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1. Introduction

Hurwitz spaces of admissible covers give rise to maps and correspondences between moduli spaces of curves. In this
paper we study two examples of this. The Hurwitz space Hg 4 in question is the space of admissible covers of even genus
g = 2k and degree d = k + 1. The general curve of genus g = 2k possesses finitely many linear systems of projective
dimension 1 and degree d = k + 1. The Hurwitz space H, 4 is thus a generically finite cover of the moduli space of stable
curves M.

In [6] Farkas constructed for odd g = 2k + 1 a rational map My --» My withg' = 1+ (2",:’2)% by associating to a
generic curve C the curve W,} 4o 10 Pic**2(C) and calculated the induced action on the divisor class group. As an application
he showed the upper bound 6 (g) < 6 + 16/(g — 1) for the slope o (g) of the movable cone ofﬂg for odd genera g.

In this paper we deal with the even genus case g = 2k and use a completely different construction to define a rational

map. To a general curve C of genus g together with a g(}, say y, with d = k-+ 1 we associate the so-called trace curve T = T¢ ,,
defined by

Te,, ={p,9) eCxC:y >p+q},

the locus of ordered pairs (p, q) contained in the fibers of y. By extending this definition to a suitable open part of the
Hurwitz space we obtain a rational map ¢ : Hg 4 --» My with g’ = 5k* — 4k + 1 and it fits into a diagram

— ¢
Hog k1 — = = My

l"

Mok
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Note that the ratio g’/g for the genera of the trace curve and the original curve is much lower than the ratio in the
construction of Farkas.

The main body of this paper is devoted to calculating the induced action p,¢* on the divisor class group of M. The trace
curve carries a natural involution. Dividing the trace curve by it we obtain the reduced trace curve. This yields a similar
rational map ¢A§ : Ek,kﬂ N Wg with § = (5k — 2)(k — 1)/2 and we calculate the induced map on the divisor class group.

The reduced trace curve has gonality < k(k + 1)/2 and carries a correspondence that gives rise to an endomorphism e
of its Jacobian satisfying (e — 1) (e + k — 2) = 0.t is an interesting question to determine further properties of trace curves.

As in the Farkas paper the map p.¢™* sends the ample cone of ﬂg to the movable cone of ﬂg and we obtain in this way
a bound on the movable slope of the form o (g) <6+ 20/g for g even. But, as we shall show, by viewing the Hurwitz space
H 2k k+1 as a correspondence between Mg and M g1, with Mg g the moduli space of stable 6k-pointed rational curves, one
can obtain the slightly better bound o (g) < 6 + 18/(g + 2).

Besides the rational maps ¢ and & defined by the trace curve and its quotient we also have a rational map x from ﬁzk, kb1
to a moduli space of semi-abelian varieties defined by the Prym variety of the trace curve over the reduced trace curve and
a variant given by a quotient of the Jacobian of the reduced trace curve. These maps deserve further study.

Maps between moduli spaces, like the Torelli map and the Prym map, can be important tools for a better understanding
of moduli spaces. Since the rational maps and correspondences constructed here involve the geometry of algebraic curves
in a natural way it is reasonable to expect the same for these correspondences.

Moduli spaces in this paper are viewed as stacks or orbifolds.

2. The trace curve of a g,

Let C be a smooth projective curve of genus g and let y be ag], that s, a linear system of degree d and projective dimension
1. To the pair (C, ) one can associate an algebraic curve, called the trace curve and defined by

T, =Tc, :={p,9) €eCxC:y>p+q}.

Here the notation y > p + g means that there is an effective divisor in y containing the divisor p + q. In the following we
shall assume that the linear system y is base point free. The trace curve can have singularities. More precisely we have the
following result (see [7, Lemma 5.1]).

Lemma 2.1. For a base point free y the trace curve T, is smooth except for possible singularities at points where both p and q are
ramification points of y. A ramification point p of order m of y gives rise to an ordinary singular point (p, p) of orderm — 1. A
point (p, q) € T, with p # q and p and q both simple ramification points is a simple node of T,,.

It follows from the above description of the trace curve that if (p, q) is a smooth point of T,,, then it is a ramification point
of the first (resp. second) projection of T,, to C if and only if q (resp. p) is a ramification point of .
We recall the following lemma from [7, Lemma 5.2].

Lemma 2.2. Let y be a base point free g‘} with all branch points simple except one with arbitrary ramification. Then T, is
irreducible.

For general (C, y) the trace curve T¢ , is thus a smooth irreducible curve of genus

g =@E-1Q2d-=3)+d-1>%

Indeed, the class of the line bundle @(T,) defined by the trace curve T,, on C x C equals pjL ® p5L ® @(—A) with p;
(i = 1, 2) the two projections, L the line bundle defining y and A the class of the diagonal, as one easily checks by restricting
to horizontal and vertical fibers, hence globally on C x C. The homology class of T, is then d(F; + F,) — [A] with F; the fiber
of p;. The adjunction formula implies the formula for the genus g’.

The trace curve T, possesses an involution ¢ induced by interchanging the two factors of C x C. The fixed points of ¢ are
exactly the intersection points of T, with the diagonal and these are the points (p, p) with p a ramification point of y. We
define the reduced trace curve fy = fc,y as the quotient curve T, /.

We are interested in the case that g = 2k is even and d = k + 1. The Brill-Noether number is then zero and the generic
curve C of genus 2k has only finitely many g(} withd = k + 1, namely N = N(k) = ( /k, cf. [1, Ch.V, formula (1.2)]. For

. k+1)
a generic y on such a smooth curve the genus of the trace curve T,, equals

g =5k —4k+1,

while the genus of the reduced trace curve fy equals
. (Bk=2)(k—=1)
§=—5

Remark 2.3. Note that by construction the reduced trace curve possesses a morphism of degree k(k + 1) /2 to P! defined
by sending p + q to ¥ (p) = v (q). So the gonality is much lower than [(g + 3)/2].
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Example 2.4. For k = 2 the trace curve of a curve C of genus 4 with a g?} has genus 13 while the reduced trace curve has
genus 4 and is isomorphic to C by sending p + q to the residual point in the g31.

The construction of the trace curve can be done in families. This defines a morphism ¢ : H; ¢ — M, where Hg 4 is the

Hurwitz scheme of simple covers of the projective line P! of degree d = k4 1 and genus g = 2k. Here a simple cover means
that the fibers of y always have at least d — 1 points. We thus get correspondences

¢ ¢
Hap g1 —— My Hog pp1 —— M;
Moy Moy

Example 2.5. Let k = 3 and let C be a general curve of genus 6. According to [1, p. 218] the curve is birational to a plane
sextic with four nodes. The five g, are given by the four linear systems obtained by the lines through a node and by the

conics through all four nodes. The reduced trace curve Ty associated to such a g‘} is of genus 13 and carries a fixed point free

involution: if p; + p, + p3 + p4 is a divisor from the g; and p; + p, belongs to the reduced trace curve then the corresponding
point is p3 + p4. This involution is fixed point free for general (C, ). So we get a curve T)’, of genus 7 as the quotient of the

reduced trace curve. This curve is a trigonal curve and the Prym variety of the étale double cover T y = T; is known to be

isomorphic to Jac(C). So up to isogeny Jac(fy) is a product ofJac(T;) and Jac(C). Our map Hg 4 — M3 factors through a
map Hg 4 — M7 and is dominant on the trigonal locus 77 in M7. Note that both Mg (or Hg 4) and the trigonal locus 77 have
dimension 15. It seems that Hg 4 — 77 is birational.

The reduced trace curve carries a correspondence:

Proposition 2.6. For (C, y) in Hy 1+1 the reduced trace curve T possesses a correspondence that induces an endomorphism e of
Jac(T) satisfying a quadratic equation (e — 1)(e + k — 2) = 0in End(Jac(T)).

Proof. This follows from a result of Kanev, cf. [10, Prop. 5.8, p. 265]. The correspondence is given by
={p+qr+sel*:y=p+q+r+sh

This induces an endomorphism e of Jac(f) that decomposes Jac(f); define an abelian subvariety A = A, of Jac(f ) as the
image of the endomorphism 1 — e. It follows from the result of Kanev loc. cit. that A is isogenous (even isomorphic) to
Jac(C). O

That Jac(T) contains an 1sogenous image of Jac(C) can be seen as follows. The embedding p : T — Sym?(C) induces a

map p* : Pic®(Sym?(C)) — Plc(T) Now we have an isomorphism Pic®(C) — Plco(Sym (C)) given by associating to the
divisor class a — b the divisor class C; — Cp, with C, the image of the map C — Sym?(C) that sends q to p + g. On the other

hand we haveamap z : Pic(f) — Pic%(C) by associating to t; — t, with t; = p; + g; the divisor p; + q; — p» — go, that is
the image of t; — t, under p1,0* with o : T — T the natural map and p; : T — C the projection. The composition of
Pic°(C) — Pic®(T), a—b>Co-T—Cy-T

with p.0* is k — 1 on Pic®(C). Hence Pic®(C) maps to an abelian subvariety of Pico(f) and the quotient is an abelian variety
of dimension g = (5k — 1) (k — 2) /2. We thus find a map

Xt Hokk1 = Aik—1)k—2)2, givenby (C,y) — Jac(f},)/Jac(C),
where 4z denotes a moduli space of polarized abelian varieties of dimension g.

3. The action of the correspondence on divisors

The Hurwitz space Hy 4 is a smooth irreducible scheme, cf. [9, Thm. 1.53 & Thm. 1.54], and it is compactified by the space
of admissible covers H 4. We can view it as a stack or orbifold, but Hg 4 may not be normal. Its normalization is a smooth
stack Hg 4 containing H, 4 as an open dense subset. For more on this normalization we refer to [7].

Since ﬂg/ (resp. ﬂg) is a smooth stack and I:Ig,d is smooth the map ¢ viewed as a rational map ﬁg,d --» ﬂg/ has locus of
indeterminacy of codim > 2. We thus get maps

¢* : Pic(Mg) — Pic(Hg.q), ¢ : Pic(Mz) — Pic(Hg.q).

Here with the Picard group we mean the Picard group with coefficients in Q. When g = 2k and d = k + 1 the natural map
p: Hg 4= Mg is a generically finite map and we studied in [7] the behavior of the induced map p. : PIC(Hg ) — Plc(,Mg)
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One of the purposes of this paper is to study the composite map
o = p.d* : Pic(My) — Pic(My)
and the similar map
& = p.¢* : Pic(M;) — Pic(M,) .

In [7, Prop. 3.1 & Prop. 4.1] we determined the boundary divisors in I:Ig,d which do not map to zero under p,. These include
a divisor Eq which maps dominantly to Ay, divisors Ej . for 1 < j < kand 0 < ¢ < [j/2], that map dominantly to 4;, and
divisors E,, E3, each mapping dominantly to a divisor in ﬂg that intersects M,. The general point of E; and E3 represents
a curve whose stabilization is a smooth genus g curve. To study the map « (resp. @), it suffices to studying the trace curve
(resp. reduced trace curve) for admissible covers in the smooth open substack H of I:Ig’d

I‘:I = Hg,d U (Uj,cEj’c) U EO U Ez U E3.

We shall keep the notationp : H—> ﬂg for the natural map.

4. Extending the trace curve

In order to study divisors on H it suffices to consider one-dimensional families of admissible covers with general
member in Hy 4, and their associated trace curves. Therefore we study in this section the extension of the trace curve over

1-dimensional base curves B in H.
Over the Hurwitz scheme H we have a universal curve €. The general cover has b = 6k branch points. The curve € fits
in the following basic diagram

— y
Mogk+1 <—— C (1)

ﬂo,ek D H

where q is the map that associates to an admissible cover C — P the genus 0 curve P together with the 6k branch points.

We now assume that B is a 1-dimensional smooth base (disk or the spectrum of a discrete valuation ring). Over B we have
the pull back of the universal curve € and we can restrict the basic diagram (1) to B. We shall define the trace curve 7 as
the closure of the locus of points (a, b) of @ x € with a # b and a and b in the same fiber of y : € — M g 1. The fiber of
C xp C over a point h € B consists of the products of the various components of the curve €. The fiber T, of the trace curve
over h lies in the product of components of ¢, which map, by the map y, to the same rational component of the fiber of the
map @ over the point q(h). We shall carry out this construction locally. Note that either both a and b are smooth points of
the fiber @, or both are singular points. We start with the case of smooth points.

Case 1: pairs of smooth points. Assume that a # b are smooth points of the curve ¢, with y (a) = y (b). We denote by ¢ a
local coordinate on B, by u a local coordinate on Mo g+ 1, and by x, y (resp. ¥, y') local coordinates on € at a (resp. b) so that
7 at a (resp. b) is given by x = o (resp. X' = o) and the map y to Mo ;1 byy = u™ (resp.byu = y')withm = 1orm = 2
depending on whether a is a ramification point. (Since we assume the cover is simple at most one of the smooth points a, b
is a ramification point and if so we assume it is a.) Then the equations for the trace curve (as a family over B) around the
point (a, b) with a # b are given by

x=0, X=0, y=0"
For (a, b) with a = b and m = 2 the equations of the trace curve are given by
X=o0, X =o, y+y =0.
In both cases the corresponding system defines locally a smooth family of curves with smooth central fiber.
Case 2: pairs of singular points. If the point a is a singular (nodal) point of the curve G, then any b with y (a) = y (b) is also

a singular point of G,. We carry out now the analysis for pairs of singular points (a, b) which occur for curves representing
the generic member of the divisors Eg, E,, E; and E;j .. The local equations of those fall in one of the following types:

Type 1: In this case a # b. The local equation at a of the map 7 : € — Bisxy = ¢ (in the x, y, o coordinate system as
above)and at b itis x'y’ = o™ (in the X, y', o coordinate system). The local equation at a of the map y : € — M gis 1 iS Of
the formx = u, y = vandatbitisx’ = u, y' = v. Then the local equations for the trace curve (as a family over B) at the
point (a, b) are givenbyxy = o™, X'y = o™, x =X,y =y, i.e.by

xy=o0", x=x, y=y.



880 G. van der Geer, A. Kouvidakis / Journal of Pure and Applied Algebra 216 (2012) 876-893

The last two equations define an intersection of hyperplanes and then the first implies that the family has an A, singularity
at the point (a, b), which we may resolve by inserting a chain of (—2) curves of length m — 1.

Type 2: In this case a = b. The local equation ata = b of the map 7 : € — Bisxy = o, (in the x, y, o coordinate system).
The local equation at a = b of the map y : € — Moy 1 is of the form x™ = u, y™ = v. Then the local equations for the
trace curve (as a family over B) at the point (a, b) are given (in the x, y, X', ¥/, o coordinate system) by
Xm _ X/m ym _ y/m

x—x y—y
Note that for 6 # 0 the last two equations define the same locus (because of the first two equations). But for ¢ = 0 they
define the locus of points (x, 0, ', 0, 0) with (x™ — x™)/(x — x’) = 0 (which is the trace curve of the map x™ = u in the
(x, x')-plane) plus the locus of points (0, y, 0, y, 0) with (y™ —y'™)/(y —y’) = 0(which is the trace curve of the mapy™ = v
in the (y, y’)-plane). The point (0, 0, 0, 0, 0) is a singular point (for m > 3) of the family of trace curves. We perform a small
blow up (inside the fiber product of curves) by setting: sx’ — tx = 0, sy — ty’ = 0. The proper transform of the trace curve
by the blow up is given by the equations

Xy =o, Xy =o,

sm— ™
Xy =o0, Xy =o, sx' —tx =0, sy—ty =0, . =0.
S p—
The last equation gives s = w't,i = 1, ..., m — 1, with » a primitive m-th root of unity. Therefore the trace curve intersects

the exceptional line at the m — 1 points [o', 1]. In the neighborhood of this point the trace curve is given by the equations
xy=0, X=o0% Y=oy, [s,t] = [, 1], i=1,...,m—1.
This defines locally a smooth family with nodal central fiber.
Type 3: In this case a # b. The local equation at a of the map 7 : € — Bisxy = o, (inthex, y, o coordinate system) and at b
isx'y’ = 0. The local equation at a of themap y : € — Mo k41 is of the formx® = u, y> = vandathitisx” = u, y* = v.
Then the local equations for the trace curve (as a family over B) at the point (a, b) are given (in the x, y, x’, y’, o coordinate
system) by
xy=0, xy =0, x¥-x*=0 y-y*=0.
We blow up as before and find that the proper transform of the trace curve by the blow up is given by the equations
xy=0, Xy =0, sxX—tx=0, sy—ty=0 sE—t>=0.
The last equation gives s = =+t. Therefore the trace curve intersects the exceptional line at the two points [+1, 1]. In the
neighborhood of these points the trace curve is given by the equations
Xy =o0, x = 4x, y =y, [s, t] = [*1, 1].
This defines locally a smooth family with nodal central fiber.

Type 4: In this case a # b. The local equation at a of the map 7 : ¢ — Bisxy = o, (inthex, y, o coordinate system)and at b
isx'y’ = o™.The local equation at a of themap y : € — Mo grs1 iSOf the formx™ = u, y" =vandathitisx’' =u, y’ = v.
Then the local equations for the trace curve (as a family over B) at the point (a, b) are given (in the x, y, X', y’, o coordinate
system) by

Xy =o0, Xy =o0™, X =x", y =y".
This defines locally a smooth family of curves with nodal central fiber.
Conclusion. By performing the small blow-ups at the pairs of points of type 2 and type 3 we created a (singular) nodal model

7 over B. By resolving the singularities (of type A,,) we obtain a smooth model T : 7 — B of the trace curve, a nodal family
of curves with smooth total space.

5. The geometry of the trace curve

In our study of the divisors in H we shall need to know the shape of the trace curve near a point of the divisors Eo, Eic. Es
and E; in H. We may assume that the limit point is a generic point of a component of one of these divisors. The reader can
find the description of the generic admissible cover over any of these divisors in our paper [7]. For each of these cases we
explicitly carry out the construction done in the preceding section.

In the following Figs. 1-4, on the left we show the fiber ¢, of @ — H overa generic point h of the boundary components
Eo, E;, E3 and E; . respectively. On the right we show the corresponding fiber 7} of the smooth model of the family of the
trace curves constructed as in the preceding section and its first projection n : 7, — €. The fiber ¢, over h maps by the
map y to a stable genus 0 curve with two components intersecting at a point Q. If Qy, ..., Q, are the preimages of Q with
ramification format u = (my, ..., m,) then the local equations of the map y : € — M g41 around the points Q; are given
by xjr-nj = uand y}nj = v. The local equations of the family € — B around the points Q; are given by x;y; = o™")/™ where
m(y) is the least common multiple of mq, ..., m,, see [8, Section 4].
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(gisp)

(9i,q5)
Py P, R; C S

1<ifj<k—1

Fig. 1. The fiber of € over a point of Ey and the corresponding trace curve.

(qi7p2)

Vi
Ts,
"
Syj
1<i#j<k-3, 1<v#u<2
Fig. 2. The fiber of € over a point of E; and the corresponding trace curve.
(ai,p) (p,p)
Ty

1<i#j<k—2

Fig. 3. The fiber of € over a point of E5 and the corresponding trace curve.

Cy R, Sh Cs

1<A#pu<k—j+ec 1<v#p<c

Fig. 4. The fiber of € over a point of E; . and the corresponding trace curve.
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Fig. 1 corresponds to the case where h is a general point of Ey. The admissible cover on the left is described as follows:
it consists of a main component C, which is a curve of genus 2k — 1, and rational curves Ry, ..., R,_; and S. This maps to a
rational curve consisting of two components P; and P,. The map from the curve C to P; has degree k + 1. The components
R; map isomorphically to P, and the map from S to IP, has degree 2. At all the intersection points of the above components,
the admissible cover has ramification degree 1 (here with ramification degree we mean the degree of the local map on the
components). The rational curve P; contains 6k — 2 branch points and P, contains 2 branch points.

The local equations around the points q1, ..., qx—1, p, g have the formx = u, y = v, Xy = o. The trace curve on the right
has the following properties:

(1) All the singular pairs (a, b) of points are of type 1 withm = 1.

(2) The curves T¢ and Ts are the trace curves of the maps C — P; and S — [P, respectively. The curves S; (resp. Sj’ ) are
produced by taking pairs of points from the components R; and S (resp. S and R;). The curves R;; are produced by taking
pairs of points from the components R; and R;.

(3) The curves Ry, S;, Ts and Sj’ are all rational curves.

(4) The map S; — R;is2:1and the maps R; — R;, and T, Sj’ — S are all isomorphismes.

Fig. 2 corresponds to the case where h is a general point of E,. The admissible cover on the left is described as follows:
it consists of a curve C of genus 2k and rational curves Ry, ..., R,_3, S; and S,. The map from the curve C to P; has degree
k + 1. The components R; map isomorphically to P, and the maps from S; and S, to P, have degree 2. The admissible cover
has ramification degree 1 at the points qy, . . ., qx—3 and ramification degree 2 at the points p; and p,. The rational curve IP;
contains 6k — 2 branch points while P, contains 2 branch points.

The local equations around the points gy, . .., gx_3 have the form x = u,y = v, xy = o and around the points p;, p»
have the form x> = u, y?> = v, xy = o. The trace curve on the right has the following properties:

(1) The pairs (q;, q;) are of type 1, with m = 2; the pairs (p1, p1) and (p,, p») are of type 2, with m = 2; the pairs (p1, p2)
and (p,, p1) are of type 3; the pairs (g;, p,) and (p,, q;) are of type 4, withm = 2.

(2) The curve Tc is the normalization of the trace curve of the map C — P;. The curves T, are the trace curves of the maps
S, — P,. The curves S;; (resp. Sj») are produced by taking pairs of points from the components R; and S; (resp. R; and
S,). The curves S,’,’j are obtained by taking pairs of points from the components S, and R;. The curves S .. are obtained
by taking pairs of points from the components S, and S,,. The curves R;; are obtained by taking pairs of points from the
components R; and R;.

(3) The curves Sy;, S2i, Ryj, {W Ts, and S,’jj are all rational curves.

(4) The maps Sy, S;i — Ry are 2 : 1 and the mapsR; — R;and S
which joins R;; with Tc contracts to the points g;.

!

o Tsys S;’j — S, are all isomorphisms. The (—2) curve

Fig. 3 corresponds to the case where h is a general point of E5. The admissible cover on the left is described as follows: the
curves Ry, ..., Ry_ and S are rational curves. The curve C is of genus 2k. The components R; map isomorphically to P, and
the map from S to P, have degree 3. The map from the curve C to P, has degree k + 1. The admissible cover has ramification
degree 1 at the points q1, . . ., gx_» and ramification degree 3 at the point p. The P; contains 6k — 2 branch points and the
P, contains 2 branch points.

The local equations around the points gy, . . ., gx_» have the formx = u,y = v, xy = o> and around the point p have
the form x> = u, y> = v, xy = 0. The trace curve on the right has the following properties:

(1) The pairs (g;, ;) are of type 1, with m = 3; the pair (p, p) is of type 2, with m = 3; the pairs (g;, p) and (p, g;) are of
type 4, withm = 3.

(2) The curves T¢ and Ts are the normalizations of the trace curves of the maps C — P; and S — [P, respectively. The
curves S; (resp. Sj/ ) are produced by taking pairs of points from the components R; and S (resp. S and R;). The curves R;
are produced by taking pairs of points from the components R; and R;.

(3) The curves S;, Ry, T, s and Sj’ are all rational curves.
(4) The map S; — R; is 3:1, the map R; — R; is an isomorphism, the map Ts — Sis 2:1 and the map Sj’ — Sisan
isomorphism. The chain of (—2) curves of length 2 which joins the R; with Tc contracts to the point g;.

Fig. 4 corresponds to the case where h is a general point of E; .. The admissible cover on the left is described as follows:
The curvesRy, ..., Rcand Sy, ..., Si_jtc are rational curves. The curve C; has genus 2k — j and the curve C, has genus j. The
curve R, (resp. S; ) maps isomorphically to Py (resp. IP;). The map from the curve C; to P; has degree k + 1 — ¢ and the map
from the curve C, to I, has degree j + 1 — c. The IP; contains 6k — 3j branch points and the P, contains 3j branch points.

The local equations around the pointspy, . .., px—j+candq, ..., gc havetheformx = u,y = v, xy = o/1172¢ and around
the point p have the form x¥+172¢ = y, y/*172¢ — ¢, xy = . The trace curve on the right has the following properties:

(1) The pairs (px, q,). (4, bu). (P, py) and (qy, q,) are of type 1, withm = j 4+ 1 — 2c; the pair (p, p) is of type 2, with
m = j + 1 — 2c; the pairs (ps, p), (9, p), (P, pu) and (p, q,) are of type 4, withm =j+ 1 — 2c.
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(2) The curves TC] and Tcz are the normalizations of the trace curves of the maps C; — Py and C; — P, respectively and
they intersect at j — 2c¢ points. The curves (;, (resp. C,,) are produced by taking pairs of points from the components C;
and R, (resp. R, and C;). The curves C, .. (resp. G2) are produced by taking pairs of points from the components C, and
S, (resp. S, and C,). The curves R, , (resp. S,,,) are produced by taking pairs of points from the components R, and R,
(resp. S, and S,,).

(3) The curves S;,, Ry, are rational curves. The curves Cy, and C;; are isomorphic to C; and the curves C;, and C,, are
isomorphic to C,.

(4) The maps C;, — Cy, CZ’M — (2,8, — S, andR,, — R, are isomorphisms, the map C,, — S, is(+1—c) : 1and the
map C); — R, is (k+1—c) : 1. The vertical chain of (—2) curves of length j — 2c which ends to S; , (resp. R, ,) intersects

Tcl (resp. Tcz) at the point (py, p,.) (resp. (qv, q,)). The chain of (—2) curves which ends to S, (resp. R, ,) contracts to
the point p; (resp. q,).

Example 5.1. If k = 1 then the trace curve T for an admissible cover C — P representing a point of H, 4 or a generic point
of one of the divisors E, E;, E5 or Ej . equals the curve C and the reduced trace curve equals the curve P. For k = 2 we get as
reduced trace curve the curve C.

The reduced trace curve is constructed as the quotient of the trace curve by the action of the involution. This involution
extends to the smooth model 7 : & — B constructed in the preceding section. Since the action is fixed point free outside
the diagonal we need to consider this action only at the points of the diagonal.

In Case 1, pairs of smooth points (a, b) with a = b, the trace curve has equationsx = o, X’ = o, y +y = 0. The
involution acts by interchanging x with ¥’ and y with y’. By taking invariant coordinates we observe that the quotient is
smooth at this point. In Case 2, pairs of singular points, the only type which involves points on the diagonal is of type 2. At
these points the involution acts by interchanging x with x’, y with y’ and u with v. When m is even we have a fixed point
[u, v] = [1, —1]. The local equations at this point are [u, v] = [1, —1],xy = 0,x + X = 0,y + ¥y’ = 0. By taking invariant
coordinates we observe that the quotient has an A; singularity. There are [m/2] branches on the reduced trace curve but
when m is even we have to resolve the A; singularity in the middle by inserting a (—2) curve.

6. Generic finiteness of the trace curve map

We now prove that the rational map ¢ : ﬁg,d - ﬂg/ is generically finite.

Proposition 6.1. Let C be a general smooth curve of genus g > 4 and y a base point free g; with g > 2d — 4. Then the trace
curve T, determines C uniquely: if C’ is another curve with trace curve T" isomorphic to T then C' is isomorphic to C.

Proof. Suppose that C’ is another smooth curve of genus g with a pencil y’ such that T, and T, are isomorphic, say
Vo Ty:>Ty/. Let p; (resp. p}) denote the first projection of T (resp. T,/). Then p, V (p})* defines a homomorphism
j :Jac(C") — Jac(C). We claim that j restricted to a suitable translate of C’ is birational to its image. Since C is general its
Jacobian is simple (see e.g. [12,13]), hencej is either zero or an isogeny. If j is zero this means that for general points x and y
in C’ the divisor p1,¢ ! ((p})*x) is linearly equivalent to P! ((p})*y) and this gives then a pencil of degree d — 1 on C;
since by assumption the Brill-Noether numberg — (r + 1)(g — (d — 1) +r) = 2d — g — 4 is negative this does not exist on
C.Thusj is an isogeny and for a suitable translate of C’ the map j will be birational. This image is then a curve of geometric
genus g in Jac(C) and by a theorem of Bardelli and Pirola for a generic Jacobian of genus g > 4 all curves of genus g lying on
it are birationally equivalent to C (see [3]). O

Example 6.2. Let C be a generic curve of genus 4. It has two g5 s, say y; and y». Then the reduced trace curve Tis isomorphic
toC viathemapr — p+ qifp + g+ r ~ y.But the trace curves T,, and T,, (of genus 13) are in general not isomorphic
since the maps T, — C and T,, — C are branched at different points. So the map ¢ : Hs 3 — M3 is of degree (12)!, while

g?ﬁ : Hy3 — My coincides with the natural map p.
7. Intersection theory on /M

We recall some basic facts about the divisor theory of the moduli space of b-pointed genus 0 curves Mg, (see [11] and
[8, Section 2]). The boundary of Mg is the union of irreducible divisors, each of which corresponds to a decomposition of
B={1,...,b}as B = A U A€ into two disjoint subsets with2 < #A < b — 2. We write the corresponding divisor as sg‘

modulo the relation S! = S{\°. We sometimes normalize the A by requiring that
#(AN{1,2,3) < 1.
The map @ : Mo i1 — Mo is equipped with b sections s; : Mo — Mo pp1 Withj =1, ..., b.
The boundary divisors of ﬂoybﬂ are related to those of ﬂo,b as follows:

@Sy = Spy, U Sljfl{bﬂ}’
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with A C {1,..., b}.Notethatif A C {1, ..., b}isnormalized, then so are A and AU{b+ 1} assubsetsof {1, ..., b+ 1}.So

all the boundary components of Mg 1 are coming from M , except the components 5,? +bl+” (j=1,...,b)thatcorrespond

to the image of the b sections ;.

With A C {1,..., b}, the generic element of the divisor S represents a stable curve with two rational components.

Therefore the map S,j‘H — Sb (resp. Slj‘ﬁ LARTNN Slj‘) is generically a P'-fibration. We have

SMNSM £ = #(A1U Ay) € (#Aq, #Ay, #A, + #A,, b},
Definition 7.1. With b = 6k we define on My j, for 2 < j < 3k — 1 the divisors
1

dYoost and F=c Y sl
_ 2 _
ACB, #A=j ACB, #A=3k
One easily determines the image of H under the morphism q : H — Mo 6
Lemma 7.2. The image of H under q is contained in
Mop UTEU (U T)).
Recall that the b sections s; define tautological classes ;.

Definition 7.3. We define a divisor class on Mg, by
b/2

¥ = Z% = Z (b_Jl)J .

8. Applying Grothendieck-Riemann-Roch

In this section we shall apply the Grothendieck-Riemann-Roch theorem to the family of trace curves over our
1-dimensional base B and the relative dualizing sheaf. We have the diagram

R

A

B7Mg/

(2)

the notation of which we now explain. The curve 7'/B is the singular trace curve in which we have performed the small
blow-ups at the pairs of points of type 2 and type 3. It is a family of nodal curves. The curve 7 is the smooth model of 7’
and 0 : T — T, is the stabilization map. The space 7" has singularities of type A, and the cover n’ : 7' — € is a finite
cover of cleglee k. The space 7 contains chains of (—2)-curves which are obtained by resolving the smgularltles of 7/. The
mapn : & — Cis a generically finite cover of degree k.

We w1sh to calculate ¢* A/, where A,/ is the Hodge class of @g/ over Mg Note that (¢')*A,» = A, andsinced : T — T,
is a contraction we have A, = A, cf. [8, Lemma 3.2], 50 ¢p* A = A;.

Applying Grothendieck-Riemann-Roch to 7 : & — B gives

120, = f*(wi) + 0,

where §; is the push forward of the singularity locus of the fibers and w, denotes the relative dualizing sheaf of 7, cf. [15].
In order to carry this out we need to calculate t, (w%) and §,. We begin with the latter.

Proposition 8.1. For k > 3 we have
8 = (kK + k) Eo + (2k* — 10k + 18) Ep + (3K* — 13k + 16) Es + Y _ dj cEc

j.c
with
c k—j+c . . .
dc = [(2> +( ! )} G+1—=20) +2(c+ 1)(k—j+c)+].
Moreover
5. — 2EQ+E]Y0 k=1
© | 6Eg 4 2E3 4+ 3E1 9+ 2E3 0+ 6Ey1 k=2.
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Proof. This formula is obtained by analyzing the pictures in Section 5. For example, the contribution of E, consists of a
contribution 2(k — 3) (k — 4) of the Ry;, a contribution 2(k — 3) of the Sy; and Sy;, a contribution 4 of the S, wa contribution 2
of the Ts,, a contribution of 2(k — 3) of the S, giving in total 2(k — 3) (k — 4) + 4(k — 3) + 6 = 2k? — 10k + 18. The other

vj? )
coefficients are obtained in a similar way. For example, for the case of E; . we find a contribution 2 ("‘é*‘) from the chains

ending with S,,; similarly 2 (§) from those ending with R, ,, a contribution 2 c(k — j + ¢) from the intersections Ci, - Cy»
and C,q - Gy, a contribution 2¢ 4 2(k — j + ¢) from the intersections Tc, - Cy1, Tc, - Cao, T, - Cop, Tey - Cip and finally j — 2c
from the intersections of Tc, with Te,. O
;iema;'k 8.2. Note that the formula for k > 3 remains valid if we interpret E, and Es (resp. E,) as zero for k = 1 (resp. for
k =2).
Now we turn to the calculation of t, (a)ﬁ). A first remark is that (in additive notation)
Wy = U*wn + Rm

with R, = w*R,/, where R,/ is the ramification locus of the finite map n” : 7 — €. This is the same as the closure of the
ramification locus of the map 7’ (or 7) restricted to the locus of B which represents smooth curves. Note that R, is supported
outside of the singular locus of 7 and so it defines a Cartier divisor on 7. The formula above is derived by applying u* to
the formula w,s = (n')*w, + R,; the latter holds because it holds outside of the singularities of the spaces 5~ and €. Since
oy = w; the formula follows.

We calculate

0} = (" 07)* + 20"y - Ry + R
and observe
T (N 02)%) = T (*02)®) = k 1 (02),

because 7 is a generically finite map of degree k.
Note that € is a singular space but all the above cycles represent Cartier divisors, so the intersection product makes sense.
In the calculation we use the following diagram (3) with € the smooth model of € and with b = 6k in Mg, and Mg p41.

/ B
Mo b1 <— I

Mo, <, B

If ¢ is a cycle on € we have w,.c = 7,v*c because v,v*c = c. Since now v*w, = w; we get

T*((Tl*wn)z) =k ﬁ*wz (4)

=,
We also have

(N 0z - Ry) = 7N (" @7 - Ry) = M (0r - N4Ry).
The trace curve is ramified over € at the points (p, q) in the fiber over p € € where q is a ramification point of the map y.
This implies

V¥n.R, = 1*S — 2R,,

with§ = Y0 | Sg'jrb;“” the sum of the image of the sections of the map @ and R; is the closure of the ramification of r over
the smooth locus. This yields

T.(* 0y - Ry) = 7wz - (*S — 2R)]. (5)

The right hand sides of (4) and (5) can be calculated in a way similar to the calculations in our paper [8]. In order to calculate
Ty (R%) we will use that the map »’ (and n) is a simple cover and therefore if V = 7.R, is the branch locus of ' (or ) then

n*V = 2R, + R} with R, - R, = 0. Therefore,

1 1
TR = 5 TRy 0V = 2 AOLRy - V)

1 1
= - (V) = 5 T (VV?) =

: 7. 0(r*S — 2R;)?2].

1
2
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Since we are dealing with the divisors Eo, E;, E3 and Ej . only we may adapt the earlier definition of the divisor class ¥ on
My by setting

2(b—2) £ 3j(b — 3)) s
= — —T". 7
¥ = Zw, - b+; = )
The following formulas are a consequence of Lemma 3.1 in our [8]:
q T} = Eo + 2E; + 3E3,
o b2l (8)
¢y =) (+1-20E. j=1....k
c=0

Carrying out the calculations as in [8] for the right hand sides of the Eqgs. (4)-(6) the following formulas can be deduced
from [8, Lemma 4.2]:

Lemma 8.3. We have the following equalities

~ * * ~ 1 * ~ 1 *
JT*(T Wy 'Rr) =q wv ﬂ*(wﬁ 'Rr) = E q wa ﬂ*(Rf) = _5 q wv

k .
e (@2) = 3/2)q* Y — (k+ 1) ¢* <Tb2 + § T§J> )
j=1

As a check please note that for k = 1 the formula for 7, (a);) gives 5«1 = Eg + 7E1 o, in agreement with 5«7 = 8o + 764
(see [14, Eqn (8.5)]).
We will need the following lemma.

Lemma 8.4. If I is a cycle on ﬂo,bﬂ thenm,*I' = (k+ 1) qg*w. I’

Proof. Let P = Mo, 1 X7, , B be the fiber product. The induced map § : G — P isgenericallya (k + 1) : 1 map. Let

ri:P — Moypsiandr, : P — B be the projections. Then £,£* = k 4+ 1. We have 7,r* I' = TETT T =188 I =
k+DrpriI'=(k+1Dq'w. . O

Lemma 8.5. We have
7. (8% = —(k+ D@, AR -T*S) = —q*¥,  Fu(wz - 1*S) = kg™ .

Proof. By the adjunction formula we have @, (S%) = —v. Therefore, 7. (f*§2) = (k+ 1)q*w.(5?) = —(k+ 1)q*. For the
second formula, if we denote the ramification sections of 7 by p; : B — € thenr o p; = s; o g with s; the sections of w. We

have 7, (r*S - R,) = > ﬁ*(pi*pfr*§) =) ﬁ*pi*(q*s;“§) = — ) ;q*¥; = —q*. For the third, we have w; = r*w, — R;;
SO 7Ty (w7 - r*§) = 7. ((Fwy — Ry) - r*§) and by the second formula this equals 7, (r*w,, - r*§) — g*y. It thus suffices to
show

Tu(F 0y - 1%8) = (k4 1) g*.

But we have

A - (z w> S s = Y=y
i i i
Now apply Lemma 8.4. O

As a corollary of Egs. (5) and (6), and Lemmas 8.3 and 8.5 we get the following formulas.

Corollary 8.6. For k > 1 we have

1
‘L'*(Ri) = _E (k -1 q*lﬁ» T*(r'*wn . Rn) = (k -1 q*¢

and

n.(n*w?) = 3—q v —k(k+1) q* (Tb + ZT§J>

Jj=1
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Substituting these formulas in 7. (o?) we find
Proposition 8.7. For k > 1 we have

—6k3 4+ 31k* — 29k + 6 k_i/2]
2 = . .
T(wp) = T (Eo + 2E, + 3E3) + ; ; a.cEc.
with a; . given by
272k — 1)(2k —j
G+1-=20) 275@k - D@k J)—k(k-l—l) )
2 6k — 1

By substituting the formulas of Propositions 8.1 and 8.7 in the expression of 12 ¢*A,s given by the Grothendieck-
Riemann-Roch theorem we have

Theorem 8.8. The pull back of the Hodge class Ay of My under ¢ equals

k /2]

(toEg + t E; + t3 E3) + Z Z tjc Ej,c
j=1 ¢=0

120 hy =
¢ ke 6k — 1

with the coefficients to, t;, t3 and t; . defined by
to=18k*—15k+3, t,=30k—3, t3=6Kk +11k+1
and tic =0jc+ dj,c.

Example 8.~9. Take k = 1 and interpret E, and Es as zero. Since ¢ is the mapp : H — M, we get the formula for the Hodge
bundle on H, ,; it says Ay, = (Eo + E1.0)/5. This fits with the formula given in [8, Thm. 1.1], cf. also [7, Prop. 8.1].

9. The reduced trace curve

We carry out the analogous calculations for the reduced trace curve and calculate the pull back of the Hodge class on ﬂg

under q3
We denote the family of the reduced trace curves over our 1-dimensional base B by 4’ and the smooth model (obtained

by resolving the A; singularities coming from the isolated fixed points) by 4. We have the quotient map o : 7 — 4’. Note
that w; is trivial in a neighborhood of an A; resolution and the pull back of wy to 4§ is w;. We have the diagram

(9)

Lemma 9.1. We have s, (w?) = %‘L'* (w?) — %q*(llf)-

Proof. Since the singularities of 4’ are of type A; we can neglect them for this calculation and work on 4’. We have
w; = 0*wy + R, with R, the ramification divisor of ¢, hence

1, 1 1
0} = 50,07 (@) = S0 00)’] = Zoul(@; = Ry)?]
and thus
2 1 2 1 2 1 2

S*(ws) = ET*[(Q)T _R(r) ] — Et*(a)f) - T*(C()-L- . Ra) + Et*(Rg)-
We denote by R, the closure of the ramification of y over the smooth locus. Note that v*R, = R,. We haveR, - R, =0
because n(R,) = R, and (R,) = y~'(S) — R,. We have

- 1
T.(w: - Ry) = T [(n"wr + Ry) - R;]1 = T.[n*ws - Rs] = i (0y 'Ry) =m(w7 - Ry) = zq*tﬁ,

by Lemma 8.3. If « denotes the involution on 7 then n*R, = R, + (*R, and R, - (*R, = 0. Furthermore we have

2 * 2 ~ 2 1 *
T.(R;) = &Ry - n"Ry) = m.[(Ry)"] = . [(R)°] = —34 Y. O
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Lemma 9.2. The push forward &, of the locus of singularities of the fibers of s for k > 3 is given by

3k —13k+ 16 k U2l
E0+(k2—5k+12)52+— ZZsJC )
j=1 c=

k? + k

05 =

with s; . given by

k—j , .
et (1) orroron [

and fork = 1and k = 2 by

_ E0+E]Y0 k=1
ST 3Eo+E3+3E1,0+Ez,0+3Ezy1 k=2.

Proof. We use the local description of the reduced trace curve given in Section 5. The contribution of Eq to &, is (kgl) +

2(k — 1) = (k* + k) /2. From E, we find the contribution 2(";2) +2(k—=3)+2+4=k*—5k+ 10, where the last term
4 comes from the points (p,, p,) for v = 1, 2 that give an A;-singularity on the reduced trace curve. For E; . note that for j
odd the ‘middle’ intersection point of T¢, and T, gives rise to an A;-singularity on the trace curve. The other contributions
are obtained similarly. O

Remark 9.3. By interpreting for k = 1 (resp. k = 2) the divisors E, and E5 (resp. E,) as zero, the formula for k > 3 works for
all k > 1. As a check on the formula note that for k = 1 the reduced trace curve of C — P equals P and we thus easily see
that we have coefficients 1 for both Eqg and E; o. Similarly, for k = 2 the reduced trace curve equals C and we thus can easily
read off from the left hand side of the Figs. 1-4 the multiplicities.

By substituting the formulas for 7. (w?) and ¢* ¢ in s.(w?) in Lemma 9.1 and adding §; we get an expression for 12 @*Ag

Theorem 9.4. For k > 3 the pull back of the Hodge class Ag ofﬂg underqAﬁ is given by

k /2]

- (g Eo + 112 E> + 13 F3) +Y ) uicE

j=1 ¢=0
withug = 9k* — 12k +3,u, = 15k u3 = 3k*> — 8k + 5 and
(j + 1— ZC) 2 2 . 2
—— ((27k — 27)j° — 54(k" — k k k)(6k — 1)) .

Gk 1) (¢ )j (k* — k) j+ (K + k) ( )

Example 9.5. Take k = 2 and interpret E, as zero. The formula says that

. 30 2 48 74 54
12¢)‘§_1 Eo+ E3+ E]0+ Ezo+

129" =

6k —

Ujc = Sj,c —

Comparing this with the formula for the Hodge class of H4,3 (cf. [8]) we see that it fits.
10. Pulling back boundary divisors

We shall need to know the pull backs of the boundary divisors 81-’ in ﬂg/ (resp. § in ﬂg) under the rational maps
¢ :H— My (resp. ¢ : H— M).
Proposition 10.1. For k > 3 the pull back ¢*(8,) equals

k /2]
(4k—2)Eo+4E +2E5+ » Y (k—j+0)(c+ 1>+J>E,C+ZJEJO,
j=2 c=1 j=2

furthermore, ¢*(8}) = (2k — 1)E; o and

Qk—2)Eo j=2,....k
"3 _{ else.

Proof. To prove this formula for the pull back of §; (resp. 61.’, j > 1) we count in a 1-dimensional family of semi-stable

models of trace curves T — B the number of non-disconnecting nodes (resp. of disconnecting nodes that split the curve in
a component of genus j and another component of genus g’ — j). The semi-stable model of the trace curve over a generic
point of Eg has 2(2 k — 1) non-disconnecting nodes. The semi-stable model of the trace curve over a generic point of E, has
4 non-disconnecting nodes. Over a generic point of E3 has 2 non-disconnecting nodes and finally, over a generic point of E;
the situationis: forc > 1ithas2(c+1)(k—j+c)-+jnon-disconnecting nodes; forc = Oandj > 2 it hasjnon-disconnecting
nodes and 2 (k — j) disconnecting nodes of type j, while for c = 0 andj = 1 it has 2k — 1 disconnecting nodes of type 1. O
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In a similar way we derive the following proposition.

Proposition 10.2. For k > 3 the pull back &*(30) equals

k /2]
2k — 2)Eo+2Ez+ZZ<(k—J+c)(c+1)+[ } >JC+Z([J+1] )E,-,o,

j=2 c=1

withe = 0ifj =even, ¢ = 1ifj —odd and ¢ = —1ifj = 2, ¢ = 1; furthermore, @*(31) =(k—1)Eq,o, &5*(32) =(k—1)Eyp
and *(8;) = (k —j) Ejoforj =3, ..., k while $*(8;) = 0forj > k.

11. Push forward to /M,

In [7] we have calculated the push forwards of the boundary classes underp : H — ﬂg. The result is as follows. Let

1 2k
N=N® =77

then
@p*EOZNSO,

and
2 2(k —2)N ) :
—pEy = ——[(18K* +51k— 91 — Bk* + 4k —1)8 ,
GO e = oy 18K+ A — (3K + 4k )o]+;q,
2 3N 3N
——p.E3 = 12k* + 46k — 8) 1 — (2k* + 4k — 1)8 ,
G0 PeB = Gy [(12K 4 46k —8) 2 — (2K + 4k — 1)3o] - ZZk—l 8

j=1

where the ¢; and b; are given in [7, Thm. 1.1 & Section 8] and with

G+1-20?% [i+1\[2k—j+1
€. =
TG+ DRk—j+ D\ ¢ k+1—c

we have finally

(6]()'p* j.c = € ¢ 6]-
By substituting the above formulas in the expression of ¢*1¢ given in Theorem 8.8 we get the following theorem.
Theorem 11.1. For k > 3 the push forward —— (Gk : D<@ Ay ON Mg equals

1\1(18k3+31k2—69k+11)A NGBEK —5k+1)
2k — 1 2k — 1

k 2 Li/2]
—(10k—1) N (6 k +11k—1)
- . . d:
;( a6k—1 9T ame —skrn P12 ZB”(G”JF ”))

By Theorem 9.4 we have a similar theorem for the map defined by the reduced trace curve.

0

Theorem 11.2. For k > 3 the push forward @ p*qAb*)»gA equals

N (18k3 + 19k?* — 117k + 20) N N (k —2)(3k* + 4k — 1)
212k — 1) 22k — 1)

(—5k—1) NG —8k+5) 102
_Z<4(6k—1) 9T aek— k=1 uzmu]c

Proposition 10.1 yields the following result.

0
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Proposition 11.3. The action induced by the correspondence of the boundary divisors 8} forj=0,...,[g/2] ofﬂg/ is given

by:
p*¢*66 = W, A+ Wo 60 + Z Wj 6_,',
where
6(6k)!N(6G Kk — 1 2(6k)!N
w, = (6K)!N (6 k )(2k2+3k—8), wo:_i(61<3—31<2—10k+2)
2k—1 2k—1
and w; = (6k)!(2c; —3Nby/(2k—1))andfor2 <j <k
li/2]
wj =j€j’0 + ;ejyc (Z(k —]+ C)(C + 1) +]) +2 (6’()!(']‘ — (Gk)YZk— 1 bj;

furthermore, p.¢*8} = (2k — 1) e1,081 and p.¢*8; = 2k —2j) §; forj =2, ..., kand p.¢*s; = 0 forj > k.
Similarly, Proposition 10.2 yields the following result.
Proposition 11.4. The action induced by the correspondence of the boundary divisors 8].’forj =0,...,[8/2] ofﬂg/ is given by:
Ped*80 = va A + o 8o + Z vj &,

where

6N (6k)!(6k — 1 N(6k)!
- (zci( ;—) (+3k=2)., 9=~ (61— 6 — 15Kk + 3

T2k —1
and vy = (6k)!2ciandfor2 <j <k

. li/21 .
+1 . +1
vj = ([]T} + e) o+ Zej,c <(k —j+oc+1)+ [JT} + e) +2(6k)! g,

c=1

Uy

with € as defined in Proposition 10.2; furthermore, p*$*<§1 = (k—1)eq,061, p*qAﬁ*Sz = (k—1)ey00, and p*(ZS*Sj =(k=)4
forj =3, ...,kandp*qAb*Sj =0forj > k.

12. Slopes
We consider again the correspondence
Mo <=y

It acts on the Picard group via D + p,¢$*D. We now show that it maps ample divisors of M, to moving divisors of M.
A moving divisor is a divisor D such that the base locus of all the linear systems |mD| with m > 1 is of codimension at
least 2.

Lemma 12.1. IfD’ is an ample divisor on ﬂg/ then the divisor D := p,.¢*D’ is amoving divisor. In other words, the correspondence
sends the ample cone of M, to the moving cone of M.

Proof. Let A, be the locus of M, where the map p : H — M, is finite. Since Hy 4 is irreducible the complement of Mj in
ﬂg is of codimension > 2. We shall show that the common base locus B(D) := N;,>1Base(|mD]) is a subset of the above

complement. Indeed, if x € Mg we shall show that x ¢ B(D). Let p~'(x) = {hy, ..., hy,} and let A = {¢(hy), ..., ¢ (hn,y)}.
As we may assume that mD’ is very ample for appropriate m, we can choose a divisor Z in |mD’| with Z N A = . But then
p+@*Z is an element of |[mD| that does not containx. O

We write 614 (G =0,...,[g'/2]) for the boundary divisors of M, and put §' = Z}iézl 8].’. The span of the ample cone of
Mg in the (1/, 8)-plane is well-known: a divisor D’ = x A" — y §’ is ample if and only if x > 11y, cf. [4, Thm. 1.3]. Given a
divisor D’ = x A" — y §’ we wish to determine the slope s of the induced divisor p,¢*D’ in terms of the slope s’ = x/y of D'.
We write

k
p*qﬁ*)\,/ =) A — CM()(S() - Zaij,
j=1

k
Pu*85 = Bk + BoSo + Y _ BiS;,

=1
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and
p«9*8 = y;é forj=1,....k

while p.¢*8/, = 0 for v > k with the coefficients determined in Theorems 11.1 and 11.3. The divisor p..¢*D’ can be written
as

k
Pd*D' = (xetu =y By) h— (xero +y Bo) do — D (xe +yB; +y1) §j.
=1
Thus the slope is given by
s(p.¢*D) = xoy —y B _ Ol,\S/ - B
xao+yBo oS + Bo

provided that
Xao+yBo<xai+yBi+yy, ji=1,...,k
In our case, assuming that the above conditions hold, then we have
(31s’ — 132)k* 4+ (—395' + 186) k + 55" — 24
(38 —12)k3 +6k2+ (=55 +20)k+s — 4~
From this one can deduce for even g > 4 the following estimate for the moving slope

s(p«¢*D') =6 +

20
o(g) <6+ —.
g

For the reduced trace curve one can do similar things. The result is the formula
(31s —132) k* + (264 —63s) k — 36+ 8s
Bs—12)k3 + (=2s+12) k2 + (—9s+30)k+25s—6

and this results in a similar bound o' (g) < 6 + 20/g. We refrain from giving details because, using the same Hurwitz space
but now as a correspondence between M, and Mg g Will result in a better slope, as we show in the next section.

s(p«¢*D') =6 +

13. Another correspondence
The diagram
Mo,6k - HZk,k—H
l"
Mok

provides us with the action p.g* on divisor classes. It is well-known that the divisor class

K G—1b—j—1)_,
cmy-s=y UmDOImby
=2

is ample on Mo p, cf. [2]. As above this gives us by p,q* a moving divisor of good slope. We calculate now the class of p,q*«.
With « (k, j) as defined in Theorem 1.1 of [7] we get by combining relations (8) and the formulas in Section 11 that

li/2]

peq'Ty) =) (i+1=20)¢. 8 = (6K (k. j) 8.
c=0
We also get
b(b — 1)N k ON
LG T2 = (6k) ! ———— [3(2k + 5)A — (k + 1)80] — (6k)! —¢j+ ——b; ] 5.
Pa'Ty = (65— Bk +5)A — (k+ Dol = ( )Z( q+4k_2]) ;

j=1
We therefore have

_ BBN
p-qic = —— [32k +5)A — (k + 1)d0]

b! 9N
- > [(b -3) (—q + mbj) —@i-1)b-3- 1)a(k,j)} 5;.

j=1
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Theorem 13.1. The moving slope o (g) ofﬂg for even g satisfies the inequality

(€) <64 18

o e

&= g+2

Proof. Indeed, if we write p,.q*x as ar — Zf:o b;é; the ratio a/bg is3(2k+5)/(k+ 1) = 6+ 18/(g +2), while a/b; fori > 0
is much smaller as one sees by analyzing the expressions involved. O

Observe also, that since g*x is an ample class, all effective divisors in a multiple of this class intersect the
positive dimensional fibers of the generically finite map p. We therefore conclude that the common base locus
Nm>1Base(Jm (p.q*«)|) is exactly the locus of points in ﬂg over which the corresponding fiber of the map p has positive
dimension. It will be interesting to have a description of this common base locus.

14. The Prym variety of the trace curve

By associating to a point of Hyy i1 the Prym variety of T/ T (resp. the quotient of the Jacobian of the reduced trace curve
by the Jacobian of C) we can define a morphism x : Hyy g11 — A (512 _k) /20 (T€SP. tO Xt Hokr1 = Ask—1)(k-2)/2), Where 4,
denotes a moduli space of polarized abelian varieties of dimension n. The polarization is induced by the theta divisor on the
Jacobian of the trace curve. These maps are interesting and deserve lerther study.

Suppose that this map x (resp. %) extends to a rational map x : H — 4, a toroidal compactification that contains the
canonical rank 1 partial compactification 4" defined by Mumford. Then the pull back under x of the Hodge class is equal
to ¢p* Ay — é&*xg. This expression is given by combining Theorems 8.8 and 9.4. Let D be the divisor that is the closure of the
inverse image of (open) boundary component of largest degree under the map of 4 to the Satake compactification A*. Let
L be the Hodge bundle (corresponding to modular forms of weight 1) Then the pull back of D is given by ¢*(5;) — 65*(80).
Propositions 10.1 and 10.2 give expressions for this. Thus we can calculate p, x*(al — bD) in terms of X, §g and §; with
j=1,..., k. Our expressions show that nef (ample) divisors aL — bD with a = 12b give rise to (moving) divisors of slope
6+ 20/g.

15. The Eisenbud-Harris divisor

The map p : Hakk+1 — M, is branched along a divisor that was introduced and studied by Eisenbud and Harris in [5].
As a side product of our calculations we now can calculate in an easy way the class of (the closure of) this divisor. We give
only the coefficients of A and &y but the remaining coefficients can be calculated similarly.

Since H maps to Mo and to ﬂg via q and p we can calculate the canonical class in two ways:
Ky = q"Kyg,,, + Ry and Ky =p"Ky, + R,
with Ry and R, the ramification divisors. For R; we have, by relations (8), the formula

Ry=E2+2E5+ ) (=20,
J.c
while R, has four components, namely
Rp :E0+EZ +E3+G~

with p..G the Eisenbud-Harris divisor. Since we have formulas for p,. applied to the divisors Eg, E,, E3 and E; . and we have
a formula for p..q*Kjq, , we can calculate p..G. Indeed, we get

Ry = q"Ksgy, + Ry — p# K.
Plugging in the formula

-2, & [ib—1i) l.
I<M°~b:l)—_1Tb+Z<b—1 —-2) T}

i=3

and applying p, we find p.G = p.«(Rp) — p«(Eo + E» + E3) and thus get
3j(b — 3j)

T 1) G+1—2¢)— 1} psEic — NoKgq,

-2 .
P.G = 35— Poq'Ty + PoEs — p.Fo + ; [(

with Ny = (6k)!N. We now substitute I(ﬂg =131 — 289 — 361 — 2 Z]’.‘zz d; and find

C2k—1
in agreement with Theorem 2 of [5].

p«G [(6k* + 13k + DA — k(k + 1)8o] + - - -
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