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Abstract

Viscosity solutions are a class of generalized solutions of nonlinear partial differential
equations. The great value of this kind of weak solutions is the fact that very general
existence, uniqueness and stability results hold for them in many problems of various
fields of application. They are used in many kinds of applications, two of which are
analyzed in this work.

The Shallow Lake Problem, a non-standard optimal control problem derived from the
combination of agricultural activities and ecological services that a shallow lake provides,
is the first application studied. The optimal dynamics of the problem, necessary conditions
of which are provided by the Pontryagin Maximum Principle, are studied in the beginning
for a range of values of the discount factor. The number and the type of the equilibrium
points are also investigated. We then prove that the value function of the Shallow Lake
Problem is a viscosity solution of an Optimal Hamilton-Jacobi-Bellman (OHJB) equation,
a basic for the rest of this work result. To derive this, we study the control problem on a
compact control space and we prove monotonicity, semiconvexity and other, related to the
subdifferential, properties for the corresponding value function, considered as a viscosity
solution of a modified HJB equation. We extract many regularity results for the value
(welfare) function, using this result. Furthermore, three different numerical schemes are
presented, the “forward”, the “backward” and the “upwind” schemes, for the approxi-
mation of the viscosity solution, based on a finite difference space discretization. Their
convergence is proved using fixed point arguments. For validation of the numerical results,
we compare them with the results obtained from the Simple Shooting Method, which we
use as the “gold standard”. The small mean relative error for all cases (different number of
saddle points, different spatial step) proves the accuracy of the numerical approximations.

The second application analyzed is connected with the geometric representation of the
Abdominal Aortic Aneurysm (AAA), which is a localized dilatation of the aortic wall. A
reliable estimate of AAA rupture risk demands accurate measurements of its geometric
characteristics. So, our main objective in this part of our work is the extraction of the
thrombus and outer wall boundaries from cross sections of a 3D CTA AAA image data set,
using the level set framework and new geometrical methods to address the basic problem
of no sufficient intensity contrast between thrombus and surrounding tissue. Tools like the
inversion mapping and the convex hull of a closed curve are used to trace and reconstruct
these boundaries, exploiting the presence of calcifications, which are detected by combining
these tools with a thresholding technique. We also introduce three novel stopping criteria
to address the leakage problem that Level Set Methods (LSM’s) present and a method
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for detecting the leakage regions. A Fast Marching Method (FMM) is initially used to
resolve another problem of the LSM’s, namely speed, with a proper modification for images
difficult to segment. In regions with few or no calcifications, an interpolation distance
technique may be used to obtain the two boundaries, if required.

Artificial images which simulate the real cases are then presented to test the versatility
of the methods. Sensitivity to the parameter settings and reproducibility are also analyzed
and segmentation time is presented. A manual segmentation, created by a medical expert,
was performed in the slices of ten patient data sets (450 slices) to compare with our results.
Mean distance, area overlap and relative volume error are three of the quantities used to
evaluate outer wall segmentation error. For the validation of the thrombus results a
method for approximating the mean wall thickness of the AAA is introduced, utilizing
another tool, namely the division of a curve into sectors using its centroid.

The results for the outer wall and for the mean wall thickness are comparable with
previous values reported in literature, in which, however, there is no segmentation of the
thrombus boundary, at least using the level set framework. These results indicate that ge-
ometrically accurate 3D reconstructions of AAA anatomy can be produced through LSM
based segmentation of image data obtained from currently available imaging technology.
This information is quite important for finally obtaining a reliable patient specific measure
of AAA rupture risk.

Keywords: viscosity solution, optimal control, Shallow Lake Problem, Hamilton-
Jacobi-Bellman (HJB) equation, skiba point, image segmentation, Abdominal Aortic
Aneurysm, Level Set Method, calcifications.



Per�lhyh (abstract in greek)Oi lÔsei ix¸dou e�nai m�a kathgor�a genikeumènwn lÔsewn gia mh grammikè diaforikèexis¸sei me merikè parag¸gou. H meg�lh ax�a autoÔ tou e�dou twn asjen¸n lÔsewnfa�netai apì to ìti gia autè up�rqoun polÔ genik� apotelèsmata Ôparxh, monadikìthtakai eust�jeia se poll� probl mata pou prokÔptoun se diaforetik� ped�a efarmog¸n. OilÔsei ix¸dou qrhsimopoioÔntai se poll� e�dh efarmog¸n, dÔo apì ta opo�a analÔontai seaut n th diatrib .To Prìblhma th Rhq  L�mnh (the Shallow Lake Problem), èna prìblhma bèltistouelègqou pou den an kei sta klasik� kai prokÔptei apì ton sunduasmì twn qr sewn m�arhq  l�mnh gia agrotikè drasthriìthte all� kai gia oikologikoÔ lìgou, e�nai h pr¸thapì ti efarmogè pou melet�me. Arqik� meletoÔntai ta bèltista dunamik� tou probl mato,gia ta opo�a h Arq  Meg�stou tou Pontryagin parèqei k�poie anagka�e sunj ke, gia ènadi�sthma tim¸n tou par�gonta èkptwsh. Ep�sh ereun�tai o arijmì kai to e�do twnshme�wn isorrop�a. Sth sunèqeia apodeiknÔoume ìti h sun�rthsh ax�a tou Probl matoth Rhq  L�mnh e�nai lÔsh ix¸dou m�a Bèltisth Hamilton-Jacobi-Bellman (OHJB)ex�swsh, èna basikì apotèlesma gia thn upìloiph ergas�a. Gia na prokÔyei autì, melet�meto prìblhma elègqou se èna sumpagè q¸ro elègqwn kai apodeiknÔoume idiìthte thant�stoiqh sun�rthsh ax�a w lÔsh ix¸dou mia parallagmènh HJB ex�swsh, oi opo�esqet�zontai me monoton�a, hmikurtìthta, kaj¸ kai me to upodiaforikì aut . Sth sunèqeiaex�goume arket� apotelèsmata omalìthta gia thn arqik  sun�rthsh ax�a (euhmer�a),me qr sh autoÔ tou apotelèsmato. Ep�sh parousi�zoume tr�a diaforetik� arijmhtik�sq mata, to ≪pro ta emprì≫, to ≪pro ta p�sw≫ kai to ≪pros nemo≫, gia thnprosèggish th lÔsh ix¸dou, sta opo�a g�netai qr sh peperasmènwn diafor¸n gia thnprosèggish twn qwrik¸n parag¸gwn. H sÔgklis  tou apodeiknÔetai me qr sh prot�sewnstajer¸n shme�wn. Gia thn pistopo�hsh twn arijmhtik¸n apotelesm�twn, ta sugkr�noumeme ta apotelèsmata pou prokÔptoun apì th legìmenh Mèjodo Apl  Stìqeush (Simple
Shooting Method), thn opo�a qrhsimopoioÔme w to ≪qrusì dedomèno≫. To mikrì mèsosqetikì sf�lma gia ìle ti peript¸sei (diaforetikì arijmì sagmatik¸n shme�wn, dia-foretikì qwrikì b ma) apodeiknÔei thn akr�beia twn arijmhtik¸n prosegg�sewn.H deÔterh efarmog  pou analÔoume sqet�zetai me thn gewmetrik  anapar�stash touAneurÔsmato Koiliak  Aort  (AKA), mia topik  diastol  tou toiq¸mato th aort .Mia axiìpisth ekt�mhsh tou kindÔnou r xh enì AKA apaite� akribe� metr sei twn gewmetri-k¸n qarakthristik¸n tou. Epomènw, o basikì stìqo th melèth aut  th efarmog e�nai h exagwg  twn sunìrwn jrìmbou kai exwterikoÔ toiq¸mato apì egk�rsie tomè enìtrisdi�statou pakètou eikìnwn-dedomènwn tou AKA (axonikè tomograf�e -aggeiograf�e,



xii Per�lhyh (abstract in greek)kaloÔmene CTA sth diejn  bibliograf�a), me qr sh Mejìdwn Sunìlou St�jmh (MSS,kaloÔmene Level Set Methods sth diejn  bibliograf�a) kai nèwn gewmetrik¸n mejìdwngia thn antimet¸pish tou basikoÔ probl mato th mh Ôparxh kat�llhlh ant�jesh sthfwteinìthta metaxÔ tou jrìmbou kai tou perib�llonta istoÔ. Ergale�a ìpw h apeikìnishantistrof  kai h kurt  j kh m�a kleist  kampÔlh qrhsimopoioÔntai gia ton entopismìkai thn anakataskeu  aut¸n twn sunìrwn, ekmetalleuìmenoi thn Ôparxh asbest¸sewn, oiopo�e entop�zontai sundu�zonta aut� ta ergale�a me m�a teqnik  oriojèthsh th èntashth eikìna (thresholding). Ep�sh, parousi�zoume tr�a nèa krit ria diakop  gia thn a-ntimet¸pish twn problhm�twn diarro  pou parousi�zoun oi MSS kai m�a mèjodo gia tonentopismì twn perioq¸n diarro . H Mèjodo Taqe�a An�ptuxh (MTA, kaloÔmenh Fast
Marching Method sth diejn  bibliograf�a) qrhsimopoie�tai arqik� gia thn ep�lush enì�llou probl mato th MSS, th sqetik� mikr  taqÔthta, me kat�llhle tropopoi seigia thn per�ptwsh dÔskolwn sthn kat�tmhsh eikìnwn. Se perioqè me l�ge   kajìlou a-sbest¸sei prote�noume m�a teqnik  parembol  apost�sewn pou mpore� na qrhsimopoihje�gia na p�roume ta dÔo sÔnora, an kr�netai apara�thto.Sth sunèqeia kataskeu�same kai parousi�zoume k�poie teqnhtè eikìne pou exomoi¸nounti pragmatikè peript¸sei me skopì thn exètash th euelix�a twn mejìdwn. Ep�shanalÔetai h euaisjhs�a twn mejìdwn sti allagè twn tim¸n twn paramètrwn, kaj¸ kaih anaparagwgimìtht� tou, en¸ parousi�zetai kai o qrìno kat�tmhsh. 'Eqonta wstìqo thn sÔgkrish me ta apotelèsmat� ma, eidikì aggeioqeiroÔrgo pragmatopo�hseqeirok�nhte katatm sei sti tomè pakètwn dedomènwn dèka asjen¸n (450 tomè). Giathn ekt�mhsh tou sf�lmato sthn kat�tmhsh tou exwterikoÔ toiq¸mato qrhsimopoi samedi�fore posìthte, trei apì ti opo�e e�nai h mèsh apìstash, h perioq  epik�luyh kaito sqetikì sf�lma tou ìgkou. Gia thn pistopo�hsh twn apotelesm�twn gia ton jrìmbo,dhmiourg jhke m�a mèjodo pou prosegg�zei to mèso p�qo tou toiq¸mato enì AKA, sthnopo�a g�netai qr sh enì �llou ergale�ou, th dia�resh m�a kampÔlh se tome� me qr shtou kèntrou b�rou th.Ta apotelèsmat� ma gia to exwterikì to�qwma kai gia to mèso p�qo toiq¸matoe�nai sugkr�sima me prohgoÔmene timè pou èqoun anaferje� sth sqetik  bibliograf�a,sthn opo�a, ìmw, den èqei parathrhje� poujen� kat�tmhsh tou sunìrou tou jrìmbou,toul�qiston ìqi me qr sh twn MSS. Ta apotelèsmata aut� de�qnoun ìti gewmetrik� akribe�trisdi�state anadom sei th anatom�a enì AKA mporoÔn na paraqjoÔn mèsw mejìdwnkat�tmhsh basismènwn sti MSS, p�nw se iatrikè eikìne pou proèrqontai apì thndiajèsimh teqnolog�a paragwg  tou. Aut  h plhrofor�a th gewmetr�a e�nai polÔ shma-ntik  gia thn telik  ep�teuxh enì axiìpistou, prosarmosmènou ston asjen , mètrou toukindÔnou r xh enì AKA.Lèxei -kleidi�: lÔsh ix¸dou, bèltisto èlegqo, Prìblhma Rhq  L�mnh, ex�swsh
Hamilton-Jacobi-Bellman (HJB), shme�o Skiba, kat�tmhsh eikìna, AneÔrusma Koiliak Aort , Mèjodo Sunìlou St�jmh, asbest¸sei.
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Chapter 1

Introduction

1.1 The Viscosity Solution

When M. G. Crandall and P. L. Lions (Fields Medalist in 1994) introduced the notion
of “viscosity solutions” in [14] (and then, also, in [12], [13]) they probably had not realized
the future value of this concept (which is also closely related to some previous work by L.
C. Evans [22]) and the kinds of applications in which it would be used. Viscosity solutions
are a class of generalized (weak) solutions of nonlinear scalar partial differential equations
of the form

F (y, u(y),Du(y)) = 0 for y ∈ O, (1.1.1)

where O is an open set in R
n, F : O×R×R

n → R is continuous and Du =
(

∂u
∂y1

, . . . , ∂u
∂yn

)

denotes the gradient of u. The only regularity required in their definition, as we will
see, is continuity. They need not be differentiable anywhere and thus are not sensitive
to the classical problem of the crossing of characteristics. The authors in [14] utilized
this new concept to establish uniqueness, stability and certain existence theorems for a
wide class of equations of the form of (1.1.1). Prior to the notion of viscosity solution,
there were few more notions of weak solutions, such as Clarke’s generalized solution and
Subbotin’s minimax solution, but these notions are specific to the first order equations,
with special dependence on gradient variable. The value of this concept is exactly the fact
that very general existence (see [37]), uniqueness and continuous dependence results hold
for viscosity solutions of many problems arising in fields of application.

The notion of a “viscosity solution” admits several equivalent formulations. Two of
these equivalent criteria (definitions) are most commonly used. For the first one, the notion
of super- and subdifferential are introduced in [12] (they were also previously employed in
another context in [19]):

Definition 1.1.1. Let u be a function from O into R and let x ∈ O. Then the superdif-
ferential of u at x is the set, denoted by D+u(x), of p ∈ R

n such that

lim sup
y→x

u(y)− u(x)− p · (y − x)

|y − x|
≤ 0 (1.1.2)
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holds. Similarly, the subdifferential of u at x is the set, denoted by D−u(x), of q ∈ R
n

such that

lim inf
y→x

u(y)− u(x)− q · (y − x)

|y − x|
≥ 0 (1.1.3)

holds.

We may now define the concept of the viscosity solution of (1.1.1):

Definition 1.1.2. A viscosity solution of (1.1.1) is a function u ∈ C(O) satisfying

F (y, u(y), p) ≤ 0 ∀y ∈ O, ∀p ∈ D+u(y), (1.1.4)

and
F (y, u(y), q) ≥ 0 ∀y ∈ O, ∀q ∈ D−u(y). (1.1.5)

Any u satisfying (1.1.4) will be called a viscosity subsolution of (1.1.1), whereas, if (1.1.4)
holds, then u is a viscosity supersolution of (1.1.1).

This definition is equivalent to the following notion of solution of (1.1.1), expressed in
terms of test functions:

Definition 1.1.3. u ∈ C(O) is a viscosity solution of (1.1.1) provided for all φ ∈ C1(O),

if u− φ attains a local maximum at x ∈ O, then

F (x, u(x),Dφ(x)) ≤ 0, (1.1.6)

which is equivalent to (1.1.4), and

if u− φ attains a local minimum at x ∈ O, then

F (x, u(x),Dφ(x)) ≥ 0, (1.1.7)

which is equivalent to (1.1.5)

The equivalence of the two definitions is an immediate consequence of the following

Proposition 1.1.1. Let u ∈ C(O), x ∈ O, p ∈ R
n. Then the following are equivalent:

(i) p ∈ D+u(x) (resp. q ∈ D−u(x)) and
(ii) there exists φ ∈ C1(O) such that u − φ has a local maximum (resp. minimum) at x
and Dφ(x) = p (resp. Dφ(x) = q).

For the proof of this, see [12]. A selection of some of the most important properties of
viscosity solutions is made in the next Proposition:

Proposition 1.1.2. 1. (i) Let u ∈ C1(O) be a classical solution of (1.1.1), that is

F (y, u(y),Du(y)) = 0 in O, u ∈ C1(O).

Then u is a viscosity solution.
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(ii) Let u be a viscosity solution of (1.1.1) which is differentiable at some x ∈ O.
Then

F (x, u(x),Du(x)) = 0.

2. (i) Let u, v be viscosity subsolutions (resp. supersolutions) of (1.1.1). Then w =
max (u, v) (resp. w = min (u, v)) is a viscosity subsolution (resp. supersolution)
of (1.1.1).

(ii) Let (un)n≥1 be viscosity subsolutions (resp. supersolutions) of (1.1.1). If w =
supn≥1 un (resp. infn≥1 un)∈ C(O), then w is a viscosity subsolution (resp.
supersolution) of (1.1.1).

3. Let Fn(y, t, p) be a sequence of continuous functions such that Fn(y, t, p) converges
uniformly on compact subsets of O × R × R

n to some function F (y, t, p). Let un
be a viscosity solution of Fn(y, un,Dun) = 0 in O. We assume that un converges
uniformly on compact subsets of O to some u. Then u is a viscosity solution of
F (y, u,Du) = 0.

4. Uniqueness for u+H(Du) = f in R
n: Let u, v, f, g,H ∈ C(Rn). Assume that

u,v are bounded and f,g are uniformly continuous on R
n. Assume that u and v are

viscosity solutions of, respectively, u+H(Du) = f , v+H(Dv) = g in R
n. Then we

have

sup
Rn

(u− v)+ ≤ sup
Rn

(f − g)+. (1.1.8)

For the proof of these properties, see [12]. The name of the viscosity solutions (and
their existence) is explained in the following theorem (which is proved in Proposition IV.1
of [14] and Theorem 3.1 of [12]):

Theorem 1.1.1. Let ε > 0 and let Fε(y, t, p) be a family of continuous functions such
that Fε(y, t, p) converges uniformly on compact subsets of O × R × R

n to some function
F (y, t, p), as ε goes to 0. Finally, suppose uε ∈ C2(O) is a solution of

−ε∆uε + Fε(y, u
ε,Duε) = 0 in O, (1.1.9)

and let us assume that the uε converge uniformly on compact subsets of O to some u ∈
C(O). Then u is a viscosity solution of (1.1.1).

An amazing range of applications of PDE’s has been found where viscosity solutions
play an essential role. These include first order equations arising in optimal control (the
Hamilton-Jacobi-Bellman equation), image processing, differential games (the Isaacs equa-
tion), geometrical optics or front evolution problems (see [10], [2], [5], [24]).

1.2 Optimal Control and Viscosity Solutions

In this thesis we will see two applications of the viscosity solutions. The first one,
analyzed in the second Chapter, is called “The Shallow Lake Problem” and it is an optimal
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Figure 1.1: The Lake of Ioannina (also Pamvotida): The most famous Shallow Lake of
Greece.

control problem concerning the optimization of the use of a shallow lake (Fig. 1.1) taking
into consideration its two utilities (see Sec. 2.1). We will now mention the way an optimal
control problem is formulated (see [5]):

We consider a control system, governed by the state equation

{

y′(t) = f(y(t), α(t)), t > 0,
y(0) = x.

(1.2.1)

The control α is any measurable function of t ∈ [0,+∞) with values in B, which generally
is a topological space and is called the control space. We assume that the dynamics
f : RN × B → R

N is such that the state equation (1.2.1) has a unique solution defined
for all t ∈ [0,+∞), for any choice of the control α and of the initial position x ∈ R

N ,
denoted by yx(t, α). A running cost is also included in the model, associated with this
controlled evolution, described by a given function l : RN × B → R. The cost functional
to be minimized is

J(x, α) =

∫ +∞

0
l(yx(t, α), α(t))e

−λtdt, (1.2.2)

where λ > 0 represents a (fixed) discount factor. The welfare (value) function of this
optimal control problem is defined by

w(x) := inf
α∈A

J(x, α), (1.2.3)

where A denotes the set of all measurable functions α : [0,+∞) → B. The characterization
of w is the basic question posed and the fundamental idea of dynamic programming is that
w satisfies a functional equation, called the Dynamic Programming Principle (DPP, see
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[5]) and when w is smooth enough, its infinitesimal version, the Hamilton-Jacobi-Bellman
(HJB) equation. This is a first order nonlinear partial differential equation, namely

λw(x) + sup
a∈B

{−f(x, a) ·Dw(x)− l(x, a)} = 0, (HJB)

where Dw(x) denotes the gradient of w at the point x. The way (HJB) is derived (using
the DPP) is a classical result which can be found in many books (see e.g. Chapter III of
[5]). Due to the fact that everywhere differentiability is a too restrictive assumption on
w, the notion of viscosity solution is used. So we have

Proposition 1.2.1. If the value function w, defined in (1.2.3), of the optimal control
problem defined above is continuous, then it is a viscosity solution of equation (HJB).

For the proof of this, see [5]. So, in the second Chapter, we prove that the value function
of the Shallow Lake Problem can be considered as a viscosity solution of an optimal HJB
equation. This result will provide many other results concerning its regularity. In addition,
it will help us derive monotone numerical schemes approximating this viscosity solution,
based on a finite difference space discretization. Finally, we validate these numerical results
by comparing them with another method called the Simple Shooting Method.

1.3 Curve Evolution: The Eulerian Approach

The second application of the viscosity solutions that we will see, presented in the
third Chapter of this work, is the 2D image segmentation of the thrombus and outer
wall boundaries of an Abdominal Aortic Aneurysm (Fig. 1.2) from cross sections of a
3D CTA image data set, using Level Set Methods. These methods are extracted by the
need to formulate the curve and surface evolution problem in an Eulerian framework,
that is, one in which the underlying coordinate system remains fixed. The geometric
(Lagrangian) approach of interface propagation, linking moving fronts and hyperbolic
conservation laws (see the second and third Chapter of [51]) cannot be formally extended
to higher dimensions. In addition, it is much more difficult to obtain vanishing viscosity
solutions with Lagrangian methods that faithfully follow the characteristics.

In contrast, we work directly with the partial differential equation and add a viscous
right-hand side. The solution to this equation is smooth for all time and the limit as the
viscosity term goes to zero produces the appropriate weak solution (the viscosity solution,
see Theorem 1.1.9). This solution, which allows corners while the curve is evolving, is
shown to be equivalent to the classical (smooth) solution, where the solution is smooth.
Then, under certain restrictions, it is shown that the viscosity solution is equal to the
limit as the viscous term vanishes and this is exactly the theory of viscosity solutions as
mentioned earlier. To sum up, the transformation of geometry problems into a partial
differential equation setting means that some powerful analytic techniques, including vis-
cosity solutions, could be applied. For more about the connection between curve evolution
and viscosity solutions, including many other references on this subject, see [51] and [46].

In the third Chapter of this work, we address the problem of no sufficient contrast
between thrombus and surrounding tissue which makes the task of segmentation quite
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Figure 1.2: Abdominal Aortic Aneurysm: A permanent irreversible localized dilatation of
the abdominal section of the aorta (right image).

difficult, by using Level Set and geometrical methods. The main objective, which is not
found in the related literature, is to accurately distinguish the thrombus and outer wall
boundaries from the cross sections, using the level set framework. The results are then
compared with a manual segmentation of the slices of ten patient data sets to quantify
the segmentation quality. Finally, the fourth Chapter includes the general conclusions
extracted from the analysis of the two applications of the viscosity solutions presented in
the previous two Chapters.



Chapter 2

The Shallow Lake Problem

The economic analysis of a shallow lake ecological system requires the study of a non-
standard optimal control problem due to the conflicting services it provides. The physical
and the control problem are described in the first section of this Chapter. In Sec. 2.2 we
study the optimal dynamics of the problem given by Pontryagin Maximum Principle for
all values of the discount factor ρ in (0, 0.4] and investigate the number and the form of
the equilibrium points. In Sec. 2.3 we show that we can consider the value function of the
Shallow Lake Problem as a viscosity solution of an optimal HJB equation. We also study
the regularity of the value function. In Sec. 2.4 we derive monotone numerical schemes
approximating the viscosity solution, based on a finite difference space discretization. The
convergence of these schemes is also proved in this section. In Sec. 2.5 we compare the
numerical results produced by these schemes with the results obtained by the Simple
Shooting Method.

2.1 Introduction-Description Of The Problem

Shallow lakes form one of the most fragile ecosystem types on earth and they are gener-
ally the first to perish under development activities. Millions of people live near the shores
of shallow lakes and their lives depend on conditions of those lakes. Furthermore, shallow
lakes are generally situated on farmable lowlands, which makes them more vulnerable to
human disturbances. So, it is easily understood why there is a special research on shallow
lakes, which, nevertheless, has been intensified only recently (for more about this research,
see [25]).

Pollution of shallow lakes is a phenomenon which is quite often observed, due to a
heavy use of fertilizers on surrounding land and an increased inflow of waste water from
human settlements and industries. Phosphorus is the most usual limiting nutrient. The
flow of phosphorus into a lake effects the growth of algae. The result is that sun light is
not able to penetrate the water. So, a clear, blue lake with green plants changes to a lake
with very little visibility, with hardly any green plants and with a general reduction in fish
stocks (see [42]).

The problem of optimal control that is studied here comes from the combination of two
factors, the utility of the agricultural activities and the utility of a clear lake with many
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ecological services (for recent papers which have explored some fundamental issues of the
optimal level of pollution in a lake with competing uses, see [18]). The economic issue
that lakes are usually common property resources and therefore suffer from sub-optimal
use by many communities, is also considered. The dynamic system of the problem is

{

y′(t) = α(t)− b · y(t) + y2(t)
y2(t)+1

, t > 0,

y(0) = x0,
(2.1.1)

where α(t) =
∑n

i=1 αi(t) and αi is the loading of phosphorus that every community loads
in the lake, y(t) is the amount of phosphorus in algae and b is the rate of loss, consisting

of sedimentation, outflow and sequestration in other biomass. The function k(y) = y2

y2+1
is a positive feedback term, which has to do with the role of the green plants in controlling
the bottom of the lake: As the amount of green plants is reduced, the bottom sediments
become more vulnerable to winds, waves and bottom eating fishes. As a result, sedimented
phosphorus will be released into the water and contribute to further grow of algae. So,
this function has to be non-decreasing in y. In addition, it has to be convex for small y
and concave for large y because when the stock of algae reaches a certain size, blue green
algae or cyano-bacteria will take over and eventually dominate the stock of algae. So,

ecologists usually approximate this feedback with the sigmoid function y2

y2+1
(see [42]).

We assume that αi(t) > 0, t ∈ [0,+∞), and we have that the running cost for the
i−th community is ln(αi)−cy2. The lake has value as a waste sink for agriculture (ln(αi))
and it provides ecological services that decrease with the amount of phosphorus (−cy2).
The parameter c reflects the relative weight of these welfare components (large c means
great weight to the ecological services of the lake). We suppose that the problem has an
infinite horizon, so that the objectives become

Wi =

∫ ∞

0
e−ρt

[

ln(αi(t))− cy2x0
(t, α)

]

dt, i = 1, . . . , n (2.1.2)

where ρ > 0 is the discount factor. Optimal management of the lake (which is the approach
adopted in this work) requires to maximize the sum of the objectives Wi, subject to the
above dynamic system (for the literature on the different approaches used to analyze
the Shallow Lake Problem, see [28]). This is an optimal control problem and its welfare
function, which represents this maximization of the intertemporal welfare subject to these
dynamics of the lake, is

W (x0) = sup
(α1,...,αn)∈A

∫ ∞

0
e−ρt

[

n
∑

i=1

ln(αi(t))− ncy2x0
(t, α)

]

dt. (2.1.3)

The Hamiltonian, in this case, is

H(x, λ) = sup
(a1,...,an)∈B

{

(

a− bx+
x2

x2 + 1

)

λ+
n
∑

i=1

ln(ai)− ncx2

}

, (2.1.4)

where a =
∑n

i=1 ai, A is the set of all measurable functions (α1, . . . , αn) : [0,+∞) → B
and B ⊆ R

n. Supposing that W is smooth enough, it satisfies the (HJB) equation

ρW (x) = H(x,DW ). (HJB)
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This is a result of the Dynamic Programming Principle, as it is already mentioned in Sec.
1.2. In general, W is not expected to be differentiable. This is the case for various values
of the discount factor, where a vortex in the optimal control-space phase diagram appears.
A Skiba point is present and the optimal path jumps from an upper trajectory to a lower
one, or the opposite (see [43], [54]). As a result, the welfare function is expected to undergo
a change of slope and this makes W non-smooth at the Skiba point. Thus, equation (HJB)
should be considered in a generalized sense. Since the welfare (value) function (2.1.3) is
expected to be continuous and bounded, viscosity solutions provide the right framework
to study (HJB).

In this Chapter, which is a great part of [33], we first study our control problem on a
compact control space and we prove monotonicity properties for the corresponding value
function as a viscosity solution of a modified Hamilton-Jacobi equation. These properties
are inherited in the limit to the value function (2.1.3). We exploit these properties to show
that (HJB) reduces to the following Hamilton-Jacobi equation

ρW (x)−

(

x2

x2 + 1
− bx

)

DW + 2
(

ln(−DW ) + x2 + 1
)

= 0. (OHJB)

We further study the regularity of (2.1.3) as the viscosity solution of (OHJB) and relate
it with the dynamics of the optimal control problem. We finally approximate (2.1.3) by
means of monotone convergent schemes and present various numerical results.

2.2 Control Problem Analysis For Different Discount Factor
Values

We consider n = 2 and c = 1. The Pontryagin Maximum Principle is the most
classical and useful necessary condition of optimality, in optimal control theory (see [50]).
In our case, this Maximum Principle states that, if c(t) = (α1(t), α2(t)) is an optimal
control for the initial state x0 ∈ R and x(t) := yx0(t, α) is the associated optimal path,
where α(t) = α1(t) + α2(t), then there exists a continuous and piecewise continuously
differentiable function λ̃(t), called adjoint function or adjoint variable, such that, if

H̄(x, c, λ̃, t) =

(

α− bx+
x2

x2 + 1

)

λ̃+ [ln(α1) + ln(α2)− 2x2]e−ρt

then

max
(u1,u2)∈B

H̄(x(t), (u1, u2), λ̃(t), t) = H̄(x(t), c(t), λ̃(t), t) (2.2.1)

and

λ̃′(t) = −H̄x(x(t), c(t), λ̃(t), t). (2.2.2)
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From (2.2.1) we deduce that

∂H̄

∂u1
(x(t), c(t), λ̃(t), t) =

∂H̄

∂u2
(x(t), c(t), λ̃(t), t) = 0

⇒ λ̃(t) +
1

αi(t)
e−ρt = 0, i = 1, 2

⇒ λ̃(t)eρt +
1

αi(t)
= 0, i = 1, 2

⇒ λ(t) +
1

αi(t)
= 0, i = 1, 2 (2.2.3)

where λ(t) := λ̃(t)eρt. From (2.2.2) we have :

λ̃′(t) =

(

b−
2x(t)

(x2(t) + 1)2

)

λ̃(t) + 4x(t)e−ρt

⇒ λ̃′(t)eρt =

(

b−
2x(t)

(x2(t) + 1)2

)

λ̃(t)eρt + 4x(t)

⇒ λ′(t)− λ̃(t)eρtρ =

(

b−
2x(t)

(x2(t) + 1)2

)

λ̃(t)eρt + 4x(t)

⇒ λ′(t)− λ(t)ρ =

(

b−
2x(t)

(x2(t) + 1)2

)

λ(t) + 4x(t)

⇒ λ′(t) =

(

(b+ ρ)−
2x(t)

(x2(t) + 1)2

)

λ(t) + 4x(t). (2.2.4)

By relation (2.2.3) we deduce that

α1(t) = α2(t) = −
1

λ(t)
=

α(t)

2
(2.2.5)

Equation (2.2.4) using (2.2.5) is written

2
α′(t)

α2(t)
=

(

(b+ ρ)−
2x(t)

(x2(t) + 1)2

)(

−
2

α(t)

)

+ 4x(t)

⇒ α′(t) = −

(

(b+ ρ)−
2x(t)

(x2(t) + 1)2

)

· α(t) + 2x(t)α2(t). (2.2.6)

From equations (2.1.1) and (2.2.6) we take the following O.D.E. autonomous system







x′(t) = α(t)− b · x(t) + x2(t)
x2(t)+1

,

α′(t) = −
(

(b+ ρ)− 2x(t)
(x2(t)+1)2

)

α(t) + 2x(t)α2(t).
(2.2.7)

In the following, we will refer to the first and the second right-hand sides of (2.2.7) as
f1(x, α) and f2(x, α), respectively. The dynamics of the optimal control problem are
described through the stable manifolds described in (2.2.7) as we will show later, at the
end of this section. This problem can be studied for arbitrary values of ρ and b. If α is
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constant the first equation of (2.2.7) has one stable equilibrium for high values of α. For
low values of α, three situations can occur depending on the value of the parameter b: this
equation can have one stable equilibrium or two equilibria (in this case the third root of
the right-hand side of the equation determines the domains of attraction) or low values of
α can yield one stable equilibrium again, followed by a range of α’s with two equilibria.
In the following, the problem is studied for ρ ∈ (0, 0.4] and b = 0.6. The discount factor
usually takes small positive values, so this domain is appropriate for ρ. In addition, for
this value of b we are in the third situation mentioned above. We choose this value so
that the lake displays hysteresis but a flip from the oligotrophic state to a eutrophic state
is reversible (the lake can flip back to an oligotrophic state if α is reduced further than
the flip point, see [43]). Let us note that, if we considered an arbitrary value for b, all the
results that are produced below would be similar. We will also consider that x ∈ [0, 2] at
the rest of this Chapter.

We now have the following lemmas (see the Appendix A for their proof):

Lemma 2.2.1. For ρ ∈ (0, 0.4] and b = 0.6 the autonomous system (2.2.7) has only one
or three equilibrium points for x ∈ [0, 2].

Lemma 2.2.2. In case we have only one equilibrium point for system (2.2.7), under
the conditions described in Lemma 2.2.1, this is a saddle point. In case we have three
equilibrium points, the first and third are saddle-point stable and the point in the middle is
a vortex, that is, unstable with complex eigenvalues for the stability matrix of the system
(with the exception of degeneracies, which appear when ρ is near the boundary of the range
in which we have three equilibrium points).

In Fig. 2.1 we can see the equilibrium points (the intersection points of the curves
f1(x, α) = 0 and f2(x, α) = 0) for different values of ρ. For a graphical approximation
of the range of ρ in which each of the two cases described in Lemma 2.2.1 occur, see the
Appendix A.2.

As it is already mentioned, the classic way of solving the problem and finding the
welfare function is through the stable manifolds, the graphs of which can be made by using
the Simple Shooting Method (see Sec. 2.5). In the case of one saddle point (xs0, αs0),
there are two stable (and two unstable) manifolds. This case is presented in Fig. 2.2,
where the curves representing the steady-states for x (f1(x, α) = 0) and the steady-states
for α (f2(x, α) = 0) are also shown.

Using the definition of the saddle point, we have

W (xs0) = max
(α1,α2)∈A

∫ ∞

0
e−ρt

[

ln(α1(t)) + ln(α2(t)) − 2y2xs0
(t, α)

]

dt

=

∫ ∞

0
e−ρt

[

2 ln
(αs0

2

)

− 2xs0
2
]

dt

=
(

2 ln
(αs0

2

)

− 2xs0
2
)

∫ ∞

0
e−ρtdt

⇒ W (xs0) =
(

2 ln
(αs0

2

)

− 2xs0
2
)

·
1

ρ
(2.2.8)
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Figure 2.1: The x−α diagram for different values of ρ (b=0.6). The two cases of one and
of three equilibrium points (which are the intersection points of the curves f1(x, α) = 0
and f2(x, α) = 0) are depicted.

So, the welfare function at a point x can be found via the stable manifolds through
integration, as

W (x) = W (xs0) +

∫ x

xs0

DW (k)dk = W (xs0) +

∫ x

xs0

λ(k)dk
(2.2.5)
= W (xs0) +

∫ x

xs0

−
2

α(k)
dk.

(2.2.9)
Figure 2.3 shows the welfare function in the one saddle point case, calculated through the
stable manifolds provided by the Simple Shooting Method.

In the case of two saddle points xs1, xs2 and a vortex xs3, there are four stable manifolds
(see Fig. 2.4). In this case it can be proved that there is a point xs ∈ [x1, x2], where x1
and x2 are the x- coordinates of the intersection points of the outer upper curl and the
outer lower curl with the curve representing the steady-states for x, respectively, such that

∆W (xs) = 0; ∆W (x) < 0, x ∈ [x1, xs); ∆W (x) > 0, x ∈ (xs, x2]. (2.2.10)

Let us note that this point exists only in the case this curve (f1(x, α) = 0) intersects both
the outer upper and the outer lower curves (i.e. if [x1, x2] 6= ∅) and this is not always
the case (see [61]). Following our notation, ∆W is the difference of the welfare functions
obtained by integrating the upper trajectory leading to the steady-state on the right (Wr)
and the lower trajectory leading to the steady-state on the left (Wl) by means of equation
(2.2.9). The point xs (see the Appendix of [43] for the proof of the existence of this point)
is called a Skiba point and it can be approximated as the intersection point of Wr and Wl
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Figure 2.2: Example of an x-α diagram in the case of one saddle point. In this case, b=0.6
and ρ=0.03. The curves f1(x, α) = 0 and f2(x, α) = 0 represent the steady-states for x
and the steady-states for α, respectively.

(W is multi-valued in [x1, x2], see Fig. 2.5). Relation (2.2.10) implies that if the initial
amount of phosphorus x0 is on the left-hand side of the Skiba point, the equilibrium jumps
to the lower trajectory and moves towards the steady-state on the left and if the initial
amount of phosphorus x0 is on the right-hand side of the Skiba point, the equilibrium
jumps to the upper trajectory and moves towards the steady-state on the right. The
optimal trajectory provided by the Simple Shooting Method and the jump of the control
at xs are depicted in Fig. 2.6.

In the work of this Chapter, we study the problem through the HJB equation using
the viscosity solutions framework. This is presented in the following section.

2.3 Study Of The Value Function (Welfare Function)

2.3.1 Consideration Of The Value Function As A Viscosity Solution

In our problem, Definition 1.1.3 of the viscosity solution is written as follows:
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Figure 2.3: The welfare function provided by the Simple Shooting Method in the one
saddle point case (b = 0.6, ρ = 0.03).

Definition 2.3.1. A continuous function V is a viscosity solution of our (HJB) equation
in O ⊆ R, where O is an open interval, if the following conditions are satisfied:

(i) For any φ ∈ C1(O), if y ∈ O is a local maximum point for V − φ, then

ρV (y) ≤ H(y,Dφ(y)).

(ii) For any φ ∈ C1(O), if y ∈ O is a local minimum point for V − φ, then

ρV (y) ≥ H(y,Dφ(y)).

Any V satisfying (i) is called a viscosity subsolution of our (HJB) equation in O, whereas,
if (ii) holds, then V is a viscosity supersolution in O.

As mentioned in Sec. 1.1, there is an equivalent way to formulate conditions (i) and
(ii) in terms of the superdifferential and the subdifferential of V at a point x (Definition
1.1.2). But first, let us see how Definition 1.1.1 of super- and subdifferentials is simplified
in the case of a real function:
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Figure 2.4: Example of an x-α diagram, where the stable manifolds are shown, in the case
of three equilibrium points. xs1 and xs2 are the two saddle points, xs3 is the vortex and
[x1, x2] is the domain where the set of spirals appear. In this case, b=0.6 and ρ=0.13.

Definition 2.3.2. Let V be a function from (a, b) into R and let x0 ∈ (a, b). Then the
superdifferential of V at x0 is the set of p0 ∈ R, denoted by D+V (x0), such that

V (x) ≤ V (x0) + p0(x− x0) + o (|x− x0|) (2.3.1)

holds. Similarly the subdifferential of V at x0 is the set of p0 ∈ R, denoted by D−V (x0),
such that

V (x) ≥ V (x0) + p0(x− x0) + o (|x− x0|) (2.3.2)

holds.

So, in our case, viscosity subsolutions and supersolutions can also be defined as follows:

Definition 2.3.3. Condition (i) holds if and only if

(j) ρV (y) ≤ H(y, λ) ∀y ∈ O,∀λ ∈ D+V (y).

Similarly, (ii) holds if and only if
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Figure 2.5: The welfare function W provided by the Simple Shooting Method in the case
of three equilibrium points. It is multi-valued in [x1, x2] and there is an intersection point
of Wl and Wr in this domain, which is the Skiba point xs. In (b) there is a zoom in this
domain.

(jj) ρV (y) ≥ H(y, µ) ∀y ∈ O,∀µ ∈ D−V (y).

Our aim is to show that the value function is a viscosity solution of an Optimal HJB
equation in (0, 2). To prove this, we take B = (0,M ]2, M > 0, as it is enough to
constraint ourselves to that domain due to physical reasons (this domain captures the
physical description of the problem), and we consider the following HJB equation:

ρVM (x)−HM (x,DVM ) = 0, (2.3.3)

where

HM (x, λ) = sup
(a1,a2)∈(0,M ]2

{(

a1 + a2 − bx+
x2

x2 + 1

)

λ+ ln(a1) + ln(a2)− 2x2
}

. (2.3.4)

We have the following proposition :

Proposition 2.3.1. VM is a viscosity solution of equation (2.3.3) in (0, 2) and this equa-
tion admits a Comparison Principle.

Proof: It can be easily proved using calculus that f(x, c) = a−bx+ x2

x2+1
and h(x, c) =

ln(a1)+ln(a2)−2x2, where x ∈ (0, 2), c = (a1, a2) ∈ (0,M ]2 and a = a1+a2, are continuous
in (0, 2) × (0,M ]2, Lipschitz continuous with respect to x, uniformly to c and bounded
for all x ∈ (0, 2) and c ∈ (0,M ]2. Then, using these properties for f and h it is standard
theory to prove that the problem is well-posed and that VM ∈ BUC(0, 2) (see [5], page
99). From this, using the Dynamic Programming Principle, we deduce that VM satisfies
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Figure 2.6: Due to the existence of a Skiba point xs, only the upper trajectory (at the
right side of xs) and the lower trajectory (at the left side of xs) are kept. The dots show
the domain [x1, x2] in which α is multi-valued.

equation (2.3.3) in the viscosity sense (see [5], page 104). Finally, there is a Comparison
Principle for this equation between viscosity sub- and supersolutions (for its proof see [5],
pages 51-54) which is the following: Let J be a bounded, open subset of (0, 2). Assume
that VM1 , VM2 ∈ C(J̄) are, respectively, viscosity sub- and supersolution of (2.3.3) in J
and VM1 ≤ VM2 on ∂J . Then

VM1 ≤ VM2 in J̄ . 2

Hamiltonian HM takes a special form depending on the choice of λ, as the following
lemma shows:

Lemma 2.3.1.

HM (x, λ) =







(

x2

x2+1 − bx
)

λ− 2
(

ln(−λ) + x2 + 1
)

, λ ≤ − 1
M , x ∈ (0, 2)

(

2M − bx+ x2

x2+1

)

λ+ 2 ln(M)− 2x2, λ > − 1
M , x ∈ (0, 2)

.
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Proof of Lemma: Let

g(a1, a2) =

(

a1 + a2 − bx+
x2

x2 + 1

)

λ+ ln(a1) + ln(a2)− 2x2, (a1, a2) ∈ R
2.

The point
(

− 1
λ ,−

1
λ

)

is the only critical point of g in R
2. We consider the following cases:

• λ ≤ − 1
M , x ∈ (0, 2). Then − 1

λ ≤ M , so
(

− 1
λ ,−

1
λ

)

∈ (0,M ]2. Let’s suppose that
there exist a1, a2 ∈ (0,M ] such that g(a1, a2) > g

(

− 1
λ ,−

1
λ

)

. Then

(

a1 + a2 − bx+
x2

x2 + 1

)

λ+ ln(a1) + ln(a2)− 2x2 >

>

(

−
2

λ
− bx+

x2

x2 + 1

)

λ+ ln(−
1

λ
) + ln(−

1

λ
)− 2x2

⇒ (a1 + a2)λ+ ln(a1) + ln(a2) > −2− 2 ln(−λ)

⇒ a1λ+ a2λ+ ln(a1) + ln(−λ) + ln(a2) + ln(−λ) > −2

⇒ a1λ+ ln(−a1λ) + a2λ+ ln(−a2λ) > −2 (2.3.5)

We have that ln(x) ≤ x− 1 ∀x > 0. So,

ln(−a1λ) ≤ −a1λ− 1 ⇒ ln(−a1λ) + a1λ ≤ −1, (2.3.6)

ln(−a2λ) ≤ −a2λ− 1 ⇒ ln(−a2λ) + a2λ ≤ −1. (2.3.7)

Adding (2.3.6) and (2.3.7) we get

ln(−a1λ) + a1λ+ ln(−a2λ) + a2λ ≤ −2,

so, due to (2.3.5), we have a contradiction. We deduce that

g(a1, a2) ≤ g

(

−
1

λ
,−

1

λ

)

∀(a1, a2) ∈ (0,M ]2.

We derive that
(

− 1
λ ,−

1
λ

)

is the maximum point for g in (0,M ]2. So,

HM(x, λ) = sup
(a1,a2)∈(0,M ]2

g(a1, a2) = max
(a1,a2)∈(0,M ]2

g(a1, a2) = g

(

−
1

λ
,−

1

λ

)

=

=

(

x2

x2 + 1
− bx

)

λ− 2
(

ln(−λ) + x2 + 1
)

.

• λ ≥ 0, x ∈ (0, 2). Then, it is obvious that g is increasing as either a1 or a2 is
increasing. This means that the maximum point for g in (0,M ]2 is obtained for
a1 = a2 = M , so

HM(x, λ) = g(M,M) =

(

2M − bx+
x2

x2 + 1

)

λ+ 2 ln(M)− 2x2.
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• 0 > λ > − 1
M , x ∈ (0, 2). Then M < − 1

λ , so
(

− 1
λ ,−

1
λ

)

6∈ (0,M ]2. We have that

sup
(a1,a2)∈(0,M ]2

g(a1, a2) = max
(a1,a2)∈[ε,M ]2

g(a1, a2), ε > 0 small, (2.3.8)

because lim(a1,a2)→(0,0) g(a1, a2) = −∞. We deduce that the maximum point of g in
(ε,M ]2 will be at the boundary of [ε,M ]2. Using simple calculus, we deduce that

max
(a1,a2)∈[ε,M ]2

g(a1, a2) = g(M,M) =

(

2M − bx+
x2

x2 + 1

)

λ+2 ln(M)−2x2. (2.3.9)

From (2.3.8) and (2.3.9) we deduce that

HM (x, λ) = g(M,M) =

(

2M − bx+
x2

x2 + 1

)

λ+ 2 ln(M)− 2x2. 2

Using Proposition 2.3.1 we have that VM is a viscosity solution of the following Dirichlet
problem:

{

ρVM (x)−HM (x,DVM ) = 0, x ∈ (0, 2),
VM (0) = v0, VM (2) = v1, v0, v1 < 0,

(2.3.10)

where HM is given by Lemma 2.3.1 (v0, v1 < 0 due to the physical description of the
problem). Some important properties of VM , which will be used to prove that the value
function is a viscosity solution of an Optimal HJB equation in (0, 2), are mentioned in the
following theorem:

Theorem 2.3.1. The viscosity solution VM of the Dirichlet problem (2.3.10) has the
following properties:

1. The family of functions {VM}M>0 is uniformly bounded in [0, 2].

2. VM is locally semiconvex in (0, 2) for every M > 0.

3. D−VM (x) 6= ∅ for all x ∈ (0, 2), for all M > 0.

4. There exists M0 ∈ R such that for every M ∈ R, M ≥ M0, and for every x ∈ (0, 2)
we have that, if λM ∈ D−VM (x) then λM ≤ − 1

M .

5. For every M ≥ M0, VM is a strictly decreasing function on (0, 2).

Proof: 1. Choosing Vc = c ≤ v0, v1 we have:

ρVc −HM (x,DVc) = ρc−HM (x, 0) =

= ρc−

(

2M − bx+
x2

x2 + 1

)

· 0− 2 ln(M) + 2x2 =

= ρc− 2 ln(M) + 2x2 < 0,

taking M sufficiently large (x ∈ (0, 2)). We deduce that Vc is a classical subsolution of
(2.3.10) (Vc(0) = c ≤ v0, Vc(2) = c ≤ v1). By the Comparison Principle we deduce that

c ≤ VM in [0, 2]. (2.3.11)
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We now choose 0 < M0 ≤ M and Ṽ = ũ0 −
1
M0

x, where ũ0 is a constant (which we will

later choose sufficiently large). We have M0 ≤ M ⇒ − 1
M0

≤ − 1
M , so

ρṼ −HM (x,DṼ ) = ρ

(

ũ0 −
1

M0
x

)

−HM

(

x,−
1

M0

)

=

= ρ

(

ũ0 −
1

M0
x

)

−

(

x2

x2 + 1
− bx

)(

−
1

M0

)

+ 2 ln

(

1

M0

)

+ 2x2 + 2.

Terms which depend on x are bounded as x ∈ (0, 2), so, choosing ũ0 sufficiently large we
take that ρṼ −HM(x,DṼ ) > 0. In addition, ũ0 is taken sufficiently large so that ũ0 > v0
and ũ0 −

2
M0

> v1. Then, Ṽ (0) = ũ0 > v0 and Ṽ (2) = ũ0 −
2
M0

> v1. We deduce that Ṽ
is a classical supersolution of (2.3.10). By the Comparison Principle,

VM ≤ Ṽ in [0, 2] ⇒ VM ≤ ũ0 −
1

M0
x ≤ ũ0 in [0, 2]. (2.3.12)

From (2.3.11) and (2.3.12) we have that

c ≤ VM (x) ≤ ũ0 ∀x ∈ [0, 2] ∀M > 0 ⇒

⇒ {VM}M>0 uniformly bounded in [0, 2].

2. Let M > 0. It is sufficient to show that

N(x) = −VM (x) = inf
(α1,α2)∈A

∫ ∞

0
e−ρth (yx(t, c), (α1(t), α2(t))) dt

is locally semiconcave in (0,2). Let us recall that f(x, (a1, a2)) = a1 + a2 − bx + x2

x2+1
,

h(x, (a1, a2)) = −
(

ln(a1) + ln(a2)− 2x2
)

and B = (0,M ]2. It can be proved using simple
calculus that there is K1 > 0 (K1 = b+ 4) such that

|f(x2, c)− f(x1, c)| ≤ K1|x2 − x1|, ∀x1, x2 ∈ [0, 2], ∀c ∈ (0,M ]2 (2.3.13)

and

|fx(x2, c)− fx(x1, c)| ≤ 114|x2 − x1|, ∀x1, x2 ∈ [0, 2], ∀c ∈ (0,M ]2. (2.3.14)

Moreover, it can easily be proved that

∀R > 0, |h(x2, c)− h(x1, c)| ≤ 8|x2 − x1|, ∀x1, x2 ∈ BR, ∀c ∈ (0,M ]2. (2.3.15)

In addition, simple calculations provide that

∀R > 0, h(x, c)+h(y, c)− 2h

(

x+ y

2
, c

)

≤ |x− y|2, x, y ∈ BR, c ∈ (0,M ]2. (2.3.16)

The rest of the proof is based on [8] and the proof of Theorem 7.4.11, where a semiconcavity
result is obtained for the Bolza problem. Our problem is slightly different (the terminal
time is T = +∞ and there is a discount factor ρ), so, in the following, we adjust the proof
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to our case. Let r > 0 be fixed and let R > 0 be such that all trajectories starting from
Br for t = 0 (x = yx(0, c) ∈ Br) stay inside BR in [0,+∞) (yx(t, c) ∈ BR ∀t ∈ [0,+∞)).
The existence of such R is proven in Lemma 7.1.2 (i) of [8] and the hypotheses of this
lemma are satisfied, due to (2.3.13) and to the fact that the control set B can be set equal
to [ε,M ]2 for ε > 0 small (as there are no optimal controls near 0), meaning that B is
compact. Given x, h such that x±h ∈ Br, let c̃ : [0,+∞) → (0,M ]2 be an optimal control
for x. Let us set

y(·) = yx(·, c̃), y−(·) = yx−h(·, c̃) y+(·) = yx+h(·, c̃).

Using Lemma 7.1.2 ((ii) and (iii)) of [8] (its hypotheses are satisfied due to (2.3.13), (2.3.14)
and the fact that B is compact, as stated before) we have

|y+(s)− y−(s)| ≤ c|h|, |y+(s) + y−(s)− 2y(s)| ≤ c|h|2 (2.3.17)

for some constant c > 0. Using (2.3.15), (2.3.16) and (2.3.17) and following the proof of
Theorem 7.4.11 of [8], we have

h (y+(t), c̃(t)) + h (y−(t), c̃(t))− 2h (y(t), c̃(t)) ≤ c2|h|2 + 8c|h|2 = C|h|2, (2.3.18)

where C is any constant depending only on r. Thus, the definition of N(x), the optimality
of c̃ and (2.3.18) imply that

N(x+ h) +N(x− h)− 2N(x) ≤

≤

∫ +∞

0
e−ρt [h (y+(t), c̃(t)) + h (y−(t), c̃(t))− 2h (y(t), c̃(t))] dt ≤

≤

∫ +∞

0
e−ρt · C|h|2dt =

C

ρ
|h|2 ⇒

⇒ N(x+ h) +N(x− h)− 2N(x) ≤ C1|h|
2, for every x, h such that x± h ∈ Br,

which proves that N is locally semiconcave in (0, 2).
3. Let M > 0. From 2 we deduce that VM is semiconvex in every compact subset of (0, 2).
Let [a, b] ⊂ (0, 2). We consider the set

D∗VM (x) =

{

p ∈ R : p = lim
n→+∞

DVM (xn), xn → x

}

.

Due to the fact that VM is semiconvex in [a, b], it is a well-known result in nonsmooth
analysis (see [3],[9]) that

D−VM (x) = coD∗VM (x), ∀x ∈ [a, b], (2.3.19)

where coD∗VM (x) is the convex hull of D∗VM (x). In addition, VM is locally Lipschitz
continuous in (a, b) due to its semiconvexity property in [a, b] (see [3],[5] and [8]). By the
classical Rademacher theorem, VM is differentiable almost everywhere in (a, b) with locally
bounded gradient. From this we deduce that D∗VM (x) 6= ∅ ∀x ∈ (a, b). Consequently,
D−VM (x) 6= ∅ ∀x ∈ (a, b), due to (2.3.19). We conclude that

D−VM (x) 6= ∅ ∀x ∈ (0, 2).



22 The Shallow Lake Problem

4. From 1 we have that there exists Λ > 0 such that

|VM (x)| ≤ Λ, ∀x ∈ (0, 2), ∀M > 0. (2.3.20)

VM is a viscosity solution of (2.3.10) so for M > 0, x ∈ (0, 2) and λM ∈ D−VM (x) we
deduce using (2.3.10) and (2.3.20) that there exists Λ1 > 0 such that

HM (x, λM ) ≤ Λ1. (2.3.21)

We now suppose that,

{

∀r ∈ R ∃Mr ∈ R,Mr ≥ r, and ∃xMr ∈ (0, 2) and λMr ∈ D−VMr(xMr)
such that λMr > − 1

Mr
.

(2.3.22)

We have that ar = −bxMr +
xMr

2

xMr
2+1

is bounded ∀r ∈ R, as xMr ∈ (0, 2) ∀r ∈ R. This

means that we can choose r0 sufficient large so that, due to (2.3.22), Mr0 is sufficient large

to obtain that 2Mr0 − bxMr0
+

xMr0
2

xMr0
2+1

> 0. So, from (2.3.22) we deduce that

2Mr − bxMr +
xMr

2

xMr
2 + 1

> 0 ∀r ≥ r0. (2.3.23)

For r ≥ r0 we now have, using Lemma 2.3.1:

HMr(xMr , λMr) =

(2.3.22)
=

(

2Mr − bxMr +
xMr

2

xMr
2 + 1

)

λMr + 2 ln(Mr)− 2xMr

2 ≥

(2.3.23),(2.3.22)

≥

(

2Mr − bxMr +
xMr

2

xMr
2 + 1

)(

−
1

Mr

)

+ 2 ln(Mr)− 2xMr

2 =

= −2 +
1

Mr

(

bxMr −
xMr

2

xMr
2 + 1

)

+ 2 ln(Mr)− 2xMr

2 =

= −2 +
bxMr

Mr
−

1

Mr

xMr
2

xMr
2 + 1

+ 2 ln(Mr)− 2xMr

2 ≥

≥ −2−
1

Mr
+ 2 ln(Mr)− 8. (2.3.24)

Since by (2.3.22)
lim

r→+∞
Mr = +∞,

by taking r → +∞ in (2.3.24) we have that

lim
r→+∞

HMr(xMr , λMr) = +∞,

which contradicts (2.3.21). So the statement is proved.
5. Let M ≥ M0. From 3 we deduce that for x ∈ (0, 2) and λM ∈ D−VM (x) we have that
λM ≤ − 1

M < 0. So,
λM < 0 ∀x ∈ (0, 2), ∀λM ∈ D−VM (x). (2.3.25)
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Let x0 ∈ (0, 2). For x < x0, using Definition 2.3.2 of subdifferential, we take that for
every λM0 ∈ D−VM (x0),

VM (x) ≥ VM (x0) + λM0(x− x0) + o(|x− x0|)

⇒
VM (x)− VM (x0)

x− x0
≤ λM0 −

o(|x− x0|)

|x− x0|

⇒ lim sup
x→x−

0

VM (x)− VM (x0)

x− x0
≤ λM0 .

Using (2.3.25) we deduce that lim supx→x−
0

VM (x)−VM (x0)
x−x0

< 0. This means that there exists

ε > 0 such that, for every δ ∈ (0, ε), VM (x)−VM (x0)
x−x0

< 0 holds for x ∈ (x0 − δ, x0). So we
have that there exists δ > 0 such that VM (x) > VM (x0), ∀x ∈ (x0 − δ, x0). The choice of
x0 ∈ (0, 2) was arbitrary and we deduce that,

∀x0 ∈ (0, 2) ∃δ > 0 such that VM (x) > VM (x0) ∀x ∈ (x0 − δ, x0). (2.3.26)

We suppose now that VM is not a strictly decreasing function on (0, 2). So, there exist
x1, x2 ∈ (0, 2), x1 < x2, such that VM (x1) ≤ VM (x2). According to (2.3.26), ∃δ′ > 0 such
that VM (x) > VM (x2) ∀x ∈ (x2 − δ′, x2). This means that there exists x3 ∈ (x2 − δ′, x2)
such that VM (x3) > VM (x2). Obviously x1 6∈ (x2−δ′, x2), so x1 < x2−δ′ < x3 ⇒ x1 < x3.
In addition we have

VM (x1) < VM (x3). (2.3.27)

VM is continuous at [x1, x3], so there exists xm ∈ [x1, x3] such that VM (xm) ≥ VM (x) ∀x ∈
[x1, x3]. From (2.3.27) we see that xm 6= x1, so xm ∈ (x1, x3]. This means that, there
exists θ > 0 such that (xm − θ, xm) ⊆ (x1, x3]. From this we deduce that

VM (xm) ≥ VM (x) ∀x ∈ (xm − θ, xm). (2.3.28)

Applying relation (2.3.26) for xm, we have that there exists σ > 0 such that VM (x) >
VM (xm), ∀x ∈ (xm − σ, xm). Due to (2.3.28) we come to a contradiction. So we conclude
that VM is a strictly decreasing function on (0, 2). 2

The main result of this section is presented in the following proposition:

Proposition 2.3.2. The value function is a viscosity solution of
{

ρV (x)−
(

x2

x2+1
− bx

)

DV + 2
(

ln(−DV ) + x2 + 1
)

= 0 in (0, 2),

V (0) = v0, V (2) = v1.
(OHJB)

Proof: We will first prove that, ∀M ≥ M0, M ∈ R
+, VM is a viscosity solution of

{

ρVM (x)−
(

x2

x2+1
− bx

)

DVM + 2
(

ln(−DVM ) + x2 + 1
)

= 0 in (0, 2),

VM (0) = v0, VM (2) = v1.
(2.3.29)

Let x ∈ (0, 2). Then, from 3 of Theorem 2.3.1 we have that D−VM (x) 6= ∅. Let λM ∈
D−VM (x). Then, from 4 of Theorem 2.3.1 we get that

λM ≤ −
1

M
. (2.3.30)

We have the following cases:
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• D+VM (x) 6= ∅. Then D+VM (x) = D−VM (x) = {DVM (x)} = {λM}. So, VM is
differentiable at x and DVM (x) = λM ≤ − 1

M from (2.3.30). From Proposition 2.3.1
and using Lemma 2.3.1 we conclude that VM is a viscosity solution of (2.3.29) at x.

• D+VM (x) = ∅. Then it is explicit that VM is a viscosity subsolution of (2.3.29) at
x. From Proposition 2.3.1 we have that VM is a viscosity supersolution of equation
ρVM (x)−HM(x,DVM ) = 0 in (0, 2). So, using condition (jj) of Definition 2.3.3 we
have that ρVM (x)−HM (x, λM ) ≥ 0. Using Lemma 2.3.1 and (2.3.30) we get that

ρVM (x)−

(

x2

x2 + 1
− bx

)

λM − 2
(

ln(−λM ) + x2 + 1
)

≥ 0. (2.3.31)

The choice of λM ∈ D−VM (x) is arbitrary, so from (2.3.31) we deduce that VM is a
viscosity supersolution of (2.3.29) at x. We conclude that VM is a viscosity solution
of (2.3.29) at x.

These two cases cover all x ∈ (0, 2), so VM is a viscosity solution of (2.3.29) at (0, 2).
The next step is to show that (OHJB) has a unique viscosity solution in (0, 2). For this,
it is sufficient to prove a comparison theorem for

{

ρV (x) +H(x,DV ) = 0 in (0, 2),
V (0) = v0, V (2) = v1,

(2.3.32)

where

H(x, λ) = −

(

x2

x2 + 1
− bx

)

λ+ 2
(

ln(−λ) + x2 + 1
)

. (2.3.33)

From Theorem 3.1 and Remark 3.3 of Sec. II of [5] we have that, it is sufficient to show
that

|H(x, p)−H(y, p)| ≤ ω1 (|x− y|(1 + |p|)) , (2.3.34)

for x, y ∈ (0, 2), p ∈ R
−, where ω1 : [0,+∞) → [0,+∞) is continuous, nondecreasing, with

ω1(0) = 0.
Let x, y ∈ (0, 2), p ∈ R

−. Then we have:

|H(x, p) −H(y, p)| =

∣

∣

∣

∣

p

(

y2

y2 + 1
− by −

x2

x2 + 1
+ bx

)

+ 2(x2 − y2)

∣

∣

∣

∣

≤

≤ |p|b|x− y|+ |p|

∣

∣

∣

∣

y2x2 + y2 − x2y2 − x2

(y2 + 1)(x2 + 1)

∣

∣

∣

∣

+ 2 |(x− y)(x+ y)| =

= |p|b|x− y|+ |p|

∣

∣

∣

∣

(y − x)(y + x)

(y2 + 1)(x2 + 1)

∣

∣

∣

∣

+ 2|x− y|(x+ y) =

= |p|b|x− y|+ |p|
|y − x|(y + x)

(y2 + 1)(x2 + 1)
+ 2|x− y|(x+ y) ≤

≤ |p|b|x− y|+ |p||y − x|(y + x) + 2|x− y|(x+ y) ≤

≤ |p|b|x− y|+ 4|p||y − x|+ 8|x− y| ≤

≤ 8|p|b|x − y|+ 8|p||y − x|+ 8(b+ 1)|x− y| =

= 8|p||x− y|(b+ 1) + 8(b+ 1)|x− y| =

= 8(b+ 1)|x − y|(|p|+ 1). (2.3.35)
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For ω1 : [0,+∞) → [0,+∞), ω1(x) = 8(b + 1)x, we have that ω1 is continuous, nonde-
creasing and ω1(0) = 0. Due to (2.3.35) we get that

|H(x, p)−H(y, p)| ≤ ω1 (|x− y|(1 + |p|)) , ∀x, y ∈ (0, 2), ∀p ∈ R
−

and the uniqueness of the viscosity solution of the (OHJB) in (0, 2) is proven.
We conclude that, if V is the unique viscosity solution of the (OHJB) in (0, 2) satisfying
the boundary conditions, then

VM ≡ V ∀M ≥ M0,

(which means that V = limM→+∞ VM ). Considering B = (0,M ]2 for some M ≥ M0 from
the beginning, in the definition of the optimal control problem and of the welfare function
W , we conclude that W is independent of M and W = V . The statement is proven.
2

Remark 2.3.1. The same conclusion can also be drawn for an arbitrary domain (0, d)
instead of (0, 2), as the proof does not depend on the boundary of this domain.

2.3.2 Qualitative Analysis Of The Value Function

The value function W is characterized by various properties. We have already men-
tioned that it is continuous, bounded, locally semiconvex, strictly decreasing on (0, 2) and
it is a viscosity solution of the (OHJB) equation. Some additional properties are mentioned
in the next propositions :

Proposition 2.3.3. Value function W of the optimal control problem mentioned, has the
following properties :

1. W is concave at [0, xb], where xb (which depends on b) is characterized as follows :
If x′(t) = α(t)−k(x(t)) is the dynamic system of the specific optimal control problem,
then (0, xb) is the maximal interval for which we have k′(x) ≥ 0 and k′′(x) < 0.

2. W is C1[0, xb] (it is smooth in the area where it is concave).

Remark 2.3.2. From the properties of xb it is clear that this is the flip point of the lake,
that is, the point at which the lake flips from an oligotrophic state to a eutrophic state,
with high equilibrium level of phosphorus and with low level of ecological services.

Remark 2.3.3. In general, if the value function is

W (x0) = sup
α∈A

∫ ∞

0
e−ρt [U(α(t)) −D(y(t))] dt

and the dynamic system is in the form of Proposition 2.3.3, then assuming that

• k is nondecreasing and concave at (0, y0)

• U is strictly concave at B



26 The Shallow Lake Problem

• D is convex and nondecreasing at (0, y0)

we have that W is concave and C1 at [0, y0] (see Proposition 1 and Theorem 1 of [31]).

Proof: We have that k(x) = bx− x2

x2+1
and, using calculus, we deduce that, for every

b ≥ 0 there is a point xb for which we have k′(x) ≥ 0 and k′′(x) < 0 for x ∈ (0, xb). The
value function is

W (x0) = max
(α1,α2)∈A

∫ ∞

0
e−ρt

[

ln(α1(t)) + ln(α2(t))− 2y2(t)
]

dt.

If U(a1, a2) = ln(a1)+ln(a2) andD(x) = 2x2, then U is strictly concave for every (a1, a2) ∈
R
+×R

+ (proved using the definition of concavity) and D is convex and nondecreasing at
(0,+∞). Using Proposition 1 and Theorem 1 of [31] (see Remark 2.3.3), we deduce claims
1 and 2. 2

The next proposition refers to the smoothness of W in the whole domain of definition:

Proposition 2.3.4. 1. The value function W is Lipschitz continuous in (0, 2).

2. In addition, for every x0 ∈ (0, 2), W is either differentiable or it has left and right
derivatives W−

x (x0) and W+
x (x0) at x0, respectively. For H given in (2.3.33) and

W+
x (x0) 6= W−

x (x0), we have







H(x0,W
−
x (x0)) = H(x0,W

+
x (x0)) = −ρW (x0) and

H(x0, l)(W
+
x (x0)−W−

x (x0)) ≥ −ρW (x0)(W
+
x (x0)−W−

x (x0))
for every l ∈ [min(W−

x (x0),W
+
x (x0)),max(W−

x (x0),W
+
x (x0))].

(A)

3. For every x0 ∈ (0, 2) there exists an a = a(x0) > 0 such that :

(a) If −ρW (x0) is not a local extremum value of H, then W |(x0−a,x0] ∈ C1 ((x0 − a, x0])
and W |[x0,x0+a) ∈ C1 ([x0, x0 + a)).

(b) If −ρW (x0) is a local extremum value of H, then the following are true on
(x0−a, x0] (respectively [x0, x0+a)). Either W |(x0−a,x0] ∈ C1 ((x0 − a, x0]) (re-
spectively W |[x0,x0+a) ∈ C1 ([x0, x0 + a))) or Wx(x) exists for every (x0 − a, x0]
(respectively [x0, x0 + a)) except perhaps a sequence xn → x0 where W−

x (xn) 6=
W+

x (xn). In this last case, however, we have

lim
x↑x0

x∈(x0−a,x0]

p(x) = W−
x (x0)

(

respectively lim
x↓x0

x∈[x0,x0+a)

p(x) = W+
x (x0)

)

,

where p(x) ∈ {W−
x (x),W+

x (x)} .

Proof: 1. Value function W is viscosity solution of the (OHJB) equation. If we
write this equation in the form of (2.3.32) with H given in (2.3.33), then, using that
x2

x2+1 − 0.6x < 0 for x ∈ (0, 2), we have that

H(x, λ) → −∞ as λ → −∞. (2.3.36)
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Now, for fixed x ∈ (0, 2) consider the function

φ(y) = W (y) + C|y − x|

where C > 0 is a constant to be chosen later. The fact that W is bounded and continuous
in (0, 2) implies the existence of ȳ ∈ (0, 2) such that

φ(ȳ) = min
y∈(0,2)

φ(y).

Let y1 ∈ (0, 2), y1 ≤ x. Choosing y2 ∈ (0, 2), y2 ≥ x with |y2 − x| ≤ |y1 − x| we have that

φ(y2) = W (y2) +C|y2 − x| ≤ W (y2) + C|y1 − x| ≤

≤ W (y1) +C|y1 − x| = φ(y1) ⇒

⇒ φ(y2) ≤ φ(y1),

using the fact that W is strictly decreasing in (0, 2). We deduce that, for every y1 ∈ (0, x]
there is y2 ∈ [x, 2) such that φ(y2) ≤ φ(y1), so we have that ȳ ≥ x.

The claim is that ȳ = x for C large. If not, then ȳ > x and we would have

ρW (ȳ) +H (ȳ,−C) ≥ 0 (2.3.37)

since W is a viscosity supersolution of (OHJB) and y −→ −C|y − x| is differentiable at
y = ȳ > x. We have that −C → −∞ as C → +∞, so for sufficiently large C, independent
of x, due to (2.3.36) we have that

ρW (ȳ) +H (ȳ,−C) < 0,

which is in contradiction to (2.3.37). Therefore, for such C, x is the point where φ has its
minimum, so

φ(x) ≤ φ(y) ∀y ∈ (0, 2)

⇒ W (x) ≤ W (y) +C|y − x| ∀y ∈ (0, 2)

⇒ W (y)−W (x) ≥ −C|y − x| ∀y ∈ (0, 2).

By interchanging the roles of x and y the proof is complete.
2. We can prove, using simple calculus, that :

(i) H : [0, 2] × R
− −→ R is continuous.

(ii) For every c,M ∈ R the set

H−1({c}) ∩ ([−M,M ]× [−M, 0))

is either empty or finite.

(iii) The local extremum values (i.e. the local minimum and maximum values) of H are
isolated.
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Using claims (i)-(iii) and following the proof of Theorem 1 of [30], with minor changes due
to the fact that here H is a function of two variables, we prove this claim. So, we apply a
similar “blow-up” argument to the equation

ρW (x) +H(x,DW ) = 0, x ∈ (0, 2). (2.3.38)

More precisely, for x0 ∈ (0, 2) and δ > 0 sufficiently small, let
W δ, xδ : [−1, 1] → R be defined by

W δ(x) =
W (x0 + δx) −W (x0)

δ
and

xδ(x) = x0 + δx.

It turns out that W δ is a viscosity solution of

δρW δ +H
(

xδ,W δ
x

)

= −ρW (x0) in (−1, 1). (2.3.39)

So, focusing in a neighborhood of x0, we pass from equation (2.3.38) to equation (2.3.39)
building W δ, which possesses all the nice properties of W and will help us to reach our
aim. Then we show that the family

{

W δ : δ > 0
}

converges uniformly, along subsequences,
to W∞ : [−1, 1] → R and W∞ inherits all the nice properties of W δ. From (2.3.39) we
deduce that W∞ satisfies equation

H(x0,W
∞
x ) = −ρW (x0) in (−1, 1)

which is the analogous of relation (0.5) of [30]. Finally we use lemmas 1.2 and 1.3 of [30]
(the fact that here H is a two-variable function does not vary their proofs much) to obtain
that W∞ is unique and either linear or piecewise linear with only one corner at x = 0,
hence the existence of W±

x (x0). The first part of (A) is immediate from the properties of
W∞ and the second part is straightforward from the definition of the viscosity solution.
3. Proof of 3. is very similar with the proof of Theorem 2 of [30], with slight changes due
to the fact that here H is a two-variable function. 2

Remark 2.3.4. An interesting result which occurs from the analytical proof of this theorem
(see [30]) in our case is that we have the following sufficient condition for the differentia-
bility of W at x0 : If

A = {(x, λ) ∈ [x0 − δ, x0 + δ]× [−L, 0) : H(x, λ) = −ρW (x0)}

is a singleton, then W is differentiable at x0.

Another result concerning the smoothness of W and the Skiba point comes from the
next theorem:

Theorem 2.3.2. If system (2.2.7) has three equilibrium points, we can construct the value
function through relation (2.2.9) so that it is a viscosity solution of the (OHJB) in (0,2),
with the boundary conditions given in Proposition 2.3.2.
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Proof: Let us recall from Sec. 2.2 that the value function provided by relation (2.2.9)
is multi-valued in [x1, x2] (Wl and Wr) and the Skiba point xs is the intersection point of
Wl and Wr in this domain (see Fig. 2.5). We construct W̃ so that it is continuous and
equals Wl on the left side of xs and Wr on the right side of xs, that is,

W̃ =

{

Wl, x ≤ xs,
Wr, x ≥ xs,

(see Fig. 2.7). We have

−80
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−55

−50

−45

−40

x

W̃

0
x1

xs

x2 2

Figure 2.7: The value function is chosen equal to Wl on the left side of xs and Wr on the
right side of xs (Wl and Wr are calculated by (2.2.9), see Figure 2.5).

{

ρWl(x) +H(x,Wlx) = 0,
ρWr(x) +H(x,Wrx) = 0,

(2.3.40)

where H(x, µ) is given in (2.3.33). So, Wl and Wr are viscosity solutions of the (OHJB)
equation, as they are classical solutions of the (OHJB) in (0, 2). The only thing that
remains to show is that W̃ satisfies the viscosity criterion at the Skiba point xs (where there
is a corner due to the jump of the gradient of W̃ at this point). From Fig. 2.7 and using the
definition of D+W̃ (x) we have D+W̃ (xs) = ∅, so W̃ is viscosity subsolution of the (OHJB)

at xs (see condition (j) of Definition 2.3.3). We have D−W̃ (xs) =
[

W̃−
x (xs), W̃

+
x (xs)

]

, as

shown in Fig. 2.7 so, in order to prove that W̃ is also a viscosity supersolution of the

(OHJB) at xs, we have to show that ρW̃ (xs) + H(xs, µ) ≥ 0 ∀µ ∈
[

W̃−
x (xs), W̃

+
x (xs)

]

,

using condition (jj) of Definition 2.3.3. It can easily be shown that H(xs, µ) is concave
with respect to µ and, using this property of H, we have:
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Let µ ∈ D−W̃ (xs) =
[

W̃−
x (xs), W̃

+
x (xs)

]

. Then, there exists λ ∈ [0, 1] such that µ =

λW̃−
x (xs) + (1− λ)W̃+

x (xs). Now, we have:

ρW̃ (xs) +H(xs, µ) = ρW̃ (xs) +H(xs, λW̃
−
x (xs) + (1− λ)W̃+

x (xs)) ≥

≥ ρW̃ (xs) + λH(xs, W̃
−
x (xs)) + (1− λ)H(xs, W̃

+
x (xs)) =

= λρW̃ (xs) + (1− λ)ρW̃ (xs) + λH(xs, W̃
−
x (xs)) + (1− λ)H(xs, W̃

+
x (xs)) ⇒

⇒ ρW̃ (xs) +H(xs, µ) ≥ λ
(

ρW̃ (xs) +H(xs, W̃
−
x (xs))

)

+

+(1− λ)
(

ρW̃ (xs) +H(xs, W̃
+
x (xs))

)

(2.3.41)

Using the definition of W̃ and (2.3.40) we derive that

{

ρW̃ (xs) +H(xs, W̃
−
x (xs)) = 0,

ρW̃ (xs) +H(xs, W̃
+
x (xs)) = 0.

(2.3.42)

From (2.3.41) and (2.3.42) we conclude that

ρW̃ (xs) +H(xs, µ) ≥ 0,

so W̃ is a viscosity supersolution of (OHJB) at xs. 2

Remark 2.3.5. As values of W̃ at the two saddle points are known (see (2.2.8)) there is a
boundary condition for W̃ , so there is a unique viscosity solution in the domain between
them (see the proof of Proposition 2.3.2). From Theorem 2.3.2 and Proposition 2.3.2 we
conclude that the value function W is differentiable at [xs1, xs2]\{xs}.

2.4 Numerical Investigation Of The Control Problem By

Discretizing The Viscosity Solution

2.4.1 Numerical Schemes

As we have explained in Sec. 2.2, the classical way to obtain the welfare function (2.1.3)
is by first constructing the stable manifolds of the optimal dynamical system (2.2.7) and
then integrating the function − 2

α(x) , see (2.2.9). The scope of this section is to present
an alternative, more robust, method of approximating numerically the welfare function
through convergent monotone schemes by approximating the viscosity solution of the
(OHJB). Given that the only boundary conditions available are the welfare values at the
saddle points given by (2.2.8), we construct three different finite difference schemes: The
“forward” scheme which is











Wi+1 = ∆x ·
ρWi+1+2

(

ln
(

−
Wi+1−Wi

∆x

)

+xi+1
2+1

)

xi+1
2

xi+1
2+1

−0.6xi+1

+Wi, i = 0, 1 . . . , N − 1,

W0 = W (xs0),

(2.4.1)
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where ∆x = 2−xs0
N and xi+1 = xi + ∆x, i = 0, . . . , N − 1, (x0 = xs0). The “backward”

scheme, which is






Wi = ∆y · e

(

xi
2

xi
2+1

−0.6xi

)

(Wi+1−Wi)−ρ∆y·Wi−2(xi2+1)∆y

2∆y +Wi+1, i = −1,−2, . . . ,−M,
W0 = W (xs0),

(2.4.2)
where ∆y = xs0−0

M and xi−1 = xi − ∆y, i = 0,−1, . . . ,−M + 1, (x0 = xs0). In these
two schemes, we approximate W (xi) with Wi, i = −M, . . . , 0, 1, . . . , N . The “upwind”
scheme, which is






















W
(l+1)
i =

ai
W

(l+1)
i

−W
(l)
i−1

∆z
−2

(

ln

(

−
W

(l)
i+1

−W
(l+1)
i

∆z

)

+βi

)

ρ , i = 1, 2, . . . , L− 1, l = 0, 1, 2, . . .

W
(r)
0 = W (xs1), W

(r)
L = W (xs2), r = 0, 1, 2, . . .

W
(0)
i , i = 1, 2, . . . , L− 1 is linear interpolation of W

(0)
0 ,W

(0)
L ,

(2.4.3)
where ∆z = xs2−xs1

L .
In the case of one saddle point xs0 ∈ (0, 2), we use the backward scheme in (0, xs0] and

the forward scheme in [xs0, 2]. In the case of two saddle points xs1, xs2 ∈ (0, 2) we use the
upwind scheme in [xs1, xs2] and the forward and backward schemes in the intervals [xs2, 2)
and (0, xs1], respectively.

The above three implicit schemes can be iteratively solved and their convergence is
guaranteed by fixed point arguments which are presented on Sec. 2.4.2. We next explain
the way the above numerical schemes are derived.

First we calculate the saddle points and the initial condition of the (OHJB) equation.
For the forward scheme, derivative DW (xi+1) in (OHJB) is replaced by the backward

finite-difference approximation DW (xi+1) ≃
W (xi+1)−W (xi)

∆x , so (OHJB) at xi+1 becomes

ρWi+1 =

(

xi+1
2

xi+1
2 + 1

− 0.6xi+1

)

Wi+1 −Wi

∆x
− 2

(

ln

(

−
Wi+1 −Wi

∆x

)

+ xi+1
2 + 1

)

and, solving this to the first Wi+1 of the right part, we take (2.4.1). For the backward
scheme, derivative DW (xi) in (OHJB) is replaced by the forward finite-difference approx-

imation DW (xi) ≃
W (xi+1)−W (xi)

∆y , so (OHJB) at xi becomes

ρWi =

(

xi
2

xi2 + 1
− 0.6xi

)

Wi+1 −Wi

∆y
− 2

(

ln

(

−
Wi+1 −Wi

∆y

)

+ xi
2 + 1

)

and, solving this to the second Wi of the right part, we take (2.4.2).
For the upwind difference scheme, the first from the left derivative DW (xi) in (OHJB)

is replaced by the backward finite-difference approximation DW (xi) ≃ W (xi)−W (xi−1)
∆z ,

while the other derivative DW (xi) is replaced by the forward finite-difference approxima-

tion DW (xi) ≃
W (xi+1)−W (xi)

∆z . So, (OHJB) at xi becomes

ρWi =

(

xi
2

xi2 + 1
− 0.6xi

)

Wi −Wi−1

∆z
− 2

(

ln

(

−
Wi+1 −Wi

∆z

)

+ xi
2 + 1

)

.
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Solving this to the Wi of the left part and putting ai =
xi

2

xi
2+1

− 0.6xi and βi = xi
2 +1, we

result in (2.4.3).
We now have the following convergence theorem:

Theorem 2.4.1. The numerical schemes derived above are consistent and monotone
schemes. In addition, they are stable and converge to the correct viscosity solution limit.

Proof: The proof of this theorem consists of the following steps :

• First, we show that numerical schemes (2.4.1), (2.4.2) and (2.4.3) are consistent.
This is done with the classical way for finite difference methods. We write scheme
(2.4.1) with W (xi+1) in place of Wi+1, so we have an error ri+1 added at the end of
this equation. Subtracting this from (OHJB) equation and using Taylor expansion
and inequality ln(x) ≤ x− 1, x ∈ R, we deduce that

max
0≤i≤N−1

|ri+1| ≤ Ch2,

where C is a constant. The same procedure is followed for schemes (2.4.2), (2.4.3),
as well. This relation shows the consistency of the schemes.

• Numerical scheme (2.4.1) is an approximation scheme of the form

S (r, x, ur(x), ur) = 0 in Ω̄,

where S : R+ × Ω̄ × R × B(Ω̄) −→ R is locally bounded (R+ ≡ [0,∞) and Ω ⊆ R
n

is open and bounded). Here, r = ∆x, x = xi+1 and ur is a function defined on
∆∆x = {xi : i = 0, . . . , N} by ur(xi+1) = Wi+1. Then, numerical scheme (2.4.1) is
written as

S (∆x, xi+1,Wi+1,W ) = 0,

where

S(k, y, t, u) = t− ui − k
ρt+ 2

[

ln
(

− t−ui

k

)

+ y2 + 1
]

y2

y2+1
− 0.6y

,

with k ≥ 0, y ∈ ∆∆x, t ∈ R and u ∈ B(∆∆x). The same is done for numerical
schemes (2.4.2), (2.4.3).

• Numerical scheme (2.4.1) is monotone. For this we must show that

S(k, y, t, u) ≤ S(k, y, t, w) if u ≥ w,

for all k ≥ 0, y ∈ ∆∆x, t ∈ R and u,w ∈ B(∆∆x). We have :

dS

dui
= −1−

2k
y2

y2+1 − 0.6y

(

−
k

t− ui

)

1

k
= −1 +

2k
(

y2

y2+1
− 0.6y

)

(t− ui)
. (2.4.4)

An a priori restriction for Wi, i = 0, . . . , N that we will accept now and also use later
is that

Wi+1 −Wi <
(2 + ε)∆x

xi+1
2

xi+1
2+1

− 0.6xi+1

,
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ε > 0 small. So, using this we have

t− ui <
(2 + ε)k
y2

y2+1 − 0.6y
⇒

1

t− ui
>

y2

y2+1 − 0.6y

(2 + ε)k

⇒
2k

(

y2

y2+1
− 0.6y

)

(t− ui)
<

2

2 + ε
< 1 ⇒

2k
(

y2

y2+1
− 0.6y

)

(t− ui)
− 1 < 0.

From (2.4.4) we deduce that scheme (2.4.1) is monotone. The same is done for
numerical schemes (2.4.2), (2.4.3).

• Consistent and monotone schemes for the H-J equations are stable and converge to
the correct viscosity solution (see [51], page 104).

The theorem is proved. 2

From the above theorem, we have that

Wi
∆x → W (xi), i = 1, 2, . . . , N, as ∆x → 0,

Wi
∆y → W (xi), i = −1,−2, . . . ,−M, as ∆y → 0.

Wi
∆z → W (xi), i = 1, 2, . . . , L, as ∆z → 0.

2.4.2 Iterative Method

We next try to find Wi, i = −M, . . . ,−1, 1, . . . , N in the case of one equilibrium point.
For this case, we have the following theorem :

Proposition 2.4.1. Function g1 :
[

Wlb,Wi +
(2+ε)∆x

ai+1

]

→
[

Wlb,Wi +
(2+ε)∆x

ai+1

]

, where

g1(x) =
∆x

ai+1

(

ρx+ 2

[

ln

(

−
x−Wi

∆x

)

+ βi+1

])

+Wi

is a contraction mapping for i = 0, 1, . . . , N − 1 and function g2 :
[

Wi+1,Wi+1 −
2∆y
ai

]

→
[

Wi+1,Wi+1 −
2∆y
ai

]

, where

g2(x) = ∆y · e
ai(Wi+1−x)−ρ∆y·x−2βi∆y

2∆y +Wi+1

is a contraction mapping for i = −1,−2, . . . ,−M, where ai+1 =
xi+1

2

xi+1
2+1 −0.6xi+1, βi+1 =

xi+1
2 + 1, i = −M − 1, . . . , 0, 1, . . . , N − 1 for specific ∆x,∆y, ε > 0 small and Wlb the

lower bound of Wi, i = −M, . . . , 0, 1, . . . , N, if the following conditions are satisfied :

• ρ ≤
k+(2+ε)−2 ln

(

− 2+ε
ai+1

)

−2βi+1

Wi
(ε, k > 0 arbitrary small),

i = 0, . . . , N − 1 (A)
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• ρ < min

{

(−2)
[

ln
(

− 2
ai

)

+1−βi

]

Wi+1
,− ai

∆y

}

i = −M, . . . ,−1 (B)

• ∆x ≤ −ai+1

ρ ·
2 ln
(

− 2+ε
ai+1

)

+2βi+1−(2+ε)+ρWi

2+ε i = 0, . . . , N − 1 (C)

• Wlb =
ρW0−2

ρ (D)

Then, Wi+1
(k+1) = g1

(

Wi+1
(k)
)

∈
[

Wlb,Wi +
(2+ε)∆x

ai+1

]

∀k ∈ N, i = 0, 1, . . . , N − 1,

with Wi+1
(0) = Wi+

(2+ε)∆x
ai+1

and the sequence Wi+1
(k+1) converges to Wi+1 and Wi

(k+1) =

g2

(

Wi
(k)
)

∈
[

Wi+1,Wi+1 −
2∆y
ai

]

∀k ∈ N, i = −1,−2, . . . ,−M, with Wi
(0) = Wi+1 and

the sequence Wi
(k+1) converges to Wi, as long as the following inequalities hold:

• |Wi+1 −Wi| > − (2+ε)∆x
ai+1

, i = 0, 1, . . . , N − 1 and

|Wi+1 −Wi| ≤ −2∆y
ai

, i = −1,−2, . . . ,−M. (E1)

• WN −Wlb ≥ − 25∆x
max{ai+1}

> 0 (E2)

Proof: We will prove the result for the forward scheme, i.e. for function g1. We take

x, y ∈
[

Wlb,Wi +
(2+ε)∆x

ai+1

]

with x < y. Then

g1(x)− g1(y) =
∆x

ai+1

(

ρ(x− y) + 2 ln

(

−x+Wi

−y +Wi

))

. (2.4.5)

If f(x) = x2

x2+1
− 0.6x then, using calculus, we deduce that f(x) < 0, ∀x > 0. So,

ai < 0, i = 0, . . . , N. (2.4.6)

We will prove that g1(x) is increasing in
[

Wlb,Wi +
(2+ε)∆x

ai+1

]

:

We have g1
′(x) = ρ(x−Wi)∆x+2∆x

ai+1(x−Wi)
and

ρ(x−Wi)∆x+ 2∆x = ∆x (ρ(x−Wi) + 2) ≥ ∆x (ρ(Wlb −W0) + 2)

(D)
= ∆x

(

ρ

(

ρW0 − 2

ρ
−W0

)

+ 2

)

= ∆x (ρW0 − 2−W0ρ+ 2) = 0

⇒ ρ(x−Wi)∆x+ 2∆x ≥ 0.

In addition ai+1(x − Wi) > 0 due to (2.4.6), so g1
′(x) ≥ 0 in

[

Wlb,Wi +
(2+ε)∆x

ai+1

]

.

Using inequality ln(x) ≤ x− 1, x ∈ R
+, we have from (2.4.5), (2.4.6):

g1(x)− g1(y) ≥
2∆x

ai+1
ln

(

−x+Wi

−y +Wi

)

≥
2∆x

ai+1

(

−x+Wi

−y +Wi
− 1

)

=
2∆x

ai+1

(

y − x

−y +Wi

)

.
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Since function g1 is increasing, we have

−|g1(x)− g1(y)| ≥
2∆x

ai+1

(

|y − x|

−y +Wi

)

⇒ |g1(x)− g1(y)| ≤ −
2∆x

ai+1(−y +Wi)
|y − x|. (2.4.7)

If m(x) = − 2∆x
ai+1(−x+Wi)

, then m′(x) = − 2∆x
ai+1

(

1
(−x+Wi)2

)

> 0 for x ∈
[

Wlb,Wi +
(2+ε)∆x

ai+1

]

,

due to (2.4.6). So,

y ≤ Wi +
(2 + ε)∆x

ai+1

⇒ m(y) ≤ m

(

Wi +
(2 + ε)∆x

ai+1

)

= −
2∆x

ai+1

(

−Wi −
(2+ε)∆x

ai+1
+Wi

) =
2

2 + ε

⇒ m(y) ≤
2

2 + ε
. (2.4.8)

So, from (2.4.7) using (2.4.8) we have

|g1(x)− g1(y)| ≤
2

2 + ε
|x− y|.

If x > y following the previous techniques, we end up with the same inequality. So we
have that

|g1(x)− g1(y)| ≤
2

2 + ε
|x− y| ∀x, y ∈

[

Wlb,Wi +
(2 + ε)∆x

ai+1

]

.

We conclude that g1 is a contraction in
[

Wlb,Wi +
(2+ε)∆x

ai+1

]

. We next show that

g1

([

Wlb,Wi +
(2 + ε)∆x

ai+1

])

⊆

[

Wlb,Wi +
(2 + ε)∆x

ai+1

]

. (2.4.9)

Because g1 is increasing and continuous, it is sufficient to show that

[

g1(Wlb), g1

(

Wi +
(2 + ε)∆x

ai+1

)]

⊆

[

Wlb,Wi +
(2 + ε)∆x

ai+1

]

.

For this, it is sufficient to show that

g1(Wlb) ≥ Wlb (2.4.10)

and

g1

(

Wi +
(2 + ε)∆x

ai+1

)

≤ Wi +
(2 + ε)∆x

ai+1
(2.4.11)
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(

then, g1

(

Wi +
(2+ε)∆x

ai+1

)

≥ g1(Wlb) ≥ Wlb and g1(Wlb) ≤ g1

(

Wi +
(2+ε)∆x

ai+1

)

≤ Wi +

(2+ε)∆x
ai+1

)

. Relation (2.4.10) is written as

∆x

ai+1

(

ρWlb + 2

[

ln

(

−
Wlb −Wi

∆x

)

+ βi+1

])

+Wi ≥ Wlb

⇔
Wlb −Wi

∆x
≤

1

ai+1

(

ρWlb + 2

[

ln

(

−
Wlb −Wi

∆x

)

+ βi+1

])

⇔ 2 ln

(

Wi −Wlb

∆x

)

+ 2βi+1 + ρWlb +
Wi −Wlb

∆x
ai+1 ≤ 0

⇔ 2 ln

(

Wi −Wlb

∆x

)

+ ai+1
Wi −Wlb

∆x
+ ρWlb + 2βi+1 ≤ 0. (2.4.12)

If h(x) = 2 ln(x) + ai+1x + 10, x > 0, then h has global maximum at x0 = − 2
ai+1

and is decreasing for x ≥ x0. In addition, limx→+∞ h(x) = −∞. If h(x0) ≤ 0 then
h(x) ≤ 0 ∀x > 0 and (2.4.12) holds (as the left part of it is smaller than h(x) ). If

h(x0) > 0, then we have: Supposing that h
(

− 25
ai+1

)

≥ 0, then

2 ln

(

−
25

ai+1

)

+ ai+1

(

−
25

ai+1

)

+ 10 ≥ 0 ⇒ ln

(

−
25

ai+1

)

≥ 7.5

⇒ −
25

ai+1
≥ e7.5 ⇒ ai+1 ≥ −

25

e7.5
≈ −0.014,

which is a contradiction, because we can easily see that max0≤i≤N{ai} ≈ −0.0897. So,

h
(

− 25
ai+1

)

< 0 and − 25
ai+1

> x0 which means that h(x) < 0 ∀x ≥ − 25
ai+1

. This means that

(2.4.12) holds if Wi−Wlb

∆x ≥ − 25
ai+1

. But this is true, because

Wi −Wlb

∆x
≥

WN −Wlb

∆x

(E2)

≥ −
25

max{ai+1}
≥ −

25

ai+1
.

So, (2.4.12) is true and so is (2.4.10). Relation (2.4.11) is written

∆x

ai+1

(

ρWi +
(2 + ε)ρ∆x

ai+1
+ 2

[

ln

(

−
2 + ε

ai+1

)

+ βi+1

])

+Wi ≤

≤ Wi +
(2 + ε)∆x

ai+1

⇔ ρWi +
(2 + ε)ρ∆x

ai+1
+ 2 ln

(

−
2 + ε

ai+1

)

+ 2βi+1 ≥ 2 + ε

⇔ 2 ln

(

−
2 + ε

ai+1

)

+
(2 + ε)ρ∆x

ai+1
+ ρWi + 2βi+1 − (2 + ε) ≥ 0

Using condition (C), the left-hand side of the above inequality is greater than

2 ln

(

−
2 + ε

ai+1

)

+(2+ε)





−2 ln
(

− 2+ε
ai+1

)

− 2βi+1 + (2 + ε)− ρWi

2 + ε



+ρWi+2βi+1−(2+ε),
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which is equal to 0. We thus conclude that (2.4.11) holds. So, relation (2.4.9) holds and

we showed that g1 :
[

Wlb,Wi +
(2+ε)∆x

ai+1

]

→
[

Wlb,Wi +
(2+ε)∆x

ai+1

]

is a contraction mapping

for i = 0, 1, . . . , N − 1. This means that g1 has a unique fixed point at this domain,
which is Wi+1 (because Wi+1 is a fixed point for g1, due to relation (2.4.1) and Wi+1 ∈
[

Wlb,Wi +
(2+ε)∆x

ai+1

]

, due to inequality (E1)). In addition, Wi+1
(k+1) = g1

(

Wi+1
(k)
)

∈
[

Wlb,Wi +
(2+ε)∆x

ai+1

]

∀k ∈ N, i = 0, 1, . . . , N − 1 with Wi+1
(0) = Wi +

(2+ε)∆x
ai+1

and

converges to that unique fixed point of g1 at this domain, which is Wi+1.
In a very similar way and using condition (B) instead of (A) and (C), it can be proved

that g2 :
[

Wi+1,Wi+1 −
2∆y
ai

]

→
[

Wi+1,Wi+1 −
2∆y
ai

]

is a contraction mapping for i =

−1,−2, . . . ,−M, and that, similarly, Wi
(k+1) = g2

(

Wi
(k)
)

∈
[

Wi+1,Wi+1 −
2∆y
ai

]

∀k ∈

N, i = −1,−2, . . . ,−M, with Wi
(0) = Wi+1 and converges to Wi. 2

Remark 2.4.1. Condition (A) shows that

ρWi − (2 + ε) + 2 ln

(

−
2 + ε

ai+1

)

+ 2βi+1 ≥ k, k > 0 small,

so it ensures that the right part of (C) is positive and we can select ∆x small enough so
that (C) is satisfied. In addition, it is easily seen that, for k, ε > 0 small enough, the right
part of (A) is positive, so we can find ρ > 0 which satisfies it.

So, the iterative methods that we have in the case of one saddle point, are:







Wi+1
(k+1) = ∆x

ai+1

(

ρWi+1
(k) + 2

[

ln
(

−Wi+1
(k)−Wi

∆x

)

+ βi+1

])

+Wi,

Wi+1
(0) = Wi +

(2+ε)∆x
ai+1

, i = 0, 1, . . . , N − 1
(2.4.13)

which is for the forward scheme and

{

Wi
(k+1) = ∆y · e

ai(Wi+1−Wi
(k))−ρ∆y·Wi

(k)−2βi∆y

2∆y +Wi+1

Wi
(0) = Wi+1, i = −1,−2, . . . ,−M

(2.4.14)

which is for the backward scheme. From the above theorem we have that

lim
k→∞

Wi+1
(k) = Wi+1, i = −M − 1, . . . , 0, 1, . . . , N − 1.

For the case of two saddle points, we have the following theorem:

Proposition 2.4.2. The finite difference equation (2.4.3) has a unique solution with re-

spect to W
(l+1)
i , if ∆z satisfies the following condition:

∆z ≤ min
i=1,...,L−1

{

(

W
(l)
i−1 −W

(l)
i+1

)

e
ρ·W

(l)
i−1
2

+βi

}

for l = 0, 1, 2, . . . (2.4.15)
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Proof: It is sufficient to show that the function

g3(x) =
1

ρ

[

ai
∆z

(x−Wi−1)− 2

(

ln

(

−
Wi+1 − x

∆z

)

+ βi

)]

,

where ai = xi
2

xi
2+1

− 0.6xi and βi = xi
2 + 1, has a unique fixed point in (Wi+1,Wi−1).

The function g3 is strictly decreasing in this domain
(

g3
′(x) = ai(x−Wi+1)−2∆z

ρ∆z(x−Wi+1)
< 0 in

(Wi+1,Wi−1), as ai < 0 and W is strictly decreasing
)

and limx→Wi+1 g3(x) = +∞. Due to

these properties of g3, it can easily be seen that to prove our goal, it is sufficient to show
that g3(Wi−1) ≤ Wi−1. We have

g3(Wi−1) ≤ Wi−1

⇔ −
2

ρ

(

ln

(

Wi−1 −Wi+1

∆z

)

+ βi

)

≤ Wi−1

⇔ − ln

(

Wi−1 −Wi+1

∆z

)

− βi ≤
ρ ·Wi−1

2

⇔ ln

(

Wi−1 −Wi+1

∆z

)

+ βi ≥ −
ρ ·Wi−1

2

⇔ ln

(

Wi−1 −Wi+1

∆z

)

≥ −
ρ ·Wi−1

2
− βi

⇔
Wi−1 −Wi+1

∆z
≥ e−

ρ·Wi−1
2

−βi

⇔
∆z

Wi−1 −Wi+1
≤ e

ρ·Wi−1
2

+βi

⇔ ∆z ≤ (Wi−1 −Wi+1)e
ρ·Wi−1

2
+βi .

The last inequality holds for all i = 1, . . . , L − 1 due to (2.4.15), so g3 has a unique fixed
point in (Wi+1,Wi−1). 2

The unique solution of this scheme can be calculated using the Bisection Method.

2.5 Comparison With The Simple Shooting Method

The Simple Shooting Method (see [57]) has been applied to our problem for both cases
described above, taking b = 0.6. So, for a specific x0 ∈ (0, 2), O. D. E. system (2.2.7) is
solved for several different values of α0, where (x0, α0) is the initial point. If the solution
trajectory reaches near one of the saddle points at a distance less than 2mm, we accept
that this is a stable manifold of the corresponding saddle point. Tests showed that this
distance occurs when α0 is approximated up to the 7th decimal digit. The application of
this method and, generally, all the codes used in this work, are written in Matlab.

The values that this method produces (W1) were compared to the values of the above
numerical schemes (W2). If we denote the points of a discretization of the comparison
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domain as xi, i = 1 . . . N , then the Absolute Error (AE) ant the Relative Error (RE) at
xi are defined as follows:

AE = |W1(xi)−W2(xi)| and RE =
AE

|W1(xi)|
, i = 1, . . . , N. (2.5.1)

For ρ = 0.03 we have one equilibrium point, saddle-stable, which is (0.3534, 0.1010). The
initial condition for W is W (0.3534) = −207.369. For ∆x = ∆y = 0.03, the mean and the
max RE between the two methods are 0.06% and 0.15%, respectively (see Table 2.1 and
Fig. 2.8(a)).

Table 2.1: Results of the comparison between the Simple Shooting Method and the cor-
responding, depending on the case, numerical scheme. Mean and maximum values over
the discretization points for the Absolute Error (AE) and for the Relative Error (RE) are
provided.

No. of equilibrium points Step Error [mean,max]
one ∆x = ∆y = 0.03 AE [0.150,0.332]
one ∆x = ∆y = 0.03 RE(%) [0.06,0.15]
three ∆z = 0.01 AE [0.081,0.199]
three ∆z = 0.01 RE(%) [0.15,0.34]
three ∆z = 0.001 AE [0.011,0.069]
three ∆z = 0.001 RE(%) [0.02,0.12]

For ρ = 0.13 we have three equilibrium points (two saddle points and a vortex). The
two saddle points are (0.4783, 0.1008) and (1.2465, 0.1395) and the vortex is (0.8366, 0.0902).
The two boundary conditions areW (0.4783) = −49.4852 andW (1.2465) = −64.8708. The
stopping criterion we used when applying the algorithm was ||W −W ′||∞ < 5 ·10−4, where
W ′ is the result 100 iterations after the result W . For ∆z = 0.01 the algorithm stopped
after 1000 iterations. The mean and the max RE between the two methods for this ∆z
are 0.15% and 0.34%, respectively (see Table 2.1 and Fig. 2.8(b) for this comparison). For
∆z = 0.001, 7100 iterations are required and the results are much better: The above two
errors are 0.02% and 0.12%, respectively.

2.6 Conclusion

The theoretical study and the numerical approximation of the welfare function pro-
vided by the economic analysis of the Shallow Lake Problem is the main problem of the
work of this Chapter. In our approach, the welfare function is proved to be a viscosity
solution of an Optimal Hamilton-Jacobi-Bellman equation. This result provides important
properties of this function concerning its smoothness and its graphical representation. It
also allows for its numerical approximation through convergent monotone schemes. Three
different numerical schemes are presented, the “forward”, the “backward” and the “up-
wind” schemes and the decision of which to use depends on the desired domain of the
approximation. Fixed point arguments which guarantee the convergence of these schemes
are presented.
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Figure 2.8: Comparison between the Simple Shooting Method and the result of the nu-
merical schemes. The case of one equilibrium point is depicted in (a) (b = 0.6, ρ =
0.03,∆x = ∆y = 0.03) and the case of three equilibrium points is depicted in (b)
(b = 0.6, ρ = 0.13,∆z = 0.01).

The Simple Shooting Method is used as a “gold standard” to test the accuracy of the
numerical schemes results. The mean Relative Error calculated was 0.06% in the case of
one saddle point (∆x = ∆y = 0.03) and 0.02% in the case of two saddle points (in the
domain between them and for spatial step ∆z = 0.001). These results can be consid-
ered satisfactory and prove the accuracy of the numerical approximations. In addition,
all the above results depict the importance of the extraction of the (OHJB) and of the
consideration of the welfare function as its viscosity solution.



Chapter 3

Abdominal Aortic Aneurysm 2D
Image Segmentation

Abdominal Aortic Aneurysm (AAA) is a localized dilatation of the aortic wall. Ac-
curate measurements of its geometric characteristics are critical for a reliable estimate of
AAA rupture risk. However, current imaging modalities do not provide sufficient contrast
between thrombus and surrounding tissue thus making the task of segmentation quite
challenging. The main objective of the work of this Chapter is to address this problem
and accurately extract the thrombus and outer wall boundaries from cross sections of a
3D AAA image data set (CTA). New geometrical methods applying tools like the inver-
sion mapping and the convex hull of a closed curve are used to trace these boundaries
exploiting the presence of calcifications and to address the problem of leakage of a moving
front into sectors of similar intensity. They are applied to the boundary curve obtained by
a Level Set Method (LSM). A Fast Marching Method (FMM) is used initially to resolve
the problem of speed that LSM’s present. The versatility of the methods is tested by
creating artificial images which simulate the real cases. Segmentation quality is quantified
by comparing the results with a manual segmentation of the slices of ten patient data sets.
Sensitivity to the parameter settings and reproducibility are analyzed. This is the first
work to our knowledge that utilises the level set framework to extract both the thrombus
and external AAA wall boundaries.

3.1 Introduction

The aorta is the largest artery in the human body and the main blood vessel leading
away from the heart. An Abdominal Aortic Aneurysm (AAA) is a permanent and irre-
versible localized dilatation of the abdominal section of this vessel. In clinical practice,
diagnostic information of the 3D anatomy of an AAA is extracted non-invasively in-vivo,
through Computed Tomography Angiography (CTA). AAA can grow progressively larger
and may eventually rupture if not diagnosed and treated. Accurate estimation of AAA
rupture risk remains an open problem. There are numerous indicators which have been
suggested, such as wall stress, wall stiffness, intraluminal thrombus thickness and wall
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tension. Their existence is due to the fact that the standard procedure according to which
there is intervention (open repair or stent) when the maximal diameter is greater than
5.5cm, is not as reliable as it should be. For the study of the above indicators and for a
reliable patient specific estimate of AAA rupture risk, accurate geometric characterization
of the aneurysm is critical. That is why a construction of a 3D model of the aorta is
required.

3D reconstruction of the complex anatomy of an AAA from medical imaging data can
be achieved through either a slice-by-slice 2D segmentation of the structures of interest
and the subsequent application of a 3D surface reconstruction method [27, 39] on the
extracted boundary points, or by utilization of a 3D segmentation approach that extracts
the surfaces of interest in one step [58, 40, 17, 55]. A manual 2D segmentation is a
rather time-consuming procedure with the additional drawback of large intra- and inter-
observer variability. An automatic segmentation method, which is accurate and robust,
would alleviate these problems. Level Set Methods (LSM’s) [51, 46] have been used in this
direction due to their advantages compared to other methods, such as the formulation of
the level set without a parametrization, resulting to a free transform and change of its
topology, and the relative ease in extending the method to 3D problems. Unfortunately,
AAA segmentation is a rather complicated task for this type of methods, due to the low
image contrast between thrombus and surrounding tissue that current imaging modalities
provide and due to the strong edges that many neighboring structures present. As LSM’s
are based on the modulus of the intensity gradient, the basic problem that arises is the
distinction between the thrombus and the outer wall boundaries. Other drawbacks of
these methods are the leakage of the advancing front into regions of similar intensity, not
stopping at the outer wall boundary, and the fact that they are computationally expensive
and thus slow. These problems explain the fact that LSM’s have been used in the past
mainly for lumen (the interior of the aorta through which blood flows) segmentation.

Level Set Methods have been employed several times in the past for AAA outer wall
segmentation. Subasic et al. [58] implemented a 3D LSM. Loncaric et al. [38] used a 2D
LSM with a narrow band extension and introduced a stopping criterion curve. Magee et
al. [40] combined the 3D deformable model, which is based on a triangulated mesh, for an
initial segmentation, with an efficient level set implementation. Zhuge et al. [63] performed
segmentation of the outer wall of AAA in five steps: preprocessing, global region analysis,
surface initialization, local feature analysis and level set segmentation. Sonka et al. [55]
applied a novel 4D optimal border detection algorithm for automatic surface segmentation
of the aortic lumen.

Many other methods have been used for segmenting an AAA. De Bruijne et al. [16]
presented an interactive method for aneurysm sac segmentation which relies on the fitting
of a shape model to points with high correlation with the reference contour. De Bruijne
et al. [15] proposed a method based on Active Shape Models (ASMs) [11], for automated
delineation of the outer aneurysm boundary in multiple MR sequences. Olabarriaga et
al. [45] introduced a new method for deformable model-based segmentation of thrombus
in AAA based on a 3D discrete deformable model (DM). Bodur et al. [6] computed a
centerline and presented an automatic segmentation of the aortic border of the orthogonal
slices using a novel variation of the isoperimetric algorithm which incorporates circular
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constraints. Borghi et al. [7] reconstructed patient-specific aneurysm models, combining
information from two different sets of MR imaging sequences. A manual segmentation and
a semi-automatic approach based on the region growing method were used. De Putter et
al. [17] created an initial 3D active object from the lumen centerline. This is iteratively
deformed via a time-discretized second order Newtonian-evolution equation. Tam et al.
[60] combined simple cropping and percentage classification to create smooth and accurate
boundaries between the metal tynes that support the stent graft and the aorta and between
the aneurysm and air.

In all the above works, there is no distinction between thrombus and wall, except from
Borghi et al. [7], where the wall was assumed to have a constant thickness along the entire
aneurysm. To our knowledge, there is only one recent work extracting the wall thickness
of the AAA wall using, however, a completely different approach: Martufi et al. [41] used
intensity histograms for the thrombus segmentation and a neural network for the outer
wall segmentation.

In the work of this Chapter, a great part of which can be found in [64] and [32], we
utilize the level set framework and geometrical methods for a semi-automatic 2D segmen-
tation of the thrombus and outer wall boundaries from cross sections of a 3D AAA image
data set (CTA). The main objective of this work is to accurately distinguish the throm-
bus and the outer wall boundaries whenever there is adequate information provided by
the CTA scans for the arterial wall. This is the case when calcifications, which appear
in AAA CTA images as very high intensity regions, are present, or there is sufficient in-
tensity gradient or when information can be extracted from neighboring regions through
interpolation. An example of such a slice of an AAA CTA scan is shown in Fig. 3.1,
where the two boundaries have been obtained by a manual segmentation. We present two
geometrical methods which exploit the presence of calcifications. These methods recon-
struct the thrombus and wall boundaries from the toothed-shaped, due to the presence of
calcifications or weak intensity gradient change, boundary curve obtained by LSM. Our
algorithms have been applied to ten patient data sets (450 slices) and the extracted results
have been compared with a manual segmentation obtained from a medical expert.

3.2 Overview Of The Methods

The basic steps of the segmentation framework proposed in this work, which combines
the level set framework with geometrical methods, are shown in Fig. 3.2. Initially, a
suitable cropping is performed to the selected slice of the AAA CTA scan to extract the
region of interest in order to reduce segmentation time. The FMM is first applied with a
proper modification. The user is interactively asked to enter up to four pairs of starting
and ending points in order to obtain an optimized initialization used for the thrombus
and the outer wall segmentations. For the thrombus boundary segmentation, the LSM is
applied to the thrombus initialization to obtain a boundary curve to which the thrombus
boundary reconstruction method is then applied.

In the outer wall boundary reconstruction, the leakage issues of the advancing front
are resolved by using the LSM to the thrombus initialization accompanied by one or
more, if required, of the three stopping criteria introduced in this work. These are the
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Figure 3.1: Example of a slice of an AAA CTA scan in (a). The window width is properly
adjusted, so that the AAA wall is visible. (b) presents the intensity profile along the
dashed line of (a). This shows that there is intensity difference inside the wall (regions
A-B and E-F). The possible existence of such information and, mainly, the existence of
calcifications, are exploited in our segmentation methods. This is one of the slices used
in our experiments and the manual segmentation of the two boundaries provided by an
expert is depicted in (c).

Sector Criterion (SC), the Length Difference Rate Criterion (LDRC) and the Internal-
External Contact Criterion (IECC). The leakage region of a slice can be also detected if it is
desired by the user, using the Detection of Leakage Region (DLR) method. The outer wall
boundary reconstruction method is then applied to the stopped boundary curve. As part
of the method, the user is interactively asked to apply an appropriate thresholding to the
image in order to locate the existing calcifications. In case the resulting thrombus and outer
wall boundaries coincide in some regions, due to lack of calcifications and low intensity
gradient, the Thrombus and Wall Boundaries Distance (TWBD) method is performed to
the thrombus boundary to set a proper distance by an interpolation technique.

3.3 Level Set Framework

3.3.1 First Phase Of The Model-Fast Marching Method (FMM)

3.3.1.1 The Fast Marching Method Equation

The application of the level set framework consists of two phases. In the first phase
we use the FMM. In this method, the position of the expanding front is characterized by
computing the arrival time T (x, y) of the front as it crosses each point (x, y) [51]. If Γ is
the initial location of the interface then T = 0 on Γ. At time t the moving front is given
by

Γ(t) =
{

(x, y) ∈ R
2|T (x, y) = t

}

. (3.3.1)
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Figure 3.2: Diagram of the segmentation methods.
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The front is moving with a speed function in the normal direction gI > 0, so the equation
for the arrival function T (x, y) is

gI |∇T | = 1 . (3.3.2)

Here, the proposed edge-indicator function, which restrains the evolving front from leaking
out of the desired region is

gI(x, y) =
1

1 + λ|∇Gs ∗ I(x, y)|2
. (3.3.3)

I is the image intensity and for α ∈ R
2, Gs(α) is the Gaussian with width s,

Gs(α) =
1

4πs
e−

|α|2

4s , (3.3.4)

which is used to reduce possible noise effects in the image. λ is a positive parameter. gI
is close to unity away from the boundaries and drops to zero near sharp changes in the
image gradient. These changes presumably correspond to the edges of the desired shape.

3.3.1.2 Numerical Schemes For The FMM

For the numerical solution of the Eikonal equation

F |∇T | = 1, (3.3.5)

which is the general form of (3.3.2), where F > 0 is the speed in the normal outward
direction of the curve/surface, the following upwind scheme (written for the 3D case)
turns out to be very convenient (see [51])
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=
1

Fijk
. (3.3.6)

The reason for using this scheme deals with the basic idea of the FMM, according to
which solution T is systematically built using upwind values (opposed to the direction of
information flow) only. This scheme allows for outward flow of information, from smaller
to larger values of T . So, the FMM rests on building the solution outward from the
smallest T value, stepping away from the boundary condition in a downwind direction.

An explanation of (3.3.6) (this equation shows that for the calculation of Tijk we choose
its smallest neighbors (if they exist) in each of the three directions) can be given with the
help of optimal control theory. Equation |∇T | = 1

F is equivalent to

sup
|q|≤1

{

∇T (x) · q −
1

F (x)

}

= 0 ∀x ∈ Ω, (3.3.7)

where Ω ⊆ R
3. T is the value function of the following optimal control problem :

{

y′x(s) = −q(s), s ≥ 0
yx(0) = x

(3.3.8)
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where

q ∈ Aadm =
{

q : R+ → R
2 measurable/ |q(s)| ≤ 1

}

.

The functional cost is

J(x, q(·)) =

∫ T

0

1

F (yx(s))
ds+ φ(yx(T )),

where T = min {t ≥ 0|yx(t) ∈ ∂Ω}. So, the value function of this problem is

T (x) = inf
q(·)∈Aadm

J(x, q(·))

and, following optimal control theory, (see [5]), it satisfies the corresponding HJB equation
as a viscosity solution, namely (3.3.7). Using (3.3.7) it is obvious that q = ∇T

|∇T | , so, the

optimal trajectory of the problem (the one which is connected with the optimal control)
can be calculated from

{

y′x(s) = − ∇T
|∇T | ,

yx(0) = x
.

So, starting from point x, we have to move in the direction of the largest reduction of T
(which is − ∇T

|∇T |), namely to the neighbor of Tijk with the smallest value.

A convenient algorithm for the solution of the 3D upwind numerical scheme (3.3.6)
can be found in the second Chapter of [20] and is based on the fact that this equation is
a quadratic equation for Tijk, assuming that the neighboring grid values for T are given.
Thus, one solution for (3.3.5) comes from updating the value of T at each grid point ac-
cording to this quadratic, for some number of steps/iterations:
For iter=1,n

For i, j, k = 1,dim

Solve Quadratic for T iter+1
ijk , given

T iteri−1,j,k, T
iter
i+1,j,k, T

iter
i,j−1,k, T

iter
i,j+1,k, T

iter
i,j,k−1, T

iter
i,j,k+1

EndFor
EndFor.

Assuming N points in each direction and an optimistic guess of roughly N steps to
converge, the computational cost of the above is of order O(N4). The above numerical
scheme is monotone, stable, consistent and admits a Maximum Principle, so it converges
(see [48]). In addition, there exists a fast and explicit algorithm (also found in [48]) which
makes it converge in very few iterations.

A non-iterative procedure can be used for the calculation of values of T at the grid
points, using the central idea of the FMM. This is extensively described in [51],[20] and we
here describe its basic steps. Solution T is systematically constructed using the smaller
values only. We sweep the front along by considering points in a thin zone around the
existing front, and marching this thin zone forward, freezing the values of existing points
and bringing new ones into the narrow band structure. The key is in the selection of which
grid point in the narrow band to update.
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We consider a two-dimensional version of the Eikonal equation F |∇T | = 1 and we
analyze the procedure with the help of Fig. 3.3, taken from [51]. The boundary value is
known at the origin (black sphere in the first image of Fig. 3.3). The black spheres in Fig.
3.3 (called Known) are the grid points at which their value has been found and will not
be changed. The dark gray spheres (called Trial) are the next grid points to be examined
and for which an estimate of T has been computed using equation (3.3.6). Finally, the
light gray spheres (called Far) is the set of all other grid points for which there is not yet
an estimation for T . The steps of the loop are the following:

(i) Put the boundary value to the black sphere (Known) and value ∞ to all the other
spheres (Far).

(ii) Tag as Trial the four neighbors of the black sphere and compute their values by
solving the quadratic equation (3.3.6). If there are two solutions, keep the larger one
(due to the central idea of the FMM as mentioned before).

(iii) Freeze (add to Known) the Trial point with the smallest T value (A in Fig. 3.3).

(iv) Tag as Trial all neighbors of A that are not Known and compute their values by
solving the quadratic equation (3.3.6).

(v) Add the smallest among all Trials to Known.

(vi) Return to step (ii).

Due to the fact that the recomputation of the values of T at the neighboring points
cannot provide a smaller than any of the Known points value, we need never go back
and ”revisit” a point with a known value. A narrow band LSM (see [51]) can be used
to find the initial values for the method. Some other additional characteristics of this
procedure concern an efficient scheme with the use of a binary tree for a fast detection
of the grid point in the narrow band with the smallest value T among all the Trials, the
reduction of the overall computational cost from O(N4) to O(N3 logN), the fact that no
CFL condition is required for the time step ∆t and, finally, the possibility of increasing
the order of accuracy (from one to two) by using an appropriate scheme. For a detailed
presentation of all these characteristics, see [51].

3.3.2 Second Phase Of The Model-Level Set Method (LSM)

3.3.2.1 The Level Set Method Equation

In the second phase we embed the initial position of the front as the zero level set of a
higher-dimensional function φ and we link the evolution of this function to the propagation
of the front itself through a time-dependent initial value problem. At any time, the front
is given by the zero level set of the time-dependent level set function φ. So, at time t ≥ 0,
the front is

Γ(t) =
{

(x, y) ∈ R
2|φ(x, y, t) = 0

}

, (3.3.9)
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Figure 3.3: Update procedure for Fast Marching Method

where φ(x, y, 0) is the result of the FMM. The level set equation used in this phase is

φt = gI(x, y)(κ − c)|∇φ|+∇φ · ∇P . (3.3.10)

gI is the same as before, κ is twice the mean curvature, c > 0 a parameter used for faster
convergence [51] and

P (x, y) = −|∇Gs ∗ I(x, y)| . (3.3.11)

This level set equation consists of three terms: gIκ|∇φ| which acts as a smoothing term
for the front away from the boundary under detection, gI(−c)|∇φ| which is a driving
expansion force and ∇φ · ∇P which has a stabilizing effect, as P constantly attracts the
front to the edges in the image [51, 46, 49]. Sapiro [49] and Antiga [4] derive analytically
an equation similar to (3.3.10). The only differences between this and the object-detection
model adopted by Sapiro [49] are parameter λ in (3.3.3) and the use of opposite signs for
c. For a detailed proof of (3.3.10) for the 3D case, based on [4], see the Appendix B. Two
other variational formulations of the LSM can be found in C. Li et al. [34] and Gelas et
al. [26].

If we look at equation (3.3.10) from a strict mathematical view, with an initial condition
φ = g in R

2×{t = 0}, where g(x) is a continuous function in R
2, we can say that existence
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and uniqueness of a viscosity solution φ can be proved under certain conditions (see [51]).
Function φ found in the definition of Γ(t) is exactly this viscosity solution and Γ(t) is
the generalized evolution of Γ(0), which is the initial front. It can be proved that Γ(0)
is independent of the initial choice of the continuous function g(x) that describes it (see
[23]). For more about the relation between level set equations and viscosity solutions and
for the numerical schemes used for convergence to the correct viscosity solution, see [51].

3.3.2.2 Numerical Schemes For The LSM

The scheme used for the numerical solution of equation (3.3.10) combines the forward
Euler time discretization with high-order upwind differencing for the hyperbolic ∇φ ·
∇P term, Godunov’s scheme for the hyperbolic gI(−c)|∇φ| term and central differencing
for the parabolic gIκ|∇φ| term (see [46]). This scheme is consistent and stable using a
combined CFL condition, which can be found in [46]. A more accurate approximation
of the spatial derivatives can be made with the use of divided differences of high order
and this provides first, second and third order schemes (called ENO) or a fifth order
scheme (WENO). In addition, due to the existence of a motion in the normal direction
(gI(−c)|∇φ|) and an externally generated velocity field (∇φ · ∇P ) in (3.3.10), it may be
difficult to find the upwind direction. Godunov and Lax-Friedrichs are the most commonly
used schemes for determining the correct direction. For more details about these remarks
and about the numerical solution of (3.3.10), see [46].

3.3.2.3 Detection Of Leakage Region Method (DLR Method)

The main problem of the LSM in segmenting the outer aortic boundary is the leakage
of the moving front (which is the thrombus initialization) into surrounding tissue in regions
with similar image intensity to that of the aortic wall (see the yellow curve in Fig. 3.4(d)).
Before addressing this issue, we describe a method which can optionally be used to detect
the regions where the leakage takes place (see Fig. 3.4(a)). The method is called Detection
of Leakage Region (DLR) method. We first split the interior of the thrombus initialization
curve into sectors, using radials starting from its center of mass, which are equally spaced
by a user-defined sector angle φ. The initialization is evolving with the level set equation
and a reinitialization as a signed distance function takes place every ten iterations. A
calculation of the area of each sector is also made every ten iterations. We then calculate
the relative change of its area by comparing it with the sector area at the end of the
previous ten iterations. The evolution is interrupted when a local minimum of the relative
area change has appeared for all the sectors. When the curve stops, we select the sectors
for which the relative area change is of order r for all iterations, to be the ones that give
the leakage region in the image. For the choice of the value of r, see Sec. 3.5.1.

The use of the area change as a leakage detection has been previously used [62]. How-
ever, herein we adopt a local approach, which allows the detection of even small, localized
leakages and also the precise identification of the regions where the leakage occurs.
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3.3.2.4 Three Stopping Criteria

The DLR method as described in Sec. 3.3.2.3 provides a stopping criterion which we
will call Sector Criterion (SC) (see Fig. 3.4(b)). The second stopping criterion, called
Length Difference Rate Criterion (LDRC), stops the curve when the first minimum of the
absolute value of the length difference rate of the curve appears. Here, as length difference
rate we consider the difference of the total length of the curve every ten iterations. A
sudden increase of this rate is due to the leakage, so the curve has to stop (see Figs.
3.4(c,d)).

In the third stopping criterion, called Internal-External Contact Criterion (IECC), we
consider an inner and an outer (to the aortic wall) initialization which move towards each
other simultaneously; this is achieved by applying the level set equation (3.3.10), with
parameter c positive in the case of the inner initialization and negative in the case of
the outer initialization (with the same absolute value). The evolution is interrupted as
soon as the two evolving curves come into contact. As an inner initialization we take the
result of the FMM. As an outer initialization we consider the smallest circle containing
the inner initialization, extended by a proper number of pixels p. For the value of p see
Sec. 3.5.1. The final result is the inner curve at the time of contact of the two curves (see
Figs. 3.4(e,f)).

A comparison of these three stopping criteria, in terms of the speed of their response to
a leakage, is presented in Sec. 3.5.6. The resulting curve is then used for the reconstruction
of the outer wall boundary (Sec. 3.4.2).

3.4 Geometrical Methods For The Reconstruction Of Throm-

bus And Outer Wall Boundaries

3.4.1 Thrombus Boundary Reconstruction In The Presence Of Calcifi-
cations

The presence of calcified deposits which are located within the AAA wall and the
reduced contrast between thrombus and outer wall result in a “toothed” thrombus bound-
ary, as the evolving curve enters the regions between the calcifications (see Fig. 3.5, that
describes the method). To eliminate these regions, we consider the inversion mapping
with respect to the curve Γ obtained by the LSM. The inversion mapping is the usual
transformation T (z) = 1/(z − z0) in the complex plane, where z0 = (x0, y0) is the center
of mass of the domain bounded by Γ. We consider the domain bounded by T (Γ) in the
image plane under T , and we find the points of its convex hull. To obtain the thrombus
boundary we take the image under T−1 of the boundary of the constructed convex hull
and we apply the LSM for a few iterations. For the matlab code written to apply this
method, see the Appendix D.2.

By using the inversion mapping, the possible existence of leakage does not affect the
reconstruction of thrombus. So, the final result is not sensitive to the initialization of the
method. Note that the stopping criteria are not used (they are used, however, for the
reconstruction of the outer wall boundary, as we will explain in the following section).



52 Abdominal Aortic Aneurysm 2D Image Segmentation

(a) (b) (c)

(d) (e) (f)

Figure 3.4: Results of the DLR method and the three stopping criteria for the same
cross section: (a) The leakage regions detected by the DLR method are shown in black
(r = 10−2). The angle of the sectors is π

24 . (b) The result of SC which stops the curve
after 80 iterations. (c) The initial curve used for LDRC obtained by the FMM. (d) The
black curve is the result of LDRC (40 iterations) and the yellow curve the result after 100
iterations, showing the leakage if LDRC had not been used. (e) The outer and the inner
initialization used for IECC. (f) The final outer and inner curves, where the latter is the
IECC result (60 iterations).
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Figure 3.5: The steps for the reconstruction of the thrombus boundary of the cross section of

Fig. 3.4: (a) The yellow curve is the thrombus initialization obtained by the FMM and the black

curve the result of the LSM (200 iterations). (b) The image of the black curve under the inversion

mapping with respect to its centroid (in orange) and the boundary of its convex hull (in black) are

depicted. (c) The preimages of the points of the convex hull under the inversion mapping form a

domain, whose boundary is the yellow curve. (d) The yellow curve is the final result, after applying

the level set equation for 20 iterations.



54 Abdominal Aortic Aneurysm 2D Image Segmentation

3.4.2 Reconstruction Of The Outer Wall Boundary In The Presence Of
Calcifications

The circumferential distribution of calcifications in the AAA wall can be exploited to
segment both the outer wall and thrombus boundaries. The first step in the procedure
for the reconstruction of the outer wall boundary is a thresholding of the image to extract
the calcification regions (Fig. 3.6(a)). The total area of the pixels above the threshold is
computed and displayed and the user selects an upper and lower bound for the threshold.
Then an iterative process seeks within this range the threshold value that minimizes the
derivative of calcification area with respect to threshold value. If the result is satisfactory
(i.e. the SNR of the final thresholded image is high, where calcifications are the signal
and all the other parts constitute noise, and also judging from the grayscale image) it
is accepted by the user. Otherwise a new threshold range is specified and the process is
repeated until a satisfactory result is obtained.

Following the application of a stopping criterion to the evolution of the thrombus
initialization with the LSM, we consider the extracted curve and the smallest circle con-
taining this curve. At least one point of each calcification will be interior to this circle
(see Fig. 3.6(b)). We then apply the region growing method with each calcification pixel
interior to the circle acting as a seed and we use the threshold extracted in the previous
step as a rule of similarity to locate all the calcification pixels in the image (Fig. 3.6(c)).
We then compute the convex hull of the union of all mid-edge points of the calcification
pixels and the points of the curve which was the result of the LSM on the thrombus ini-
tialization curve. The boundary of the convex hull (the dashed black curve in Fig. 3.6(d))
will certainly contain all the calcifications. The procedure is concluded by applying the
level set equation to this boundary, but taking an inward motion this time, aiming at a
smoother result which is more biologically plausible (yellow curve in Fig. 3.6(d)). Figure
3.6(e) depicts both the thrombus and outer wall boundaries extracted by the methods
presented in this and the previous section which exploit the presence of calcified deposits.

3.4.3 Case Of Few (Or No) Calcifications-Thrombus And Wall Bound-
aries Distance (TWBD) Method

In the case where there exist only few or no calcifications inside the AAA wall, regions
might appear in the image, where the reconstructed thrombus and outer wall boundaries
obtained using the methods of Sec. 3.4.1 and 3.4.2 almost coincide. In some regions,
though, even when calcified deposits are absent, the two reconstructed boundaries may
not coincide due to the use of the LSM, if sufficient intensity contrast between thrombus
and outer wall exists. In general, regions where the two boundaries almost coincide are
rare in a cross section with significant presence of calcifications. Moreover, such regions
cover approximately 40% of the outer wall contour in the case of the cross sections with
almost no calcifications taken from the patient data sets studied in Sec. 3.5. Assuming
that wall thickness distribution should present a smooth continuity, interpolation can be
applied to extract wall thickness in regions where thrombus and outer wall boundaries are
too close to each other.

We consider many rays starting from the centroid of the thrombus, so that two suc-
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(a) (b) (c)

(d) (e)

Figure 3.6: (a)-(d) The steps for the reconstruction of the outer wall boundary in the cross section

of Fig. 3.4: (a) Appropriate thresholding to locate the calcifications. (b) The LSM extracted curve

in black (using LDRC, 40 iterations) and the smallest circle containing this curve are depicted. (c)

Detection of the calcification pixels (shown in black) using this circle. (d) The dashed curve is the

boundary of the convex hull of the union of the mid-edge points of these pixels and of the black

curve depicted in (b). The yellow curve is the final result, after applying the level set equation to

this boundary for 20 iterations. (e) depicts the result of the methods (thrombus and outer wall

boundaries in black and yellow, respectively) for the same cross section.
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cessive rays form the same angle φ, and find the distance (wall thickness) between the
two intersection points of each ray with the thrombus and outer wall curves. We find the
thrombus points which are connected with distances of order d/10 mm. For the value of
the parameter d, see Sec. 3.5.1. For each point, we find the nearest n thrombus points in
the counterclockwise direction whose distances (wall thicknesses) are of order d mm and
calculate the mean of these distances. Then, we find which of these n points has distance
closer to this mean. We denote this distance as dl and the distance found following the
same procedure in the clockwise direction as dr. Then a linear interpolation between dl
and dr is made to obtain a new wall thickness (and a new thrombus point) for each point
in the region with distances of order d/10 mm. Finally, we apply the level set equation to
the so reconstructed thrombus boundary for a small number of iterations (e.g. 10) taking
an outward motion, to obtain a smoother and physiologically more realistic result.

Numerical tests have shown that for n ∈ {4, 5, . . . , 10} the results are very similar,
because of the very small angle φ. Figure 3.7 shows the result of the method for two
cross sections, one with few calcifications, approximately 30% of the boundary parameter
(Fig. 3.7(a)) and one with almost no calcifications, approximately 8% of the boundary
parameter (Fig. 3.7(d)).

3.5 Experiments

3.5.1 Implementation Of The FMM And LSM

We applied the FMM using the Matlab-based ”Fast Marching Toolbox” [47] created
by Gabriel Peyré to obtain a thrombus initialization for the LSM. We took λ = 50 for gI
and we used a 5× 5 Gaussian filter with s = 1. In this Toolbox, the user typically gives a
pair of points, a start and an end point (a point, here and in the rest of this Chapter, is
the center of a pixel). The front is initialized with the start point inside the desired region
and expands until the solution has almost reached the desired edge. It stops expanding
when it meets the end point for the first time. These points are specified either by their
coordinates or interactively by cursor positioning on the image.

It should be noted that a good initialization is important for a satisfactory final result.
So, the initial curve: a) must be close to the contour we want to detect, b) must not have
leaked out of it, and c) should not have been captured by the lumen in some region. In
order to obtain an initialization with the above principles, some general rules are provided
for the selection of the start and end points: the start point is chosen either near a
conceivable center of mass of the thrombus or next to a region of high contrast, but end
point should be chosen at a low contrast region, in order to avoid the leakage.

Unfortunately some images are rather difficult to segment and extract a proper throm-
bus initialization (due to many leakage problems or strong responses from neighboring
objects, such as the spine, lumen and calcifications). To solve this problem we modified
the aforementioned Toolbox to allow the user to select up to four pairs of points (this is the
minimum number of pairs required to produce a good initial curve for the most difficult
to segment cases and it was determined after extensive experimental work). In this case
the initialization is the union of the results extracted for each pair. Another issue, which
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Figure 3.7: Application of the TWBD method for two cross sections with few (a) and no
(d) calcifications (d = 1 mm, n = 4 and φ = π

200). Thrombus and outer wall boundaries
coincide in some regions in (a), due to the lack of calcifications. The result of the TWBD
method is shown in (b) and the final result, after applying the LSM, in (c). A proper
distance between the two boundaries has been settled. A cross section with very few
calcifications is depicted in (d). (e) presents the intensity profile along the dashed line
of (d). This shows that there is intensity difference inside the wall (regions A-B and E-
F) compared to thrombus (regions B-C and D-E). The two boundaries may coincide in
some regions but the existence of regions with distance between the boundaries due to this
difference is exploited via the TWBD method. The final thrombus boundary (dashed line),
after applying the TWBD method and the LSM, and the outer wall boundary (continuous
line) are shown in (f).
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is the only limitation of the method, is that the two selected points of each pair should
belong to pixels of almost the same intensity and a path of pixels with similar intensity
connecting these two points should also exist. This is a drawback of the method as far
as reproducibility of the thrombus initialization is concerned, due to the wide range of
intensities that may exist near the thrombus boundary or inside the thrombus. Another
modification is introduced to fix this matter: Following the selection of the starting point,
thresholding is applied so that all the pixels with intensity very close to the intensity of
this point are shown in white and the rest of the pixels are shown in black. In this way, the
possible ending points that the user can select from are presented and the existing paths
joining some of these points with the starting point are also shown. For the 2D version of
the Toolbox the code is in C++ which makes the application of the method very fast.

For the implementation of the LSM we used the Matlab-based ”Level Set Toolbox”
[59] created by Baris Sumengen. In this Toolbox there are two basic routines. The first one
is for the reinitialization of the level set function φ as a signed distance function (usually
every five or ten iterations) so that φ remains smooth as it evolves. The choice of a signed
distance function for this purpose is not accidental: these functions are the best candidates
for implicit curve/surface representations because of their smoothness (they are smooth
everywhere except from equidistant to the curve points, which are located far away from
the zero level set), simplicity (they satisfy equation |∇φ| = 1, which simplifies the other
equations) and stability. The frequent reinitialization takes place due to the fact that φ
may present steep gradients, which should be avoided to obtain high order approximations
of the spatial derivatives and high quality numerical results. The numerical techniques,
then, need to be efficient only for the zero level set, as the difficulties away from it can be
ignored due to the periodic correction of the rest of the points of φ, which happens because
of the reinitialization. The reinitialization technique used in this Toolbox is connected with
the following reinitialization equation

φt + S(φ0)(|∇φ| − 1) = 0,

where S(φ0) is equal to 1 outside the curve, -1 inside the curve and 0 at the points of the
curve, where we want φ to stay equal to zero. Numerical tests showed that the results get
better if S(φ0) is numerically smoothed, so the expression

S(φ0) =
φ0

√

φ0
2 + (∆x)2

(3.5.1)

can be used for its calculation, as a numerical approximation. For more about this tech-
nique, see Chapter 7 of [46].

The second routine of the Toolbox is for the evolution of the curve where all three types
of motion are applied (motion in the normal direction, motion involving mean curvature
and motion in an externally generated velocity field). We took λ = 0.1, c = 5000 and a
5× 5 Gaussian filter with s = 1. Moreover, we took r = 10−2 as the order of the relative
area change in the DLR method, p = 1.5 pixels in the IECC and d = 1mm as the order
used in the TWBD method. For an explanation of the values of all the parameters used
and for a sensitivity analysis, see Sec. 3.6.
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Remark 3.5.1. Instead of using a 2D (5 × 5) Gaussian filter, a 1D filter, in a dimension-
by-dimension fashion, can also be used: A comparison between the two filters showed that
the resulting images obtained are exactly the same. This means that the second technique
can be used instead, saving time and computational cost. The profit is bigger if a 3D
(or higher dimension) filter is replaced in this way: A comparison between a 5 × 5 × 5
Gaussian filter and a 1D (dimension 5) filter which scans the whole 3D image three times
(taking each time the filter parallel to each of the three axis) provided a 100% similarity
of the resulting images, even for large values of s. The computational cost is significantly
reduced in this way (for an image with N3 pixels, order O(N3) is changed to O(N2)).

To perform the thrombus boundary segmentation, the LSM is applied to the throm-
bus initialization for 200 iterations before the boundary is reconstructed with the method
described in Sec. 3.4.1. The above number of iterations has been obtained after experi-
mentation with various values and it is parameter-independent. In contrast to that, the
number of iterations of the LSM (applied again to the thrombus initialization) for the
outer wall segmentation is determined by a stopping criterion.

3.5.2 Results For Artificial Images

We created some artificial images (Fig. 3.8) to test the versatility of our methods and
the two major problems that CTA images of an AAA present: difficulty in distinguishing
the thrombus and the outer wall and leakage outside the outer wall. Figure 3.8(a) shows
five areas of different intensity, with constant intensity in each of them. The contrast ratio
is 1138:1 and, assuming that the intensity value for black (background) is 0, “lumen”,
“thrombus”, “outer wall” and the four “calcifications” have constant intensity values of
209, 116, 162 and 1137, respectively. There is also a region in which “thrombus” and “outer
wall” have similar intensity (right side). Noise was not added to the image since noise
was quite low in the data sets of our experiments and the Gaussian filter used properly
diminishes its effects.

Figure 3.8(d) shows a different test image, where we have taken the (extreme) case
of exactly the same intensity for “thrombus” and “outer wall”. There are also two outer
leakage regions and eight “calcifications”. Contrast ratio and intensity values are the same
as in Fig. 3.8(a). The intensity value inside “thrombus”, “outer wall” and leakage regions
is 116. No noise was added to this image, as well. In Fig. 3.8(f) the maximum error in
the two leakage regions is about six pixels, while the borders of these regions are placed 15
pixels outside the “outer wall”. In these artificial images the pixel size is approximately
equal to 0.265mm, so this maximum error is about 1.59mm. This shows the effectiveness
of LDRC. In addition, due to the presence of the eight “calcifications” a satisfactory result
is extracted, although there is no intensity difference between the two areas.

3.5.3 Manual And Semi-Automatic Segmentation

A quantitative validation of our algorithm was performed using ten CTA scans acquired
from ten different patients at the University Hospital of Heraklion. All the slices consist
of 512× 512 pixels and the pixel size varies in these data sets from 0.639mm to 0.898mm.
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(a) (b) (c)

(d) (e) (f)

Figure 3.8: Artificial images ((a) and (d)) used to test the flexibility of the methods. (a) is
characterized by a region with similar intensity between “thrombus” and “outer wall”. (b)
shows the thrombus initialization from the FMM and (c) depicts the result of our methods
for the two boundaries. In artificial image (d), the same intensity between “thrombus”
and “outer wall” has been set and there are two outer leakage regions. The DLR method
result is shown in (e), where the leakage regions are in yellow (angle π

45). (f) shows the
final result (LDRC is used, 30 iterations).
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The number of slices that contained aneurysmal tissue in each data set varies from 29 to
56.

A vascular surgeon made a selection of the slices of interest, between the proximal
and distal ends of the aneurysm and selected points for the outer wall boundary for each
slice. The number of the points was large enough so that details of the shape of the
boundaries could be captured. The contours were then obtained by linear interpolation
of the selected points. For the thrombus, the aforementioned difficulty of similar intensity
with the surrounding tissue is presented in many CTA slices and makes the task of selecting
points which will provide a closed curve as its boundary rather difficult or even impossible if
a guess is not allowed. To avoid this (such a guess) and use the manual segmentation result
as our “gold standard” to validate our methods, the expert was requested to provide for
each slice only the points of the thrombus boundary that he was certain of their position.

The manual segmentation was performed by a point selection tool of the medical image
processing software ImageJ [1]. We then applied our segmentation method to all these
slices of the ten data sets, tracing the thrombus and outer wall boundaries for each slice.
A suitable cropping of each slice was made beforehand, selecting the region of interest, to
decrease segmentation time as much as possible. We used parameter values mentioned in
Sec. 3.5.1 and LDRC as the stopping criterion of choice.

3.5.4 Validation For The Outer Wall Boundary

The quantities used to evaluate segmentation error for the outer wall boundary for a
slice were: Absolute and Relative Area Error (AAE and RAE), Mean Distance (MEDIS),
Hausdorff Distance (HADIS) and Area Overlap (AO). We also extracted the Absolute and
Relative Volume Errors (AVE and RVE) for each patient. AAE and RAE are given by

AAE = |A(M) −A(A)| and RAE =
AAE

A(M)
, (3.5.2)

where A(M) and A(A) are the areas of the manual and automatic contours, respectively,
measured in cm2.

Mean and Hausdorff distances are used to quantify the similarity of the two curves.
They are defined for the point clusters A and B as

MEDIS(A,B) = max{m(A,B),m(B,A)}, (3.5.3)

HADIS(A,B) = max{h(A,B), h(B,A)}, (3.5.4)

where
m(A,B) = meana∈A{min

b∈B
{d(a, b)}}, (3.5.5)

h(A,B) = max
a∈A

{min
b∈B

{d(a, b)}}, (3.5.6)

where d(a, b) is a L2 norm for the points a and b. The main issue regarding these distances
is that they only take into account the sets of points on both curves and do not reflect the
course of the curve. We overcome this problem by finding 400 points on each of the two
contours. These points are taken as the intersections of the curve with rays which start
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(a) (b) (c)

Figure 3.9: Evaluation of the segmentation error for the outer wall boundary: Mean
Distance (MEDIS) in (a), Hausdorff Distance (HADIS) in (b) and Area Overlap (AO) in
(c) for each of the ten data sets. Mean and Maximum values are depicted by the dots and
the bars, respectively. Standard deviation is indicated by the error bars.

at the centroid of the contour and each two successive ones form an angle equal to π
200 .

In this way, we consider a large amount of points which are uniformly distributed along
these convex or, in the worst case, star-shaped curves. We then calculate their MEDIS
and HADIS (in mm), making these quantities together a very reliable measure of the
resemblance of the two contours. Mean Distance denotes how close they really are and
Hausdorff Distance identifies any outliers, which may be hidden in the averaging process
of the Mean Distance, by providing the worst possible disagreement between the curves.

Area Overlap is defined as

AO = 2
A(A ∩M)

A(A) +A(M)
, (3.5.7)

where A(A∩M) is the area of the intersection of the manual and automatic contours. For
the per patient results, Absolute and Relative Volume Errors are defined as follows:

AV E = |V (M)− V (A)| and RV E =
AV E

V (M)
, (3.5.8)

where V (M) and V (A) are the volumes of the manual and the semi-automatic segmen-
tation, respectively. Volume for a data set is calculated as the product of the sum of the
areas of the curves for all the slices of the set and the slice thickness [52]. Let us note
that we do not present these volume errors as an error indication of the actual 3D volume.
Given the fact that the in-slice distance is the same for all slices, the volume errors could
be considered as a weighted error of all slices for each patient.

Table 3.1 summarizes the average results for the outer wall over the ten patient data
sets. The mean of a quantity in these tables is the mean of the ten Mi’s, i = 1, . . . , 10,
where Mi is the mean of this quantity over the slices of the ith data set. Minimum and
maximum values are also referring to these ten Mi’s. Figure 3.9 presents analytically
the results for each of the data sets for three of the above quantities used for evaluating
the outer wall boundary segmentation error, namely the Mean Distance, the Hausdorff
Distance and the Area Overlap. For the detailed results for all quantities, see the Appendix
C, Tables C.1 and C.2. In Fig. 3.10 there are two slices with the manual and automatic
outer wall contours superimposed ( (a) and (b) ).
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Table 3.1: Summarized results for the outer wall: Mean, standard deviation, minimum
and maximum values over ten patient data sets are provided for the quantities used to
evaluate the segmentation error.

mean±s.d. [min,max]
No. of slices 45± 7 [29, 56]
Absolute Area Error (AAE, cm2) 1.147± 0.355 [0.654, 1.729]
Relative Area Error (RAE, %) 6.0± 3.3 [2.5, 13.1]
Absolute Volume Error (AVE, cm3) 4.563± 2.083 [0.237, 7.079]
Relative Volume Error (RVE, %) 4.0± 3.7 [0.3, 12.4]
Mean Distance (MEDIS, mm) 1.320± 0.318 [0.978, 1.910]
Hausdorff Distance (HADIS, mm) 4.160± 1.096 [2.656, 5.999]
Area Overlap (AO, %) 94.6± 1.8 [91.8, 97.0]

3.5.5 Validation For The Thrombus Boundary-Comparing Wall Thick-
ness

The fact that the manual segmentation for the thrombus after the linear interpolation
of the selected points includes only segments and not a closed curve for some slices is due to
our desire of comparing only the points that the expert is certain of their position (see Sec.
3.5.3). We introduce a method for approximating the mean wall thickness of an AAA in a
slice-by-slice fashion, which is used as a thrombus boundary validation. Following proper
alignment of the thrombus and outer wall curves, we draw rays from the centroid of the
wall, so that every two successive rays form the same angle φ. Six successive rays define
a sector, so there are 2π

5φ sectors (the angle of each sector is 5φ and φ should be chosen

so that 2π
5φ ∈ N). For a ray which intersects both the thrombus and outer wall curves,

we define Ray Wall Thickness (RWT) to be the distance between these two intersection
points. For a sector we define Sector Wall Thickness (SWT) to be the mean of the existent
RWT over the rays of the sector. The mean SWT over all the sectors of all the slices of
an AAA scan provides an evaluation of the mean wall thickness of the AAA.

One of the advantages of this method for estimating the wall thickness is that since we
can increase the number of the sectors by reducing angle φ, we can have a detailed analysis
of the wall thickness along the thrombus boundary. In addition, the result is independent
of the number of points of the thrombus and outer wall curves. In Fig. 3.10(c) there is a
slice which shows the manual and automatic thrombus and outer wall boundaries.

SWT is not calculated for all the sectors in the manual segmentation. For a sector that
SWT is calculated, we define the Absolute Error of the Sector Wall Thickness (AESWT)
as

AESWT = |MANSWT −AUTSWT |, (3.5.9)

where MANSWT is the SWT of this sector for the manual segmentation and AUTSWT is
the SWT of the corresponding sector for the semi-automatic segmentation. Corresponding
sectors are the ones which possess the same order when they are sorted by moving clockwise
starting from the first sector shown in Fig. 3.10(c) in magenta. The mean AUTSWT
and mean MANSWT for each patient (which is the mean over all sectors) give a good
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(a) (b) (c)

Figure 3.10: Examples of semi-automatic (continuous line) and manual (dashed line)
segmentations for some slices, for the outer wall ((a) and (b)) and for the wall thickness
((c)). In (c) the method for evaluating mean wall thickness is depicted, with manual and
automatic thrombus in black and manual and automatic wall in yellow. The angle φ of
the rays is π

60 . The first sector is shown in magenta.

approximation of the mean wall thickness of the AAAs that the two methods produce.
For each patient we calculated the Absolute and Relative Errors of the Mean Sector Wall
Thickness (AEMSWT, REMSWT), defined as

AEMSWT = |meanAUTSWT −meanMANSWT | (3.5.10)

and

REMSWT =
AEMSWT

meanMANSWT
. (3.5.11)

Table 3.2 includes the average results of all these quantities for the ten data sets we
used. The mean of a quantity in these tables is the mean of the ten Mi’s, i = 1, . . . , 10,
where Mi is the mean of this quantity over the slices of the ith data set. Minimum and
maximum values are also referring to these ten Mi’s. Figure 3.11 presents analytically the
results for each of the data sets for AESWT, AUTSWT and MANSWT. For all the details
of the results for all the quantities, see the Appendix C, Tables C.3 and C.4.

The mean wall thickness for the ten patients is 2.575± 0.393mm and 2.993± 0.545mm
for the semi-automatic and the manual segmentation, respectively. These results are close
to the results of Di Martino et al. [21] where twenty six rectangular, circumferentially
oriented AAA wall specimens were obtained fresh from the operating room from 16 patients
undergoing elective repair of their AAA and the wall thickness measured was 2.5±0.1mm,
while 13 specimens were resected from nine patients during repair of their ruptured AAA
and the measurement for wall thickness was 3.6± 0.3mm. This shows the effectiveness of
this method. The difference between the manual thickness and the result of Di Martino
et al. [21] can be explained: Our results are obtained from cross sections only, contrary
to the referenced work where specimens were measured (that is why we presented this
method basically for thrombus boundary validation and then for evaluating the mean
wall thickness, not as a new method for a very accurate wall thickness measurement).
In addition, the large manual wall thickness of the 3rd, 6th and 7th data sets (see Fig.
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3.11(c)) which contribute to the large average manual mean wall thickness over the ten
data sets, are due to the existence of quite a lot of large calcifications situated all around
the circumference of the AAA wall.

Table 3.2: Summarized results for the wall thickness, which is used as evaluation of the
thrombus boundary segmentation error: Mean, standard deviation, minimum and maxi-
mum values over ten patient data sets are provided for all the quantities. Angle φ = π

60 .

mean±s.d. [min,max]
No. of slices 45± 7 [29, 56]
Absolute Error of the Sector Wall Thickness
(AESWT, mm) 1.127± 0.292 [0.742, 1.683]
Automatic (segmentation) Sector Wall Thickness
(AUTSWT, mm) 2.575± 0.393 [1.992, 3.129]
Manual (segmentation) Sector Wall Thickness
(MANSWT, mm) 2.993± 0.545 [2.192, 3.814]
Absolute Error of the Mean Sector Wall Thickness
(AEMSWT, mm) 0.510± 0.411 [0.017, 1.115]
Relative Error of the Mean Sector Wall Thickness
(REMSWT, %) 15.84± 11.38 [0.66, 29.23]

The mean AEMSWT and REMSWT for the ten data sets are 0.510mm and 15.84%,
respectively. In absolute terms this relative error may be considered large. Martufi et al.
[41] reports an average relative difference in AAA wall thickness of 7.8% after validating
a wall thickness estimation algorithm by comparing with discrete point measurements
taken from a cadaver tissue model. However, as no other similar result (i.e. using a
manual segmentation) is available in the literature, we cannot deduce that our result is
indeed large. In addition, the absolute error can be considered acceptable as it corresponds
approximately to 0.68 pixels, taking into consideration the mean pixel width for the ten
data sets. This shows that the thrombus boundary segmentation, using our methods, is
fairly accurate. Tests showed that these results are not sensitive to the choice of angle φ
and for every angle smaller than π

60 the differences of the errors of Table 3.2 are very small.
Some difficult to handle case-slices, which provide some of the worst results as shown in
Fig. 3.11, are presented in Sec. 3.7.1 and highlight the limitations of our methods.

3.5.6 Comparison Of The Three Stopping Criteria

We will now compare the three stopping criteria introduced in this Chapter (Fig. 3.12
shows the final outcome for the outer wall for a cross section, using the three stopping
criteria). The most preferable stopping criterion is the one that allows the fewest iterations
for the LSM in outer wall segmentation. To compare the three criteria, we applied them
on three out of the ten data sets. We used 131 slices for this comparison (see Fig. 3.13).
LDRC gave the best results in 68% of these slices, IECC in 37% and SC in 5%. The
performance of the SC is due to the fact that there might be the case of even a single
sector for which the relative area change is continuously reducing (so the curve delays to
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(a) (b) (c)

Figure 3.11: Evaluation of the segmentation error for the thrombus boundary: Absolute
Error of the Sector Wall Thickness (AESWT) in (a), Automatic (segmentation) Sector
Wall Thickness (AUTSWT) in (b) and Manual (segmentation) Sector Wall Thickness
(MANSWT) in (c) for each of the ten data sets. Mean and Maximum values are depicted
by the dots and the bars, respectively. Standard deviation is indicated by the error bars.

 

 

(a) (b) (c)

Figure 3.12: Results for the outer wall for a cross section, using SC (image (a), sector angle
π
8 , 70 iterations), LDRC (image (b), 40 iterations) and IECC (image (c), 130 iterations).

stop). On the other hand in IECC, since the motion of the two curves is produced by
applying the level set equation, there might be a delay of their contact. The types of
leakage regions in a slice (large or small, many or few) do not prohibit the use of any
of the three criteria. However, IECC allows more iterations than the other two when
there is a narrow leakage region, as the inner curve delays to enter the leakage region and
intersect the outer curve. LDRC generally detects leakage earlier than the other two but
not always: IECC can be more preferable (see Fig. 3.13(c)) if leakage regions are large
and wide. On the other hand, if there are a lot of small leakage regions, SC will have a
faster response. Ideally, one would apply all three criteria and select the one which allows
the fewest iterations, but this is time consuming. In our experiments we used the LDRC.

3.6 Sensitivity Analysis-Reproducibility-Segmentation Time

The parameters used are quite a few (see Table 3.3) and we performed experiments
to test the sensitivity of the results to the parameter settings. As far as the gaussian
filter is concerned, a small change to the size of the filter or to the width s does not
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Figure 3.13: Comparison of the performance of the three stopping criteria (SC, LDRC and
IECC) for three data sets. The most preferable stopping criterion (the one which detects
the leakage earlier than the others) is: LDRC in 73% of the slices in (a), LDRC in 84% in
(b) and IECC in 52% in (c).

Table 3.3: Parameters used in our model and their values in the experiments.

Fast Marching Method (Section 3.3.1.1)
λ 50 weight of the intensity modulus (Eqs. (3.3.2), (3.3.3))
s 1 width of the 5× 5 Gaussian filter (Eq. (3.3.4))
Level Set Method (Section 3.3.2.1)
λ 0.1 weight of the intensity modulus (Eqs. (3.3.10), (3.3.3))
s 1 width of the 5× 5 Gaussian filter (Eq. (3.3.4))
c 5000 parameter used in Eq. (3.3.10) for faster convergence

affect the accuracy of the method. Parameter c (chosen equal to 5000) makes the curve
to move faster and increases the rate of convergence. Other values of the same order of
magnitude for c provide very similar results at almost the same segmentation time. The
quality of the results is slightly more sensitive to the parameter λ, which is the weight
of the squared modulus of the convolution of the intensity with the gaussian. From our
experiments we concluded that, for the LSM, λ should be of order of magnitude 10−2

when σ = |max I − min I| is of order 103 (where I(x, y) is the intensity of the point
(x, y) in the 2D image). For every decrease of order of magnitude for σ (something which
usually happens after cropping the image) there should be a similar increase in the order
of magnitude for λ. Image cropping for almost all the cases of the experiments resulted
in a σ of order 102, therefore we set λ = 0.1. With this choice, gI is approximately
equal to 1 away from the image boundary (so the front moves fast in these regions) and
approximately equal to 0 near the target boundary. If λ is larger, the front motion away
from the target boundary will be rather slow and if it is smaller the front will not stop
at the boundary being tracked, as leakages will occur. This choice of the order for λ is
not necessary in the FMM due to the speed of this method, so, setting a large value to λ
(λ = 50) is sufficient. In conclusion, a slight change in the value of a parameter does not
influence the results of the method, thus verifying its robustness.

The value for the order of magnitude of the relative area change in the DLR method
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(r = 10−2 or greater) does not depend on any factors due to the local nature of this
method and has been obtained after experimentation. Sectors characterized by a lower
order than that refer to the parts of the curve which tend to stop, so they are not taken
into account. The extension of the smallest circle containing the inner initialization by
p = 1.5 pixels in the IECC is the same for every case and with this choice (which is
the result of experiments) we make sure that the inner and outer curves do not, initially,
intersect and that they are in proximity to each other. This will allow the inner curve to
evolve so that a more accurate (due to the LSM) result is obtained. Finally, in the TWBD
method, the order d = 1mm is the obvious choice, given the popular mean wall thickness
of approximately 2mm, so that a proper distance is set in regions where thrombus and
outer wall boundaries are too close to each other.

We will now refer to the sensitivity of the result to the user intervention which amounts
to the choice of the start and end points of the FMM. A small perturbation of the start or
end point placed for the thrombus initialization may lead to an unsatisfactory result. This
is due to the non-uniform intensity distribution that exists near the thrombus boundary
or within the thrombus region and the fact that the user must select points of similar
intensity for each pair, with a similar intensity path existing between them (as mentioned
in Sec. 3.5.1). These issues have been addressed with the modifications of the FMM
presented in Sec. 3.5.1, in order to establish the reproducibility of the results in a more
efficient way.

Time is another important factor in an AAA segmentation, as in a clinical setting
it becomes a time-critical application. Table 3.4 presents execution time results of the
methods for the initialization and segmentation of thrombus and outer wall boundaries
in five data sets (patients 6 to 10), following appropriate cropping of the initial image.
Results are given as mean±s.d.(min,max) and they include delays caused by the user, such
as the time required to make a correct decision regarding the start and end points in the
FMM. In addition, the direct user involvement is about 24% of the total processing time.
The results in Table 3.4 show that the mean initialization, thrombus, outer wall and total
processing times per slice for the five data sets were 1.30, 1.56, 2.69 and 5.96 minutes,
respectively. The total processing time for a slice is the sum of the initialization, thrombus
and outer wall times increased by 25 seconds, which is the typical execution time of the
TWBD method that was used in almost all cases. LDRC has been used for these results,
as well. These execution times can be considered satisfactory, provided that the codes
are in Matlab(we used a Pentium 4 with CPU 3 GHz and 1 GB of RAM). The wall-
clock time for each run of the code implementing the DLR method is about five minutes.
Some apparently long execution times are due to the reinitialization routine which is used
every ten iterations, in which the level set function becomes a signed-distance function by
solving a computationally expensive level set reinitialization equation [46]. Suggestions
for reducing segmentation time are made in Sec. 3.7.1.
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Table 3.4: Execution time of the methods (per slice) in five data sets, given as
mean±s.d.(min,max). In each column, the values of the last four rows have been ex-
tracted from the five mean values of the previous five rows.

Patient No. of Initialization time Thrombus time Outer wall time Total time
No. slices (min) (min) (min) (min)
1 44 1.47± 0.41(0.71, 2.55) 1.20± 0.30(0.39, 1.94) 3.34± 0.93(2.08, 7.84) 6.42± 0.99(5.17, 11.19)
2 45 1.75± 0.47(0.90, 3.07) 1.60± 0.46(0.70, 2.91) 2.72± 0.67(1.80, 4.79) 6.48± 0.95(4.86, 8.68)
3 42 0.99± 0.28(0.50, 1.89) 1.76± 0.80(0.85, 4.01) 2.56± 0.86(1.55, 5.59) 5.73± 0.86(3.93, 8.40)
4 52 1.18± 0.29(0.53, 1.97) 1.66± 0.44(1.07, 3.00) 2.57± 0.60(1.75, 5.08) 5.82± 0.95(4.51, 9.07)
5 51 1.11± 0.29(0.59, 1.91) 1.58± 0.46(0.95, 3.03) 2.27± 0.54(1.50, 3.72) 5.37± 0.74(4.11, 7.17)

mean 47 1.30 1.56 2.69 5.96
s.d. 4 0.31 0.21 0.40 0.48
min 42 0.99 1.20 2.27 5.37
max 52 1.75 1.76 3.34 6.48

3.7 Discussion

3.7.1 Limitations

The method proposed to segment the AAA outer wall and thrombus boundaries relies
on the LSM which is an intensity gradient based technique. As a result the method
relies on the presence of an intensity gradient in the vicinity of the boundary that is
strong enough to attract the LSM front. Such intensity gradient can be either due to
the contrast produced by the imaging method at the interface between tissue of different
composition such as the arterial wall and the intraluminal thrombus and / or the existence
of calcified deposits in the arterial wall. Our methods exploit the latter source of contrast
by introducing various geometrical tools to overcome the insufficient presence of the former
source of image contrast. Therefore for the method to be effective some source of image
contrast should be present. This is depicted in Fig. 3.14(a), where one of the largest
maximum HADIS of the ten data sets for the outer wall, equal to 8.192mm, appears (see
Fig. 3.9(b), patient number 5).

As the basic information utilized is calcifications, a reference should be made regarding
the frequency of their presence inside the AAA wall. In Siegel et al. [53] thin discontinuous
calcifications were found in 27/52 cases in ruptured group and 23/56 in unruptured group.
Unfortunately Siegel et al. [53] did not quantify their distribution. Lindholt et al. [36]
recorded the circumferential distribution of calcifications at the maximal diameter cross
section and reported 62/122 AAA patients having more than 50 % of that circumference
covered by them. Li et al. [35] studied the effects of calcifications on the computed AAA
wall stress distribution and reported for a group of 20 patients a mean value of 4.6 %
calcification per total AAA volume ratio. Moreover, a careful study of the geometric char-
acteristics of the AAA wall when calcifications are present is important as their presence
may cause a significant alteration of the stress distribution, thus affecting rupture risk
assessment [56, 35].

A further limitation is related to the presence of sources of high image contrast, such
as the spine, very close to the outer wall, which attract the propagating LSM front away
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(a) (b) (c)

Figure 3.14: Examples of cross sections which are difficult to segment and show the lim-
itations of the methods. Continuous lines depict the semi-automatic segmentation and
dashed lines the manual one. The outer wall boundary is in yellow and the thrombus
boundary (in (c)) is in black.

form the tracked boundary. In order to avoid considering the spine as a calcification from
our method, due to thresholding, which would result in a large error in the wall boundary
detection, we select a large threshold in the method we use for the reconstruction of the
outer wall boundary. Inevitably with this choice, some calcifications are not detected
and are thus excluded from the outer wall boundary created (see Fig. 3.14(b), where the
maximum AAE among the slices of the third data set, equal to 2.821cm2, appears).

As the method is based on the assumption that calcified deposits are located within
the arterial wall, in cases where this is not true and there are calcifications within the
thrombus, incorrect thrombus boundary tracking may result. This is the main cause
of the appearance of large values of AESWT in certain slices of the data sets. In Fig.
3.14(c) there is a slice where this internal calcifications issue is demonstrated and a large
AESWT, equal to 7.03mm, appears (see Fig. 3.11(a), the maximum value of patient
number 3). A final issue which is a limitation in terms of the clinical application of the
method is the relatively long time required to complete the segmentation which was in
this implementation approximately 6 minutes per slice (see Table 3.4). However, this
issue can be resolved by taking measures such as using a narrow band LSM, avoiding the
reinitialization step of the method by adding an extra term to (6) associated to an internal
energy which penalizes the deviation from a signed distance function and by coding the
methods in C++.

3.7.2 Comparison With Other Methods

We next compare quantitatively our results with that of related works. Subasic et
al. [58] used a 3D level sets method, requiring minimal user intervention. They report
an average relative error on a slice 12.35%. 11 real patient data sets were used for the
validation (the mean RAE of our segmentation method for the outer wall is 6%, see Table
3.1). The method is not performing accurately where the AAA has significant concavities.
Magee et al. [40] reported a total segmentation time of less than two hours. A comparison
between the automatic method and an interactive segmentation was made by evaluating
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the minimum distance slice by slice, and the mean was 0.57mm (four volumes were used).
In Zhuge et al. [63] user intervention is not required beyond identifying the most proximal
and distal slices concerning the aneurysm. The method assumes that the aneurysm is
roughly circular in transaxial cross section. The mean segmentation time per patient
is 7.4 ± 3.8min(s.d.), implying a very fast method. The results of a comparison with a
manual tracing for the outer wall were 3.5% for the mean RVE and 0.8cm2 for the mean
AAE (20 patient data sets were used). Our corresponding results are 4.0% and 1.147cm2,
respectively (see Table 3.1).

In De Bruijne et al. [16] the time required for expert segmentation may be reduced by
a factor of six, but manual intervention is required in one of six slices and the user must
redraw the entire contours. Image data from 23 patients were used and the comparison
with a manual segmentation provided an average RVE of 1.5% and an average volume
overlap of 95.8% (the mean AO for the data sets we used is 94.6%, see Table 3.1). In
De Bruijne et al. [15] obtained volume errors with respect to a manual segmentation
are comparable to manual inter-observer errors in roughly 90% of the cases (the mean
unsigned volume error is 4.0% and the average volume overlap is 94%, values very close
to the corresponding ones in Table 3.1). In Olabarriaga et al. [45] the average per case
deformation time for 17 scans was 41±69.3secs. However, in ten (out of 17) cases, small and
localized bumps into the bowels and vena cava were observed and would possibly require
manual correction. In addition, the segmentation method’s performance depends on the
quality of training. A comparison of the results of the method with a manual segmentation
for 17 patient scans provided a mean segmentation overlap of 95.0%, a mean volume error
of 4.5%, a mean segmentation error of 1.3mm and a mean maximum distance of 5.5mm.
The corresponding results as shown in Table 3.1 are 94.6%, 4.0%, 1.320mm and 4.160mm,
respectively. Therefore our results are comparable with the results of most of these works
which, however, offer no distinction between thrombus and outer wall or assume uniform
wall thickness.

3.8 3D Results

As mentioned in the Introduction of this Chapter (Sec. 3.1), one way to obtain the
3D reconstruction of the AAA anatomy is through the application of a 3D surface recon-
struction method to all the segmented 2D slices which constitute the structure of interest.
Figure 3.15 presents 3D reconstructions of the thrombus and outer wall surfaces (excluding
the common iliac arteries) created from the segmented 64 CTA images of the first data set
we used, using the purpose-developed software found in [27]. The extracted boundaries
from our methods are also shown in this figure.

Due to limitations of this reconstruction tactic, mainly concerning time and accuracy,
extraction of the surfaces of interest in one step using a 3D segmentation approach with
an application directly to 3D data is usually preferred. The FMM and Gabriel Peyré’s
Toolbox [47] were also used in the 3D case to obtain a good initialization for the LSM. We
used speed gI with λ = 50 and a 5 × 5 × 5 Gaussian filter Gs with s = 1. Similar to the
2D case, the user typically gives a pair of points. The starting point is usually selected in
the center of the 3D image, while the ending point is chosen at the bottom of the image



72 Abdominal Aortic Aneurysm 2D Image Segmentation

(a) (b)

Figure 3.15: The 3D thrombus in (a) and outer wall in (b) surfaces of a data set recon-
structed from the segmented 2D images (the extracted boundaries are also shown) using
purpose-developed software.

(on the last cross section), usually inside one of the common iliac arteries. But, as in the
2D case, we made a modification which allows to provide two pair of points. These are
selected taking into consideration two things: Firstly, the union of the two surfaces (one
for each pair) should provide almost the whole structure of interest, so that LSM, which
will later fix all the segmentation details, does not take a very long time. Secondly, the
cross sections of a starting point and of its corresponding ending point should be as close
as they can be, so that the whole initialization surface stays inside the under detection
surface. These two matters are of crucial importance for an accurate final result, so the
FMM is always implemented in our 3D results providing two pair of points which satisfy
them.

The 3D LSM was implemented using the ”Toolbox of Level Set Methods” [44], created
by Ian Mitchell in Matlab. Proper adjustments were made to it so that the initial surface
from the FMM and the medical image data can be used as input and so that (3.3.10) is
implemented. Similar to the 2D case, we took λ = 0.1, c = 5000 and a 5 × 5 Gaussian
filter with s = 1. The volume of interest is selected in the beginning, aiming to reduce
segmentation time.

Figure 3.16 shows a result for the lumen, using 3D FMM for the initialization and 3D
LSM for the final surface. The usually good contrast between lumen and its surroundings
suggests that these two methods are by themselves appropriate for its segmentation, with-
out needing any geometrical methods like the ones implemented for the 2D thrombus and
outer wall segmentation. Segmentation time for this result, though, was approximately 1
hour 20 minutes.

As a first ”validation” of the 3D lumen result, superimposition of transverse planes
of the 3D surface to the related CT images was made. These transverse planes were
taken using ParaView [29], which is an open-source, multi-platform data analysis and
visualization application. Figure 3.17 shows two superimpositions ((a) and (c)), where
the transverse planes of the initial surface are also shown. The corresponding 2D level set
results are also depicted in this figure to make another useful comparison and conclude
that the 3D lumen surface reconstructed with LSM is quite accurate. Development of
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(a) (b)

Figure 3.16: A result for the lumen with 3D level sets. The result of the 3D FMM
(initialization) is shown in (a) and the result of the 3D LSM (final surface) is shown in
(b).

related to 2D stopping criteria and 3D boundary creation methods for the thrombus and
outer wall are our next future plans.

3.9 Conclusion

Geometrical methods and tools for the LSM based segmentation of AAA thrombus
and outer wall boundaries in CTA images exploiting the presence of calcifications in the
arterial wall are presented. Stopping criteria were introduced to address the problem
of leakage that intensity gradient based methods are susceptible to. Validation of the
methods by comparison with manual segmentations from an expert showed a 4.0% rela-
tive volume error, a 1.32mm mean distance and a 94.6% area overlap for the outer wall
boundary, averaged over ten patient data sets. Similarly the comparison for the mean
wall thickness produced a mean absolute error of 0.51mm and a relative error of 15.84%.
The robustness of the method was also assessed through sensitivity and reproducibility
analyses. These results indicate that geometrically accurate 3D reconstructions of AAA
anatomy and reliable measurements of the wall thickness distribution can be produced
through LSM based segmentation of image data obtained from currently available imag-
ing technology. Such information is important in estimating wall stress distribution which
is required in obtaining a reliable patient specific measure of AAA rupture risk. Future
work will include improvements in the model to reduce user intervention and accelerate
the segmentation process and the extension of our model to three dimensions to avoid the
2D segmentation phase.



74 Abdominal Aortic Aneurysm 2D Image Segmentation

(a) (b)

(c) (d)

Figure 3.17: Superimpositions of two transverse planes of the 3D lumen initialization and
final surface of Fig. 3.16 to the two related CTA images are shown in (a) and (c). The
initial surface is in black and the final surface in yellow. The 2D level set results for the
corresponding cross sections are depicted in (b) and (d).



Chapter 4

Conclusion

Viscosity solutions, a class of weak solutions of nonlinear scalar partial differential
equations, are a notion with great value due to the very general existence, uniqueness
and stability results which characterize them for a wide class of equations. Their role is
important in a great range of applications, two of which were analyzed in this thesis.

The first application was the Shallow Lake Problem. This is an optimal control problem
derived from the combination of the two utilities of a shallow lake: agricultural activities
and ecological services. Our basic result was the extraction of an optimal HJB (OHJB)
equation that the value function of this problem satisfies in the viscosity sense. Many
regularity results for the value (welfare) function were then extracted using this result. In
addition, we approximated the viscosity solution with monotone numerical schemes, based
on a finite difference space discretization. Finally, we used the Simple Shooting Method
as a “gold standard” to compare with and validate our results. The accuracy of these
numerical approximations was satisfactory, as the mean relative error was between 0.02%
and 0.06%, depending on the number of the saddle points and the spatial step (Table 2.1).
We can conclude that the extraction of (OHJB) is an important result and the fact that
the value function is its viscosity solution can probably lead to many other future results
which will help to investigate the Shallow Lake Problem deeper.

The second application, analyzed in Chapter 3, was the extraction of the thrombus
and outer wall boundaries from cross sections of a 3D CTA AAA image data set, using the
level set framework and new geometrical methods to address the basic problem of no suffi-
cient contrast between thrombus and surrounding tissue. Adequate information, including
calcifications, sufficient intensity contrast or information from neighboring regions, was es-
sential to achieve this task. We introduced two new geometrical methods which exploit
the presence of calcifications to reconstruct the thrombus and outer wall boundaries. We
also introduced three novel stopping criteria to address the leakage problem that LSM’s
present and a method for detecting the leakage regions. A manual segmentation, created
by a medical expert, was performed to compare with our results. Ten patient data sets
(450 slices) were used for this validation. The relative volume error, mean distance and
area overlap were three of the quantities used to evaluate outer wall segmentation error
(Table 3.1). A method for approximating the mean wall thickness, created for validating
the thrombus boundary segmentation, was introduced (see Table 3.2 for these results).
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The results for the outer wall and for the mean wall thickness are comparable to those
of other works in which, however, there is no segmentation of the thrombus boundary.
Accurate 3D reconstructions created from the results of the 2D LSM-based segmentation
will help to estimate the wall stress distribution and obtain a reliable measure of AAA
rupture risk. Acceleration of the segmentation process and the extension of the model to
three dimensions (developing related 3D geometrical methods and stopping criteria) are
basic future plans on this work.



Appendix A

Proof Of Lemmas 2.2.1 and 2.2.2

A.1 Proof Of Lemma 2.2.1

Proof: We denote O.D.E system (2.2.7) as

{

x′(t) = f1(x, a)
a′(t) = f2(x, a).

Solving system
{

f1(x, a) = 0
f2(x, a) = 0,

with respect to x, we deduce that

k(x) = 1.2x6 − 2x5 + (1.8 − ρ)x4 − 2x3 − 2ρx2 + 2x− (0.6 + ρ) = 0 (A.1.1)

Giving ρ a specific value, the roots of k(x) in [0, 2] are the equilibrium points of O.D.E.
system (2.2.7) in [0, 2]. We have that k(0) = −(0.6 + ρ) < 0 and k(2) = 29 − 25ρ > 0 for
ρ ∈ (0, 0.4], so k(x) has 1 or 3 or 5 roots in [0, 2]. Supposing there are 5 roots there, then
k(x) would have 6 real roots. Taking its fourth derivative and applying Roll’s Theorem
successively for four times we deduce that k(4)(x) = 432x2 − 240x+43.2− 24ρ has 2 roots
in R. Its discriminant is D = −17049.6 + 41472ρ and for ρ ∈ (0, 0.4] D is negative, which
is a contradiction. We conclude that k(x) has 1 or 3 roots in [0, 2], which means that there
are 1 or 3 equilibrium points of (2.2.7) in [0, 2]. 2

A.2 Range Of The Discount Factor Values For One Or Three
Equilibrium Points

We will now find (graphically) the range of ρ in which each of the above two cases
described in Lemma 2.2.1 occur (we will need this approximation for the proof of Lemma
2.2.2). Solving (A.1.1) with respect to ρ, we take

ρ =
1.2xs0

6 − 2xs0
5 + 1.8xs0

4 − 2xs0
3 + 2xs0 − 0.6

(xs02 + 1)2
(A.2.1)
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where xs0 is the abscissa of the equilibrium point. Graph ρ − xs0 is depicted in Figs.
A.1(a) and A.1(b). From these we see that, lines ρ = 0.096 and ρ = 0.164 cross the graph
at one point but lines ρ = 0.097 and ρ = 0.163 cross the graph at three points.
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Figure A.1: xs0 is the abscissa of the equilibrium point and ρ the discount factor. The
two lines in (a) cross the graph at one point but the two lines in (b) cross the graph at
three points.

Rounding ρ to the third decimal digit, we deduce that

• if ρ ∈ (0, 0.096], then there is one equilibrium point

• if ρ ∈ [0.097, 0.163], then there are three equilibrium points

• if ρ ∈ [0.164, 0.4], then there is one equilibrium point.

Remark A.2.1. If ρm, ρM are the local minimum and local maximum for function

S(xs0) =
1.2xs0

6 − 2xs0
5 + 1.8xs0

4 − 2xs0
3 + 2xs0 − 0.6

(xs02 + 1)2

in [0, 2], respectively, then we can say that for ρ ∈ (0, ρm)∪(ρM , 0.4] there is one equilibrium
point and for ρ ∈ (ρm, ρM ) there are three equilibrium points (for ρ = ρm or ρ = ρM ,
(A.1.1) has one double and one single root. This is a degenerate case, appearing at the
border of the two domains of ρ in which the two cases occur, which is not examined in
this work).

A.3 Proof Of Lemma 2.2.2

Proof: We find a necessary and sufficient condition for equilibrium point (xs0, as0) to
be a saddle point. We calculate the stability matrix for system (2.2.7) at (xs0, as0) and



A.3 Proof Of Lemma 2.2.2 79

then we try to find its eigenvalues λ. We finally find the following trinomial

λ2 − ρλ+ 2as0

(

−0.6xs0(xs0
2 + 1)3 + 2xs0

2(xs0
2 + 1) + 3xs0

2 − 1

(xs02 + 1)3
− as0

)

= 0. (A.3.1)

(xs0, as0) is a saddle point if and only if this trinomial has two roots, one positive and one

negative. Denoting t(xs0) = −0.6xs0(xs0
2+1)3+2xs0

2(xs0
2+1)+3xs0

2−1
(xs0

2+1)3
we have that, if λ1, λ2

are the roots of the trinomial, this is the case if and only if 2as0 (t(xs0)− as0) < 0, using
Vieta’s formulae. We have that as0 > 0, so we finally conclude that our necessary and
sufficient saddle-point condition is t(xs0) < as0. We also have that f1(xs0, as0) = 0 ⇒

as0 = 0.6xs0 −
xs0

2

xs0
2+1

. So, denoting w(xs0) = 0.6xs0 −
xs0

2

xs0
2+1

, the above condition is

w(xs0) > t(xs0).

The graphs of w(xs0), t(xs0) in xs0 − as0 diagram are depicted in Fig. A.2(a) and from it,
rounding to the third decimal digit, we conclude that

(xs0, as0) is saddle point ⇔ xs0 ∈ [0, 0.626) ∪ (1.063, 2].

Remark A.3.1. If x1, x2 are the roots of w(xs0) − t(xs0) = 0 in [0, 2], x1 < x2, then
(xs0, as0) is saddle point ⇔ xs0 ∈ [0, x1) ∪ (x2, 2].

As mentioned in Lemma 2.2.1, we have the following cases :

• There is one equilibrium point. Then ρ ≤ 0.096 or ρ ≥ 0.164. We have that
k(0.626) = 0.3177 − 1.9373ρ and k(1.063) = 0.4388 − 4.5363ρ. We have shown that
k(0) < 0 and k(2) > 0. If ρ ≤ 0.096 then k(0.626) > 0, so xs0 ∈ [0, 0.626] and
we conclude that (xs0, as0) is a saddle point. If ρ ≥ 0.164 then k(1.063) < 0, so
xs0 ∈ (1.063, 2] and we make the same conclusion. So, (xs0, as0) is always a saddle
point.

Remark A.3.2. If we don’t want to make a rounding we must show that, if ρ < ρm
then k(x1) > 0 and if ρ > ρM then k(x2) < 0.

• There are three equilibrium points. Then, 0.097 ≤ ρ ≤ 0.163. For ρ at this range,
we have that k(0.626) > 0 and k(1.063) < 0. So, if (xs1, a1), (xs2, a2), (xs3, a3) are
the three points, then xs1 ∈ (0, 0.626),
xs2 ∈ (0.626, 1.063), xs3 ∈ (1.063, 2) which means that the first and third points are
saddle points but the second one is not. We focus on the second point. We find the
discriminantD of trinomial (A.3.1) and (xs0, as0) is a vortex (with outward direction)
iff D < 0 (if D < 0, using Vieta’s formulae, 2Re(λi) = −−ρ

1 > 0 ⇒ Re(λi) > 0 so
(A.3.1) has two complex conjugate roots with positive real parts). This condition is
the following:

ρ <

√

8[0.6xs0(xs02 + 1)− xs02]

xs02 + 1
·

·

√

[−1.2xs0(xs02 + 1)3 + 2xs02(xs02 + 1) + xs02(xs02 + 1)2 + 3xs02 − 1]

xs02 + 1
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Denoting y(xs0) the right part of this inequality and writing relation (A.2.1) as
ρ = z(xs0), we conclude that (xs0, as0) is a vortex if and only if

y(xs0) > z(xs0).

The graphs of y(xs0), z(xs0) in xs0−ρ diagram are depicted in Fig. A.2(b) and from
it, rounding to the third decimal digit, we conclude that

(xs0, as0) is a vortex ⇔ xs0 ∈ [0.658, 1.050].
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Figure A.2: Graphs used in the proof of Lemma 2.2.2. xs0, as0 are the coordinates of the
equilibrium point and ρ is the discount factor.

From Fig. A.1(b), approximating at the fourth decimal digit, we see that xs2 ∈
[0.6551, 1.0458]. So we conclude that (xs2, a2) is a vortex, except of some degeneracies
(as it is also mentioned in [54], page 538) which we meet when xs2 ∈ [0.6551, 0.658)
(e.g. if ρ = 0.163, then (xs2, a2) = (0.6551, 0.0928) and trinomial (A.3.1) has two
positive real roots, so (xs2, a2) is an unstable node). 2



Appendix B

Proof Of The Level Set Equation
(3.3.10)

B.1 Active Contours (Snakes)

Equation (3.3.10) is derived from the classical model of active contours, also known as
snakes. We will mention the basic characteristics of this model. Active contours constitute
a commonly employed solution in the field of 2D image segmentation and shape retrieval.
A snake is a parameterized curve evolving on the basis of image features and internal
constraints. Its description can be given as a function

C : U → R
2

where U ⊂ R (e.g. U = [0, 1]) and s ∈ U, so we have that C(s) = (x(s), y(s)), where
x(s), y(s) are the coordinates along the contour. The evolution equation for snakes can be
derived from the minimization of an energy functional

Esnake(C) = Esmooth(C) + Eimage(C) (B.1.1)

where

Esmooth(C) =

∫ 1

0
[w1|Cs|

2 + w2|Css|
2]ds (B.1.2)

is internal deformation energy (the first term forces the snake to be continuous by mini-
mizing the distance among its points, while the second term produces a smoothing effect
by cutting off large values of curvature), and

Eimage(C) =

∫ 1

0
w3P (C)ds (B.1.3)

is driving energy, whose role is to attract the contour to the under detection item. P (x) is a
scalar potential function taking into account image intensity I(x) (e.g. P (x) = −|∇I(x)|).
So, Eimage becomes very small when the active contour reaches near the edge that we
want to detect. w1, w2, w3 are constants.
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In order to minimize the functional E(C), the active contour C(s) must satisfy the
Euler-Lagrange equation. This equation is a fundamental result of calculus of variations
and is derived as follows: Consider the following functional

J =

∫

Ω
F

(

x1, . . . , xn, y,
∂y

∂x1
, . . . ,

∂y

∂xn

)

dx1 . . . dxn,

where Ω is a n−dimensional domain. Suppose that J has to be minimized (maximized)
over a set of admissible functions y with fixed boundary conditions y|∂Ω = ȳ. Assume that
y is piecewise C1 on Ω. Then J has an extremum in y only if the Euler-Lagrange equation
is satisfied

∂F

∂y
−

n
∑

j=1

∂

∂xj

(

∂F

∂pj

)

= 0,

where F is in the form F (x1, . . . , xn, y, p1, . . . , pn) and pj =
∂y
∂xj

. For the proof of this, see

the Appendix B of [4]. The generalization of the Euler-Lagrange equation to the cases in
which function F depends on higher-order derivatives (up to the m−th order) takes the
following form

∂F

∂y
+

m
∑

i=1

n
∑

j=1

[

(−1)i
∂i

∂xj i

(

∂F

∂p(i)j

)]

= 0, (B.1.4)

where p(i)j = ∂iy
∂xj

i . So, a necessary condition for the minimization of E(C) in (B.1.1) is,

according to (B.1.4) (here we have J(C) =
∫ 1
0 F (s, C,Cs, Css)ds, where F (s, C,Cs, Css) =

w1|Cs|
2 + w2|Css|

2 + w3P (C)), the following:

∂F

∂C
−

∂

∂s

(

∂F

∂(Cs)

)

+
∂2

∂s2

(

∂F

∂(Css)

)

= 0

⇒ w3∇P (C)−
∂

∂s

(

2w1|Cs|
Cs

|Cs|

)

+
∂2

∂s2

(

2w2|Css|
Css

|Css|

)

= 0

⇒ −2w1
∂Cs

∂s
+ 2w2

∂2Css

∂s2
+ w3∇P (C) = 0. (B.1.5)

Instead of using an energy gradient descent algorithm to find a configuration which min-
imizes Esnake, it is possible to adopt the equivalent strategy of making the snake evolve
in time toward a configuration (from now on C also depends on time t), satisfying the
Euler-Lagrange equation. So, the following evolution equation results:

∂C

∂t
= 2w1Css − 2w2Cssss − w3∇P (C). (B.1.6)

This means that, whenever the Euler-Lagrange equation is satisfied, the active contour is
in a steady state (Ct = 0). It is worth to note that if we consider only the energy term
Eimage(C) in (B.1.1), the associated Euler-Lagrange equation states that the snake stops
on stationary points of the scalar field P (x) (i.e. on the possible local extremum points of
P (x)). We now consider a special class of active contour models in which the coefficient
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related to the smoothing term (the one connected with the curvature) is equal to zero
(w2 = 0). This selection is motivated by two facts: Firstly, it allows us to connect these
energy-based active contours with the level set equations, which is our next goal. Secondly,
the smoothing result in active contours comes from curve flows based on curvature, which
result only from the other terms of equation (B.1.1). So, the smoothing of the curve will
take place even if w2 = 0. Taking into account only the first term of Esmooth, (B.1.6)
becomes

∂C

∂t
= 2w1Css − w3∇P (C). (B.1.7)

Since in 2D any closed curve shrinking under the effect of its curvature evolves into a circle
before collapsing into one point, snakes are usually initialized as closed lines surrounding
regions of interest. They then move by shrinking until driving energy makes them approach
and stop on desired features. Depending on problem requirements, snakes can also be
initialized as small circles located inside the areas of interest and inflated until image
features are encountered (this strategy is more popular in blood vessel modeling).

B.2 Balloons

The 3D counterparts of snakes are commonly known as balloons, which are parametric
deformable surfaces which can be represented as

S : U × U → R
3

where U ⊂ R, so S(r, s) = (x(r, s), y(r, s), z(r, s)). We will also assume that this surface
parametrization is orthonormal, so we have

|Sr| = |Ss| = 1,

Sr · Ss = 0.

In 3D, conversely to 2D case, it is not true that a surface shrinking under the effect of
its curvature always evolves into a sphere before collapsing into one point. The lack of
such a result on the regularity of surface evolution under curvature makes it usually more
convenient to inflate the 3D surface making use of an internal pressure term rather than
making it shrink under curvature. This approach is also convenient for 3D initialization,
since it only requires the specification of the center and the radius of a sphere located
inside the 3D object to reconstruct.

The corresponding (to the 2D case) energy functional in the 3D case is

E(S) =

∫

Ω

[

α1

∣

∣

∣

∣

∂S

∂r

∣

∣

∣

∣

2

+ α2

∣

∣

∣

∣

∂S

∂s

∣

∣

∣

∣

2

+ 2α3

∣

∣

∣

∣

∂2S

∂r∂s

∣

∣

∣

∣

2
]

drds

+

∫

Ω

[

α4

∣

∣

∣

∣

∂2S

∂r2

∣

∣

∣

∣

2

+ α5

∣

∣

∣

∣

∂2S

∂s2

∣

∣

∣

∣

2

+ α6P (S)

]

drds,

where P := −||∇Gs ∗ I||
2 and αi, 1 ≤ i ≤ 6, are constants. Setting the coefficients of the

first derivatives of E(S) equal to the term g(x) = 1
1+λ|∇Gs∗I(x)|

2 (which is the inflation
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(deflation) speed and is used as the final stopping criterion of the active contours, where
λ > 0 is a constant), setting the coefficients of the second derivatives equal to zero (similar
to the 2D case, where we put w2 = 0) and, finally, setting α6 = 1, E(S) becomes

E(S) =

∫

Ω

[

g|Sr|
2 + g|Ss|

2 + P (S)
]

drds. (B.2.1)

From (B.1.4) we have that, a necessary condition for the minimization of E(S) in (B.2.1)
(here J(S) =

∫

Ω G(s, r, S, Sr, Ss)drds, with G(s, r, S, Sr , Ss) = g|Sr|
2 + g|Ss|

2 + P (S)) is
the following:

∂G

∂S
−

∂

∂r

(

∂G

∂
(

∂S
∂r

)

)

−
∂

∂s

(

∂G

∂
(

∂S
∂s

)

)

= 0

⇒ ∇P (S)−
∂

∂r

(

2g|Sr|
Sr

|Sr|

)

−
∂

∂s

(

2g|Ss|
Ss

|Ss|

)

= 0

⇒ ∇P (S)− 2g(Srr + Sss) = 0.

So, similar to the two-dimensional case, assuming from now on that S also depends on
time t, we take the corresponding evolution equation:

∂S

∂t
= 2g(Srr + Sss)−∇P (S). (B.2.2)

B.3 The Level Set Equation

A surface evolving in time, S : R2 ×R
+ → R

3, can be represented as the λ level set of
a time-dependent scalar function F : R3 × R

+ → R, so that

S(t) = {x|F (x, t) = λ} .

Since S remains the λ level set of F over time, we have that F (S(t), t) = λ, so

dF (S(t), t)

dt
= 0

⇒
∂F

∂S
·
∂S

∂t
+

∂F

∂t
= 0

⇒
∂F (S, t)

∂t
= −∇F (S, t) ·

∂S

∂t

⇒
∂F (S, t)

∂t
= −|∇F (S, t)| ·

∂S

∂t
·N (B.3.1)

whereN = ∇F
|∇F | is the outward normal to level sets, supposing that the embedding function

has lower values inside and higher values outside the model. F , here, is a 4D function and
S is its 3D level set. From (B.3.1) using (B.2.2) we have

∂F (S, t)

∂t
= −|∇F (S, t)|2g(Srr + Sss)N + |∇F (S, t)|∇P (S) ·N. (B.3.2)
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So, the last step required to prove the level set equation (3.3.10) is to express the terms
of the right-hand side of equation (B.2.2) in terms of differential expression F (x, t). We
have F (S(r, s, t), t) = λ, so ∂F

∂r = ∇F (S, t) · Sr = 0 and

∂2F

∂r2
= [HF (x) · Sr] · Sr +∇F · Srr = Fuu +∇F · Srr = 0, (B.3.3)

where HF (x) is the Hessian matrix of F and Fuu is the second directional derivative of F

in direction Sr. The same expression can be written for ∂2F
∂s2

, so similarly we have

∂2F

∂s2
= [HF (x) · Ss] · Ss +∇F · Sss = Fvv +∇F · Sss = 0, (B.3.4)

where Fvv is the second directional derivative of F in direction Ss. So,

|∇F |2g(Srr + Sss)N = |∇F |2g(Srr + Sss) ·
∇F

|∇F |

= −2g(Fuu + Fvv) (B.3.5)

using (B.3.3) and (B.3.4). We assumed surface parametrization to be orthonormal, so
Sr ·Ss = 0. We have created a correspondence of Sr and Ss with u and v, respectively. So,
x, y, z is a generic orthonormal reference frame and u, v, w is the reference frame relative
to the plane tangent to the level sets of surface S (Sr and Ss are both vectors tangent to
S). Fw is also the directional derivative in the direction of w, which is the direction of
N = ∇F

|∇F | , so

Fw = ∇F ·
∇F

|∇F |
=

|∇F |2

|∇F |
= |∇F |. (B.3.6)

In addition, in the reference frame u, v, w we have N = (0, 0, 1), so, in this frame,

∇Fw ·N = (Fwu, Fwv, Fww) · (0, 0, 1) = Fww. (B.3.7)

So, using the definition of mean curvature H, we have:

H(x) = ∇ ·

(

∇F

|∇F |

)

= div

(

∇F

|∇F |

)

=
1

|∇F |
div(∇F ) +∇F · ∇

(

1

|∇F |

)

=
Fxx + Fyy + Fzz

|∇F |
+∇F ·

(

−
∇ (|∇F |)

|∇F |2

)

=
(Fxx + Fyy + Fzz)|∇F | − ∇F · ∇ (|∇F |)

|∇F |2

(B.3.6)
=

(Fxx + Fyy + Fzz)|∇F | − (|∇F | ·N) · ∇Fw

|∇F |2

=
(Fxx + Fyy + Fzz)|∇F | − (∇Fw ·N) · |∇F |

|∇F |2

(B.3.7)
=

∇(∇F )− Fww

|∇F |
=

Fuu + Fvv + Fww − Fww

|∇F |

=
1

|∇F |
(Fuu + Fvv). (B.3.8)
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The pre-last equality in (B.3.8) is explained by the fact that H(x) can be computed from

the second order differential structure of F, H = div
(

∇F
|∇F |

)

, regardless of the particular

coordinate system adopted (coordinate system u, v, w is used in this equality). From
(B.3.5) using (B.3.8) we have:

|∇F |2g(Srr + Sss)N = −2gH|∇F |. (B.3.9)

We also have
|∇F |∇P (x)N = ∇P (x)∇F. (B.3.10)

So, (B.3.2) due to (B.3.9) and (B.3.10) becomes

∂F (x, t)

∂t
= 2gH|∇F |+∇P (x)∇F

⇒
∂F (x, t)

∂t
= g(x)K|∇F |+∇F · ∇P, (B.3.11)

where K is twice the mean curvature. We can add an extra parameter in the above
equation, aiming at the inflation of the balloon (the initial balloon is deflated in (B.3.11))
and to increase the convergence speed. This occurs in (B.1.1) if we add another term,
Einfl, which is connected with the inflation, driven by the image intensity. So, (B.1.1)
becomes

Eballoon(S) = Einfl(S) +Esmooth(S) + Eimage(S). (B.3.12)

Then, a new velocity is added to the movement of the level sets of S, which has vertical
direction to S (the direction of N). This velocity is cg(S)N , so term cg(S)N is added to the
right-hand side of evolution equation (B.2.2), where c > 0 is a constant and g is a weight
of this term, too. From this we have that term −|∇F (S, t)|cg(S)N · N = −cg(S)|∇F |
is added to (B.3.2) and this is the term which is finally added to the right-hand side of
(B.3.11) to get equation

∂F (x, t)

∂t
= g(x)(K − c)|∇F |+∇F · ∇P. (B.3.13)

This is the level set equation (3.3.10) we used in our work, with a slightly different notation
(in (3.3.10) we have φ instead of F , gI instead of g and κ instead of K).

As mentioned in Sec. 3.3.2.1, similar proofs with the above can be found in [49] and
[4]. The main difference compared with them is the different term g that we have chosen,
to provide greater weight to the image intensity gradient (by adopting parameter λ > 0
and by taking the square of term |∇Gs ∗ I|).



Appendix C

The Results Of The Ten Patient
Data Sets

C.1 Detailed Results For The Outer Wall And For The Wall

Thickness

Tables C.1 and C.2 present the results for each of the ten data sets for all the quantities
used for evaluating the outer wall boundary segmentation error (Sec. 3.5.4). AAE, RAE,
MEDIS, HADIS and AO are given as M±s.d.(min,max), where M is the mean over the
slices of each data set. The last four rows of these two Tables for these quantities, which
are the results presented in Table 3.1, refer to the ten M’s.

Tables C.3 and C.4 include the results for the wall thickness, which is used as evaluation
of the thrombus boundary segmentation error. All the quantities used for this purpose
(Sec. 3.5.5) are presented for the ten data sets we used, taking φ = π

60 (24 sectors of angle
π
12). AESWT, AUTSWT and MANSWT are given as M±s.d.(min,max), where M is the
mean over the slices of each data set. The last four rows of Tables C.3 and C.4 for these
quantities, which are the results presented in Table 3.2, refer to the ten M’s.
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Table C.1: Results for the outer wall for the ten patient data sets. AAE and RAE are
given as mean±s.d.(min,max).

Patient No. of AAE RAE AVE RVE
No. slices (cm2) (%) (cm3) (%)
1 47 0.916± 0.503(0.013, 2.203) 7.1± 4.6(0.2, 16.8) 7.079 4.8
2 43 0.654± 0.224(0.193, 1.024) 13.1± 5.4(3.1, 25.9) 4.230 12.4
3 41 1.079± 0.739(0.007, 2.821) 4.0± 3.1(0.0, 11.6) 4.336 2.4
4 29 0.784± 0.550(0.045, 1.992) 4.5± 2.9(0.3, 10.3) 1.844 2.5
5 56 1.606± 1.024(0.126, 4.820) 4.4± 2.9(0.3, 11.6) 5.211 1.6
6 44 1.505± 0.964(0.039, 4.226) 4.5± 2.8(0.1, 11.3) 6.344 4.3
7 45 1.729± 1.338(0.010, 5.887) 4.5± 3.4(0.0, 13.0) 5.192 1.9
8 42 1.060± 0.571(0.019, 2.162) 10.2± 6.7(0.1, 29.8) 6.028 8.3
9 52 1.037± 0.712(0.001, 3.422) 2.5± 1.7(0.0, 7.8) 5.129 1.6
10 51 1.096± 0.790(0.006, 2.876) 5.2± 3.5(0.0, 12.3) 0.237 0.3

mean 45 1.147 6.0 4.563 4.0
s.d. 7 0.355 3.3 2.083 3.7
min 29 0.654 2.5 0.237 0.3
max 56 1.729 13.1 7.079 12.4

Table C.2: Results for the outer wall for the ten patient data sets. MEDIS, HADIS and
AO are given as mean±s.d.(min,max).

Patient No. of MEDIS HADIS AO
No. slices (mm) (mm) (%)
1 47 1.005± 0.281(0.477, 1.600) 2.944± 1.024(1.535, 6.037) 95.0± 1.8(90.8, 97.9)
2 43 0.978± 0.252(0.539, 1.565) 2.656± 0.829(1.303, 5.089) 91.8± 2.6(85.1, 95.8)
3 41 1.104± 0.292(0.602, 1.943) 3.778± 1.318(1.542, 6.966) 96.3± 1.1(93.6, 97.8)
4 29 1.429± 0.349(0.740, 2.206) 4.268± 1.143(2.137, 6.736) 93.7± 1.4(90.8, 96.9)
5 56 1.488± 0.353(0.910, 2.561) 5.156± 1.468(2.884, 8.192) 95.7± 1.2(92.4, 97.6)
6 44 1.110± 0.265(0.638, 2.010) 4.285± 1.439(1.999, 7.455) 96.5± 0.8(94.0, 97.9)
7 45 1.910± 0.529(0.931, 3.263) 5.999± 1.674(3.100, 9.681) 94.5± 1.6(90.2, 97.6)
8 42 1.354± 0.353(0.634, 2.323) 3.369± 0.693(2.100, 5.615) 92.3± 3.3(81.7, 96.9)
9 52 1.101± 0.253(0.623, 1.603) 3.689± 0.906(2.050, 5.869) 97.0± 0.8(94.7, 98.2)
10 51 1.726± 0.456(0.635, 2.785) 5.455± 1.418(2.588, 8.811) 93.2± 1.6(89.5, 96.9)

mean 45 1.320 4.160 94.6
s.d. 7 0.318 1.096 1.8
min 29 0.978 2.656 91.8
max 56 1.910 5.999 97.0
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Table C.3: Results for the wall thickness for the ten patient data sets. AESWT, AUTSWT
and MANSWT are given as mean±s.d.(min,max). Angle φ = π

60 .

Patient No. of AESWT AUTSWT MANSWT
No. slices (mm) (mm) (mm)
1 47 0.869 ± 0.779(0.001, 8.636) 2.759 ± 1.569(0.500, 13.181) 2.900± 1.246(0.129, 12.141)
2 43 0.940 ± 0.691(0.002, 6.172) 2.121± 0.684(1.157, 5.968) 2.928 ± 0.963(0.312, 9.827)
3 41 1.289 ± 1.023(0.005, 7.030) 2.919 ± 1.296(0.872, 10.131) 3.607 ± 1.014(0.465, 7.948)
4 29 0.833 ± 0.736(0.000, 5.523) 2.433± 0.886(1.159, 7.917) 2.416 ± 0.703(0.228, 6.112)
5 56 1.365 ± 1.234(0.005, 8.813) 2.940 ± 1.700(0.251, 11.721) 2.921 ± 0.916(0.218, 9.832)
6 44 1.314 ± 0.981(0.001, 7.051) 2.642± 0.955(1.240, 8.845) 3.695 ± 1.128(0.432, 9.103)
7 45 1.683 ± 1.236(0.001, 9.961) 2.699 ± 1.213(1.188, 14.302) 3.814 ± 1.306(0.260, 8.516)
8 42 0.742 ± 0.640(0.001, 6.199) 1.992± 0.757(0.799, 8.483) 2.192 ± 0.671(0.225, 4.256)
9 52 1.077 ± 0.808(0.001, 5.497) 2.116± 0.863(0.997, 7.495) 2.752 ± 0.882(0.239, 6.436)
10 51 1.159 ± 1.161(0.002, 8.601) 3.129 ± 1.423(1.244, 10.769) 2.707 ± 0.682(0.771, 5.712)

mean 45 1.127 2.575 2.993
s.d. 7 0.292 0.393 0.545
min 29 0.742 1.992 2.192
max 56 1.683 3.129 3.814

Table C.4: Results for the wall thickness (AEMSWT and REMSWT) for the ten patient
data sets. Angle φ = π

60 .

Patient No. of AEMSWT REMSWT
No. slices (mm) (%)

1 47 0.141 4.87
2 43 0.806 27.55
3 41 0.688 19.08
4 29 0.017 0.70
5 56 0.019 0.66
6 44 1.053 28.50
7 45 1.115 29.23
8 42 0.201 9.15
9 52 0.637 23.14
10 51 0.422 15.57

mean 45 0.510 15.84
s.d. 7 0.411 11.38
min 29 0.017 0.66
max 56 1.115 29.23
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Appendix D

Details About The Software
Created For The Methods
Of The Third Chapter

D.1 A Short Description Of The Software

A brief manual for the software created in Matlab, which incorporates all the methods
introduced in the third Chapter of this thesis, will now be given. The only input is a
3D array with the image intensity values of the 3D AAA image data set. This array
is extracted from the DICOM images with “loaddcm(loaddcmdir)” command of Matlab
7.0.1 service pack 1 (other versions of Matlab present a problem with this convertion). The
output contains the points of the lumen, thrombus and outer wall (for all three stopping
criteria) boundaries for the 2D cross section chosen, as well as the leakage region if there
is a leakage.

In the beginning, the 3D data set can be visualized with “orthogonalslicer” to select
either the volume of interest, if we want to create a 3D reconstruction from the 2D results,
or just a cross section. A suitable cropping of the 2D image can then be made (with
“imcrop” command) either interactively or manually, to extract the region of interest and
reduce segmentation time. The FMM is then applied using “Fast Marching Toolbox” [47]
created by Gabriel Peyré. The user can interactively enter up to four points of starting
and ending points to extract an optimized initialization for the lumen or for the thrombus-
outer wall segmentations. Detailed instructions for providing the proper points are shown
and the initialization is the union of the results extracted from each pair of points. Before
proceeding to the LSM, the initialization is visualized on the selected image and, if it is
not a proper one, the possibility of repeating the FMM is provided.

For the LSM, the “Level Set Toolbox” [59] created by Baris Sumengen is used (and
more specifically, routine “evolve2D”). Input for the LSM are the input level set function
φ (whose zero level set is the initialization from the FMM), the resolution of the grid,
a constant for calculating the euler step (dt), the number of iterations, the scheme for
calculating the derivative of φ and the components of the LSM equation (force in the
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normal direction, vector field and curvature). The level set function is reinitialized into
a signed distance function while preserving the zero level set, every few iterations (with
“reinitSD” routine).

For the lumen, 100 iterations are sufficient and, after visualizing the result, the possi-
bility of obtaining a smoother and more exact result is provided: the LSM with curvature
only or with all its components, in an outward or inward fashion, can be applied for a few
iterations (this possibility is provided every time the LSM is applied for the thrombus and
outer wall boundaries, too). For the thrombus boundary, the thrombus boundary recon-
struction method (see the code in the next section) is applied after the LSM. Possibilities
of detecting the possible leakage region (with the DLR method) and of choosing one (or
all three) of the stopping criteria are then provided. Leakage region is then shown in red
and the detection of the outer wall boundary using the LSM to the thrombus initialization
and the chosen stopping criterion begins. The LSM result is then visualized and the outer
wall boundary reconstruction method follows. The possibility of leaving some steps of this
method out is provided, based on the frequently visualized result. Finally, the image is
shown with all three boundaries extracted, but if thrombus and outer wall boundaries co-
incide or are too close to each other in some regions, the TWBD method for the thrombus
boundary is applied. The final three boundaries are then shown in one to three figures,
depending on the number of the stopping criteria chosen.

D.2 Matlab Code For The Thrombus Boundary Reconstruc-

tion Method

The Matlab code for the method used to reconstruct the thrombus boundary in the
presence of calcifications (Sec. 3.4.1) is presented below. This is only a very small sample
of the codes written for applying the methods described in this thesis, as it would be
impossible to include them all here. Comments for each part of this code are included
inside.

1 % CODE FOR THE THROMBUS BOUNDARY RECONSTRUCTION
2

3 % INPUT :
4 % z: the intensity of the cropped image (nxn array)
5 % Sthrombou: the thrombus initialization obtained by the FMM ( nxn array)
6

7

8 % OUTPUT :
9 % cont tel2: the thrombus boundary after applying the thrombus bou ndary

10 % reconstruction method, described in Sec. 3.4.1.
11

12 disp( 'THE THROMBUS BOUNDARY RECONSTRUCTION HAS NOW BEGUN')
13

14 tic;
15

16 phi2=S thrombou;
17
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18 % External vector field
19 a=fspecial( 'gaussian' ,[5 5],1);
20 [w,q]=gradient(a);
21 s=double(z);
22 f1=imfilter(s,w);
23 f2=imfilter(s,q);
24

25 P=sqrt(f1.ˆ2+f2.ˆ2);
26

27 [u,v]=gradient(P);
28 %u is the x component of the vector field
29 %v is the y component of the vector field
30

31 % b: weighting for curvature-based force. b needs to be posit ive
32

33 gI me fft2=1./(1+0.1 * (f1.ˆ2+f2.ˆ2));
34

35 b = 2* gI me fft2;
36

37 % Vn: force in the normal direction
38 Vn = 5000. * gI me fft2;
39

40 dx=1;
41 dy=1;
42

43 % Evolution using bwdist for reinitialization every "iter" iterations
44 % for 200 iterations. "sum iter" has the same value with iter
45 % (sum iter ≤200). The "Level Set Toolbox" created by Baris Sumengen and,
46 % more specifically, its routine "evolve2D" is used for the L SM
47

48 iter=10;
49 sum iter=10;
50 while sum iter ≤200
51 phi2 = double((phi2 > 0). * (bwdist(phi2 < 0)-0.5) - (phi2 < 0). * ...
52 (bwdist(phi2 >0)-0.5));
53 %phi2= reinit SD(phi2, dx, dy, 0.5, 'WENO', 200);
54 phi2 = evolve2D(phi2,dx,dy,0.5,iter, 'ENO3' ,1,1,Vn,1,u,v,1,b);
55 clear ARITHMOS EPANALHPSEWN
56 ARITHMOSEPANALHPSEWN=sprintf( '%i ITERATIONS UNTIL NOW' ,sum iter)
57 sum iter=sum iter+iter;
58 end
59

60 % "cont2" is the zero level set of "phi2", i.e. the resulting c urve
61 % after the LSM
62 clear cont2
63 cont2=contour(phi2,[0 0], 'b' );
64 close all
65

66 clear tam
67 tamhden=1;
68 for i=1:length(cont2)
69 if (cont2(1,i)==0)
70 tam(tamhden)=cont2(2,i);
71 tamhden=tamhden+1;
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72 end
73 end
74

75 for i=1:length(cont2)
76 if (cont2(1,i)==0) && (cont2(2,i)==max(tam))
77 j=i;
78 break
79 end
80 end
81

82 for k=1:2
83 for i=j+1:length(cont2)
84 if (cont2(1,i) 6=0)
85 cont help(k,i-j)=cont2(k,i);
86 else
87 break
88 end
89 end
90 end
91

92 disp( 'THROMBUS IS IN FIGURE 1' )
93 imshow(mat2gray(z))
94 hold on;
95 plot(cont help(1,:),cont help(2,:), 'b' )
96 display( 'If thrombus has entered regions between the calcification s,' )
97 asbest=input( 'press 1. If not, press 2: \n' );
98

99 while (asbest 6=1) && (asbest 6=2)
100 asbest=input( 'Wrong number, please repeat: \n' );
101 end
102

103 if (asbest==1)
104 close all
105 disp( 'CORRECTION OF THROMBUS BOUNDARY HAS NOW BEGUN')
106

107 % Routine "polycenter" provides the centroid of cont help
108

109 i=1:length(cont help);
110 [AREA,CX,CY] = polycenter(cont help(1,i),cont help(2,i));
111 kentro(1)=CX;
112 kentro(2)=CY;
113

114 % Function "antistrofh" is used to obtain the image of the cur ve
115 % under the inversion mapping with respect to its centroid
116

117 for i=1:1:length(cont help)
118 [xant(i),yant(i)]=antistrofh(cont help(1,i),cont help(2,i), ...
119 kentro(1),kentro(2));
120 end
121

122 %figure
123 %i=1:length(xant);
124 %plot(xant(i),yant(i),'g')
125 %hold
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126

127 % The boundary of the convex hull of the inversion mapping of t he curve
128 % is found using "convhull"
129 dkir=convhull(xant(:),yant(:));
130 kir=[xant(dkir);yant(dkir)];
131

132 %i=1:length(kir);
133 %plot(kir(1,i),kir(2,i),'b')
134

135 % The preimages of the points of the convex hull under the inve rsion
136 % mapping form a domain, whose boundary is "thromb"
137

138 thromb=[cont help(1,dkir);cont help(2,dkir)];
139

140 %i=1:length(thromb);
141 %plot(thromb(1,i),thromb(2,i),'g')
142

143 % TECHNIQUES FOR SMOOTHNESS OR FOR A MORE ACCURATE RESULT:
144 disp( 'THROMBUS IS IN FIGURE 1' )
145 imshow(mat2gray(z))
146 hold on;
147 plot(thromb(1,:),thromb(2,:), 'b' )
148 end
149 if (asbest==2)
150 thromb=cont help;
151 end
152 display( 'For smoothing with curvature-only evolution, press 1.' )
153 display( 'For a smoother and more accurate result applying the LSM,' )
154 display( 'press 2 for an outward direction, or press 3 for inward.' )
155 texn=input( 'For nothing of the above, press 0: \n' );
156 while (texn 6=0) && (texn 6=1) && (texn 6=2) && (texn 6=3)
157 texn=input( 'Wrong number, please provide the correct one: \n' );
158 end
159

160 if (texn==0)
161 cont tel2=thromb;
162 close all
163 end
164 if (texn==1) | | (texn==2) | | (texn==3)
165 iteromal=input( 'Provide the number of iterations (around 20-40) \n' );
166

167 close all
168 clear pts testpts xy in ff inn ww phi2
169

170 % The thrombus boundary result up to now must be placed as the
171 % initialization of the LSM:
172 k=0;
173 for i=1:1:siz(2)
174 for j=1:1:siz(1)
175 pts(siz(1). * k+j,1)=i;
176 pts(siz(1). * k+j,2)=j;
177 end
178 k=k+1;
179 end
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180 testpts=pts;
181 xy=thromb';
182 in=inpoly(testpts,xy);
183 ff=1;
184 for i=1:1:length(in)
185 if (in(i)==1)
186 inn(ff)=i;
187 ff=ff+1;
188 end
189 end
190 for i=1:1:length(inn)
191 if (mod(inn(i),siz(1)) 6=0)
192 ww(i,1)=fix(inn(i)/siz(1))+1;
193 ww(i,2)=mod(inn(i),siz(1));
194 elseif (mod(inn(i),siz(1))==0)
195 ww(i,1)=inn(i)/siz(1);
196 ww(i,2)=siz(1);
197 end
198 end
199 clear phi2
200 phi2=ones(siz(1),siz(2));
201

202 for j=1:1:length(ww)
203 phi2(ww(j,2),ww(j,1))=-1;
204 end
205

206 % Evolution with curvature-only, for a few iterations
207 if (texn==1)
208

209 b = 0.3 * ones(siz(1), siz(2));
210

211 dx=1;
212 dy=1;
213

214 phi2 = evolve2D(phi2,dx,dy,0.5,50,[],[],0,[],0,[],[], 1,b);
215

216 cont help2=contour(phi2,[0 0], 'b' );
217 close all
218

219 clear tam
220 tamhden=1;
221 for i=1:length(cont help2)
222 if (cont help2(1,i)==0)
223 tam(tamhden)=cont help2(2,i);
224 tamhden=tamhden+1;
225 end
226 end
227

228 for i=1:length(cont help2)
229 if (cont help2(1,i)==0) && (cont help2(2,i)==max(tam))
230 j=i;
231 break
232 end
233 end
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234

235 for k=1:2
236 for i=j+1:length(cont help2)
237 if (cont help2(1,i) 6=0)
238 cont tel2(k,i-j)=cont help2(k,i);
239 else
240 break
241 end
242 end
243 end
244

245

246 elseif (texn==2)
247

248 % Evolution with LSM in an outward direction, for a few iterat ions
249

250 % Evolution using REINIT (another routine of the "Level Set T oolbox") for
251 % reinitialization every "iter" iterations for "iteromal" iterations.
252 % "sum iter" has the same value with iter (sum iter ≤iteromal).
253

254 iter=10;
255 sum iter=10;
256 disp( 'EVOLUTION WITH LSM IN AN OUTWARD DIRECTION, FOR A FEW ITERATIONS' )
257 disp( 'TO GET A MORE ACCURATE RESULT (REINITIALIZATION EVERY 10)')
258 while sum iter ≤iteromal
259 phi2= reinit SD(phi2, dx, dy, 0.5, 'WENO', 50);
260 phi2 = evolve2D(phi2,dx,dy,0.5,iter, 'ENO3' ,1,1,Vn,1,u,v,1,b);
261 clear ARITHMOS EPANALHPSEWN
262 ARITHMOSEPANALHPSEWN=sprintf( '%i ITERATIONS' ,sum iter)
263 sum iter=sum iter+iter;
264 end
265 cont help2=contour(phi2,[0 0], 'b' );
266 close all
267

268 clear tam
269 tamhden=1;
270 for i=1:length(cont help2)
271 if (cont help2(1,i)==0)
272 tam(tamhden)=cont help2(2,i);
273 tamhden=tamhden+1;
274 end
275 end
276

277 for i=1:length(cont help2)
278 if (cont help2(1,i)==0) && (cont help2(2,i)==max(tam))
279 j=i;
280 break
281 end
282 end
283

284 for k=1:2
285 for i=j+1:length(cont help2)
286 if (cont help2(1,i) 6=0)
287 cont tel2(k,i-j)=cont help2(k,i);
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288 else
289 break
290 end
291 end
292 end
293

294 elseif (texn==3)
295

296 % Evolution with LSM in an inward direction, for a few iterati ons
297

298 iter=10;
299 sum iter=10;
300 disp( 'EVOLUTION WITH LSM IN AN INWARD DIRECTION, FOR A FEW ITERATIONS')
301 disp( 'TO GET A MORE ACCURATE RESULT (REINITIALIZATION EVERY 10)')
302 while sum iter ≤iteromal
303 phi2= reinit SD(phi2, dx, dy, 0.5, 'WENO', 50);
304 phi2 = evolve2D(phi2,dx,dy,0.5,iter, 'ENO3' ,1,1,-Vn,1,u,v,1,b);
305 clear ARITHMOS EPANALHPSEWN
306 ARITHMOSEPANALHPSEWN=sprintf( '%i ITERATIONS' ,sum iter)
307 sum iter=sum iter+iter;
308 end
309 cont help2=contour(phi2,[0 0], 'b' );
310 close all
311 clear tam
312 tamhden=1;
313 for i=1:length(cont help2)
314 if (cont help2(1,i)==0)
315 tam(tamhden)=cont help2(2,i);
316 tamhden=tamhden+1;
317 end
318 end
319

320 for i=1:length(cont help2)
321 if (cont help2(1,i)==0) && (cont help2(2,i)==max(tam))
322 j=i;
323 break
324 end
325 end
326

327 for k=1:2
328 for i=j+1:length(cont help2)
329 if (cont help2(1,i) 6=0)
330 cont tel2(k,i-j)=cont help2(k,i);
331 else
332 break
333 end
334 end
335 end
336

337 end
338 end
339

340 disp( 'THE THROMBUS BOUNDARY IS DEPICTED IN THIS FIGURE')
341 imshow(mat2gray(z))
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342 hold on;
343 plot(cont tel2(1,:),cont tel2(2,:), 'blue' )
344 disp( 'PRESS ANY KEY TO CONTINUE')
345 pause
346 close all
347

348 % Execution time for the thrombus boundary reconstruction
349 ethrombus time=toc./60;
350 fprintf( 'THROMBUS TIME: %g MINUTES\n' ,ethrombus time);
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