
Red: m3 >0

[S. Komineas, PRL 2007]



The model: Spin-torque in the LL equation
The polarized current-electrons exert a torque, modeled by an
additional (Slonczewski) term in the Landau-Lifshitz (LL) equation:
m=-mxf+amxm—pmx(mxp)
f:=Am— m3és+ hext
f: exchange + easy-plane anisotropy + external field
a: damping constant

Spin polarization
Bp = B(1,0,0), B8 < 0, proportional to current density.

External field
hext = (hexta 07 0)



Rotating vortex dipole under an aperture

Spin-polarized current through
aperture of diameter 6/,
(dashed line).

Blue: polarity down
Red: polarity up

Simulation gives: Steady-state rotation.

Note that ground state is: mg = (1,0, 0).



Rotating vortex dipoles
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Rotating vortex dipoles
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Phase diagram
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Small regions of overlap

Long VA pairs for heyy =0

No steady-states for 8 too small

Empty region: VA pairs plus satellite pairs rotating (similar to

[Berkov, Gorn, PRB 2009])

stars: long VA pairs

circles: short VA pairs

crosses: wide VA pairs



The pure isotropic model

...that is, we assume exchange only (and external field):
f=~Am + hex‘m hext = (hext> 07 O)

Use the sterographic projection of m from the point m = (1,0,0):

X — mo + /m3'
1-— ma
Obtain equation of motion
- 8X

(i = @) X = —40:0:X + = = 0 X 0:X — (hext — i) X

XX
where z = x + jy the position on the complex plane, so X=X(z, z).

e Expect precession around mj due to field hext = (hext, 0, 0).



Rotating solutions

The simple form

Xo=1i—, ag : complex constant (N =1)
a0

represents two merons: m3 = £1 at z = Fag [Gross, 1978], or a VA

dipole.
Solution of the eqn of motion for X(t = 0) = Xp(z):
4 "B - hext
X == 0 = —_— .
(z,1) Ia(t), a(t) = ap exp< — t>
VA dipole in steady rotation for ahexy + 8 = O:
i z
X(z,t) =i st

It represents rotation of the vortex positions +a(t) = +age ™ fext?
in the complex plane.



Virial relation (I)

An exact virial relation (of Derrick type) can be derived, for

steady-state rotation, involving the frequency (w) of rotation.

w <€ + Z/E)\V XX,y d2x> = — (Ea 4 hext 41 + g /X#Tu d2x> ,

e Frequency of rotation w

e Angular momentum: ¢ = %fp2n d?x ~ d\Z,A
(actually: £ ~ N d2,)

e Anisotropy energy E, (E, ~ /2 for single vortex)

e Total in-plane magnetization: u; = [(1 — m) d®x



Virial relation (II)

An exact virial relation (of Derrick type) can be derived, for
steady-state rotation, involving the frequency (w) of rotation.
A simplified form of the Derrick relation is

) E.
W= - <€+hext'u€1>

e Frequency of rotation w

e Angular momentum: ¢ = 1 [ p?nd?x ~ d3,
(actually: £~ N d2,)

e Anisotropy energy E, (E, = /2 for single vortex)

e Total in-plane magnetization: u1 = [(1 — mq) d?x



Virial relation (II1)

An exact virial relation (of Derrick type) can be derived, for
steady-state rotation, which involves the frequency (w) of rotation.
A simplified form of the Derrick relation is

. E.
W= - <€+hext'u€1>

e First term: rotation due to interaction between vortices
e Second term: rotation due to external field

e Both terms rely upon N # 0 (i.e., £ # 0).



Asymptotics at large distances

Away from the vortex pair, we have Bessel eqns, so:

M ~ i eifi—=A2)p
1+ m NG '

o )\ K 1: for hexy < 0.01 — VA pairs non-localized.

p — 00.

e )\ < 1: for 8 too small — VA pairs collapse at

Wmax ~ \/ hext(]- + hext); hext Z 0.1.

e )\; # 0: spiralling waves emanating from rotating pair.



A full rotation
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Conclusions
Vortices and antivortices can be generated by spin-polarized
current.
A vortex-antivortex dipole (with N' = 1) is rotating.

Three (at least) vortex-antivortex modes: well-separated

vortex-antivortex or two-merons.

In-plane field hext = (hext, 0,0), typically expected to induce
magnetization precession (around x-axis), is actually giving

rotation of a configuration with A/ = 1.
Rotational motion is stabilized by the spin-polarized current.
Rotation frequency can be tuned by current and external field.

The magnetostatic field can be incorporated in the formalism

(some simulations have been published).



